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Abstract

In this work, we investigate the quantitative estimates of the unique continuation property for solutions
of an elliptic equation ∆u = V u+W1 · ∇u+div (W2u) in an open, connected subset of Rd, where d ⩾ 3.
Here, V ∈ Lq0 , W1 ∈ Lq1 , and W2 ∈ Lq2 with q0 > d/2, q1 > d, and q2 > d. Our aim is to provide an
explicit quantification of the unique continuation property with respect to the norms of the potentials. To
achieve this, we revisit the Carleman estimates established in [6] and prove a refined version of them, and
we combine them with an argument due to T. Wolff introduced in [18] for the proof of unique continuation
for solutions of equations of the form ∆u = V u+W1 · ∇u.
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Ecole Nationale d’Ingénieurs de Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia, lotfi.thabouti@math.u-bordeaux.fr,
lotfi.thabouti@etudiant-fst.utm.tn

1



1 Introduction

Main result. Our main goal is to prove the following quantitative unique continuation result.

Theorem 1.1. Let d ⩾ 3, Ω ⊂ Rd be a bounded domain, and ω and O be non-empty open subsets of Ω with
ω ⊂ ω ⊂ O ⊂ O ⊂ Ω. Further assume the following geometric condition:

(GC) For all y ∈ O, there exist x0 ∈ ω, ry > 0 and a smooth path γy of finite length such that γy(0) = x0,
γy(1) = y, and ∪s∈[0,1]Bγy(s)(ry) ⊂ Ω, where Bγy(s)(ry) is the ball centered in γy(s) and of radius ry.

Then there exist constants C = C(ω,O,Ω) > 0 and α ∈ (0, 1) depending only on ω, O and Ω so that for any
solution u ∈ H1(Ω) of

∆u = V u+W1 · ∇u+ div(W2u) in D ′(Ω), (1.1)

where

V ∈ Lq0(Ω) with q0 ∈
(
d

2
,∞
]
, and Wj ∈ Lqj (Ω;Cd) with qj ∈ (d,∞] , for j ∈ {1, 2}, (1.2)

we have

∥u∥H1(O) ⩽ Ce
C
(
∥V ∥γ(q0)

Lq0 (Ω)
+∥W1∥

δ(q1)

Lq1 (Ω)
+∥W2∥

δ(q2)

Lq2 (Ω)

)
∥u∥αH1(ω) ∥u∥

1−α
H1(Ω) , (1.3)

with

γ(q) =



1

3

2

(
1− d

2q

)
+

1

2q

if q ⩾ d,

1(
3

4
+

1

2d

)(
2− d

q

) if q ∈
(
d

2
, d

]
,

and δ(q) =
2

1− d

q

, if q > d. (1.4)

Before going further, let us note that the geometric condition (GC) assumed in Theorem 1.1 is a very
mild technical condition. This condition can be violated in some fractal type sets, but it is certainly satisfied
for most geometrical settings. In particular, this geometric condition (GC) is satisfied when ω, O and Ω are
concentric balls, case in which (1.3) reduces to the usual 3-balls type estimate, with an explicit quantification
with respect to the lower order terms.

Of course, a direct application of Theorem 1.1 yields the following unique continuation property for the
Laplace operator: If u ∈ H1(Ω) satisfies (1.1) with potentials V , W1 and W2 as in (1.2) and u = 0 in ω, then
u = 0 in any set O satisfying O ⋐ Ω and (GC). Theorem 1.1 is a quantification of this property as it states
that, if u ∈ H1(Ω) is small in ω and satisfies (1.1) with potentials V , W1 and W2 as in (1.2), then u is small
in O, with a precise quantification in terms of the norms of the potentials.

It is well-known that unique continuation holds for general V ∈ Lq0(Ω), W1 ∈ Lq1(Ω;Cd), and W2 ∈
Lq2(Ω;Cd), where q0 ⩾ d/2, q1 ⩾ d, and q2 ⩾ d (see [19]). Moreover, strong unique continuation has even
been proven in cases when q0 > d/2, q1 > d, and q2 > d (see [9]). These classes of integrability for the
potentials are sharp, as shown in [10]. However, establishing unique continuation results requires the use
of a Carleman estimate and a delicate argument due to T. Wolff, see [18], as also discussed in [9]. This
argument requires to choose a weight function in the Carleman estimate depending on the solution u itself.
The question of quantifying the unique continuation property with respect to the norms of the potentials is
thus quite delicate, and this is the main novelty of our work.

We also mention the work [12], which quantifies unique continuation properties for the Laplace operator
with lower-order terms in the sharp integrability class. However, it does not provide an explicit quantification
with respect to the norms of the potentials. Again, since this work builds upon [9], as mentioned earlier, it
remains unclear how the proof in [12] can be made quantitative in terms of the norms of the potentials.

When trying to quantify the unique continuation property with respect to the norms of the lower order
terms, the known results rely only on the use of a Carleman estimate such as the one presented in [6, Theorem

1.1], which, as pointed out in [3], does not allow to go beyond W1 ∈ L
3d−2

2 (Ω;Cd). This corresponds to what
is done in [5, 4, 6] using Lp Carleman estimate. The results in [5] describing the maximal order of vanishing
of solutions of elliptic equations require V and W1 respectively in Lq0(Ω) with q0 > d(3d − 2)/(5d − 2) and
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in Lq1(Ω;Cd) with q1 > (3d− 2)/2, and W2 = 0. This was improved in [6] using new Lp Carleman estimates
allowing to handle V and W1 respectively in Lq0(Ω) with q0 > d/2 and in Lq1(Ω;Cd) with q1 > (3d− 2)/2,
exhibiting the same dependence in ∥V ∥Lq0 (Ω) as in [4], which was limited to the case W1 =W2 = 0.

We also point out that L2 Carleman estimates does not allow to reach the sharp integrability class for
potentials and lower order terms, see for instance [15] where it is shown that one can obtain quantified
unique continuation results for potentials V ∈ Lq0(Ω) with q0 > 2d/3. In fact, even if one uses Lp Carleman
estimates, one can obtain unique continuation results for potentials V in the sharp class of integrability
(V ∈ Lq0(Ω) with q0 > d/2), but under restrictive integrability conditions on W1 and W2, see for instance
[3] and [19].

Theorem 1.1 is an improvement of [6, Theorem 1.3], since Theorem 1.1 allows non-trivial lower order
terms W1 ∈ Lq1(Ω;Cd) and W2 ∈ Lq2(Ω;Cd) with q1 > d and q2 > d, while Theorem 1.3 in [6] is restricted
to higher integrability class. Indeed, Theorem 1.3 in [6] states that if W1 ∈ Lq1(Ω;Cd) and W2 ∈ Lq2(Ω;Cd),
q1 > (3d− 2)/2, q2 > (3d− 2)/2 and 1/q1+1/q2 < 4(1− 1/d)/(3d− 2), then any solution u ∈ H1(Ω) of (1.1)
satisfies

∥u∥H1(O) ⩽ Ce
C

(
∥V ∥γ(q0)

Lq0 (Ω)
+∥W1∥

δ̃(q1)

Lq1
+∥W2∥

δ̃(q2)

Lq2
+(∥W1∥Lq1 ∥W1∥Lq2 )

γ(q1,q2)

)
∥u∥αH1(ω) ∥u∥

1−α
H1(Ω) , (1.5)

with

δ̃(q) =
2

(1− (3d−2)
2q )

and γ(q1, q2) =
1

(1− 1
d )− ( 34 − 1

2d )(
d
q1

+ d
q2
)
.

Accordingly, the dependence in terms of the norms of the potentials W1 and W2 is also weaker in (1.3) than

in (1.5), as δ given by (1.4) is smaller than δ̃, even for q > (3d− 2)/2.
In fact, this also suggests to analyze the optimality of the coefficients γ and δ in (1.4), but this question

is, to our knowledge, fully open, except whenW1 =W2 = 0 and V ∈ L∞(Ω). Indeed, in this case, it is known
that in dimension d ⩾ 3 the dependence of the constant in the quantification of unique continuation is of the

form C exp(C∥V ∥
2
3

L∞), see [13, 7]. This coincides with our estimate as γ(∞) = 2/3.
Our proof does not allow to derive an estimate up to the boundary of Ω. This is due to a technical fact,

coming from the use of Wolff’s argument on one hand and of the use of the Carleman estimate in [6] on the
other hand. Indeed, as we will see, roughly speaking, Wolff’s argument requires the possibility to play with
(the gradient of) the weight function within the Carleman estimate. But the Carleman estimate in [6], which
we will use and revisit within this work, requires the boundary of the domain to be a level set of the weight
function. These two conditions are thus not compatible and cause trouble when working in a neighborhood
of the boundary.

We also would like to emphasize that the Schrödinger operators in (1.1) also include the consideration
of potentials V ∈ W−1,d+ϵ(Ω), where ϵ > 0. Indeed, any such potential can be represented under the form

V ≡ V0+div (W ), with V0 ∈ Ld+ϵ(Ω) ⊂ L
d
2+ϵ(Ω) and W ∈ Ld+ϵ(Ω,Cd) (see, for example, [1, Theorem 3.9]).

Consequently, one can then rewrite V u under the form V u = V0u+ div (Wu)−W · ∇u.

Outline. Let us briefly comment on the structure of the article. In the next section, we first briefly recall an
auxiliary result due to T. Wolff in [18] (cf. Lemma 2.1), followed by the presentation of some improved Lp

Carleman type estimates (cf. Theorem 2.12 in Section 2) inspired by [6]. Following this, Section 3 is devoted
to the proof of these Carleman estimates. Then, in Section 4, we establish a local quantification of the
unique continuation within a specific geometric framework (cf. Lemma 4.1). In Section 5, we subsequently
employ this to establish a three balls estimate, which directly yields the quantitative unique continuation
result stated in Theorem 1.1, after a few classical manipulations.

Notations. Let us finally introduce some of the notation that we will use throughout the article:
• For every x ∈ Rd, x = (x1, .., xd), we set x = (x1, x

′), where x′ = (x2, .., xd) ∈ Rd−1.
• For x ∈ Rd and r > 0, Bx(r) denotes the ball centered at x ∈ Rd and of radius r > 0.
• The notations ∇ and ∆ respectively stand for the gradient and the Laplacian with respect to x =
(x1, .., xd), and ∇′ = (∂2, .., ∂d) and ∆′ =

∑d
j=2 ∂

2
j are, respectively, the vertical gradient and Laplacian

operators.
• The Fourier transform is always taken to be the Fourier transform with respect to x′ = (x2, .., xd), and
then its dual variable ξ′ ∈ Rd−1 is indexed by ξ′ = (ξ2, .., ξd). Note that for a function f defined on Rd
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(or a vertical strip (X0, X1)×Rd−1) such that f(x1, ·) ∈ S (Rd−1), f̂(x1, ·) denotes the partial Fourier
transform with respect to x′, that is:

f̂(x1, ξ
′) =

1

(2π)
d−1
2

∫
Rd−1

e−ix′·ξ′f(x1, x
′) dx′, ξ′ ∈ Rd−1. (1.6)

• For a measurable subset E of Rd, we denote by |E| its Lebesgue measure.

2 Auxiliary Results

In this section, we begin by recalling Wolff’s lemma, and we present a refined version of the Lp Carleman
estimates obtained in [6]. These elements are the main points in the proof of Theorem 1.1.

2.1 Wolff’s Lemma

We hereby present Wolff’s argument, introduced in [18]:

Lemma 2.1 ([18, Lemma 1]). Suppose µ is a positive measure in Rd which has faster than exponential decay
in the following sense

lim
T→∞

T−1 log(µ{x ∈ Rd , |x| ⩾ T}) = −∞. (2.1)

For k ∈ Rd, define the measure µk by dµk(x) = ek·xdµ(x). Suppose C ⊂ Rd is a compact convex set. Then
there is a family (kj)j∈J of elements of C and a family of two by two disjoint convex sets (Ekj )j∈J included
in Rd so that the measures dµkj are concentrated in Ekj ,

µkj (Rd \ (1 + T )Ekj ) ⩽
1

2
e−T/CW ∥µkj∥, ∀T ⩾ 0. (2.2)

and such that ∑
j

|Ekj |−1 ⩾ C−1
W |C|, (2.3)

where CW is a positive constant depending only on d, and (1 + T )Ekj is the dilation of Ekj around its
barycentre by a factor of 1 + T .

Lemma 2.1 is the main argument in [18], and the basis for the proof of unique continuation in [18] for
potentials V and W1 in the sharp class of integrability (in [18], the term W2 is not considered).

2.2 Carleman type estimates.

We first present the Carleman estimates obtained in [6, Theorem 1.1]:

Theorem 2.2 ([6, Theorem 1.1]). Let d ⩾ 3. Consider a bounded domain Ω ⊂ Rd of class C3, and non-empty
open subsets ω0 and ω of Ω with ω0 ⋐ ω ⋐ Ω. Let φ ∈ C3(Ω) be such that

∀x ∈ ∂Ω, φ(x) = 0 and ∂nφ(x) < 0, (2.4)

and there exist α, β > 0 for which
inf
Ω\ω0

|∇φ| > α, (2.5)

and

∀x ∈ Ω \ ω0, ∀ξ ∈ Rd with |∇φ(x)| = |ξ| and ∇φ(x) · ξ = 0,

(Hessφ(x))∇φ(x) · ∇φ(x) + (Hessφ(x))ξ · ξ ⩾ β|∇φ(x)|2, (2.6)

where Hessφ denotes the Hessian matrix of φ.
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Then there exist C > 0 and τ0 ⩾ 1 (depending only on α, β, ∥φ∥C3(Ω), and the geometric configuration

of Ω, ω, and ω0) such that for all u ∈ H1
0 (Ω) satisfying

−∆u = f2 + f2∗′ + divF in D ′(Ω), (2.7)

with (f2, f2∗′ , F ) satisfying

f2 ∈ L2(Ω), f2∗′ ∈ L
2d

d+2 (Ω), F ∈ L2(Ω;Cd), (2.8)

we have, for all τ ⩾ τ0,

τ
3
2 ∥eτφu∥L2(Ω) + τ

1
2 ∥eτφ∇u∥L2(Ω) ⩽ C

(
∥eτφf2∥L2(Ω) + τ∥eτφF∥L2(Ω)

+τ
3
4−

1
2d ∥eτφf2∗′∥

L
2d

d+2 (Ω)
+ τ

3
2 ∥eτφu∥L2(ω) + τ

3
4 ∥eτφu∥

L
2d

d−2 (ω)

)
, (2.9)

and

τ
3
4+

1
2d ∥eτφu∥

L
2d

d−2 (Ω)
⩽ C

(
∥eτφf2∥L2(Ω) + τ∥eτφF∥L2(Ω) + τ

3
4+

1
2d ∥eτφf2∗′∥

L
2d

d+2 (Ω)

+τ
3
2 ∥eτφu∥L2(ω) + τ

3
4+

1
2d ∥eτφu∥

L
2d

d−2 (ω)

)
. (2.10)

Remark 2.3. The notations 2∗ and 2∗′ stem from the Sobolev’s embedding H1(Ω) ⊂ L2∗(Ω), with 2∗ =
2d/(d− 2) and L2∗′

(Ω) ⊂ H−1(Ω), with 2∗′ = 2d/(d+ 2).

In order to get Theorem 1.1, we prove the following refined version of Theorem 2.2, whose proof will be
given in Section 3.

Theorem 2.4. Let d ⩾ 3. Consider a bounded domain Ω ⊂ Rd, and non-empty open subsets ω0 and ω of Ω
with ω0 ⋐ ω ⋐ Ω. Let φ ∈ C3(Ω) satisfying conditions (2.5)–(2.6).

