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Figure 1: From a single walking cycle (shown at left), our agile character discovers a series of new motor skills such as waving,
walking backwards while looking up, moving sideways, walking up and down slopes, which requires adapting joint stiffness
over time. Learning this variety of control from a single motion clip is possible thanks to relative pose and velocity observations
of state, and augmentation of the observation to include the deviation from each goal (differences between red and white
arrows) expressed in a local frame. We also demonstrate our method on a quadruped character (shown at right).

ABSTRACT
We present an approach for training "agile" character control poli-
cies, able to produce a wide variety of motor skills from a single
reference motion cycle. Our technique builds off of generative ad-
versarial imitation learning (GAIL), with a key novelty of our ap-
proach being to provide modification to the observation map in
order to improve agility and robustness. Namely, to support more
agile behavior, we adjust the value measurements of the training
discriminator through relative features - hence the name ReGAIL.
Our state observations include both task relevant relative velocities
and poses, as well as relative goal deviation information. In addi-
tion, to increase robustness of the resulting gaits, servo gains and
damping values are included as part of the policy action to let the
controller learn how to best combine tension and relaxation during
motion. From a policy informed by a single reference motion, our
resulting agent is able to maneuver as needed, at runtime, from
walking forward to walking backward or sideways, turning and
stepping nimbly. We demonstrate our approach for a humanoid and
a quadruped, on both flat and sloped terrains, as well as provide
ablation studies to validate the design choices of our framework.

CCS CONCEPTS
• Computing methodologies→ Physical simulation; Proce-
dural animation; Reinforcement learning; Adversarial learn-
ing; Learning from demonstrations.

KEYWORDS
character animation, physically-based simulation, motion controllers,
reinforcement learning, generative adversarial imitation learning

1 INTRODUCTION
The synthesis of motion controllers for physical characters has
attracted much attention in recent years, driven by the need to
generate autonomous characters for video games and immersive
virtual environments. A main reason for the appeal of such char-
acters is their ability to both interact and adapt to a changing,
interactive physical world. Although significant progress has been
made through the use of deep reinforcement learning (DRL) for
training control policies, a major weakness of current solutions is
that the resulting characters exhibit limited abilities to adapt in the
presence of interactions, which can lead to unnatural reactions and
a breakdown of visual fidelity overall. Our goal is to expand the
controller’s capabilities, by making characters more agile, without
increasing the burden of developing control policies.

To date, much of the realism of DRL-based controllers for hu-
man characters is derived from imitation. While DRL can generate
motion controllers without the need for any input data [Heess et al.
2017; Yu et al. 2018], controllers achieve more human-likeness when
reference motion is provided as input [Peng et al. 2018]. However,
precise imitation does not allow deviation from the reference move-
ment to support the production of a plausible response during an
interaction (i.e. one that is compliant to the specific disturbance
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forces present). In addition, while DRL combined with generative
models, such as adversarial neural networks [Peng et al. 2021a; Xu
and Karamouzas 2021], allows learning from input data without
exact reproduction of an input motion, these frameworks often
require a diverse set of actions and/or a large dataset, which can be
cumbersome, especially for characters that are not humanoid, and
for which example data is unavailable.

In our work, we investigate the synthesis of more agile con-
trollers – both in their ability to cope with a wider variety of scenar-
ios, but also to introduce more realism in their responses – without
the need for exhaustive data examples. In particular, real-time video
game characters should exhibit agility in everyday actions such
as walking, including climbing steep slopes, moving backwards or
sideways, turning and stopping quickly, taking stutter steps and
skip steps, and so on. Relying on example data can quickly become
prohibitive. Instead, we seek to train motion controllers to generate
new, visually plausible and diverse motor skills from sparse motion
data, such as a single walking clip.

We call our solution ReGAIL, for Relative Generative Adversarial
Imitation Learning. Indeed, the key insight is the use of relative
pose, relative velocity, and relative goal deviation. At the same time,
we suppress absolute information usually used within discrimina-
tors of alternative systems, such as features like absolute position
and angular velocity. These changes permit the input motion clip
to give good guidance during learning under a larger variety of
conditions, exposing a wider distribution of example states dur-
ing training, thus greatly improving the capacity of generalization
of the learned policy despite very limited input data. Further, we
augment the policy action space to include the capacity to select
its own servo values during control. While our goal for this is to
increase agility for robustness, recent findings support that such
stiffness modulation is also more humanlike [Xie et al. 2023]. Dur-
ing training, we purposely exercise the character to perform under
a wide array of conditions, including a rich variety of environmen-
tal settings (e.g. terrain variation), differing target directions, and a
collection of secondary goals such as hand location, head look-at
orientations, and root facing conditions (e.g. facing forward while
moving backwards).

