
HAL Id: hal-04807304
https://hal.science/hal-04807304v1

Submitted on 27 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed Nondeterministic-Probabilistic Automata
Albert Benveniste, Jean-Baptiste Raclet

To cite this version:
Albert Benveniste, Jean-Baptiste Raclet. Mixed Nondeterministic-Probabilistic Automata. Discrete
Event Dynamic Systems, 2023, 33 (4), pp.455-505. �10.1007/s10626-023-00375-x�. �hal-04807304�

https://hal.science/hal-04807304v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Mixed Nondeterministic-Probabilistic Automata

Blending graphical probabilistic models with nondeterminism

Albert Benveniste · Jean-Baptiste Raclet

September 11, 2023

Abstract Graphical models in probability and statistics are a core concept in
the area of probabilistic reasoning and probabilistic programming—graphical
models include Bayesian networks and factor graphs. For modeling and formal
verification of probabilistic systems, probabilistic automata were introduced.

This paper proposes a coherent suite of models consisting of Mixed Sys-
tems, Mixed Bayesian Networks, and Mixed Automata, which extend factor
graphs, Bayesian networks, and probabilistic automata with the handling of
nondeterminism. Each of these models comes with a parallel composition, and
we establish clear relations between these three models. Also, we provide a
detailed comparison between Mixed Automata and Probabilistic Automata.

Keywords probabilistic automata; semantics; nondeterminism and probabil-
ity; factor graphs; Bayesian networks; probabilistic programming

This work was supported by the project ReaLiSe, Émergence Ville de Paris 2021 - 2025.

Albert Benveniste
Inria Rennes Bretagne Atlantique, 35042 Rennes Cedex, France
Tel.: +33299847235
E-mail: albert.benveniste@inria.fr

Jean-Baptiste Raclet
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France
E-mail: jean-baptiste.raclet@irit.fr



2 Albert Benveniste, Jean-Baptiste Raclet

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Mixed Systems, parallel composition, and Factor Graphs . . . . . . . . . . . . . . . 8
3 Mixed Bayesian Networks and causal reasoning . . . . . . . . . . . . . . . . . . . . 20
4 Mixed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Comparison with Segala’s Probabilistic Automata . . . . . . . . . . . . . . . . . . 32
6 The ReactiveBayes mini language and its semantics . . . . . . . . . . . . . . . . . . 35
7 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9 Conflicts of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A Addendum and Proofs Regarding Mixed Systems . . . . . . . . . . . . . . . . . . . 48
B Proofs Regarding Mixed Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . 50
C Proofs Regarding Mixed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
D Proofs Regarding the comparison with Probabilistic Automata . . . . . . . . . . . 54



Mixed Nondeterministic-Probabilistic Automata 3

1 Introduction

1.1 Context

Bayesian graphical modeling and inference [26] have expanded since the 1980s,
with applications in numerous areas. Graphical models were introduced in
probability and statistics to allow for a modular description of models [48].
Graphical models divide into two subfamilies: (directed) Bayesian Networks
proposed initially by Judea Pearl [50] to support causal reasoning and (nondi-
rected) Factor Graphs [40,43,48]. Probabilistic graphical modeling gave birth
to an important sub-community of probabilistic programming [44,52,48].

Factor Graphs allow for the modular specification of unnormalized proba-
bilities through a nondirected bipartite graph relating variables and factors via
edges. To each factor is attached a local probability on the set of its neighboring
variables. Taking the product of these local probabilities yields an unnormal-
ized probability distribution. Logarithms of probabilities are often considered
instead and added under the name of potential [40].

Bayesian Networks are causal graphical probabilistic models. The specifica-
tion of causality comes extra to the specification of the underlying probability
distribution in the form of directed branches of the graph. Judea Pearl [51]
pointed out that causality is extra information relating random variables, not
inferrable from their joint probability distribution.

Message passing algorithms are a crucial tool for Factor Graphs, allowing
to map a subclass of them to Bayesian networks; see [43] and Section 3.6
of [48].

Through the union of underlying graphs and the compositional nature of
probabilities specified by graphical probabilistic models, both Bayesian Net-
works and Factor Graphs frameworks are naturally equipped with some par-
allel composition. These features explain why graphical models are considered
an intermediate format targeted by some probabilistic programming tools, see,
e.g., [44,52], and [48], chapter 3.