Then, for all compact subset K of Ω, there exist C > 0 and τ0 ⩾ 1 (depending only on α, β, ∥φ∥C3(Ω),

and the geometric configuration of Ω, ω, ω0 and K) such that for all u ∈ H1(Ω) satisfying suppu ⊂ K and
(2.7) with (f2, f2∗′ , F = F2 + F2∗′) satisfying

f2 ∈ L2(Ω), f2∗′ ∈ L
2d

d+2 (Ω), F2 ∈ L2(Ω;Cd), and F2∗′ ∈ L
2d

d+2 (Ω;Cd) ∩ L2(Ω;Cd), (2.11)

we have, for all τ ⩾ τ0,

τ
3
2 ∥eτφu∥L2(Ω) + τ

1
2 ∥eτφ∇u∥L2(Ω) ⩽ C

(
∥eτφf2∥L2(Ω) + τ∥eτφF2∥L2(Ω) + τ

1
2 ∥eτφF2∗′∥L2(Ω)

+τ
3
4−

1
2d

(
∥eτφf2∗′∥

L
2d

d+2 (Ω)
+ τ∥eτφF2∗′∥

L
2d

d+2 (Ω)

)
+ τ

3
2 ∥eτφu∥H1(ω)

)
, (2.12)

and, for all measurable sets E of Ω,

τ
3
4+

1
2d ∥eτφu∥

L
2d

d−2 (Ω)
+ τ

3
4+

1
2d min

{
1

τ |E| 1d
, 1

}(
τ∥eτφu∥L2(E) + ∥eτφ∇u∥L2(E)

)
⩽ C

(
∥eτφf2∥L2(Ω) + τ∥eτφF2∥L2(Ω) + τ

3
4+

1
2d

(
∥eτφf2∗′∥

L
2d

d+2 (Ω)
+ τ∥eτφF2∗′∥

L
2d

d+2 (Ω)
+ ∥eτφF2∗′∥L2(Ω)

)
+τ

7
4+

1
2d ∥eτφu∥H1(ω)

)
. (2.13)

Remark 2.5. Theorem 2.4 presents several new features compared to Theorem 2.2:
• One of the main difference between Theorem 2.4 and Theorem 2.2 is that Theorem 2.4 allows a source

term of the form div (F2∗′) with F2∗′ ∈ L
2d

d+2 (Ω;Cd) ∩ L2(Ω;Cd), and quantifies the estimate on the

solution u of (2.7) in terms of the L
2d

d+2 (Ω;Cd) ∩ L2(Ω;Cd)-norm of F2∗′ . Note that the L2(Ω;Cd)-
norm of F2∗′ appearing in the right hand sides of (2.12)–(2.13) appears with a power of the Carleman
parameter which is strictly smaller than the one appearing for the L2(Ω;Cd)-norms of F2. In some
sense, for F2∗′ , the loss of ellipticity of the conjugated Laplace operator eτφ∆(e−τφ·) appears within the

L
2d

d+2 (Ω;Cd)-norm of F2∗′ and not within its L2(Ω;Cd)-norm.
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• Estimate (2.13) also presents an estimate of the H1-norm of u on measurable sets E. Similar im-
provements appear in the work [18, Section 6]. Note that these estimates are particularly relevant
when |E| ≲ τ−d, that is on small measurable subsets, for which we get from (2.13) an estimate on

τ
7
4+

1
2d ∥eτφu∥L2(E)+ τ

3
4+

1
2d ∥eτφ∇u∥L2(E). This estimate is reasonable and should be compared with the

term τ
3
4+

1
2d ∥eτφu∥

L
2d

d−2 (Ω)
since, by Hölder’s estimate,

τ
7
4+

1
2d ∥eτφu∥L2(E) ⩽ τ

3
4+

1
2d ∥eτφu∥

L
2d

d−2 (E)
(τ |E| 1d ) ≲ τ

3
4+

1
2d ∥eτφu∥

L
2d

d−2 (Ω)
.

Note however that for large sets E, the estimate in (2.13) of the L2 norm of eτφu is worse than the
estimate given by (2.12).

• Regarding the observation terms, i.e. the terms involving norms on ω, the estimates (2.12) and (2.13)
involve the H1(ω)-norm of u instead of weaker norms as in (2.9) and (2.10). In fact, we write it for
convenience, as it will be of no impact on the result stated in Theorem 1.1.

• In this work, our focus is on deriving local Carleman estimates (in other words, we consider only
functions u which are compactly supported). Nevertheless, let us point that, following the proof of
Theorem 2.2 in [6] (in particular Subsection 6.4), Theorem 2.4 can be extended to functions u ∈ H1(Ω)
with possibly non-homogeneous Dirichlet boundary conditions.

3 Improved Carleman estimates: Proof of Theorem 2.4

This section is devoted to the proof of Theorem 2.4.
Although Theorem 2.4 looks rather close to Theorem 2.2, we will need to revise in depth the proof of

Theorem 2.2 given in [6] and incorporate some changes along the way.
The key step in the proof of Theorem 2.2 is to prove suitable estimates on the inverse of an operator of

the form

∆− x1

d∑
j=2

λj∂
2
j − 2τ∂1 + τ2, (3.1)

in a vertical strip

Ω = (X0, X1)× Rd−1, with X0 < 0 < X1 and max{|X0|, X1|} ⩽ 1, (3.2)

where the coefficients (λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0,

∃c0 > 0, ∀x1 ∈ [X0, X1], ∀ξ ∈ Rd,
1

c20
|ξ|2 ⩽

d∑
j=1

(1− x1λj)|ξj |2 ⩽ c20|ξ|2, (3.3)

and
0 < m∗ ⩽ min

j∈{2,··· ,d}
λj ⩽ max

j∈{2,··· ,d}
λj ⩽M∗. (3.4)

Here, τ ⩾ 1 plays the role of the Carleman parameter, as the operator in (3.1) coincides with

eτx1

∆− x1

d∑
j=2

λj∂
2
j

 (e−τx1 ·).

This really is the main step of the proof of Theorem 2.2, as one can then use the local character of Carleman
estimates to recover Theorem 2.2 in its full generality (see [6] for details; this strategy will be briefly recalled
in Section 3.2).

Our proof of Theorem 2.4 follows the same path, and the key estimate is a refined estimate on the inverse
of the operator (3.1) in a strip, which will be done in Subsection 3.1. Once this will be done, the proof of
Theorem 2.4 can be deduced similarly as in [6] by a suitable localization process, which is rapidly explained
in Subsection 3.2 for the convenience of the reader.
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3.1 Main step: Carleman estimates for solutions in a strip.

In all this section, Ω is a strip of the form (X0, X1)× Rd−1 as in (3.2).
Our goal in this subsection is to prove the following Carleman estimate, which is a refined version of [6,

Theorem 2.2].

Theorem 3.1. Let Ω = (X0, X1)×Rd−1 as in (3.2), with d ⩾ 3, and assume that the coefficients (λj)j∈{1,··· ,d} ∈
Rd satisfy λ1 = 0, (3.3) and (3.4). Then there exist constants C > 0 and τ0 ⩾ 1 depending on c0, m∗ and
M∗, all independent of X0, X1, such that for all τ ⩾ τ0, for all w ∈ H1(Ω) compactly supported in Ω and
satisfying

∆w − x1

d∑
j=2

λj∂
2
jw − 2τ∂1w + τ2w = f2 + f2∗′ + div (F2 + F2∗′), in Ω, (3.5)

with
f2 ∈ L2(Ω), f2∗′ ∈ L

2d
d+2 (Ω), F2 ∈ L2(Ω;Cd), and F2∗′ ∈ L

2d
d+2 (Ω;Cd) ∩ L2(Ω;Cd), (3.6)

we have

τ
3
2 ∥w∥L2(Ω) + τ

1
2 ∥∇w∥L2(Ω)

⩽ C

(
∥f2∥L2(Ω) + τ∥F2∥L2(Ω) + τ

3
4−

1
2d (∥f2∗′∥

L
2d

d+2 (Ω)
+ τ∥F2∗′∥

L
2d

d+2 (Ω)
) + τ

1
2 ∥F2∗′∥L2(Ω)

)
, (3.7)

and, and for all measurable subsets E of Ω,

τ
3
4+

1
2d ∥w∥

L
2d

d−2 (Ω)
+ τ

3
4+

1
2d min

{
1

τ |E| 1d
, 1

}(
τ∥w∥L2(E) + ∥∇w∥L2(E)

)
⩽ C

(
∥f2∥L2(Ω) + τ∥F2∥L2(Ω) + τ

3
4+

1
2d

(
∥f2∗′∥

L
2d

d+2 (Ω)
+ τ∥F2∗′∥

L
2d

d+2 (Ω)

)
+ τ

3
4+

1
2d ∥F2∗′∥L2(Ω)

)
. (3.8)

The proof of Theorem 3.1 is of course very close to the one of [6, Theorem 2.2.], as Theorem 3.1 is an
improved version of Theorem 2.2 in [6] with respect to the same points as in Remark 2.5.

It will require several steps:
1. Construction of an explicit parametrix giving w solving (3.5) in terms of the source terms (f2, f2∗′ , F =
F2 + F2∗′), based on [6, Proposition 3.1], that we will recall hereafter in Subsubsection 3.1.1.

2. Estimates on the operators involved in the parametrix, which will be also mainly corresponding to the
ones in Section 6 of [6], which we also recall. New estimates will also be needed to get the complete
estimates of Theorem 3.1, relying on the decomposition of F2∗′ in its low and high frequency components,
see Subsubsection 3.1.2.

3. A suitable combination of the estimates on the various operators involved in the parametrix, see Sub-
subsection 3.1.3.

In particular, we will rely upon the following explicit parametrix giving w solution of (3.5) in terms of
the source terms (f2, f2∗′ , F = F2 + F2∗′).

3.1.1 An explicit parametrix

We use the parametrix constructed in the work [6]. To do so, we introduce the function ψ : Ω → R defined
as follows:

ψ(x1, ξ
′) =

√√√√ d∑
j=2

(1− x1λj)ξ2j , x1 ∈ [X0, X1], ξ
′ ∈ Rd−1. (3.9)

According to [6, Proposition 3.1], we then have the following explicit parametrix:

Proposition 3.2 ([6, Proposition 3.1]). Under the same setting of Theorem 3.1. For all τ ⩾ 1, if w is
compactly supported and satisfies (3.5) with source terms (f2, f2∗′ , F2, F2∗′) as in (3.6), then

w = Kτ,0(f2 + f2∗′) +

d∑
j=1

Kτ,j((F2 + F2∗′) · ej) +Rτ (w), (3.10)
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where the family of vectors (ej)j∈{1,··· ,d} is the canonical basis of Rd and, using the partial Fourier transform,
the operators Kτ,j, for j ∈ {0, · · · , d}, and Rτ are defined for f depending on (x1, x

′) ∈ Ω by

K̂τ,jf(x1, ξ
′) =

∫
y1∈(X0,X1)

kτ,j(x1, y1, ξ
′)f̂(y1, ξ

′) dy1, (x1, ξ
′) ∈ Ω, (3.11)

R̂τf(x1, ξ
′) =

∫
y1∈(X0,X1)

rτ (x1, y1, ξ
′)f̂(y1, ξ

′) dy1, (x1, ξ
′) ∈ Ω, (3.12)

with kernels given, for (x1, y1, ξ
′) ∈ [X0, X1]

2 × Rd−1, by

kτ,0(x1, y1, ξ
′) = −1ψ(x1,ξ′)>τ

∫ min{x1,y1}

X0

e
−τ(y1−x1)−

∫ x1
x̃1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dỹ1 dx̃1

+ 1ψ(x1,ξ′)⩽τ1y1>x1

∫ y1

x1

e
−τ(y1−x1)+

∫ x̃1
x1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dy1 dx̃1, (3.13)

kτ,1(x1, y1, ξ
′) = −1ψ(x1,ξ′)⩽τ1y1>x1e

−τ(y1−x1)+
∫ y1
x1

ψ(ỹ1,ξ
′) dỹ1

+ 1ψ(x1,ξ′)>τ1y1<x1
e
τ(x1−y1)−

∫ x1
y1

ψ(ỹ1,ξ
′) dỹ1 + kτ,0(x1, y1, ξ

′)(τ + ψ(y1, ξ
′)), (3.14)

kτ,j(x1, y1, ξ
′) = iξjkτ,0(x1, y1, ξ

′), j ∈ {2, · · · , d}, (3.15)

rτ (x1, y1, ξ) = kτ,0(x1, y1, ξ
′)∂1ψ(y1, ξ

′). (3.16)

The key to prove Proposition 3.2 is to remark that the partial Fourier transform of the operator in (3.1)
is of the form

(∂1 − τ)2 −
d∑
j=2

|ξj |2(1− x1λj) = (∂1 − τ − ψ(x1, ξ
′))(∂1 − τ + ψ(x1, ξ

′))− ∂1ψ(x1, ξ
′).

It is then clear that the set in which the estimates may degenerate is the set {(x1, ξ′) ∈ (X0, X1) ×
Rd−1, with ψ(x1, ξ

′) = τ}. Accordingly, it is interesting to use a kind of projection operator Phf,τ on the
high-frequency components acting on L2(Ω) and given in Fourier, for f ∈ L2(Ω), by the formula

P̂hf,τf(x1, ξ
′) = η

(
ψ(X1, ξ

′)

τ

)
f̂(x1, ξ

′), (x1, ξ
′) ∈ (X0, X1)× Rd−1, (3.17)

where η is a smooth function in C∞([0,∞),R), taking value 0 in [0, 2], taking value 1 outside [0, 3], and
bounded by 1.

Note that since the operator Phf,τ corresponds to a convolution in the x′ variable with a L1 kernel

x′ 7→ τd−1η1(τx
′) where η1(z

′) = 1
(2π)(d−1)/2

∫
Rd−1 e

iz′·ξ′η(ψ(X1, ξ
′)) dξ′, one can check through a simple

scaling argument that, for all p ∈ [1,∞], there exists Cp such that for all f ∈ Lp(Ω),

∥Phf,τf∥Lp(Ω) ⩽ Cp∥f∥Lp(Ω).

This operator presents the advantage of localizing in the frequencies ξ′ such that for all x1 ∈ (X0, X1),
ψ(x1, ξ

′) ⩾ ψ(X1, ξ
′) ⩾ 2τ , and thus far away from the critical set {(x1, ξ′) ∈ (X0, X1)×Rd−1, with ψ(x1, ξ

′) =
τ}. It is also easy to check that it commutes with all the operators (Kτ,j)j∈{0,··· ,d} and Rτ .

This operator can be used in particular on F2∗′ , that we will write as

F2∗′ = Phf,τF2∗′ + (I − Phf,τ )F2∗′ .

Using the notations F ′
2∗′ to denote the last d − 1 components of F2∗′ and div ′ to denote the divergence

operator on Rd−1
x′ , it is easy to check that div ′((I−Phf,τ )F ′

2∗′) belongs to L2(Ω), and thus the identity (3.10)
can be written as

w = Kτ,0(f2 + f2∗′ + div ′((I − Phf,τ )F
′
2∗′)) +Kτ,1((F2 + Phf,τF2∗′) · e1)

+Kτ,1(((I − Phf,τ )F2∗′) · e1) +
d∑
j=2

Kτ,j((F2 + Phf,τF2∗′) · ej) +Rτ (w). (3.18)
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This is one of the formula that we will use next. Note that it involves all the operators Kτ,j and Rτ
appearing in Proposition 3.2, so that Theorem 3.1 will be derived using the known estimates on these
operators obtained in [6] and the suitable gains that we will have by considering how these operators act at
low and high-frequencies.

3.1.2 Boundedness of the operators Kτ,j

Our proof will be based on estimates for each of the operators (Kτ,j)j∈{0,··· ,d}.

Known estimates. Several estimates have already been obtained in [6] and are recalled here:

Proposition 3.3 (Proposition 6.2 in [6]). Under the setting of Theorem 3.1. There exist C > 0 and τ0 ⩾ 1
independent of X0, X1 (and depending only on c0, m∗ and M∗ in (3.3) and (3.4)) such that for all τ ⩾ τ0,

for all f ∈ L
2d

d+2 (Ω),

∥Kτ,0f∥
L

2d
d−2 (Ω)

+ τ
3
4+

1
2d ∥Kτ,0f∥L2(Ω) + ∥∂1K̂τ,0f∥L2(Ω1,τ ) + τ−

1
4+

1
2d ∥∇′Kτ,0f∥L2(Ω) ⩽ C∥f∥

L
2d

d+2 (Ω)
,

(3.19)

and, for all f ∈ L2(Ω),

τ
3
4+

1
2d ∥Kτ,0f∥

L
2d

d−2 (Ω)
+ τ

3
2 ∥Kτ,0f∥L2(Ω) + τ∥∂1K̂τ,0f∥L2(Ω1,τ ) + τ

1
2 ∥∇′Kτ,0f∥L2(Ω) ⩽ C∥f∥L2(Ω), (3.20)

with
Ω1,τ = {(x1, ξ′) ∈ (X0, X1)× Rd−1, with ψ(x1, ξ

′) ̸= τ}. (3.21)

Proposition 3.4 (Proposition 6.7 and 6.10 in [6]). Under the setting of Theorem 3.1. There exist C > 0
and τ0 ⩾ 1 independent of X0, X1 (and depending only on c0, m∗ and M∗ in (3.3) and (3.4)) such that for
all j ∈ {1, · · · , d}, for all τ ⩾ τ0 and for all f ∈ L2(Ω),

τ−
1
4+

1
2d ∥Kτ,jf∥

L
2d

d−2 (Ω)
+ τ

1
2 ∥Kτ,jf∥L2(Ω) + ∥∂1K̂τ,jf∥L2(Ω1,τ ) + τ−

1
2 ∥∇′Kτ,jf∥L2(Ω) ⩽ C∥f∥L2(Ω).