We show results for both humanoid and quadruped characters,
showing that a variety of walking-related behaviors that can be
generated from a single straight-line walking motion clip (see Fig-
ure 1). We compare our results with the state of the art. Finally, we
report ablation studies to support the components that empower
our technique.

2 RELATEDWORK
Following seminal work exploring the manual design of motion
controllers, deep reinforcement learning (DRL) has emerged as the
most effective method for synthesizing control to date. The set
of possible actions of a physically-based character model being
continuous, most methods use policy gradient algorithms, such as
PPO [Schulman et al. 2017], to learn the optimal action policy given
state observations (see the full survey of Kwiatkowski et al. [2022]).
While DRL methods are able to generate motion controllers directly,
for instance by favoring symmetric and low energy motion [Yu
et al. 2018], generated gaits for humanoid agents remain far from

humanlike without the presence of reference motion. Therefore,
most recent works incorporate different ways to train controllers
from example motion. Early methods either aimed to reproduce the
specific motion provided in an input clip through direct imitation,
such as DeepMimic [Peng et al. 2018], or proposed the generation
of more diverse motion controllers, such as DeepLoco [Peng et al.
2017], by introducing a hierarchical approach to enable learning
of a high-level skills for foot placement, used in conjunction with
low-level motor actions learned from reference data.

Greater diversity is achieved by combining DRL with generative
models. For example, AMP [Peng et al. 2021b] and ICCGAN [Xu and
Karamouzas 2021] combine generative adversarial neural network
(GAN) [Ho and Ermon 2016] using a discriminator to calculate
similarity of motion features generated by the controllers with
those in unstructured motion clips. While AMP and ICCGAN are
functionally similar, AMP shows control over more complex tasks,
such as dribbling while ICCGAN uses multiple discriminators to
avoid model collapse, a common problem plaguing GAIL motion
controllers. Follow-on work continues to appear broadening capa-
bilities of each [Tessler et al. 2023; Xu et al. 2023a,b].

Generating a rich set of motion controllers for a given charac-
ter in these frameworks may require a growing set of reference
data (e.g., 30 minutes of video [Tessler et al. 2023]), which is both
cumbersome and may result in longer training time. In contrast,
Lee et al. [2021] demonstrates the generation of motion variations
from a single input clip, where the motion space is progressively
expanded to include a full family of motor skills embedding the
demonstrated action. Our work follows a similar stream, relying on
GAIL and PPO while aiming to generalize imitation learning from
sparse input, such as a single motion clip or a small set of manual
keyframe data. In contrast, we do not grow a single family of motor
skills, but discover controllers for varied gaits with controllable di-
rections. We accomplish this by reformulating both the observation
and input clip. We note Lee et al. [2021] and our approach are com-
plementary and could be combined to meet both variation within
a motion controller, and diversifying the type of control possible
from a single clip. While other work pre-train policies with latent
spaces and train networks to control them [Peng et al. 2022; Tessler
et al. 2023], or rely on VAEs [Feng et al. 2023; Ling et al. 2020; Won
et al. 2022; Yao et al. 2022], our technique permits generalization of
motor skills from a single input clip through rewriting observations.
Thus our character only needs to be trained once to learn how to
diversify an input walking gait.

Beyond generalization, we are also keen to improve character
animation through more humanlike control and responsivity. We
are inspired by papers like Peng and van de Panne [2017] which
asks if the action space matters and we believe the action space
plays a key roll in compliance and agility through stiffness mod-
ulation. Thus, we equip our policy with active control over joint
stiffness, so it can learn to employ stiffness as necessary for the
current task. Muscle tendon units are one way to introduce varying
stiffness through antagonistic muscles [Geijtenbeek et al. 2013],
while other work includes PD gains in the action space [Chentanez
et al. 2018]. Another strategy is to displace the original reference
motion to minimize interaction forces without modifying an ex-
isting imitation controller to animate compliant interactions [Lee
et al. 2022]. In general, in contrast to muscles and tendons or other
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Figure 2: The ReGAIL training framework is shown. A key
distinction of our approach is that the observation map Φ
transforms the state information and goal deviation Δ to
provide only relative information to the discriminator and
the policy. Also, the policy provides both targets and gain
information. Further, during training, the policy is set to
maximize the sum of goal and discriminator rewards. Here,
the discriminator receives relative information for the refer-
ence motion with zero goal deviation.

approaches, the simplicity of PD controllers remains appealing for
learning character controllers that can interact with the environ-
ment. Likewise, regardless the choice, recent work suggests that we
must take care to avoid naive character controllers that are simply
too stiff [Xie et al. 2023].

Along with the question about the choice of action space, Kim
and Ha [2021] address the natural follow up question, confirming
that choices made about the observation space are also critical to
the success (and speed) of learning. This is also related to our work
in that we choose observations to be relative pose and velocity
combined with goal deviations, with this choice being helpful to
the overall objectives (i.e., expand the variety of motions that can
be controlled while being rewarded by a discriminator trained with
only a single motion clip). Early work of Ding et al. [2015] let opti-
mization create low rank feedback policies which can ultimately
ignore parts of the state while selecting other parts as important. In
our work we purposefully select the local relative velocity to be im-
portant, while we omit information that would hinder performance
of the larger collection of motions we would like the controller
to learn (e.g., hand and foot positions in the local root, world-up
aligned, coordinate frame).

3 OVERVIEW
Our characters are modeled as a hierarchy of rigid links, each con-
nected by three degree of freedom (DOF) rotational joints. Although
nothing specifically limits us to these, a human and a quadruped
models are showcased in this paper, with mass and joint positions
set based on known weight and bone size for their real-world coun-
terparts. Following current practices, we attach PD controllers (ser-
vos) to all the joints and use them to calculate torques, rather than
directly defining torque values. One reference motion cycle is pro-
vided for each character.

3.1 Including PD Gains in the action space
Diverging from most current work, we include servo gains as part
of the values (actions) to be set by the policy which permits the
control to modulate its stiffness and gives it further capabilities such
as increased compliance as it executes tasks. As a counterpart, we
supply joint limits to all rotational DOFs, to discover these extended
capabilities in a reduced posture space. The policy network 𝜋 is
set to output five scalars for each joint, each in the range [−1, 1],
namely three Euler angles as target for the joint and two servo
values for the proportional derivative (PD) control. The former are
linearly mapped for the preset lowest and highest Euler angle limits
at each joint. Similarly, the servo values are mapped between zero
and the maximal stiffness and damping values set for each joint.

Because the policy selects both the target positions and low-level
servo gains, it has greater control over the character through each
of its articulations, giving the neural network the capacity to not
only move however it wants, given its configuration, but also use
more or less compliance to do so. Conversely through joint limits,
the policy is prevented from accessing or exploring invalid regions
by limiting the articulation space of the DoFs. Not only does this
force the characters to respect realistic limits, but it also reduces
the action space and thus simplifies the control problem.

We experimentally observed that this limited action space im-
proves training performance. We also observed that it does not
prevent training agents to imitate motion data that goes outside
the limits of their DoFs.

3.2 Training framework
ReGAIL’s training framework is summarized in Figure 2. As was
done in [Peng et al. 2021b], we pair PPO with GAIL to train mo-
tion controllers. However, we propose a number of changes to the
framework, described next, to align with our goal of increasing the
agent’s agility, through its ability to use a variety of motor skills
based on context.

First, to allow the discriminator to value a broader set of motions
rather than strict imitation of the reference clip, we carefully design
a novel observation map that re-frames the global simulation (and
environment) features to be meaningful in the context of agile
control and extended gait possibilities. As detailed in Section 4, we
replace absolute observations for position and velocity by relative
joint pose and velocity information.

Second, to extend the conditions appropriate for our repertoire of
high-level goals (reach, look-at, etc.), information about how closely
important aspects of the state match those of the desired goals is
added both as part of the observation map for the discriminator as
well as to the policy. Section 5 describes our goals in more depth.

3.3 Training process
While the discriminator and policy are trained simultaneously, the
agent is assigned goals that change every few seconds. For example,
it is asked to face, look and move in different directions at once.

The combination of such different tasks forces the policy to
adapt the gait to accomplish them simultaneously: for example,
walking while facing perpendicular to the direction of motion leads
the agent to discover side steps in order to satisfy both objectives.
Thus, the agent learns to generalize the input walking gait and in
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particular to make transitions between gaits and directions. He also
learns to turn over at any time.

4 RELATIVE OBSERVATIONS
The selection of observations is a key part of the success for DRL
control problems. In our work, we are only working with a short
clip (or even a single cycle) or reference motion, yet we would
like to successfully train a variety of tasks that correspond to the
reference motion style. Our choice of features for observation are
therefore quantities that hide, in a way, or otherwise de-emphasize
information that would limit the motions rewarded by the discrim-
inator.