Proposition 3.5 (Proposition 6.13 in [6]). Under the setting of Theorem 3.1. There exist C > 0 and τ0 ⩾ 1
independent of X0, X1 (and depending only on c0, m∗ and M∗ in (3.3) and (3.4)) such that for all τ ⩾ τ0
and for all f ∈ H1(Ω),

τ
3
4+

1
2d ∥Rτf∥

L
2d

d−2 (Ω)
+ τ

3
2 ∥Rτf∥L2(Ω) + τ∥∂1R̂τf∥L2(Ω1,τ ) + τ

1
2 ∥∇′Rτ,0f∥L2(Ω) ⩽ C∥∇′f∥L2(Ω).

It is natural to obtain better estimates for the operators (Phf,τKτ,j)j∈{0,··· ,d} than for the operators
(Kτ,j)j∈{0,··· ,d}, since the high-frequency projection operator Phf,τ is a projection which projects on the part
in which the conjugated operator in (3.1) is elliptic. Although such estimates are known and rather classical
in the Hilbertian setting, this needs to be made precise when trying to get estimates on these operators from
Lp(Ω) to Lq(Ω) when p or q is different from 2 (we refer to [9] for estimates of that kind in a closely related
context). This is precisely our next goal.

High-frequency estimates. We list below the new estimates we obtain on the operators (Kτ,j)j∈{0,··· ,d}
at high frequencies, to be compared with the ones in Propositions 3.3 and 3.4. These will be proved next.

Proposition 3.6. Under the setting of Theorem 3.1. There exist C > 0 and τ0 ⩾ 1 independent of X0, X1

(and depending only on c0, m∗ and M∗ in (3.3) and (3.4)) such that for all τ ⩾ τ0, for all f ∈ L
2d

d+2 (Ω),

τ∥Phf,τKτ,0f∥L2(Ω) + ∥∇Phf,τKτ,0f∥L2(Ω) ⩽ C∥f∥
L

2d
d+2 (Ω)

, (3.22)

and, for all f ∈ L2(Ω),

τ∥Phf,τKτ,0f∥
L

2d
d−2 (Ω)

+ τ2∥Phf,τKτ,0f∥L2(Ω) + τ∥∇Phf,τKτ,0f∥L2(Ω) ⩽ C∥f∥L2(Ω). (3.23)
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Remark 3.7. It is interesting to compare the estimates in Proposition 3.6 to the ones in Proposition 3.3.
In particular, one sees that for the Hilbertian estimates, i.e. for the L (L2(Ω), H1(Ω)) norm of PhfKτ,0,

the estimates (3.23) are better than the ones in (3.23) for Kτ,0 by a factor τ
1
2 . This improvement is weaker

for the estimates in the L (H1(Ω), L
2d

d−2 (Ω)) and L (L
2d

d+2 (Ω), H1(Ω))-norms of PhfKτ,0, which still gains a

factor τ
1
4−

1
2d compared to the L (H1(Ω), L

2d
d−2 (Ω)) and L (L

2d
d+2 (Ω), H1(Ω))-norms of Kτ,0.

Proposition 3.8. Under the setting of Theorem 3.1. There exist C > 0 and τ0 ⩾ 1 independent of X0, X1

(and depending only on c0, m∗ and M∗ in (3.3) and (3.4)), such that for all j ∈ {1, · · · , d}, for all τ ⩾ τ0
and for all f ∈ L2(Ω),

∥Phf,τKτ,jf∥
L

2d
d−2 (Ω)

+ τ∥Phf,τKτ,jf∥L2(Ω) + ∥∇Phf,τKτ,jf∥L2(Ω) ⩽ C∥f∥L2(Ω). (3.24)

Remark 3.9. Here again, as in Remark 3.7, comparing the estimates in Proposition 3.8 to the ones in Propo-

sition 3.4, we see that, for j ⩾ 1, there is again of a factor τ
1
4−

1
2d when considering the L (L2(Ω), L

2d
d−2 (Ω))-

norm of the operator Phf,τKτ,j compared to the norm of Kτ,j, and of a factor τ
1
2 when considering the

L (L2(Ω), H1(Ω))-norms.

Before going into the proofs of Propositions 3.6 and 3.8, we point out that each operator Kτ,j for j ∈
{0, · · · , d} is a Fourier multiplier operator in the vertical variable. We can therefore use the Stein-Tomas
restriction Theorem [16] to estimate their behavior as an operator from Lp(Rd−1) to Lq(Rd−1) for some
values of p and q. This approach is briefly recalled in Appendix A with a suitable parametrization of the
phase space ξ′ ∈ Rd−1 as ξ′ 7→ (ψ(a, ξ′), ξ′/ψ(a, ξ′)) for ψ as in (3.9) and a ∈ [X0, X1] adapted to the kernels
appearing in Proposition 3.2. The full details can be found in [6, Section 5].

Proof of Proposition 3.6. In view of the results in Proposition A.1, we first estimate weighted norms of
kτ,0(x1, y1, ·) for x1 and y1 in [X0, X1] (recall the definition of kτ,0 in (3.13)). We also identify ξ′ ∈ Rd−1

with pairs (λ, ω′) ∈ R+ × Σx1
, where Σx1

= {ω′ ∈ Rd−1, ψ(x1, ω
′) = 1}, through the formula ξ′ = λω′, or

equivalently λ = ψ(x1, ξ
′) and ω′ = ξ′/ψ(x1, ξ

′). With a slight abuse of notations, we denote kτ,0 similarly
whether it is written in terms of ξ′ ∈ Rd−1 or in terms of (λ, ω′) ∈ R+ × Σx1 .

From [6, Lemma 6.4], there exists a constant C > 0 such that for all τ ⩾ 1, λ > τ , and all x1, y1 ∈ [X0, X1],
we have

∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1 )
⩽


C

λ
e−(λ−τ)|x1−y1|−λ(x1−y1)2/C1 , if y1 < x1,

C

λ
e−(λ/C+τ)|y1−x1|, if y1 > x1.

(3.25)

Arguing as in [6, Lemma 6.6], we deduce(∫ ∞

2τ

∥kτ,0(x1, y1, λ, .)∥2L∞(Σx1
) λ

1− 2
d dλ

) 1
2

⩽ Ce−τ |y1−x1|τ−
1
d . (3.26)

Accordingly, using Proposition A.1, Young’s inequality and the fact that for all x1 ∈ [X0, X1], λ =

ψ(x1, ξ
′) ⩾ ψ(X1, ξ

′) ⩾ 2τ due to (3.4), we have, for f ∈ L
2d

d+2 (Ω) and τ ⩾ 1,

∥Phf,τKτ,0f∥L2(Ω) ⩽
∥∥∥∥Phf,τKτ,0f(x1, ·)∥L2

x′ (Rd−1)

∥∥∥
L2

x1
(X0,X1)

⩽

∥∥∥∥∥
∫ X1

X0

(∫ ∞

2τ

∥kτ,0(x1, y1, λ, ·)∥2L∞(Σx1
)λ

1− 2
d dλ

) 1
2

∥f(y1, ·)∥
L

2d
d+2

y′ (Rd−1)
dy1

∥∥∥∥∥
L2

x1
(X0,X1)

⩽ C

∥∥∥∥∥(y1 7→ e−τ |y1|τ−
1
d

)
⋆y1 ∥f(y1, ·)∥

L
2d

d+2

y′ (Rd−1)

∥∥∥∥∥
L2

x1
(X0,X1)

⩽ C
∥∥∥y1 7→ e−τ |y1|τ−

1
d

∥∥∥
L

d
d−1 (R)

∥∥∥∥∥∥f(y1, ·)∥L 2d
d+2

y′ (Rd−1)

∥∥∥∥∥
L

2d
d+2
y1

(X0,X1)

= Cτ−1 ∥f∥
L

2d
d+2 (Ω)

. (3.27)
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Similarly, we get that for all f ∈ L2(Ω) and τ ⩾ 1,

∥Phf,τKτ,0f∥
L

2d
d−2 (Ω)

⩽ Cτ−1 ∥f∥L2(Ω) . (3.28)

Similarly, arguing as in [6, Lemma 6.6], we get(∫ ∞

2τ

∥λω′kτ,0(x1, y1, λ, ω
′)∥2L∞

ω′ (Σx1 )
λ1−

2
d dλ

) 1
2

⩽ C|y1 − x1|−1+ 1
d . (3.29)

Using Proposition A.1 and the Hardy-Littlewood-Sobolev theorem in 1-d, we then get, for all f ∈ L
2d

d+2 (Ω)
and τ ⩾ 1,

∥∇′Phf,τKτ,0f∥L2(Ω) ⩽
∥∥∥∥∇′Phf,τKτ,0f(x1, ·)∥L2

x′ (Rd−1)

∥∥∥
L2

x1
(X0,X1)

⩽

∥∥∥∥∥
∫ X1

X0

(∫ ∞

2τ

∥λkτ,0(x1, y1, λ, ·)∥2L∞(Σx1
)λ

1− 2
d dλ

) 1
2

∥f(y1, ·)∥
L

2d
d+2

y′ (Rd−1)
dy1

∥∥∥∥∥
L2

x1
(X0,X1)

⩽ C

∥∥∥∥∥(y1 7→ |y1|−1+ 1
d

)
⋆y1 ∥f(y1, ·)∥

L
2d

d+2

y′

(Rd−1)

∥∥∥∥∥
L2

x1
(X0,X1)

⩽ C

∥∥∥∥∥∥f(y1, ·)∥L 2d
d+2

y′ (Rd−1)

∥∥∥∥∥
L

2d
d+2
y1

(X0,X1)

= C ∥f∥
L

2d
d+2 (Ω)

. (3.30)

We conclude the estimate (3.22) by combining (3.27), (3.30) and (3.19) for the estimate of ∂1Phf,τKτ,0f for

f ∈ L
2d

d+2 (Ω).
To conclude (3.23), in view of (3.28), we only need to estimate the L (L2(Ω)) and L (L2(Ω), H1(Ω))-

norms of Phf,τKτ,0. These are easier since the estimate (3.25) yields that there exists a constant C > 0 such
that for all τ ⩾ 1, λ > 2τ , and all x1, y1 ∈ [X0, X1], we have

(τ + λ)∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1
) ⩽ Ce−τ |x1−y1| (3.31)

We then immediately get, by Young’s inequality, that for f ∈ L2(Ω) and τ ⩾ 1,

τ∥Phf,τKτ,0f∥L2(Ω) + ∥∇′Phf,τKτ,0f∥L2(Ω)

⩽ τ
∥∥∥∥Phf,τKτ,0f(x1, ·)∥L2

x′ (Rd−1)

∥∥∥
L2

x1
(X0,X1)

+
∥∥∥∥∇′Phf,τKτ,0f(x1, ·)∥L2

x′ (Rd−1)

∥∥∥
L2

x1
(X0,X1)

⩽ C

∥∥∥∥∥
∫ X1

X0

e−τ |x1−y1| ∥f(y1, ·)∥L2
y′ (Rd−1) dy1

∥∥∥∥∥
L2

x1
(X0,X1)

⩽ Cτ−1 ∥f∥L2(Ω) . (3.32)

This estimate, together with (3.28) and the estimate (3.20) for the estimate of ∂1Phf,τKτ,0f for f ∈ L2(Ω),
gives the estimate (3.23).

Proof of Proposition 3.8. We only sketch the proof of Proposition 3.8 since it relies on similar arguments as
the ones used in the proof of Proposition 3.6.

Let us explain the main steps to get the estimate (3.24). Using [6, Lemma 6.8], we get a constant C > 0
independent of X0, X1 (and depending only on c0, m∗ and M∗ in (3.3) and (3.4)), such that for all x1 and
y1 in [X0, X1], for all τ ⩾ 1, and λ > 0,

∥kτ,1(x1, y1, λ, ·)∥L∞(Σx1 )
⩽ Ce−|τ−λ||y1−x1|−λ(y1−x1)

2/C + C(τ + λ)∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1 )
. (3.33)

and, for j ∈ {2, · · · , d},

∥kτ,j(x1, y1, λ, ·)∥L∞(Σx1
) ⩽ Cλ∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1

). (3.34)
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The estimate (3.29) then yields the existence of a constant C > 0 such that for all τ ⩾ 1, j ∈ {2, · · · , d},
and all x1, y1 ∈ [X0, X1],(∫ ∞

2τ

∥kτ,j(x1, y1, λ, .)∥2L∞(Σx1
) λ

1− 2
d dλ

) 1
2

⩽ C|y1 − x1|−1+ 1
d . (3.35)

Similarly, one can derive from (3.33) that this also holds for j = 1.
Using Proposition A.1 and the Hardy-Littlewood-Sobolev theorem, we then deduce that there exists C > 0

such that for all j ∈ {1, · · · , d}, for all τ ⩾ 1 and for all f ∈ L2(Ω),

∥Phf,τKτ,jf∥
L

2d
d−2 (Ω)

⩽ C∥f∥L2(Ω).

The estimates on the L (L2(Ω))-norms of Phf,τKτ,j and ∇′Phf,τKτ,j can be achieved more easily and are
left to the reader, and the L (L2(Ω))-norm of ∂1Phf,τKτ,j follows from Proposition 3.4.

Low-frequency estimates. In our arguments next, we will also need to understand the behavior of the

operator (I − Phf,τ )Kτ,1 and show how it acts on L
2d

d+2 (Ω):

Proposition 3.10. Under the setting of Theorem 3.1. There exist C > 0 and τ0 ⩾ 1 independent of X0, X1

(and depending only on c0, m∗ and M∗ in (3.3) and (3.4)) such that for all τ ⩾ τ0 and for all f ∈ L
2d

d+2 (Ω),

∥(I − Phf,τ )Kτ,1f∥
L

2d
d−2 (Ω)

+ τ
3
4+

1
2d ∥(I − Phf,τ )Kτ,1f∥L2(Ω)

+ ∥∂1 ̂(I − Phf,τ )Kτ,1f∥L2(Ω1,τ ) + τ−
1
4+

1
2d ∥∇′(I − Phf,τ )Kτ,1f∥L2(Ω) ⩽ Cτ∥f∥

L
2d

d+2 (Ω)
, (3.36)

where Ω1,τ is the set defined in (3.21).

Proof. Similarly as in the previous proofs, we will use suitable bounds on the kernel kτ,1. Namely, we will
use the bound (3.33), the bound (3.25) and the following bound, obtained in [6, Lemma 6.4]: There exist
constants C > 0 and C1 > 0 independent of X0, X1 (and depending only on c0, m∗ andM∗ in (3.3) and (3.4))
such that for all x1 and y1 in [X0, X1], for all τ ⩾ 1, and λ ⩽ τ , the kernel kτ,0 defined in (3.13) satisfies

∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1
) ⩽

 C|y1 − x1|e−τ |y1−x1|, if λ|y1 − x1| ⩽ 1,

C

λ
e−(τ−λ)|y1−x1|−λ(y1−x1)

2/C1 , if λ|y1 − x1| ⩾ 1.
(3.37)

Lemma 6.9 in [6] states that there exists a constant C > 0 independent of X0, X1 (and depending only
on c0, m∗ and M∗ in (3.3) and (3.4)) such that for all x1 and y1 in [X0, X1], for all τ ⩾ 1,(∫

λ>0

∥kτ,1(x1, y1, λ, ·)∥2L∞(Σx1 )
λ1−

2
d dλ

) 1
2

⩽ C
1

|x1 − y1|1−
1
d

+ k̃τ,1(x1 − y1), (3.38)

with k̃τ,1 ∈ L
d

d−1 (R) and ∥k̃τ,1∥
L

d
d−1 (R)

⩽ Cτ
1
4−

1
2d .

Using then Proposition A.1, the Hardy-Littlewood-Sobolev theorem and Young’s inequality, we deduce that

the L (L
2d

d+2 (Ω), L2(Ω))-norm of (I − Phf,τ )Kτ,1 is bounded by Cτ
1
4−

1
2d .

To get a bound on the L (L
2d

d+2 (Ω), L
2d

d−2 (Ω))-norm of (I − Phf,τ )Kτ,1 (recall that I − Phf,τ localizes at
frequency ξ′ such that ψ(X1, ξ

′) ⩽ 3τ), we first show that there exists a constant C > 0, such that for all x1
and y1 in [X0, X1], for all τ ⩾ 1,∫ 3c1τ

0

∥kτ,1(x1, y1, λ, ·)∥L∞(Σx1
)λ

1− 2
d dλ

⩽ C

∫ 3c1τ

0

e−|τ−λ||y1−x1|−λ(y1−x1)
2/Cλ1−

2
d dλ+ τC

∫ 3c1τ

0

∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1
)λ

1− 2
d dλ

⩽ Cτ |x1 − y1|−1+ 2
d ,
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where the bound on the first term on the right-hand side is derived through simple calculations similar to [6,
Section 6]. For the second term, we have used [6, Lemma 6.6], where c1 is defined by

c1 = sup
x1∈[X0,X1]

sup{ψ(x1, ξ′), s. t. ψ(X1, ξ
′) = 1}.