We propose the observation state mapped through Φ to include
the following features:

• the rotation of each joint relative to the parent link;
• the relative linear velocity of each link with respect to its

parent link’s velocity, expressed in the parent frame;
• the current deviation from goals, as detailed in Section 5;
• and the heightℎ of the agent, defined as the vertical distance

between the lowest foot and the top of the head.
We provide more details on each of these features subsequently
below. However, an important aspect of this observation map is
that the information is provided in a relative form as consistently
as possible. For example, in contrast with previous work, we do not
include any joint or end effector position (globally or relative to
the root) in the observations. Indeed, our experiments show that
root-relative information prevented generalization to new gaits and
behaviors.

Purposefullymissing in the list of features above are observations
about speed or direction of the root frame’s motion. Indeed, the
latter are treated as goals, as opposed to being directly included
in observations for imitation. However, as stated above, deviation
from each goal is included within the relative observation provided
to the discriminator, in addition to providing it to the policy. From
our experimentation we found that during training, combining the
state trajectories from policy evaluations with goal deviation in the
manner described permits the discriminator to combine valuation
of the aggregate task and goals simultaneously.

4.1 Relative Pose
There are several options for the coordinate frame describing the
pose. We choose to use the parent link frame, providing local in-
formation about the relative pose only. This is in contrast to most
approaches that favor more global imitation observations, i.e. de-
scribing the entire pose in the character’s root frame.

Our choice for pose to be relative to the parent link naturally
supports greater deviation from the reference - as a bend at the
elbow, for instance, can be seen as locally matching the reference
pose regardless the state of the lower arm relative to the root. Thus,
for example, leaning into an upward slope can be more readily
permissible to the discriminator when it is provided as local relative
information. This extends throughout the pose as the character
performs activities farther from the original motion embedded in
the reference. Furthermore, when legs deviate from the reference,
each individual leg joint will have a small deviation with respect to
its parent, while if expressed in the root frame, small deviations of

parented joints would stack up to a much larger deviation for the
foot.

We provide the pose of a link, or joint, by using two axes of a
rotation matrix, as the normal and tangent vector of the link. This
is convenient both because it makes use of less data and avoids the
wrapping problem.

4.2 Relative linear Velocity
Including a velocity observation for each body is known to help
produce successful controllers with GAIL [Peng et al. 2021b]. How-
ever, unlike previous work, our observation for velocity is a relative
measure, namely the difference between the linear velocity of a link
and the linear velocity of the parent link, expressed in the parent’s
coordinate frame. This is consistent with our use of relative pose,
in that the relative velocity is agnostic to the more global context
of the root, and also supports greater variation in the discriminator.

Thanks to this choice we avoid expressing velocity information
in the character’s root local frame which would provide full ego-
centric information about the direction and magnitude of the link
velocities. To make this clear, consider that backwards walking
is easy to discriminate from forward walking in the root frame.
However, in contrast, when using velocity relative to the parent
link, knee and hip velocities closely resemble one another (both are
contracting the leg) during forward and backwards walking. We ob-
serve similar benefits for walking sideways and on different slopes.
While one could mitigate this problem by adding additional refer-
ence motion, our approach enables the control to discover more
versatility within a single policy derived from a single reference
clip.

4.3 Relative to Gravity Direction
Despite our efforts to limit information provided to the discrimina-
tor, we recognize the importance of providing some information
relative to the direction of gravity. While our investigations show
that we can train policies for walking on flat terrain without gravity
direction relative information, we observe that including this extra
information is necessary to learn controllers that successfully walk
on uneven terrain.

The gravity direction features we compute are the projections
of the feature vectors describing each limb’s rotation and linear
velocity onto the world up direction, which we evaluate using a dot
product. In practice, we augment the coordinates of the previous
features with this extra coordinate.

5 GOALS AND REWARDS
The agent’s main objective is to walk in a user-specified target
direction at some prescribed speed. During training, the agent is
tasked to move in random directions changing every few seconds.
The agent thus has to learn how to generalize the walking gait and
in particular to transition between directions, as well as to learn to
turn.

Prior to discussing task specific goals and rewards, it is impor-
tant to highlight a key difference between previous work and our
approach. Namely, we propose the use of goal deviation describ-
ing relative goal satisfaction from the difference of a goal quantity
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defined by the state, and the desired goal set by the user. These de-
viations, as detailed below, become the primary state observations
provided to both the discriminator and policy by which goals are
achieved.

When using GAIL to produce a reward signal from expert demon-
strations, the goal defined by an extrinsic reward given by the pro-
grammer may conflict with the reward signal given by the GAIL
discriminator. This challenge is overcome by our use of the goal
deviation to inform the policy and discriminator of deviations that
require correction.