Using then Proposition A.1 and the Hardy-Littlewood-Sobolev theorem, the L (L
2d

d+2 (Ω), L
2d

d−2 (Ω))-norm of
(I − Phf,τ )Kτ,1 is bounded by Cτ .

For the estimate on the L (L
2d

d+2 (Ω), L
2d

d−2 (Ω))-norm ∇′(I −Phf,τ )Kτ,1, the crucial point is to prove that
there exists a constant C > 0 such that for all x1, y1 ∈ [X0, X1], and for all τ ⩾ 1,(∫ 3c1τ

0

∥λω′kτ,1(x1, y1, λ, ω
′)∥2L∞

ω′ (Σx1 )
λ1−

2
d dλ

) 1
2

⩽ Cτ
5
4−

1
2d |x1 − y1|−1+ 1

d . (3.39)

If so, using again Proposition A.1 and the Hardy-Littlewood-Sobolev inequality, the L (L
2d

d+2 (Ω), L
2d

d−2 (Ω))-

norm ∇′(I − Phf,τ )Kτ,1 is bounded by τ
5
4−

1
2d .

To prove inequality (3.39), we can bound the term on the left-hand side using (3.33) as follows

C

(∫ 3c1τ

0

e−|τ−λ||y1−x1|−λ(y1−x1)
2/Cλ3−

2
d dλ

) 1
2

+ Cτ

(∫ 3c1τ

0

∥λω′kτ,0(x1, y1, λ, ω
′)∥2L∞

ω′ (Σx1 )
λ1−

2
d dλ

) 1
2

.

Then, using [6, Lemma 6.6], we obtain the desired estimate on the second term. A straightforward compu-
tation yields the same bound on the first term.

The estimate the L (L
2d

d+2 (Ω), L
2d

d−2 (Ω))-norm of ∂1(I − Phf,τ )Kτ,1 is more technical. First, we compute
the kernel of the operator ∂1Kτ,1, denoted by kτ,1,∂1 : for all (x1, ξ

′) ∈ Ω1,τ and all y1 ∈ (X0, X1),

kτ,1,∂1(x1, y1, ξ
′) = −1ψ(x1,ξ′)⩽τ1y1>x1(τ − ψ(x1, ξ

′))e
−τ(y1−x1)+

∫ y1
x1

ψ(ỹ1,ξ
′) dỹ1

+ 1τ<ψ(x1,ξ′)1y1<x1
(τ − ψ(x1, ξ

′))e
τ(x1−y1)−

∫ x1
y1

ψ(ỹ1,ξ
′) dỹ1

+ kτ,0,∂1(x1, y1, ξ
′)(τ + ψ(y1, ξ

′)), (3.40)

where kτ,0,∂1 is defined for x1, y1 in [X0, X1] and ξ
′ ∈ Rd−1, by

kτ,0,∂1(x1, y1, ξ
′) = −1x1<y1e

−τ(y1−x1)−
∫ y1
x1

ψ(ỹ1,ξ
′) dỹ1

− 1ψ(x1,ξ′)>τ (τ − ψ(x1, ξ
′))

∫ min{x1,y1}

X0

e
−τ(y1−x1)−

∫ x1
x̃1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dỹ1dx̃1

+ 1ψ(x1,ξ′)⩽τ1x1<y1(τ − ψ(x1, ξ
′))

∫ y1

x1

e
−τ(y1−x1)+

∫ x̃1
x1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dỹ1dx̃1.

The kernel of ∂1(I − Phf,τ )Kτ,1, denoted by kτ,1,∂1,lf is then given by

kτ,1,∂1,lf (x1, y1, ξ
′) =

(
1− η

(
ψ(X1, ξ

′)

τ

))
kτ,1,∂1(x1, y1, ξ

′). (3.41)

A tedious computation (similar to the ones in [6, Lemma 6.4]) then shows that there exists a constant
C > 0 independent of X0 and X1, such that for all x1 and y1 in [X0, X1], for all τ ⩾ 1, and 0 < λ < 3c1τ ,

∥kτ,1,∂1,lf (x1, y1, λ, ·)∥L∞(Σx1
) ⩽ Cτ

(
e−|τ−λ||y1−x1|−λ(y1−x1)

2/C + ∥kτ,0,∂1(x1, y1, λ, ·)∥L∞(Σx1
)

)
.

As a consequence, using [6, Lemma 6.6] to bound the second term on the right-hand side of the last inequality,
we can prove (∫ 3c1τ

0

∥kτ,1,∂1(x1, y1, λ, ·)∥
2
L∞(Σx1

) λ
1− 2

d dλ

) 1
2

⩽ Cτ |x1 − y1|−1+ 1
d . (3.42)

Using the Hardy-Littlewood-Sobolev inequality then yields that the L (L
2d

d+2 (Ω), L
2d

d−2 (Ω))-norm of ∂1(I −
Phf,τ )Kτ,1 is bounded by Cτ . This concludes the proof of Proposition 3.10.
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3.1.3 Proof of Theorem 3.1

With the various estimates established in the propositions presented in the previous subsection, we are now
in a position to prove Theorem 3.1, that is the Carleman estimates in the strip.

Proof of Theorem 3.1. Using Proposition 3.2, if w is compactly supported and satisfies (3.5) for some source
terms (f2, f2∗′ , F2, F2∗′) as in (3.6), then

w = Kτ,0(f2 + f2∗′) +

d∑
j=1

Kτ,j((F2 + F2∗′) · ej) +Rτ (w).

Recall that the operator Phf,τ commutes with all the operators (Kτ,j)j∈{0,··· ,d} and Rτ . Accordingly, the
high-frequency part of whf,τ = Phf,τw satisfies

whf,τ = Phf,τKτ,0(f2 + f2∗′) +

d∑
j=1

Phf,τKτ,j((F2 + F2∗′) · ej) +Rτ (whf,τ ).

Using the various estimates in Propositions 3.6, 3.8, and 3.5, at high-frequency, we obtain

τ
3
2 ∥whf,τ∥L2(Ω) + τ

1
2 ∥∇whf,τ∥L2(Ω)

⩽ C

(
τ−

1
2 ∥f2∥L2(Ω) + τ

1
2 ∥f2∗′∥

L
2d

d+2 (Ω)
+ τ

1
2 ∥F2 + F2∗′∥L2(Ω)

)
+ C∥∇′whf,τ∥L2(Ω), (3.43)

and we have also (using also (3.19) and the fact that ∥Phf,τ∥Lp ⩽ Cp for p = 2d/(d− 2))

τ
3
4+

1
2d ∥whf,τ∥

L
2d

d−2 (Ω)

⩽ C

(
τ−

1
4+

1
2d ∥f2∥L2(Ω) + τ

3
4+

1
2d ∥f2∗′∥

L
2d

d+2 (Ω)
+ τ

3
4+

1
2d ∥F2 + F2∗′∥L2(Ω)

)
+ C∥∇′whf,τ∥L2(Ω). (3.44)

Accordingly, there exists τ0 > 0 such that for all τ ⩾ τ0,

τ
3
2 ∥whf,τ∥L2(Ω) + τ

1
2 ∥∇whf,τ∥L2(Ω)

⩽ C

(
τ−

1
2 ∥f2∥L2(Ω) + τ

1
2 ∥f2∗′∥

L
2d

d+2 (Ω)
+ τ

1
2 ∥F2 + F2∗′∥L2(Ω)

)
, (3.45)

and thus

τ
3
4+

1
2d ∥whf,τ∥

L
2d

d−2 (Ω)
⩽ C

(
τ−

1
4+

1
2d ∥f2∥L2(Ω) + τ

3
4+

1
2d ∥f2∗′∥

L
2d

d+2 (Ω)
+ τ

3
4+

1
2d ∥F2 + F2∗′∥L2(Ω)

)
. (3.46)

We then define the low frequency part wlf,τ = (I − Phf,τ )w of w: Using (3.18), we get

wlf,τ = Kτ,0((I − Phf,τ )(f2 + f2∗′) + div ′((I − Phf,τ )F
′
2∗′)) +Kτ,1((I − Phf,τ )F2 · e1)

+ (I − Phf,τ )Kτ,1(F2∗′ · e1) +
d∑
j=2

Kτ,j((I − Phf,τ )F2 · ej) +Rτ (wlf,τ ).

Applying Bernstein’s inequality (see, for instance, [2, Lemma 2.1.]), we get that div ′((I−Phf,τ )F ′
2∗′) belongs

to L
2d

d+2 (Ω) and
∥div ′((I − Phf,τ )F

′
2∗′)∥

L
2d

d+2 (Ω)
⩽ Cτ∥F2∗′∥

L
2d

d+2 (Ω)
.

We then use Propositions 3.3, 3.4, 3.5, and 3.10 to obtain

τ
3
2 ∥wlf,τ∥L2(Ω) + τ

1
2 ∥∇wlf,τ∥L2(Ω)

⩽ C

(
∥f2∥L2(Ω) + τ∥F2∥L2(Ω) + τ

3
4−

1
2d

(
∥f2∗′∥

L
2d

d+2 (Ω)
+ τ∥F2∗′∥

L
2d

d+2 (Ω)

))
+ C∥∇′wlf,τ∥L2(Ω), (3.47)
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and

τ
3
4+

1
2d ∥wlf,τ∥

L
2d

d−2 (Ω)

⩽ C

(
∥f2∥L2(Ω) + τ∥F2∥L2(Ω) + τ

3
4+

1
2d

(
∥f2∗′∥

L
2d

d+2 (Ω)
+ τ∥F2∗′∥

L
2d

d+2 (Ω)

))
+ C∥∇′wlf,τ∥L2(Ω). (3.48)

As before, we can then absorb the term ∥∇′wlf,τ∥L2(Ω) in the right hand-side of (3.47) by choosing τ large
enough: Taking τ0 ⩾ 1 larger if necessary, we get, for τ ⩾ τ0,

τ
3
2 ∥wlf,τ∥L2(Ω) + τ

1
2 ∥∇wlf,τ∥L2(Ω)

⩽ C

(
∥f2∥L2(Ω) + τ∥F2∥L2(Ω) + τ

3
4−

1
2d

(
∥f2∗′∥

L
2d

d+2 (Ω)
+ τ∥F2∗′∥

L
2d

d+2 (Ω)

))
, (3.49)

and, consequently,

τ
3
4+

1
2d ∥wlf,τ∥

L
2d

d−2 (Ω)
⩽ C

(
∥f2∥L2(Ω) + τ∥F2∥L2(Ω) + τ

3
4+

1
2d

(
∥f2∗′∥

L
2d

d+2 (Ω)
+ τ∥F2∗′∥

L
2d

d+2 (Ω)

))
. (3.50)

Combining estimates (3.45) and (3.49), we deduce the Carleman estimate (3.7). Similarly, combining
estimates (3.46) and (3.50), we deduce the Carleman estimate (3.8) except for the localized estimates on the
set E.

To proceed with (3.8), we thus focus on the localized estimates within the subset E ⊂ Ω. In order to do
so, on one hand, at low frequencies, we use Hölder and Bernstein estimates:

τ∥wlf,τ∥L2(E) + ∥∇′wlf,τ∥L2(E) ⩽ |E| 1d
(
τ∥wlf,τ∥

L
2d

d−2 (E)
+ ∥∇′wlf,τ∥

L
2d

d−2 (E)

)
⩽ C|E| 1d τ∥wlf,τ∥

L
2d

d−2 (Ω)
.

Accordingly, multiplying the above estimate by τ
3
4+

1
2d and using (3.50), we deduce

τ
3
4+

1
2d

(
τ∥wlf,τ∥L2(E) + ∥∇′wlf,τ∥L2(E)

)
⩽ C|E| 1d τ

(
∥f2∥L2(Ω) + τ∥F2∥L2(Ω)

+τ
3
4+

1
2d (∥f2∗′∥

L
2d

d+2 (Ω)
+ τ∥F2∗′∥

L
2d

d+2 (Ω)
)

)
.

On the other hand, the estimates (3.45) give

τ
3
4+

1
2d

(
τ∥whf,τ∥L2(E) + ∥∇′whf,τ∥L2(E)

)
⩽ τ

3
4+

1
2d

(
τ∥whf,τ∥L2(Ω) + ∥∇′whf,τ∥L2(Ω)

)
⩽ C

(
τ−

1
4+

1
2d ∥f2∥L2(Ω) + τ

3
4+

1
2d ∥F2 + F2∗′∥L2(Ω) + τ

3
4+

1
2d ∥f2∗′∥

L
2d

d+2 (Ω)

)
.

Finally, based on Propositions 3.3–3.5, we can derive the following estimate for the term ∂1w:

τ
3
4+

1
2d ∥∂1w∥L2(E) ⩽ τ

3
4+

1
2d ∥∂1w∥L2(Ω)

⩽ C

(
τ−

1
4+

1
2d ∥f2∥L2(Ω) + τ

3
4+

1
2d ∥F2 + F2∗′∥L2(Ω) + τ

3
4+

1
2d ∥f2∗′∥

L
2d

d+2 (Ω)

)
.

By combining the last three estimates, we conclude

τ
3
4+

1
2d min

{
1

τ |E| 1d
, 1

}(
τ∥w∥L2(E) + ∥∇w∥L2(E)

)
⩽ C

(
∥f2∥L2(Ω) + τ∥F2∥L2(Ω) + τ

3
4+

1
2d

(
∥f2∗′∥

L
2d

d+2 (Ω)
+ τ∥F2∗′∥

L
2d

d+2 (Ω)

)
+ τ

3
4+

1
2d ∥F2∗′∥L2(Ω)

)
,

and the proof of Theorem 3.1 is thus completed.
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3.2 Proof of Theorem 2.4

The goal of this section is to deduce Theorem 2.4 in the case of a general geometry from Theorem 3.1 which
was considering only the case of a strip.

In order to do so, we rely on two main steps:

• A localization process, which allows through a suitable change of variables, to use Theorem 3.1 to
deduce a local Carleman estimate.

• A gluing argument to patch these local estimates.

This is the strategy used in [6, Section 7]. We only sketch it below for the convenience of the reader since it
does not involve any new difficulty compared to [6].

3.2.1 Local Carleman estimates

For τ ⩾ 1, we introduce

w = eτφu, f̃2 := eτφ(f2 − τ∇φ · F ), f̃2∗′ := eτφf2∗′ , F̃ = F̃2 + F̃2∗′ := eτφF2 + eτφF2∗′ ,

so that the function u solves (2.7) if and only if w solves

∆w − 2τ∇φ · ∇w + τ2|∇φ|2w − τ∆φw = f̃2 + f̃2∗′ + div (F̃ ) in Ω, (3.51)

We now introduce a local version of (3.51). Namely, for x0 ∈ Ω \ ω, we introduce ηx0
(x) a cut-off function

defined by
ηx0(x) = η(τ

1
3 (x− x0)), x ∈ Rd, (3.52)

where η is a non-negative smooth radial function (in C∞
c (Rd)) such that η(ρ) = 1 for |ρ| ⩽ 1/2 and vanishing

outside the unit ball. We set
wx0(x) = ηx0(x)w(x), x ∈ Ω,

which solves
∆wx0

− 2τ∇φ · ∇wx0
+ τ2|∇φ|2wx0

= f2,x0
+ f2∗′,x0

+ div (Fx0
), in Ω, (3.53)

where

f2,x0
= ηx0

f̃2 −∇ηx0
· F̃2 + τ∆φwx0

+ 2∇ηx0
· ∇w +∆ηx0

w − 2τ∇φ · ∇ηx0
w, (3.54)

f2∗′,x0
= ηx0

f̃2∗′ −∇ηx0
· F̃2∗′ , Fx0

= ηx0
F̃ . (3.55)

Recall that u is assumed to be compactly supported in some compact set K, such that K ⋐ Ω. Accord-
ingly, there exists ε > 0 such that Kε = {x ∈ Rd, d(x,K) ⩽ ε} is a subset of Ω.

We then derive the following lemma, whose proof is similar to the one in [6, Lemma 7.1].