As the goal deviation is defined as the difference between state
and target, the desired value is always 0. As such, all goal devia-
tions observations are explicitly set to 0 when converting the input
motion clip through the relative observations map. Thus, the ex-
pert demonstration is considered to always be following the tasks
perfectly, forcing the policy to also follow the task, as well as the
demonstration. Therefore, it is crucial for the policy to keep the goal
deviation as close to 0 as possible in order to avoid being discrim-
inated. This means that the GAIL reward signal now encourages
imitation and the goals, at the same time.

In other words, we use the discriminator’s observation to indi-
rectly resolve an equation during training :

Δ𝑔 = 𝑠𝑔 − 𝑔,

Δ𝑔 → 0
⇔ 𝑠𝑔 − 𝑔 → 0

⇔ 𝑠𝑔 → 𝑔.

(1)

where 𝑠𝑔 is the state related to the goal 𝑔, and the task to accomplish
is 𝑠𝑔 = 𝑔. We write Δ𝑔 → 0 as the discriminator will reward the
policy for keepingΔ𝑔 close to 0. Consequently, the samewill happen
for keeping 𝑠𝑔 close to 𝑔, which is precisely the task at hand.

In the following subsections we provide more details on goals
and rewards. The total rewards 𝑟𝑔 includes the sum of rewards
defined for each task. The goal deviation vector Δ𝑔 is assembled by
concatenating the deviation for each task (which is likewise then
concatenated with the observations).

5.1 Speed, Direction, and Turning
In our experiments, the reference clip involves walking forwards
without turning. In the standard AMP framework, the discriminator
would bias the policy against learning to turn. When using a goal
reward signal that trains the policy to learn to turn, it would conflict
with the GAIL reward signal that learns to walk straight. Scaling
the rewards to work together then becomes a complex problem
because the goal reward reduces the GAIL reward and vice versa.

To control horizontal speed and direction a 2D vector, −→𝑣𝑔 is
provided as part of goal vector 𝑔. −→𝑣𝑔 is obtained by scaling the
desired horizontal direction by the desired speed, expressed the
character’s root local frame.

The goal deviation Δ𝑔 includes−→𝑣𝑟 −−→𝑣𝑔 , where−→𝑣𝑟 is the character’s
root velocity expressed in the root local frame. Thus, Δ𝑔 informs
the policy of how the current velocity needs to be corrected, and
the discriminator will incite the policy to match −→𝑣𝑟 − −→𝑣𝑔 → 0 ⇔
−→𝑣𝑟 → −→𝑣𝑔 .

We likewise define a reward associated to the task of speed and
direction control:

𝑟𝑣 = min

(−→𝑣𝑟 · −→𝑣𝑔
∥−→𝑣𝑔 ∥2

, 1

)
. (2)

We normalize −→𝑣𝑔 to get the root speed in the target direction, then
normalize that again by ∥−→𝑣𝑔 ∥ so that the reward for going at the
target speed is exactly 1. We do not give extra rewards for going
faster than the target speed.

In this case of controlling speed and direction, we present abla-
tions in the results section that show that not only does the goal
deviation observation help the agent perform the task, but that the
additional extrinsic reward is not absolutely necessary.

5.2 Root-body facing direction
In the reference motion clips used in our experiments, the character
always faces forward. To generalize motion to more diverse gaits,
we include a goal for the character to face in any horizontal direction
while moving in another prescribed direction; for example, it may
be asked to face orthogonal to the direction of motion, so as to
produce a sideways walk.

Here, we supply the 2D vector
−→
𝑑𝑔 as the desired forward direction

of the character’s root.
We add

−→
𝑑𝑟 −

−→
𝑑𝑔 toΔ𝑔, where

−→
𝑑𝑟 is the current forward direction of

the character’s root. This results in a secondary imitation objective−→
𝑑𝑟 → −→

𝑑𝑔 .
The reward for this task is computed by a simple dot product:

𝑟𝑑 =
−→
𝑑𝑟 ·

−→
𝑑𝑔 . (3)

Since
−→
𝑑𝑟 and

−→
𝑑𝑔 are both normalized, the reward is naturally capped

at 1 being the optimal case.
We show in the ablation studies provided in the supplementary

video that the relative goal observation is necessary to combine
walking and facing direction tasks in our scenario. Indeed, when
we remove Δ𝑔 from the discriminator observations but keep it in
the policy observations, the policy learns to walk and imitate per-
fectly while completely ignoring the facing direction, forfeiting the
secondary task and its reward. This shows that the goal deviation
is necessary to teach the policy to face in the desired direction.

5.3 Gaze Direction
Much like the root-body facing direction, we provide a head gaze
direction as the 3D vector

−→
𝑑𝑔 . While the user may set this direction

in different frames, e.g., relative to the desired motion direction
or facing direction, we express this goal in the local frame of the
character’s neck. Likewise, we include

−→
𝑑ℎ − −→

𝑑𝑔 into Δ𝑔, with the
current direction of the head given as

−→
𝑑ℎ ; and define a reward as

the dot product between
−→
𝑑ℎ and

−→
𝑑𝑔 .

Having the controller learn to orient the head is preferable to
superimposing a kinematic fix to the head pose at run time because
the policy and simulator will ensure that the goal is achieved in a
physically valid manner. For example, the chest will naturally turn
to accommodate the neck when it is approaching its joint limits.
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Figure 3: In addition to learning to imitate the input walk cycle (left) our quadruped discovers a fast way to turn by buckling on
two legs (second picture), as well as a new backwards gait (middle to right).

5.4 Hand Position
Reaching is a useful goal that is also straightforward to include
by modifying discriminator observations. We provide 𝑝 as target
position for the hand expressed in the local coordinate frame, and
concatenate the vector to the goal 𝑔. The goal deviation Δ𝑔, again
includes the difference between the desired and current position.
The reward is computed as

𝑟ℎ = ∥𝑝𝑡−1 − 𝑝𝑡−1∥ − ∥𝑝𝑡 − 𝑝𝑡−1∥, (4)

where 𝑝𝑡−1 is the position of the hand and 𝑝𝑡−1 is the target hand
position at time step 𝑡 − 1. It may seem counter-intuitive to use
only the target hand position from the last frame; however, since
𝑝𝑡 depends directly on the action taken at frame 𝑡 − 1, which was
calculated from a network inference that had as input 𝑝𝑡−1, there
is no way for the model to attain 𝑝𝑡 , except by predicting it. To
avoid forcing the model to learn to predict the target, we reward
the network for getting closer to the last target it saw.

Empirically, providing a goal deviation to the discriminator for
hand pose tasks directly foils training, as Δ𝑔 is often large, resulting
in model collapse, as the discriminator will always give very low
scores to the policy. A solution to this would be to rewrite the
goal deviation to be a velocity difference, instead of a position
difference, to encourage the hand to always move towards the
target at a specific speed. This would significantly reduce Δ𝑔 while
still explicitly containing the task; although this has not yet been
tested.

In addition, the poses required to satisfy the hand task are too
different from the reference motion data to receive a high value
by the discriminator. To solve this, we remove features from the
discriminator, specifically pose and velocity features for the arm
joints (shoulder to hand), as well as Δ𝑔 for the hand. All are still
passed to the policy. This involves retraining the controller for the
reaching task, while an interesting avenue for future work would
be to learn a discriminator and policy that can selectively suppress
features as needed, much like [Zolna et al. 2021].

5.5 Fall prevention
We explicitly teach the agent not to fall by including a height track-
ing reward. Specifically, we give a negative reward to penalize the
current policy and terminate the episode early if the character fails
to maintain a minimum height, i.e. if:

ℎ < 0.7 · ℎmax, (5)

Figure 4: When strongly pulled-back by the hand (left), the
character struggles to walk, andmay need tomake a few back
steps to keep the equilibrium (middle); With the hand reach-
ing task, the agent can interact with other objects (right).

where ℎmax is the height of the character when standing upright.

6 RESULTS, VALIDATION, AND DISCUSSION
Our implementation relies on the Unity ML-Agents library [Ju-
liani et al. 2020] for the deep reinforcement learning framework,
including PPO and GAIL. We use two character models in our ex-
periments, a humanoid and quadruped, both provided with a single
kinematic animation clip constituting a single walk cycle each.

Interactive control. After training, the trained controller can be
interactively given with new tasks, under the user’s control. Exam-
ple animations appear in the accompanying video clips of various
results, and we guide the viewer’s eye to the nimbleness and fluid-
ity of the character’s responses, including the ‘fancy’ footwork in
which the character engages during the the various scenarios. We
see that the character employs sidesteps, back steps, makes small
hops or skip steps as necessary for the context in Figures 1 and 4.

Likewise, the quadruped bucks backward onto two legs to make
faster turns in a plausible and emergent fashion (see Figure 3).
Notably, the creature did not receive any input of two-leggedmotion
and found this improvisation in response to the ReGAIL control.