Lemma 3.11. There exist constants C > 0 and τ0 ⩾ 1 (depending only on α, β, ∥φ∥C3(Ω), K, ω and Ω)

such that for all τ ⩾ τ0, for all x0 ∈ Kε \ ω0, for all (f2,x0
, f2∗′,x0

, Fx0
= F2,x0

+ F2∗′,x0
) satisfying

f2,x0 ∈ L2(Ω), f2∗′,x0 ∈ L
2d

d+2 (Ω), F2,x0 ∈ L2(Ω;Cd), and F2∗′,x0 ∈ L
2d

d+2 (Ω;Cd) ∩ L2(Ω;Cd),

and wx0
satisfying (3.53) and supported in Bx0

(τ−
1
3 ), we have

τ
3
2 ∥wx0

∥L2(Ω) + τ
1
2 ∥∇wx0

∥L2(Ω)

⩽ C

(
∥f2,x0∥L2(Ω) + τ∥F2,x0∥L2(Ω) + τ

3
4−

1
2d

(
∥f2∗′,x0∥

L
2d

d+2 (Ω)
+ τ∥F2∗′,x0∥

L
2d

d+2 (Ω)

)
+ τ

1
2 ∥F2∗′,x0∥L2(Ω)

)
,

(3.56)

and, for all measurable sets E of Ω,

τ
3
4+

1
2d ∥wx0

∥
L

2d
d−2 (Ω)

+τ
3
4+

1
2d min

{
1

τ |E| 1d
, 1

}(
τ∥wx0

∥L2(E) + ∥∇wx0
∥L2(E)

)
+τ

3
2 ∥wx0

∥L2(Ω)+τ
1
2 ∥∇wx0

∥L2(Ω)

⩽ C

(
∥f2,x0

∥L2(Ω) + τ∥F2,x0
∥L2(Ω) + τ

3
4+

1
2d

(
∥f2∗′,x0

∥
L

2d
d+2 (Ω)

+ τ∥F2∗′,x0
∥
L

2d
d+2 (Ω)

+ ∥F2∗′,x0
∥L2(Ω)

))
.

(3.57)
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Sketch of the proof. The main idea is to build a suitable change of coordinates which allows to rewrite the
equation (3.53) under the form (3.5), up to some lower order terms which can be handled using the localization
properties of wx0

.
Namely, let x0 ∈ Kε \ ω0, and introduce L1 ∈ Rd and A1 ∈ Rd×d as follows:

L1 = ∇φ(x0) ∈ Rd, A1 = Hessφ(x0) ∈ Rd×d.

The bilinear form
ξ ∈ Rd 7→ (Hessφ(x0))ξ · ξ

is symmetric on Rd and on Span {L1}⊥. Accordingly, there exists a family of orthogonal vectors (Lj)j∈{2,··· ,d}
of Span {L1}⊥ which diagonalizes this form, that we normalize so that for all j ∈ {2, · · · , d}, |Lj | = |L1|.
Since the family (Lj)j∈{2,··· ,d} of Span {L1}⊥ diagonalizes the form ξ 7→ (Hessφ(x0))ξ · ξ in Span {L1}⊥, for
all j ∈ {2, · · · , d}, there exist αj and µj in R such that

(Hessφ(x0))Lj = µjLj + αjL1, j ∈ {2, · · · , d}.

Note that by symmetry of Hessφ(x0), we then necessarily have

(Hessφ(x0))L1 = µ1L1 +
∑
k⩾2

αkLk,

where

µ1 =
1

|L1|2
(Hessφ(x0))L1 · L1 =

1

|∇φ(x0)|2
(Hessφ(x0))∇φ(x0) · ∇φ(x0).

For j ∈ {2, · · · , d}, we then introduce the self-adjoint matrix Aj ∈ Rd×d defined by
AjL1 = −αjL1 − µjLj ,
AjLk = αkLj − αjLk, if k ∈ {2, · · · , d} \ {j},
AjLj = −µjL1 +

∑
k⩾2

αkLk.
(3.58)

(It is easy to check that each matrix Aj defined that way is indeed symmetric.)
We then define the following change of coordinates for x in a neighbourhood of x0:

y1(x) = φ(x)− φ(x0),

yj(x) = Lj · (x− x0) +
1

2
Aj(x− x0) · (x− x0) for j ∈ {2, · · · , d}.

By construction, there exists a neighbourhood, whose size depends on the C2 norm of φ only, such that
x 7→ y(x) is a local diffeomorphism between a neighbourhood V of x0 in Ω \ ω and a neighbourhood of 0,
that we call Ωy.

For τ large enough, we can ensure that the ball of center x0 and radius τ−
1
3 , when intersected with Ω, is

included in a set on which x 7→ y(x) is a diffeomorphism, and its image is included in a ball B0(Cτ
− 1

3 ).
Therefore, for wx0

solving (3.53), we set

w̌(y) = wx0
(x) for y = y(x),

Tedious computations, detailed in [6, Section 7.2], show that w̌ then satisfies

∆yw̌ − y1

d∑
j=2

λj∂
2
yj w̌ − 2τ∂y1w̌ + τ2w̌ = f̌2 + f̌2∗′ + divy F̌ in (Y0, Y1)× Rd−1,

where the coefficients (λj)j∈{2,··· ,d} are given by

λj =
2

|L1|2
(A1L1 · L1 +A1Lj · Lj)

=
2

|∇φ(x0)|2
((Hessφ(x0))∇φ(x0) · ∇φ(x0) + (Hessφ(x0))Lj · Lj) , (3.59)

17



the source terms are

f̌2(y) =
1

|∇φ(x(y))|2
f2,x0

(x(y))−
∑
j,k

∂yjρk,jFx0,2,k(x(y)) + f̌2,a(y) + f̌2,b(y) + f̌2,c(y),

f̌2∗′(y) =
1

|∇φ(x(y))|2
f2∗′,x0(x(y))−

∑
j,k

∂yjρk,jFx0,2∗′,k(x(y)),

F̌j(y) =

d∑
k=1

ρk,j(y)Fx0,2,k(x(y)) + F̌j,a(y)︸ ︷︷ ︸
=:F̌j,2

+

d∑
k=1

ρk,j(y)Fx0,2∗′,k(x(y))︸ ︷︷ ︸
=:F̌j,2∗′

, j ∈ {1, · · · , d},

in which ρ is defined as

ρj,k(y) =
∂xk

yj(x(y))

|∇φ(x(y))|2
,

and f̌2,a, f̌2,b, f̌2,c and F̌a satisfy, due to the localization of w in Bx0
(τ−

1
3 ) (equivalently, of w̌ in B0(Cτ

− 1
3 )),

∥f̌2,a∥L2(Ωy) ⩽ Cτ−
1
3 ∥∇yw̌∥L2(Ωy), ∥f̌2,b∥L2(Ωy) ⩽ Cτ

1
3 ∥∇yw̌∥L2(Ωy), ∥f̌2,c∥L2(Ωy) ⩽ C∥∇yw̌∥L2(Ωy),

∥F̌a∥L2(Ωy) ⩽ Cτ−
2
3 ∥∇yw̌∥L2(Ωy).

Now, the condition (2.6) implies that all the λj in (3.59) are positive, i.e. that the condition (3.4)
is satisfied. Accordingly, the Carleman estimates in Theorem 3.1 apply, and we can readily deduce the
estimates in Lemma 3.11. Let us focus for instance on the proof of the Carleman estimate (3.57) (the proof
of the Carleman estimate (3.56) is completely similar and in fact easier and left to the reader).

For τ ⩾ τ0 and a measurable set Ey of Ωy, we have from (3.7) and (3.8) that

τ
3
4+

1
2d ∥w̌∥

L
2d

d−2 (Ωy)
+τ

3
4+

1
2d min

{
1

τ |Ey|
1
d

, 1

}(
τ∥w̌∥L2(Ey) + ∥∇w̌∥L2(Ey)

)
+τ

3
2 ∥w̌∥L2(Ωy)+τ

1
2 ∥∇w̌∥L2(Ωy)

⩽ C

(
∥f̌2∥L2(Ωy) + τ∥F̌2∥L2(Ωy) + τ

3
4+

1
2d

(
∥f̌2∗′∥

L
2d

d+2 (Ωy)
+ τ∥F̌2∗′∥

L
2d

d+2 (Ωy)
+ ∥F̌2∗′∥L2(Ωy)

))
.

We then simply remark that, from the expression of f̌2, f̌2∗′ , and F̌ = F̌2 + F̌2∗′ ,

∥f̌2∥L2(Ωy) + τ∥F̌2∥L2(Ωy) + τ
3
4+

1
2d

(
∥f̌2∗′∥

L
2d

d+2 (Ωy)
+ τ∥F̌2∗′∥

L
2d

d+2 (Ωy)
+ ∥F̌2∗′∥L2(Ωy)

)
⩽ C

(
∥f2,x0

∥L2(Ω) + τ∥F2,x0
∥L2(Ω) + τ

3
4+

1
2d

(
∥f2∗′,x0

∥
L

2d
d+2 (Ω)

+ τ∥F2∗′,x0
∥
L

2d
d+2 (Ω)

+ ∥F2∗′,x0
∥L2(Ω)

)
+τ

1
3 ∥∇yw̌∥L2(Ωy)

)
,

Accordingly, taking τ0 ⩾ 1 larger if necessary, we get for all τ ⩾ τ0,

τ
3
4+

1
2d ∥w̌∥

L
2d

d−2 (Ωy)
+τ

3
4+

1
2d min

{
1

τ |Ey|
1
d

, 1

}(
τ∥w̌∥L2(Ey) + ∥∇w̌∥L2(Ey)

)
+τ

3
2 ∥w̌∥L2(Ωy)+τ

1
2 ∥∇w̌∥L2(Ωy)

⩽ C

(
∥f2,x0

∥L2(Ω) + τ∥F2,x0
∥L2(Ω) + τ

3
4+

1
2d

(
∥f2∗′,x0

∥
L

2d
d+2 (Ω)

+ τ∥F2∗′,x0
∥
L

2d
d+2 (Ω)

+ ∥F2∗′,x0
∥L2(Ω)

))
.

Undoing the change of variables on the left-hand side, we easily deduce the estimates (3.57) for τ ⩾ τ0 and
a measurable set E of Ω.

The fact that the constants above do not depend on x0 ∈ Kε \ ω0 can be tracked in the above proof: it
comes from uniformity properties of the diffeomorphism x 7→ y, and relies heavily on the uniform bounds
(2.5)–(2.6), on the fact that φ ∈ C3(Ω), and that the constants in Theorem 3.1 depend only on c0, m∗ and
M∗ in (3.3), and (3.4) for X0 < 0 < X1 with |X0|, |X1| ⩽ 1. This ends the proof of Lemma 3.11.
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3.2.2 A gluing argument

Here again, the proof closely follows the one in [6, Section 7.3], and we focus on the proof of the estimate
(2.13), as the estimate (2.12) can be done similarly and is thus left to the reader.

We start from (3.57): There exist constants C > 0 and τ0 ⩾ 1 such that for all x0 ∈ Kε \ ω0 and τ ⩾ τ0
and wx0 solution of (3.53),

τ
3
2+

1
d ∥wx0

∥2
L

2d
d−2 (Ω)

+τ
3
2+

1
d min

{
1

τ |E| 1d
, 1

}2 (
τ2∥wx0

∥2L2(E) + ∥∇wx0
∥2L2(E)

)
+τ3∥wx0

∥2L2(Ω)+τ∥∇wx0
∥2L2(Ω)

⩽ C

(
∥f2,x0

∥2L2(Ω) + τ2∥F2,x0
∥2L2(Ω) + τ

3
2+

1
d

(
∥f2∗′,x0

∥2
L

2d
d+2 (Ω)

+ τ2∥F2∗′,x0
∥2
L

2d
d+2 (Ω)

+ ∥F2∗′,x0
∥2L2(Ω)

))
.

(3.60)

Using the explicit expressions of the source terms (3.54) and (3.55), we obtain

Right-Hand Side of (3.60) ⩽ C
(
∥ηx0

f̃2∥2L2(Ω) + τ2∥ηx0
F̃2∥2L2(Ω)

+τ
3
2+

1
d

(
∥ηx0 f̃2∗′∥2

L
2d

d+2 (Ω)
+ τ2∥ηx0 F̃2∗′∥2

L
2d

d+2 (Ω)
+ ∥ηx0 F̃2∗′∥2L2(Ω)

))
+ C

(
∥∇ηx0

· F̃2∥2L2(Ω) + τ2∥wx0
∥2L2(Ω) + ∥∇ηx0

· ∇w∥2L2(Ω) + ∥∆ηx0
w∥2L2(Ω) + τ2∥|∇ηx0

|w∥2L2(Ω)

+τ
3
2+

1
d

∥∥∥∇ηx0
F̃2∗′

∥∥∥2
L

2d
d+2 (Ω)

)
.

By taking τ0 ⩾ 1 larger if necessary (which can be done uniformly in x0 ∈ Kε \ ω0), we can absorb the term
τ2∥wx0∥2L2(Ω) by the left hand side of (3.60). Then, by integrating in x0 on Kε \ ω0, using Fubini’s identity
for the Hilbertian norms, we get

τ
3
2+

1
d

∥∥∥∥∥ηx0w∥
L

2d
d−2
x (Ω)

∥∥∥∥2
L2

x0
(Kε\ω0)

+ τ
3
2+

1
d min

{
1

τ2|E| 2d
, 1

}(
τ2∥ρ

1
2
0 w∥2L2(E) + ∥ρ

1
2
0 ∇w∥2L2(E)

)
+ τ3∥ρ

1
2
0 w∥2L2(Ω) + τ∥ρ

1
2
0 ∇w∥2L2(Ω)

⩽ C

(
∥ρ

1
2
0 f̃2∥2L2(Ω) + ∥(τ2ρ0 + ρr,1)

1
2 F̃2∥2L2(Ω) + τ

3
2+

1
d

∥∥∥∥∥ηx0 F̃2∗′∥
L

2d
d+2 (Ω)

∥∥∥∥2
L2

x0
(Kε\ω0)

)

+ Cτ
3
2+

1
d

(∥∥∥∥∥ηx0
f̃2∗′∥

L
2d

d+2
x (Ω)

∥∥∥∥2
L2

x0
(Kε\ω0)

+ τ2
∥∥∥∥∥ηx0

F̃2∗′∥
L

2d
d+2
x (Ω)

∥∥∥∥2
L2

x0
(Kε\ω0)

+ ∥ρ
1
2
0 F̃2∗′∥2L2(Ω)

)
+ C

(
∥(ρr,2 + τ2ρr,1)

1
2w∥2L2(Ω) + ∥ρ

1
2
r,1∇w∥2L2(Ω)

)
,

where the weights ρ0, ρr,i are defined as follows:

ρ0(x) =

∫
Kε\ω0

|ηx0
(x)|2 dx0, ρr,1(x) =

∫
Kε\ω0

|∇ηx0
(x)|2 dx0, ρr,2(x) =

∫
Kε\ω0

|∆ηx0
(x)|2 dx0.

Minkowski’s integral inequality ([14, p.271]) for the non-Hilbertian norms then gives:

τ
3
2+

1
d ∥ρ

1
2
0 w∥2

L
2d

d−2 (Ω)
+ τ

3
2+

1
d min

{
1

τ2|E| 2d
, 1

}(
τ2∥ρ

1
2
0 w∥2L2(E) + ∥ρ

1
2
0 ∇w∥2L2(E)

)
+ τ3∥ρ

1
2
0 w∥2L2(Ω) + τ∥ρ

1
2
0 ∇w∥2L2(Ω)

⩽ C

(
∥ρ

1
2
0 f̃2∥2L2(Ω) + ∥(τ2ρ0 + ρr,1)

1
2 F̃2∥2L2(Ω) + τ

3
2+

1
d ∥ρ

1
2
r,1F̃2∗′∥2

L
2d

d+2 (Ω)

)
+ Cτ

3
2+

1
d

(
∥ρ

1
2
0 f̃2∗′∥2

L
2d

d+2 (Ω)
+ τ2∥ρ

1
2
0 F̃2∗′∥2

L
2d

d+2 (Ω)
+ ∥ρ

1
2
0 F̃2∗′∥2L2(Ω)

)
+ C

(
∥(ρr,2 + τ2ρr,1)

1
2w∥2L2(Ω) + ∥ρ

1
2
r,1∇w∥2L2(Ω)

)
,
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It is easy to check from the choice (3.52) that, for τ sufficiently large,

ρ0(x) = τ−
d
3 ∥η∥2L2 , ∀x ∈ K \ ω, ρ0(x) ⩽ Cτ−

d
3 , ∀x ∈ Ω,

ρr,1(x) ⩽ Cτ
2
3−

d
3 , ∀x ∈ Ω, and ρr,2(x) ⩽ Cτ

4
3−

d
3 , ∀x ∈ Ω.