Rough terrain. We also trained the characters on rough terrain
with varying slopes (see Figure 1 and the companion video). To this
end, we crafted a terrain with a height map generated with octaves
of Perlin noise. During training, we generate random terrains and
distribute the agents on the terrain, instructing them towalk around.
We pass to the policy the distance and normal vector resulting from
a single ray cast in front of its feet. Resulting motion reveals that
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Figure 5: The policy exhibits gain modulation (blue) of the
hip joint in the swing direction, visibly increasing and de-
creasing during swing and stance phases, as can be inferred
from the angular velocity of the hip swinging back and forth
(red). Note the maximum proportional gain for the hip is
1000.
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Figure 6: Trained policy reveals that the average stiffness of
leg joints correlates with the slope of the terrain. The policy
directly sets larger gains when walking uphill and selects
lower gains in descent.

the humanoid agents learn to lean forward when climbing and lean
backward when descending in an expected manner.

Stiffness control. With respect to gain modulation, we observe
that the servo gains of the trained policy reveal desirable nuances
with respect to how they change both within individual walk cycles
and in response to walking on different slopes. Notably this is
without careful shaping or guidance, merely training for imitation of
the same motion cycle under a collection of different tasks. Figure 5
showsmodulation of stiffness during swing and stance phases of the
walk cycle, while Figure 6 shows the average stiffness of hip knee
and ankle while walking on terrain of different grades. Through
gain selection they exhibit higher gains during the uphill climbs
and lower their gains in descent.

Computational time. We train policies with 20 environments in
parallel each containing 50 agents for a total of 1000 concurrent
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Figure 7: An agent that has PD gains in its action space learns
to match a target speed better than an agent with fixed gains.

agents, for 50 million steps; however more steps would result in
better qualitymotion. It takes 16 hours to train a policy on amachine
with an Intel XeonW-2255 CPU and an NVIDIA RTXA5000. During
inference, the same computer can simulate the physics, infer the
policies and render 30 agents at the same time, at 100 frames per
second, in the Unity editor which adds considerable overhead. Since
the policy is a neural network that has 3 hidden layers of 512
neurons each, it is very fast to infer.

6.1 Ablation studies
Ablation of servo gains from the action space: Figure 7 shows that

an agent with fixed gains does not perform as well at a fast target
speed goal in comparison to our actions that includes gains. In
this ablation the fixed gains we use are half of the maximum gains
described in Section 3.1. Figure 5 motivates the decision to fixing
gains at half of the maximum, i.e., we observe that agents that can
control their gains tend to use this value on average.

Ablation of the relative terms from the observations: By ablating
the relative nature of velocity observations, we show that the agent
will learn to turn around when it is instructed to go behind itself,
while in the exact same scenario with the relative velocity, it learns
a new gait, namely walking backwards. In this ablation experiment,
the observation includes the linear velocity of joints instead of
their difference with the parent’s velocity. The discriminator thus
sees the global heading direction and speed of each joint. Since
the reference motion data only includes velocities that are point-
ing forwards, it makes it difficult for the policy to learn walking
backwards. Furthermore, when we add a secondary objective forc-
ing the agent to face opposite of the target walking direction, the
agent completely ignores imitation in this ablation. These results
are presented in the supplementary video.

Ablation of goal-related terms: Removing the goal deviation from
the discriminator’s inputs demonstrates that this term is useful
for optimizing the goal. Figure 8 shows our evaluation of this, in
the case of an agent asked to walk in a prescribed direction, at
a prescribed, constant speed (dotted line). We compare the speed
reached by the character in the target direction throughout training



Boursin et al.
S

pe
ed

 in
 th

e 
ta

rg
et

 d
ire

ct
io

n 
(m

/s
)

0.0

0.5

1.0

1.5

10000000 20000000 30000000 40000000

Ours Goal Deviation Ablation No Speed Reward
Goal Deviation Ablation Without Reward Target Speed

Figure 8: We show the average root speed in the target di-
rection (scalar product between root velocity and target di-
rection) of the agent from beginning to the end of training
(steps). Providing the goal deviation to the discriminator
teaches the policy to walk at the target speed and direction,
with or without the help of an extrinsic reward. This chart
shows that goal deviation and the reward work together to
learn the task efficiently, and that the reward is not abso-
lutely necessary, by selectively removing the goal deviation
from the discriminator, and/or removing the speed reward.

in the four following cases: Our solution (blue curve); With the
ablation of the deviation from goal in the observation provided to
the discriminator (red curve); With the ablation of the extrinsic
goal-related term in the reward (yellow curve); and with ablation
of both terms (green curve). In the goal deviation ablations, we
remove the goal deviation term from the observations provided to
the discriminator, but still keep it in the observations provided to
the policy. This shows the learning curve when the discriminator
does not help to achieve the goal.