Thus, for τ large enough,

τ
3
2+

1
d ∥w∥2

L
2d

d−2 (Ω\ω)
+ τ

3
2+

1
d min

{
1

τ2|E| 2d
, 1

}(
τ2∥w∥2L2(E∩(K\ω)) + ∥∇w∥2L2(E∩(K\ω))

)
+ τ3∥w∥2L2(Ω\ω) + τ∥∇w∥2L2(Ω\ω)

⩽ C

(
∥f̃2∥2L2(Ω) + τ2∥F̃2∥2L2(Ω) + τ

3
2+

1
d

(
∥f̃2∗′∥2

L
2d

d+2 (Ω)
+ τ2∥F̃2∗′∥2

L
2d

d+2 (Ω)
+ ∥F̃2∗′∥2L2(Ω)

))
+ C

(
τ

8
3 ∥w∥2L2(ω) + τ

2
3 ∥∇w∥2L2(ω)

)
,

We then add

τ
3
2+

1
d ∥w∥2

L
2d

d−2 (ω)
+ τ

3
2+

1
d min

{
1

τ2|E| 2d
, 1

}(
τ2∥w∥2L2(ω) + ∥∇w∥2L2(ω)

)
+ τ3∥w∥2L2(ω) + τ∥∇w∥2L2(ω)

to both sides of the previous estimate and get

τ
3
2+

1
d ∥w∥2

L
2d

d−2 (Ω)
+ τ

3
2+

1
d min

{
1

τ2|E| 2d
, 1

}(
τ2∥w∥2L2(E) + ∥∇w∥2L2(E)

)
+ τ3∥w∥2L2(Ω) + τ∥∇w∥2L2(Ω)

⩽ C

(
∥f̃2∥2L2(Ω) + τ2∥F̃2∥2L2(Ω) + τ

3
2+

1
d

(
∥f̃2∗′∥2

L
2d

d+2 (Ω)
+ τ2∥F̃2∗′∥2

L
2d

d+2 (Ω)
+ ∥F̃2∗′∥2L2(Ω)

))
+ Cτ

3
2+

1
d

(
τ2∥w∥2L2(ω) + ∥∇w∥2L2(ω) + ∥w∥2

L
2d

d−2 (ω)

)
.

This concludes the proof of Theorem 2.4.

4 A specific geometric setting

In this section, we will focus on a specific geometric setting involving a ball with a radius R > 0 (recall that
B0(r) denotes the ball centred at 0 and of radius r). Within this context, we aim to prove the following
lemma on quantitative unique continuation, as presented in Theorem 1.1.

Lemma 4.1. Let R > 0 and d ⩾ 3. We consider the following geometric setting (see Figure 1):

Ω = B0(2R) ∩
{
x1 < −R

4

}
, O = B0

(
3R

2

)
∩
{
x1 < −R

3

}
, and ω = (B0(2R) \B0(R)) ∩

{
x1 < −R

4

}
,

There exist constants C = C(R, d) > 0 and α ∈ (0, 1) depending only on R and d so that any solution
u ∈ H1(Ω) of (1.1) with (V,W1,W2) as in (1.2) satisfies the quantitative unique continuation estimate (1.3)
with γ and δ as in (1.4).

Our goal is to explain how we can combine the Carleman estimates established in Theorem 2.4 and Wolff’s
argument (Lemma 2.1) in order to obtain the quantitative unique continuation estimate (1.3).

A key remark is that Wolff’s lemma applies for linear weight functions of the form y 7→ k · y for k ∈ Rd,
whereas our Carleman estimates are valid under appropriate subellipticity conditions on the weight function
((2.5)–(2.6)), while the parameter τ is a positive real number.

To employ both tools simultaneously, we construct a family of weight functions that satisfy the subellip-
ticity conditions (2.5)–(2.6) and Wolff’s argument.
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Figure 1: The geometric setting of Lemma 4.1: Propagation of smallness from the left to the right.

Lemma 4.2. Within the same setting as in Lemma 4.1, for k ∈ Rd, we set

φk(x) = k1x
2
1 + k′ · x′, x ∈ Ω. (4.1)

Then there exists ϵ > 0 such that

1. For all k ∈ Be1(ϵ), the function φk satisfy (2.5) and (2.6) with some positive constants α > 0 and
β > 0 independent of k ∈ Be1(ϵ), and its C3 norm on Ω is bounded independently on k ∈ Be1(ϵ).

2. There exists ρ > 0 such that

inf
k∈Be1 (ϵ)

inf
x∈O

{φk(x)} ⩾ (1 + ρ) sup
k∈Be1 (ϵ)

{
sup

x∈Ω∩{x1∈(− 7R
24 ,−

R
4 )}

{φk(x)}

}
. (4.2)

3. Setting Σϵ = {k ∈ Rd \ {0} with |k/|k| − e1| ⩽ ϵ}, the family (φk)k∈Σϵ
satisfies the following property:

If f is a positive compactly supported function in Ω, we define the family dµk(x) = eφk(x)f(x)dx, then
for C ⊂ Σε there exist a family (kj)j∈J of elements of C and two by two disjoint sets (Ekj )j∈J included
in Ω so that the measures dµkj satisfy (2.2) with T = 0 and the family (Ekj )j∈J satisfy (2.3) with CW
a positive constant depending only on d and Ω.

Proof. Items 1 and 2 can be checked directly using immediate computations, the fact that φe1(x) = x21
satisfies (2.5) and (2.6), and

inf
x∈O

{φe1(x)} =
R2

9
> sup
x∈Ω∩{x1∈(− 7R

24 ,−
R
4 )}

{φe1(x)} =

(
7

24

)2

R2.

It remains to check item 3. In order to do so, let us denote by Y : x 7→ y the diffeomorphism given by
y1(x) = x21, and y

′ = x′ (this is clearly a diffeomorphism from Ω to Y (Ω) since Ω is away from {x1 = 0}),
and X the inverse of the map Y . Then remark that for all k ∈ Rd

φk(x) = k1x
2
1 + k′ · x′ = k · Y (x).
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Let then f be a positive compactly supported function in Ω. Hence, in the new coordinates y, the family
of measures dµk(x) = eφk(x)f(x)dx becomes

dµ̃k(y) = ek·yf(X(y))| Jac(X)|dy, (4.3)

where Jac(X) is the Jacobian of the map X. Consequently, by Lemma 2.1, for C ⊂ Rd, there is a family

(kj)j∈J of elements of C and disjoint convex sets (Ẽkj )j∈J such that the families (dµ̃kj )j∈J , (kj)j∈J , and

(Ẽkj )j∈J satisfy (2.2) and (2.3) with C̃W a positive constant depending only on d. Consequently, we consider

the sets Ekj = X(Ẽkj ), which are disjoint (not necessarily convex) and satisfy

|Ekj | ⩽ ∥ Jac(X)∥∞|Ẽkj |.

Using this inequality, the summation property (2.3) for the sets Ekj holds, with the constant CW =

∥ Jac(X)∥−1
∞ C̃W . On the other hand, the concentration property (2.2) with T = 0 on Ekj for each dµkj

follows from the concentration property (2.2) for the family dµ̃kj on Ẽkj and the identity (4.3).

As a consequence of the previous result, let us point that Theorem 2.4 holds for any φk with k ∈ B(e1, ϵ),
with constants which are uniform with respect to k ∈ Be1(ϵ). Therefore, applying Theorem 2.4, we readily
deduce the following result:

Lemma 4.3. Let d ⩾ 3. Let

Ω = B0(2R) ∩
{
x1 < −R

4

}
, O = B0

(
3R

2

)
∩
{
x1 < −R

3

}
, and ω = (B0(2R) \B0(R)) ∩

{
x1 < −R

4

}
,

Then, for all compact subset K of Ω there exist C > 0 and τ0 ⩾ 1 such that for all u ∈ H1(Ω) satisfying
suppu ⊂ K and (2.7) with (f2, f2∗′ , F = F2 + F2∗′) as in (2.11), we have, for all k ∈ Σϵ with |k| ⩾ τ0, with
φk as in (4.1),

|k| 32 ∥eφku∥L2(Ω) + |k| 12 ∥eφk∇u∥L2(Ω) ⩽ C
(
∥eφkf2∥L2(Ω) + |k|∥eφkF2∥L2(Ω) + |k| 12 ∥eφkF2∗′∥L2(Ω)

+|k| 34− 1
2d

(
∥eφkf2∗′∥

L
2d

d+2 (Ω)
+ |k|∥eφkF2∗′∥

L
2d

d+2 (Ω)

)
+ |k| 32 ∥eφku∥H1(ω)

)
, (4.4)

and, for all measurable sets E of Ω,

|k| 34+ 1
2d ∥eφku∥

L
2d

d−2 (Ω)
+ |k| 34+ 1

2d min

{
1

|k||E| 1d
, 1

}(
|k|∥eφku∥L2(E) + ∥eφk∇u∥L2(E)

)
⩽ C

(
∥eφkf2∥L2(Ω) + |k|∥eφkF2∥L2(Ω) + |k| 34+ 1

2d

(
∥eφkf2∗′∥

L
2d

d+2 (Ω)
+ |k|∥eφkF2∗′∥

L
2d

d+2 (Ω)

)
+|k| 34+ 1

2d ∥eφkF2∗′∥L2(Ω) + |k| 74+ 1
2d ∥eφku∥H1(ω)

)
. (4.5)

We are now in a position to prove Lemma 4.1.

Proof of Lemma 4.1. For sake of clarity, we divide the proof in several steps.

Step 1: Application of the Carleman estimates. For u ∈ H1(Ω) with

∆u = V u+W1 · ∇u+ div (W2u) in Ω,

we set v = ηu, where η is a smooth cut-off function that takes 1 in B0(3R/2)∩ {x1 < −7R/24} and vanishes
in a neighbourhood of ∂Ω, so that we have

∆v = V v +W1 · ∇v + div (W2v) + fη in Ω,

where fη is defined by

fη = 2∇η · ∇u+∆ηu−W1 · ∇ηu−W2 · ∇ηu, (4.6)
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and thus satisfies
Supp fη ⊂ ω ∪ (Ω ∩ {x1 ∈ (−7R/24,−R/4)}). (4.7)

Now, for V ∈ Lq0(Ω), W1 ∈ Lq1(Ω;Cd), and W2 ∈ Lq2(Ω;Cd), with q0 > d/2, q1 > d, and q2 > d, we will
perform a decomposition of the form

V = V d
2
+ Vd + V∞, with V d

2
∈ L

d
2 (Ω), Vd ∈ Ld(Ω), V∞ ∈ L∞(Ω),

W1 =W1,d +W1,∞, with W1,d ∈ Ld(Ω;Cd), W1,∞ ∈ L∞(Ω);Cd),
W2 =W2,d +W2,∞, with W2,d ∈ Ld(Ω);Cd), W2,∞ ∈ L∞(Ω;Cd).

We will explain later, in Step 4 of the proof, the precise decomposition we will choose.
We then apply Lemma 4.3. The Carleman estimate (4.4) with f2∗′ = V d

2
v + Vdv + W1,d · ∇v, f2 =

V∞v +W1,∞ · ∇v + fη, F2∗′ =W2,dv, and F2 =W2,∞v yields that for all k ∈ Σε with |k| ⩾ τ0,

|k| 32 ∥eφkv∥L2(Ω) + |k| 12 ∥eφk∇v∥L2(Ω) ⩽ C
(
∥V∞∥L∞(Ω)∥eφkv∥L2(Ω) + ∥W1,∞∥L∞∥eφk∇v∥L2(Ω)

+ ∥eφkfη∥L2(Ω) + |k|∥W2,∞∥L∞∥eφkv∥L2(Ω) + |k| 12 ∥W2,d∥Ld(Ω)∥eφkv∥
L

2d
d−2 (Ω)

+ |k| 32 ∥eφkv∥H1(ω) + |k| 34− 1
2d

(
∥Vd∥Ld(Ω)∥eφkv∥L2(Ω) + ∥V d

2
∥
L

d
2 (Ω)

∥eφkv∥
L

2d
d−2 (Ω)

)
+|k| 34− 1

2d

(
∥eφkW1,d · ∇v∥

L
2d

d+2 (Ω)
+ |k|∥eφkW2,dv∥

L
2d

d+2 (Ω)

))
.

Accordingly, there exists c0 > 0 such that if(
∥V∞∥L∞(Ω) + |k| 34− 1

2d ∥Vd∥Ld(Ω)

)
⩽ c0|k|

3
2 , and

(
∥W1,∞∥L∞(Ω) + ∥W2,∞∥L∞(Ω)

)
⩽ c0|k|

1
2 , (4.8)

for all k ∈ Σε with |k| ⩾ τ0,

|k| 32 ∥eφkv∥L2(Ω) + |k| 12 ∥eφk∇v∥L2(Ω) ⩽ C1

(
∥eφkfη∥L2(Ω) + |k| 32 ∥eφku∥H1(ω)

+
(
|k| 12 ∥W2,d∥Ld(Ω) + |k| 34− 1

2d ∥V d
2
∥
L

d
2 (Ω)

)
∥eφkv∥

L
2d

d−2 (Ω)

+ |k| 34− 1
2d

(
∥eφkW1,d · ∇v∥

L
2d

d+2 (Ω)
+ |k|∥eφkW2,dv∥

L
2d

d+2 (Ω)

))
. (4.9)

Similarly, the Carleman estimate (2.13) with f2∗′ = V d
2
v +W1,d · ∇v, f2 = V∞v + Vdv +W1,∞ · ∇v + fη,

F2∗′ =W2,dv, and F2 =W2,∞v yields, that for all k ∈ Σε with |k| ⩾ τ0, and for all measurable set E;

|k| 34+ 1
2d ∥eφkv∥

L
2d

d−2 (Ω)
+ |k| 34+ 1

2d min

{
1

|k||E| 1d
, 1

}(
|k|∥eφkv∥L2(E) + ∥eφk∇v∥L2(E)

)
⩽ C

(
∥V∞∥L∞(Ω)∥eφkv∥L2(Ω) + ∥Vd∥Ld(Ω)∥eφkv∥

L
2d

d−2
(Ω) + ∥W1,∞∥L∞(Ω)∥eφk∇v∥L2(Ω) + ∥eφkfη∥L2(Ω)

+ |k| 34+ 1
2d

(
∥V d

2
∥
L

d
2 (Ω)

∥eφkv∥
L

2d
d−2 (Ω)

+ ∥eφkW1,d · ∇v∥
L

2d
d+2 (Ω)

+ |k|∥eφkW2,dv∥
L

2d
d+2 (Ω)

)
+|k|∥W2,∞∥L∞(Ω)∥eφkv∥L2(Ω) + |k| 34+ 1

2d ∥W2,d∥Ld(Ω)∥e|k|φkv∥
L

2d
d−2 (Ω)

+ |k| 74+ 1
2d ∥eφku∥H1(ω)

)
.

Accordingly, there exists c1 > 0 such that if

∥V d
2
∥
L

d
2 (Ω)

⩽ c1, ∥Vd∥Ld(Ω) ⩽ c1|k|
3
4+

1
2d , and ∥W2,d∥Ld(Ω) ⩽ c1, (4.10)
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for all k ∈ Σε with |k| ⩾ τ0, and for all measurable set E;

|k| 34+ 1
2d ∥eφkv∥

L
2d

d−2 (Ω)
+ |k| 34+ 1

2d min

{
1

|k||E| 1d
, 1

}(
|k|∥eφkv∥L2(E) + ∥eφk∇v∥L2(E)

)
⩽ C2

((
∥V∞∥L∞(Ω) + |k|∥W2,∞∥L∞(Ω)

)
∥eφkv∥L2(Ω) + ∥W1,∞∥L∞(Ω)∥eφk∇v∥L2(Ω) + ∥eφkfη∥L2(Ω)

+ |k| 34+ 1
2d

(
∥eφkW1,d · ∇v∥

L
2d

d+2 (Ω)
+ |k|∥eφkW2,dv∥

L
2d

d+2 (Ω)

)
+|k| 74+ 1

2d ∥eφku∥H1(ω)

)
. (4.11)

From now on, we will assume that conditions (4.8) and (4.10) are satisfied.

Step 2: Application of Wolff’s argument. Let n ∈ R be larger than τ0/(1 − ϵ), with ϵ as in Lemma 4.2.

We set C̃n = {k ∈ Rd, such that |k − ne1| ⩽ ϵn}, so that C̃n = nBe1(ϵ) ⊂ Σϵ. For all k ∈ C̃n, we define the
measure

dµk =
(
|eφk(x)W1,d(x) · ∇v(x)|

2d
d+2 + |(1 + ϵ)neφk(x)W2,d(x)v(x)|

2d
d+2

)
dx

= eφ2dk/(d+2)(x)
(
|W1,d(x) · ∇v(x)|

2d
d+2 + |(1 + ϵ)nW2,d(x)v(x)|

2d
d+2

)
dx.

Then Lemma 4.2 (applied to Cn = 2dC̃n/(d + 2)) implies the existence of a constant CW > 0 such that for

all n ∈ N, there exists a set of index Jn, a family (kj,n)j∈Jn of elements of C̃n and a corresponding family of
pairwise disjoint sets (Ekj,n)j∈Jn such that for all j ∈ Jn, we have

∥|eφkj,nW1,d · ∇v|
2d

d+2 + |n(1 + ϵ)eφkj,nW2,dv|
2d

d+2 ∥
d+2
2d

L1(Ω)

⩽ 2∥|eφkj,n
(x)W1,d(x) · ∇v(x)|

2d
d+2 + |n(1 + ϵ)eφkj,n

(x)W2,d(x)v(x)|
2d

d+2 ∥
d+2
2d

L1(Ekj,n
) (4.12)

and ∑
j∈Jn

|Ekj,n |−1 ⩾
1

CW

(
2d

d+ 2

)d
nd. (4.13)

Hence, we claim that if the conditions
∥W1,d∥dLd(Ω) +

(
1 + ϵ

1− ϵ

)d
∥W2,d∥dLd(Ω) <

1

CW (16C2(1 + ϵ))d

(
2d

d+ 2

)d
,

8C2

(
∥W1,d∥Ld(Ω) +

1 + ϵ

1− ϵ
∥W2,d∥Ld(Ω)

)
⩽ 1,

(4.14)

(where C2 is the constant in (4.11)) are satisfied, then for all n ∈ N, there exists j∗,n ∈ Jn such that

8C2

(
∥W1,d∥Ld(Ekj∗,n

) +
1 + ϵ

1− ϵ
∥W2,d∥Ld(Ekj∗,n

)

)
⩽

1

|kj∗,n,n||Ekj∗,n,n
| 1d
. (4.15)

Indeed, if not, for all j ∈ Jn, we would have

|Ekj,n |−1 ⩽ (16C2(1 + ϵ)n)d

(
∥W1,d∥dLd(Ekj,n

) +

(
1 + ϵ

1− ϵ

)d
∥W2,d∥dLd(Ekj,n

)

)
,

(where we use the elementary estimate (a+ b)d ⩽ 2d(ad + bd) for a, b ⩾ 0).
By summing these estimates over j ∈ Jn and taking into account that the sets (Ekj,n)j∈Jn are pairwise

disjoint, we would get

1

CW

(
2d

d+ 2

)d
nd ⩽

∑
j∈Jn

|Ekj,n |−1 ⩽ (16C2(1 + ϵ)n)d

(
∥W1,d∥dLd(Ω) +

(
1 + ϵ

1− ϵ

)d
∥W2,d∥dLd(Ω)

)
,

which would contradict (4.14).
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We thus assume condition (4.14). For n ⩾ τ0/(1 − ϵ), we set kn = kj∗,n , where kj∗,n is such that (4.15)
holds, and we set En = Ekj∗,n

. We then deduce from (4.11) that

|kn|
3
4+

1
2d min

{
1

|kn||En|
1
d

, 1

}(
|kn|∥eφkn v∥L2(En) + ∥eφkn∇v∥L2(En)

)
⩽ C2

((
∥V∞∥L∞(Ω) + |kn|∥W2,∞∥L∞(Ω)

)
∥eφkn v∥L2(Ω) + ∥W1,∞∥L∞(Ω)∥eφkn∇v∥L2(Ω) + ∥eφkn fη∥L2(Ω)

+ |kn|
3
4+

1
2d

(
∥eφknW1,d · ∇v∥

L
2d

d+2 (Ω)
+ |kn|∥eφknW2,dv∥

L
2d

d+2 (Ω)

)
+|kn|

7
4+

1
2d ∥eφknu∥H1(ω)

)
. (4.16)

Using then the classical estimates |a|α + |b|α ⩽ 2(|a| + |b|)α and (|a| + |b|)α ⩽ |a|α + |b|α for α ∈ [0, 1] and
a, b ∈ R, we obtain that

∥eφknW1,d · ∇v∥
L

2d
d+2 (Ω)

+ |kn|∥eφknW2,dv∥
L

2d
d+2 (Ω)

⩽ 2∥e
2d

d+2φkn

(
|W1,d · ∇v|

2d
d+2 + (n(1 + ϵ))|W2,dv|

2d
d+2

)
∥

d+2
2d

L1(Ω)

⩽ 4∥e
2d

d+2φkn

(
|W1,d · ∇v|

2d
d+2 + (n(1 + ϵ))|W2,dv|

2d
d+2

)
∥

d+2
2d

L1(En)

⩽ 4∥eφknW1,d · ∇v∥
L

2d
d+2 (En)

+ 4n(1 + ϵ)∥eφknW2,dv∥
L

2d
d+2 (En)

⩽ 4
(
∥W1,d∥Ld(En)∥e

φkn∇v∥L2(En) + n(1 + ϵ)∥W2,d∥Ld(En)∥e
φkn v∥L2(En)

)
⩽

1

2C2
min

{
1

|kn||En|
1
d

, 1

}(
(1− ϵ)n∥eφkn v∥L2(En) + ∥eφkn∇v∥L2(En)

)
,

where we used (4.12), and the fact that, from (4.15),

4∥W1,d∥Ld(En) ⩽
1

2C2

1

|kn||En|
1
d

, and 4(1 + ϵ)∥W2,d∥Ld(En) ⩽
1− ϵ

2C2

1

|kn||En|
1
d

and, from (4.14)(2),

4∥W1,d∥Ld(En) ⩽ 4∥W1,d∥Ld(Ω) ⩽
1

2C2
, and 4(1 + ϵ)∥W2,d∥Ld(En) ⩽ 4(1 + ϵ)∥W2,d∥Ld(Ω) ⩽

1− ϵ

2C2
.

Accordingly, from (4.16), we deduce that

|kn|
3
4+

1
2d

(
∥eφknW1,d · ∇v∥

L
2d

d+2 (Ω)
+ |kn|∥eφknW2,dv∥

L
2d

d+2 (Ω)

)
⩽ 2C2

((
∥V∞∥L∞(Ω) + |kn|∥W2,∞∥L∞(Ω)

)
∥eφkn v∥L2(Ω) + ∥W1,∞∥L∞(Ω)∥eφkn∇v∥L2(Ω)

+∥eφkn fη∥L2(Ω) + |kn|
7
4+

1
2d ∥eφknu∥H1(ω)

)
. (4.17)

Step 3: Combining the Carleman estimates (4.9) and (4.11), and the estimate (4.17). Using (4.9), (4.11)
and (4.17), we get that there exists a constant C > 0 such that for all n ⩾ τ0/(1− ϵ),

|kn|
3
2 ∥eφkn v∥L2(Ω) + |kn|

1
2 ∥eφkn∇v∥L2(Ω) ⩽ C

(
∥eφkn fη∥L2(Ω) + |kn|

3
2 ∥eφknu∥H1(ω)

+
(
|kn|

1
2 ∥W2,d∥Ld(Ω) + |kn|

3
4−

1
2d ∥V d

2
∥
L

d
2 (Ω)

)
∥eφkn v∥

L
2d

d−2 (Ω)

+ |kn|−
1
d

((
∥V∞∥L∞(Ω) + |kn|∥W2,∞∥L∞(Ω)

)
∥eφkn v∥L2(Ω) + ∥W1,∞∥L∞(Ω)∥eφkn∇v∥L2(Ω)

+∥eφkn fη∥L2(Ω) + |kn|
7
4+

1
2d ∥eφknu∥H1(ω)

)
, (4.18)

and

|kn|
3
4+

1
2d ∥eφkn v∥

L
2d

d+2 (Ω)
⩽ C

( (
∥V∞∥L∞(Ω) + |kn|∥W2,∞∥L∞(Ω)

)
∥eφkn v∥L2(Ω)

+ ∥W1,∞∥L∞(Ω)∥eφkn∇v∥L2(Ω) + ∥eφkn fη∥L2(Ω) + |kn|
7
4+

1
2d ∥eφknu∥H1(ω)

)
. (4.19)
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Note in particular that, in view of the assumptions (4.8), we get from (4.18) that there exists τ1 ⩾ τ0/(1−ϵ)
such that, for all n ⩾ τ1,

|kn|
3
2 ∥eφkn v∥L2(Ω) + |kn|

1
2 ∥eφkn∇v∥L2(Ω) ⩽ C

(
∥eφkn fη∥L2(Ω) + |kn|

7
4+

1
2d ∥eφknu∥H1(ω)

+
(
|kn|

1
2 ∥W2,d∥Ld(Ω) + |kn|

3
4−

1
2d ∥V d

2
∥
L

d
2 (Ω)

)
∥eφkn v∥

L
2d

d−2 (Ω)

)
. (4.20)

Thus, combining (4.19) and (4.20), we obtain, for all n ⩾ τ1,

|kn|
3
2 ∥eφkn v∥L2(Ω) + |kn|

1
2 ∥eφkn∇v∥L2(Ω) ⩽ C

(
∥eφkn fη∥L2(Ω) + |kn|

7
4+

1
2d ∥eφknu∥H1(ω)

+
(
|kn|

1
2 ∥W2,d∥Ld(Ω) + |kn|

3
4−

1
2d ∥V d

2
∥
L

d
2 (Ω)

)
|kn|−

3
4−

1
2d

((
∥V∞∥L∞(Ω) + |kn|∥W2,∞∥L∞(Ω)

)
∥eφkn v∥L2(Ω)

+∥W1,∞∥L∞(Ω)∥eφkn∇v∥L2(Ω) + ∥eφkn fη∥L2(Ω) + |kn|
3
2 ∥eφknu∥H1(ω)

)
. (4.21)

With the constraints (4.8), (4.10) and (4.14), there exists C such that(
|kn|

1
2 ∥W2,d∥Ld(Ω) + |kn|

3
4−

1
2d ∥V d

2
∥
L

d
2 (Ω)

)
|kn|−

3
4−

1
2d ⩽ C|kn|−

1
d ,

and (
∥V∞∥L∞(Ω) + |kn|∥W2,∞∥L∞(Ω)

)
⩽ 2c0|kn|

3
2 , and ∥W1,∞∥L∞(Ω) ⩽ c0|kn|

1
2 .

Accordingly, we deduce from (4.21) that there exists τ2 ⩾ τ1 such that for all n ⩾ τ2,

|kn|
3
2 ∥eφkn v∥L2(Ω) + |kn|

1
2 ∥eφkn∇v∥L2(Ω) ⩽ C

(
∥eφkn fη∥L2(Ω) + |kn|

7
4+

1
2d ∥eφknu∥H1(ω)

)
. (4.22)

Step 4: Quantification. To quantify the unique continuation property, we simply need to choose appro-
priate values for n (recall that kn is of the order of n) and suitable decompositions of V , W1 and W2 as
V d

2
+ Vd + V∞, W1,d +W1∞, W2,d +W2∞.

We thus recall the constraints needed so far (see (4.8), (4.10), (4.14)), which we sum up as follows:

∥V d
2
∥
L

d
2 (Ω)

≪ 1, |n| 34− 1
2d ∥Vd∥Ld(Ω) ≪ n

3
2 , ∥V∞∥L∞(Ω) ≪ n

3
2 , (4.23)

∥W1,d∥Ld(Ω) ≪ 1, ∥W1,∞∥L∞(Ω) ≪ n
1
2 , (4.24)

∥W2,d∥Ld(Ω) ≪ 1, ∥W2,∞∥L∞(Ω) ≪ n
1
2 . (4.25)

Satisfying conditions (4.24)–(4.25). For W1 ∈ Lq1(Ω) and W2 ∈ Lq2(Ω), with q1 and q2 in [d,∞], and for
positive numbers λ1, λ2 yet to be determined, we set W1,d = W11|W1|>λ1

, W1,∞ = W11|W1|⩽λ1
, W2,d =

W21|W2|>λ2
, and W2,∞ =W21|W2|⩽λ2

. Conditions (4.24)–(4.25) then read:

λ
1− q1

d
1 ∥W1∥

q1
d

Lq1 (Ω) ≪ 1, λ1n
− 1

2 ≪ 1

λ
1− q1

d
2 ∥W2∥

q1
d

Lq2 (Ω) ≪ 1, λ2n
− 1

2 ≪ 1.

If we choose λ1 and λ2 such that λ
1−

qj
d

j ∥Wj∥
qj
d

Lqj (Ω)
= λjn

− 1
2 (j ∈ {1, 2}), that is

λ1 = ∥W1∥Lq1 (Ω)n
d

2q1 and λ2 = ∥W2∥Lq2 (Ω)n
d

2q2 ,

then this yields the conditions

n
1
2−

d
2q1 ≫ ∥W1∥Lq1 (Ω), and n

1
2−

d
2q2 ≫ ∥W2∥Lq2 (Ω). (4.26)

Satisfying conditions (4.23). Now, we consider the following two cases for the potential V :

26



Case V ∈ Lq0(Ω) with q0 ∈ [d,∞]. For λ0 > 0 to be chosen later, we set V d
2
= 0, and Vd = V 1|V |>λ0

,

V∞ = V 1|V |⩽λ0
, so that the conditions (4.23) read

λ
1− q0

d
0 ∥V ∥

q0
d

Lq0 (Ω) ≪ n
3
4+

1
2d , λ0 ≪ n

3
2 .

With the choice λ0 = ∥V ∥
q0
d

Lq0 (Ω)n
( 3
4−

1
2d )

d
q0 , this gives

n(2−
d
q0

)( 3
4−

1
2d ) ≫ ∥V ∥Lq0 (Ω). (4.27)

Case V ∈ Lq0(Ω) with q0 ∈ (d/2, d]. For λ0 > 0 to be determined later, we set V∞ = 0, and V d
2
=

V 1|V |>λ0
, Vd = V 1|V |⩽λ0

, so that the conditions (4.23) read

λ
1− 2q0

d
0 ∥V ∥

2q0
d

Lq0 ≪ 1, λ
1− q0

d
0 ∥V ∥

q0
d

Lq0 ≪ n
3
4+

1
2d .

With the choice λ0 = ∥V ∥Lq0n
( 3
4+

1
2d )

d
q0 , this gives

n(2−
d
q0

)( 3
4+

1
2d ) ≫ ∥V ∥Lq0 (Ω). (4.28)

In the following, we assume that the conditions (4.26)–(4.28) are satisfied, that is, with the notations
(1.4),

n ⩾ τ3(V,W1,W2) := C
(
1 + ∥V ∥γ(q0)Lq0 (Ω) + ∥W1∥δ(q1)Lq1 (Ω) + ∥W2∥δ(q2)Lq2 (Ω)

)
,

for some sufficiently large C, so that in particular the estimate (4.22) holds for all n ⩾ τ3(V,W1,W2).

Step 5. Getting a stability estimate. We start by estimating the term ∥eφkn fη∥L2(Ω) as follows (recall
(4.6)–(4.7)): for n ⩾ τ3(V,W1,W2),

∥eφkn fη∥L2(Ω) ⩽ C
(
1 + ∥W1∥Lq1 (Ω) + ∥W2∥Lq2 (Ω)

)
∥eφknu∥H1(ω)

+ C
(
1 + ∥W1∥Lq1 (Ω) + ∥W2∥Lq2 (Ω)

)
e
sup

x1∈(− 7R
24

,−R
4 )

{φkn}
∥u∥H1(Ω)

⩽ C|n| 12 ∥eφknu∥H1(ω) + C|n| 12 e
sup

x1∈(− 7R
24

,−R
4 )

{φkn}
∥u∥H1(Ω),

where we used the localization properties of the gradient of the cut-off function η and the bound (4.26).
Bounding the weight function eφkn from above and from below in (4.22), we get for all n ⩾ τ3(V,W1,W2)

such that

einfO{φkn}∥v∥H1(O) ⩽ C|n| 54+ 1
2d esupω{φkn}∥u∥H1(ω) + Ce

sup
x1∈(− 7R

24
,−R

4 )
{φkn}

∥u∥H1(Ω).

Using then properties (4.2), we deduce that there exist two positive constants A and B such that for all
n ⩾ τ3(V,W1,W2),

∥u∥H1(O) ⩽ CeAn∥u∥H1(ω) + Ce−Bn∥u∥H1(Ω).

Optimizing the right hand side with respect to n ⩾ τ3(V,W1,W2), we obtain

∥u∥H1(O) ⩽ C∥u∥
B

A+B

H1(ω)∥u∥
A

A+B

H1(Ω) exp(Cτ3(V,W1,W2)).

This concludes the proof of Lemma 4.1.

Remark 4.4. It is clear from the above proof that, if V is the finite sum of potentials Vi ∈ Lpi(Ω), the

estimate (1.3) still holds by replacing ∥V ∥γ(p)Lp(Ω) by
∑
i ∥Vi∥

γ(pi)
Lpi (Ω) .

5 Other geometries and proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We will do that using several geometrical settings, up
to a quantitative three balls estimate.
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5.1 An annulus observed from a neighbourhood of its external boundary

Lemma 5.1. Let R > 0 and d ⩾ 3. We consider the following geometric setting (see Figure 2):

Ω = A0

(
R

4
, 2R

)
, O = A0

(
R

2
, 2R

)
, ω = A0 (R, 2R) .

(Here, A0(r1, r2) denotes the annulus B0(r2) \B0(r1).)
There exist constants C = C(R, d) > 0 and α ∈ (0, 1) depending only on R and d so that any solution

u ∈ H1(Ω) of (1.1) with (V,W1,W2) as in (1.2) satisfies the quantitative unique continuation estimate (1.3)
with γ and δ as in (1.4).