We then compare this to our solution without any extrinsic
goal-related reward (yellow curve), which shows that while it leads
to slower learning, the use of the deviation from the goal in the
discriminator’s reward alone, still outperforms its use in extrinsic
reward. By combining both ablations (green curve), we show that
the policy never learns to walk in the correct direction, because
neither the discriminator nor the reward encourages it to achieve
the goal.

6.2 Comparisons with AMP
In the following, we compare our model to a pretrained AMPmodel.
The AMP model used is the Target Heading model from the original
paper [Peng et al. 2021b] which was trained using walking, running
and turning animation clips for around 60 millions samples. Results
are available in the companion video.

Reaction to projectiles: We first compare the reaction of the mod-
els to cubes of different sizes and masses thrown at them. Results
show that the AMP model barely reacts even when the cubes get
quite heavy, and often falls. In contrast, our model is more agile
and tries to adapt its gait to avoid falling.

Figure 9: Our model turns around in-place (down) while the
AMP model trained with turning motion data has to travel
a full arc resulting in a much slower turnaround (middle)
but still faster than the AMP model trained without turning
motion data (up)

Turning: In a turning task, the AMP model takes up to a few
seconds to complete a full turn and must travel a full arc to turn.
In contrast, our model, trained without any turning motion data,
performs a much faster and in-place turnaround (see Figure 9, and
the companion video). We also compared a new AMPmodel trained
without any turning motion data. This new model is even slower
at turning around because it needs to travel a wider arc to turn and
often falls before the end of the turnaround.

Walking backwards: In this comparison, we test the ability of the
models to generalize from a forward walking input to a backward
walking gait. For this purpose, we trained the AMP model on a
single forward walking motion. We also modified the total rewards
of the model by adding a modified version of our facing reward (see
Equation 3) where

−→
𝑑𝑔 is now the opposite of the target direction to

force the agent to walk backwards.
While both models succeed in walking backward, ours is able

to alternate his legs in a quite natural way while the AMP model
only manages to do tiny jumps (see Figure 10, and the companion
video).

We compare our method with AMP’s as it is the closest method
in the literature, along with ICCGAN [Xu and Karamouzas 2021].
However, there are slight differences in the environments, most of
all, different physics simulators: PhysX (ours) and Bullet (AMP), and
implementations of PPO. In addition, many parameters are different;
reproducing the same environment would not be feasible. However,
many parameters are more constraining in our environment, such
as the joint rotation limits and maximum torque values.

7 DISCUSSION AND CONCLUSION
This research addresses a critical need in the deployment of physics-
based characters. Namely, agents must be robust and agile in their
capabilities, and respond plausibly when they deviate from expected
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Figure 10: Our model adequately alternates the legs when
walking backward (left) while the AMPmodel jumps with al-
ways the same leg positions (right). The arrow on the ground
is the prescribed walking direction.

inputs near a given reference motion. ReGAIL is a new way of train-
ing controllers where the input motion clip is used as an inspiration
which is applied to other contexts, rather than as a strict target
motion to be precisely imitated. This is done by re-expressing both
the observation of the agent’s state and the input data as relative
quantities that support variation as the agent moves into novel
states. Our investigations reveal nuances and emergent qualities in
agile movement that are enabled by these key changes to state of
the art systems.

A limitation of our approach is that it does not guarantee natural
locomotion gaits. While it broadly generalizes the single motion
clip to new improvised behaviors, there is no explicit constraint
on the generated gaits and therefore there is no guarantee that
the resulting motion will still always be natural. Further, while
we perform ablation to breakdown the value of individual compo-
nents, the diversity of the resulting motion we observe remains
the aggregation of parts - the new observation mapping, torque
and joint limits, stiffness modulation, and so on. Further studies
are be needed to truly isolate the exact contribution of individual
features, and assign credit further. However, taken all together, our
experiments show that the human and animal characters are both
able to learn plausible, novel gaits, such as walking sideways as
well as to create unique transition behaviors and to accomplish
multiple goals simultaneously.

An important strength of ReGAIL is that by building observation
and goal states with key relative features, training in a wider range
of (global) conditions does not lead to model collapse, thanks to
a greater consistency between disparate episodes. With the right
observation, we point the discriminator and policy to the critical
information needed for accomplishing the imitation task and a
specific set of goals under the current circumstances. The result

is a strengthening of the task, or goal’s execution, as the agent is
exposed to a broader set of conditions.

Our workmakes the generation of a rich set of motion controllers
possible from little kinematic motion data. In the future, we would
like to study more accurate anatomical representations, as well as
the addition of more biological reward terms, such as penalizing
energy usage, hopeful that our agents would then discover efficient
gaits that match their morphology.
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