O

ω

0

R

2R

R/4

R
2

Figure 2: The geometric setting of Lemma 5.1: Propagation of smallness from a neighborhood of a sphere to
its interior.

Proof. The proof of Lemma 5.1 directly follows from Lemma 4.1. Let x0 ∈ Sd−1, and apply Lemma 4.1 with

Ωx0 = B0(2R) ∩
{
x · x0 < −R

4

}
, Ox0 = B0

(
3R

2

)
\
{
x · x0 < −R

3

}
, ωx0 = (B0(2R) \B0(R)) ∩ Ωx0 .

Accordingly, for all x0 ∈ Sd−1, there exists a constant Cx0
> 0 such that

∥u∥H1(Ox0
)) ⩽ Cx0e

Cx0

(
∥V ∥γ(q0)

Lq0 (Ω)
+∥W1∥

δ(q1)

Lq1 (Ω)
+∥W2∥

δ(q2)

Lq2 (Ω)

)
∥u∥αH1(ωx0

) ∥u∥
1−α
H1(Ωx0

)

⩽ Cx0
e
Cx0

(
∥V ∥γ(q0)

Lq0 (Ω)
+∥W1∥

δ(q1)

Lq1 (Ω)
+∥W2∥

δ(q2)

Lq2 (Ω)

)
∥u∥αH1(ω) ∥u∥

1−α
H1(Ω) .

The constant Cx0 is in fact independent of x0 due to the invariance by rotation of the problem. Accordingly,
we simply denote it by C in the following. Consequently, the right-hand side of the previous estimate does
not depend on x0. Accordingly, taking the square and integrating this inequality with respect to x0 over the
sphere Sd−1, we obtain an estimate on∫

x∈B0( 3R
2 )\B0(R

3 )
(|u|2 + |∇u|2)ρR(x)dx,

where ρR(x) =
∫
x0∈Sd−1 1x·x0<−R

3
(x0)dx0. It is then easy to check that ρR is a radial function, vanishing for

|x| ∈ (0, R/3), and increasing. Consequently, we derive

∥u∥H1(B0( 3R
2 )\B0(R

2 ))
⩽

C√
ρR(

R
2 )
e
C
(
∥V ∥γ(q0)

Lq0 (Ω)
+∥W1∥

δ(q1)

Lq1 (Ω)
+∥W2∥

δ(q2)

Lq2 (Ω)

)
∥u∥αH1(ω) ∥u∥

1−α
H1(Ω) .

The estimate on u in H1(B0(2R) \B0(3R/2)) is straightforward since B0(2R) \B0(3R/2) ⊂ ω ⊂ Ω.
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5.2 A three balls estimate

In this part, we prove a quantitative three balls inequality:

Lemma 5.2 (Three balls estimate). Let R > 0 and d ⩾ 3. We consider the following geometric setting (see
Figure 3):

Ω = B0(4R), O = B0(2R), and ω = B0(R);

Then there exist constants C = C(R, d) > 0 and α ∈ (0, 1) depending only on R and d so that any solution
u ∈ H1(Ω) of (1.1) with (V,W1,W2) as in (1.2) satisfies the quantitative unique continuation estimate (1.3)
with γ and δ as in (1.4).

O

0

2R0

4R0

R0

Figure 3: The geometric setting of Lemma 5.2: Propagation of smallness from a ball to its exterior.

Proof. Step 1: Conformal reflection. First, we consider the following geometric setting

Ω0 = A0

(
R

2
, 4R

)
, O0 = A0

(
R

2
, 2R

)
, ω0 = A0

(
R

2
, R

)
.

We denote by T the conformal reflection with respect to the sphere S0(R), given by:

Rd \ {0} ∋ x 7→ x̃ = T (x) :=
R2

|x|2
x, (5.1)

The images of the sets Ω0, O0 and ω0 are then given by:

Ω̃ = TΩ0 = A0

(
R

4
, 2R

)
, Õ = TO0 = A0

(
R

2
, 2R

)
, ω̃ = Tω0 = A0 (R, 2R) . (5.2)

Therefore, for u ∈ H1(Ω) a solution of (1.1) with (V,W1,W2) as in (1.2), we consider the Kelvin transform
of u (see, for example, [17]),

ũR(x) =

(
R

|x|

)(d−2)

u

(
R2

|x|2
x

)
, x ∈ Ω̃. (5.3)

By a classical computation, using the chain rule, we can verify that for all i ∈ {1, · · · , d},

∂xi
ũR(x) = − (d− 2)xi

|x|2
ũR(x) +

(
R

|x|

)d d∑
j=1

(
δij − 2

xixj
|x|2

)
∂xj

u

(
R2

|x|2
x

)
, x ∈ Ω̃,
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and

∆ũR(x) =

(
R

|x|

)(d+2)

∆u

(
R2

|x|2
x

)
, x ∈ Ω̃.

We then consider the following potentials

W̃R,j(x) :=
R2

|x|2

(
Wj

(
R2

|x|2
x

)
− 2x ·Wj

(
R2

|x|2
x

)
x

|x|2

)
, j ∈ {1, 2},

ṼR(x) :=
R4

|x|4

(
V

(
R2

|x|2
x

))
︸ ︷︷ ︸

=:ṼR,1

+
(d− 2)

|x|2
x ·
(
W̃R,1(x) + W̃R,2(x)

)
.

Consequently, u ∈ H1(Ω) is a solution of (1.1) with (V,W1,W2) if and only if uR given by (5.3) solves

∆ũR = ṼRũR + W̃R,1 · ∇ũR + div
(
W̃R,2ũR

)
in Ω̃.

Step 2: Application of Lemma 5.1. Applying Lemma 5.1 to ũR with the geometric setting defined in (5.2)
(together with Remark 4.4), there exists C > 0 depending only on d and R such that

∥ũR∥H1(Õ) ⩽ Ce
C
(
∥ṼR,1∥γ(q0)

Lq0 (Ω̃)
+∥W̃R,1∥γ(q1)

Lq1 (Ω̃)
+∥W̃R,2∥γ(q2)

Lq2 (Ω̃)
+∥W̃R,1∥δ(q1)

Lq1 (Ω̃)
+∥W̃R,2∥δ(q2)

Lq2 (Ω̃)

)
∥ũR∥αH1(ω̃) ∥ũR∥

1−α
H1(Ω̃)

,

with γ and δ as defined in (1.4). Then, using the change of variables y = (R/|x|)2x, one can verify that∥∥∥W̃R,j

∥∥∥
Lqj (Ω̃)

≃ ∥Wj∥Lqj (Ω0)
, j ∈ {1, 2},∥∥∥ṼR,1∥∥∥

Lq0 (Ω̃)
≃ ∥V ∥Lq0 (Ω0)

,

∥ũR∥H1(Π̃) ≃ ∥u∥H1(T−1Π) , Π ∈ {Ω̃, Õ, ω̃},

where we have used that the Jacobian determinant of the map T−1 (= T ) is bounded.
Since γ(q) ⩽ δ(q) for all q ∈ (d,∞], there exists a positive constant C depending only on d and R, such

that

∥u∥H1(O0)
⩽ Ce

C
(
∥V ∥γ(q0)

Lq0 (Ω0)
+∥W1∥

δ(q1)

Lq1 (Ω0)
+∥W2∥

δ(q2)

Lq2 (Ω0)

)
∥u∥αH1(ω0)

∥u∥1−αH1(Ω0)

⩽ Ce
C
(
∥V ∥γ(q0)

Lq0 (Ω)
+∥W1∥

δ(q1)

Lq1 (Ω)
+∥W2∥

δ(q2)

Lq2 (Ω)

)
∥u∥αH1(ω) ∥u∥

1−α
H1(Ω) .

To conclude Lemma 5.2, one should also get a similar estimate for ∥u∥H1(B0(R/4))
; this latter estimate is

straightforward as B0(R/4) ⊂ ω ⊂ Ω. The proof of Lemma 5.2 is thus completed.

5.3 The general case: Proof of Theorem 1.1

Proof of Theorem 1.1. The strategy follows the same lines as the one of [11, Theorem 5.6], see also [8,
Theorem 1.2], and is based on the classical ideas that three balls estimates allow to propagate the information.

Step 1: Propagation of smallness in neighborhoods of points y in O. Recall the geometric condition
(GC): For all y ∈ O, there exist x0 ∈ ω, ry > 0 and a smooth path γy of finite length such that γy(0) = x0,
γy(1) = y, and ∪s∈[0,1]Bγy(s)(ry) ⊂ Ω.

Accordingly, for y ∈ O, we take such path γy, and define Ry = min{ry/4, r0}, where r0 is such that
Bx0(r0) ⊂ ω.

We define a sequence (x(j))j , for j ⩾ 0, by x(j) = γy (tj) where t0 = 0 and, for j ⩾ 1,

tj =

{
inf Aj if Aj ̸= ∅,
1 if Aj = ∅, where Aj =

{
σ ∈ (tj−1, 1] ; γy(σ) /∈ Bx(j−1)

(Ry)
}
.
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The sequence (x(j))j is finite since the length of γy is finite. Let
(
x(0), · · · , x(Ny)

)
be such a sequence with

x(Ny) = y. Note that we have Bx(j+1)
(Ry) ⊂ Bx(j)

(2Ry) ⊂ Bx(j)
(4Ry) ⊂ Ω for j = 0, · · · , Ny − 1, because of

the choice we made for Ry above. By Lemma 5.2 there exist C > 0 and α ∈ (0, 1) such that

∥u∥
H1

(
Bx(j+1)

(Ry)
) ⩽ ∥u∥

H1
(
Bx(j)

(2Ry)
) ⩽ Ce

C
(
∥V ∥γ(q0)

Lq0 (Ω)
+∥W1∥

δ(q1)

Lq1 (Ω)
+∥W2∥

δ(q2)

Lq2 (Ω)

)
∥u∥1−αH1(Ω)∥u∥

α
H1(Bx(j)

(Ry))
,

for j = 0, . . . , N − 1. Iterating this estimate we obtain

∥u∥H1(By(Ry)) ⩽ C
∑Ny

j=0 α
j

e
C
(∑Ny

j=0 α
j
)(

∥V ∥γ(q0)

Lq0 (Ω)
+∥V2∥

γ2(p2)

Lp2 (Ω)
+∥W1∥

δ(q1)

Lq1 (Ω)
+∥W2∥

δ(q2)

Lq2 (Ω)

)
∥u∥1−α

Ny

H1(Ω) ∥u∥
αNy

H1
(
Bx(0)

(Ry)
)

⩽ Cye
Cy

(
∥V ∥γ(q0)

Lq0 (Ω)
+∥V2∥

γ2(p2)

Lp2 (Ω)
+∥W1∥

δ(q1)

Lq1 (Ω)
+∥W2∥

δ(q2)

Lq2 (Ω)

)
∥u∥1−αy

H1(Ω)∥u∥
αy

H1(ω),

for some Cy > 0 and αy ∈ (0, 1).
Step 2: Compactness argument. Because of the compactness of O, we can choose a finite number of

balls (Byj (Ryj/2))j∈{1,··· ,p} with yj ∈ O and Ryj as above such that O ⊂ ∪j∈{1,··· ,p}Byj (Ryj/2). We then

construct a partition of unity of O by choosing smooth functions (χj)0⩽j⩽N , each one being supported in
Byj (Ryj ), such that

p∑
j=1

χj = 1 in a neighborhood of O, 0 ⩽ χj ⩽ 1.

Therefore,

∥u∥H1(O) ⩽ C

p∑
j=1

∥u∥H1(suppχj)
⩽ C

p∑
j=1

∥u∥H1(Byj (Ryj ))

⩽ Ce
C
(
∥V ∥γ(q0)

Lq0 (Ω)
+∥V2∥

γ2(p2)

Lp2 (Ω)
+∥W1∥

δ(q1)

Lq1 (Ω)
+∥W2∥

δ(q2)

Lq2 (Ω)

)
∥u∥1−αH1(Ω)∥u∥

α
H1(ω),

with α = minj∈{1,··· ,p}{αyj}. This concludes the proof of Theorem 1.1.

A Lp-Lq estimates for Fourier multipliers

In this section, we present the machinery used to get estimates on the operators (Kτ,j)j∈{0,··· ,d}, and that
was developed in [6, Section 5].

Let n ⩾ 2. We consider X0 < X1 and coefficients (λj)j∈{1,··· ,n} satisfying

∃c0 > 0, ∀a ∈ [X0, X1], ∀ξ ∈ Rn,
1

c0
|ξ|2 ⩽

n∑
j=1

(1− aλj)|ξj |2 ⩽ c0|ξ|2. (A.1)

We also introduce the function ψ defined by

ψ(a, ξ) =

√√√√ n∑
j=1

(1− aλj)ξ2j , a ∈ [X0, X1], ξ ∈ Rn. (A.2)

and Σa the ellipsoid defined for a ∈ [X0, X1] by

Σa = {ξ ∈ Rn, ψ(a, ξ) = 1}. (A.3)

For a ∈ [X0, X1] and k ∈ L∞(R+, L
∞(Σa)), we consider operators given as follows:

Ka,k : L2(Rn) → L2(Rn), given by K̂a,k(f)(ξ) = k

(
ψ(a, ξ),

ξ

ψ(a, ξ)

)
f̂(ξ), ξ ∈ Rn. (A.4)
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In other words, Ka,k is defined as a Fourier multiplier, and we look at the multiplier in some kind of radial
coordinates associated to Σa: ψ(a, ξ) is a positive real number corresponding to a radius, and ξ/ψ(a, ξ) is an
element of the ellipsoid Σa. Also note that for a = 0, this coincides with the classical radial coordinates for
Rn.

We have the following result:

Proposition A.1 (Proposition 5.3. [6]). Let n ∈ N, n ⩾ 2. Let X0 < X1, and the coefficients (λj)j∈{1,··· ,n}
satisfy (A.1). For a ∈ [X0, X1], let ψ and Σa be as in (A.3)–(A.2). Then there exists a constant C > 0 such
that

• for all a ∈ [X0, X1], for all k ∈ L∞(R+, L
∞(Σa)), the Fourier multiplier operator Ka,k in (A.4) maps

L2(Rn) to itself and
∥Ka,k∥L (L2(Rn)) ⩽ ∥k∥L∞(R+,L∞(Σa)). (A.5)

• for all a ∈ [X0, X1], for all k ∈ L∞(R+, L
∞(Σa)) satisfying∫ ∞

0

∥k(λ, ·)∥L∞(Σa) λ
n−1
n+1 dλ <∞,

the Fourier multiplier operator Ka,k in (A.4) belongs to L (L
2(n+1)
(n+3) (Rn), L

2(n+1)
(n−1) (Rn)) and

∥Ka,k∥
L (L

2(n+1)
(n+3) (Rn),L

2(n+1)
(n−1) (Rn))

⩽ C

∫ ∞

0

∥k(λ, ·)∥L∞(Σa) λ
n−1
n+1 dλ. (A.6)

• for all a ∈ [X0, X1], for all k ∈ L∞(R+, L
∞(Σa)) satisfying∫ ∞

0

∥k(λ, ·)∥2L∞(Σa)
λ

n−1
n+1 dλ <∞,

the Fourier multiplier operator Ka,k in (A.4) belongs to

L (L
2(n+1)
(n+3) (Rn), L2(Rn)) ∩ L (L2(Rn), L

2(n+1)
(n−1) (Rn)),

and

∥Ka,k∥
L (L

2(n+1)
(n+3) (Rn),L2(Rn))

⩽ C

√∫ ∞

0

∥k(λ, ·)∥2L∞(Σa)
λ

n−1
n+1 dλ, (A.7)

∥Ka,k∥
L (L2(Rn),L

2(n+1)
(n−1) (Rn))

⩽ C

√∫ ∞

0

∥k(λ, ·)∥2L∞(Σa)
λ

n−1
n+1 dλ. (A.8)
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[8] S. Ervedoza and K. Le Blac’h, Cost of observability inequalities for elliptic equations in 2-d with
potentials and applications to control theory Communications in Partial Differential Equations, Taylor
& Francis:1–55, 2023.

[9] H. Koch and D. Tataru. Carleman estimates and unique continuation for second-order elliptic equations
with nonsmooth coefficients. Communications on Pure and Applied Mathematics, 54(3):339–360, 2001.

[10] H. Koch and D. Tataru. Sharp counterexamples in unique continuation for second order elliptic equations.
J. Reine Angew. Math., 542:133–146, 2002.

[11] J. Le Rousseau, G. Lebeau, and L. Robbiano. Elliptic Carleman estimates and applications to stabiliza-
tion and controllability. Vol. I. Dirichlet boundary conditions on Euclidean space, volume 97 of Progress
in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham, [2022] ©2022.
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