Probabilistic Programming [44,52,19,49,39,48,9] supports specifying sta-
tistical models with modularity and libraries for performing inference. Some
probabilistic languages generate likelihood functions [52,44,19] to be used by
inference algorithms, whereas others generate sampling procedures [32,33].
Recently, G. Baudart et al. [9] proposed reactive probabilistic programming of
dynamical systems as a conservative extension of synchronous languages [12]
by enhancing the Hybrid Systems modeling language Zelus [11] with probabili-
ties. Therefore, the objectives of Probabilistic Programming can be categorized
as follows:

1. Modeling paradigm. Blending probability and nondeterminism, composing,
and comparing (equivalence) are the main issues.

2. Model for proof systems. Calculi and their decidability and complexity are
central issues in this objective.

http://zelus.di.ens.fr/


4 Albert Benveniste, Jean-Baptiste Raclet

3. Support for statistical inference, decision, and learning. Key pillars are all
limit theorems of probability and statistics (law of large numbers, central
limit theorem, large deviations). These theorems rely on the underlying
probabilistic model’s stationarity (or time invariance). For models with no
dynamics, independent identically distributed (i.i.d.) sets of data can be
sampled from the model. For models with dynamics (e.g., Markov chains),
runs can be observed and used to infer model characteristics. One central
difficulty in this objective is blending nondeterminism with probabilities,
as it generally breaks the stationarity of the underlying statistical model.
For example, suppose two different statistical models are combined with a
nondeterministic choice (or an if-then-else statement with a nondetermin-
istic guard). In that case, the stationarity of the overall model no longer
holds. The solution is to recover stationary models by separating the two
alternatives and not mixing them. See, e.g., [37] for related developments.

Concerning the context of probabilistic programming, our work focuses on
objective 1 only, with no consideration of other objectives.

A critical issue in several contexts is the combination of probabilistic and
nondeterministic behaviors:

– In statistical decision procedures, deciding whether the distribution of an
observed sample belongs to subset P1 or P2 of probability distributions
(where these subsets have empty intersection) exhibits nondeterminism
in that the actual distribution is freely chosen within one of the two al-
ternatives; this blending of probabilistic and nondeterministic behaviors is
addressed in this case by using generalized likelihood ratio (GLR) tests [42].

– The formal verification community proposed the model of Probabilistic
Automata (PA) [56,45,58,55]. In one of the PA dialects, runs of such PA
proceed as follows: given a pair {state, action}, a nondeterministic choice
among a finite set of probabilistic states is first performed, and then the
corresponding probability distribution is sampled to derive the next state.

– Finally, mixing probabilistic behaviors and nondeterminism is central to
probabilistic programming [46,20,47].

In this work, we propose a comprehensive suite of mathematical models
supporting the blending of probability and nondeterminism. Motivated by en-
gineering applications, we bear in mind modeling frameworks such as (the
discrete time part of) Simulink or Modelica.

1.2 Running example

To illustrate our purpose, we begin with a running example whose style is
motivated by the above considerations.

Throughout this paper, all variables possess finite or denumerable types—
this restriction is motivated by technical reasons explained later. Hence, types

https://fr.mathworks.com/help/simulink/
https://modelica.org/


Mixed Nondeterministic-Probabilistic Automata 5

will not be declared when presenting examples. In the “if-then-else” state-
ments, it is understood that the control variable is Boolean. Consider the
following discrete time dynamical system (universal quantifier ∀n is implicit):

S1 :


x0 = cx
observe un
xn = ϕ(un, xn−1)
yn = if fn then ψ(xn, vn) else xn

(1)

Model (1) involves signals, i.e., sequences, indexed by the natural integer n,
of variables having the same type: for instance, signal xn denotes the se-
quence {xk | k∈N}. The special statement observe un, involving the keyword
observe, specifies that signal un is observed, meaning that that some oracle
gives its sequence of values.

The intuition of model (1) is the following: fn is a boolean signal indicating
the occurrence of a failure and vn is a noise, i.e., some disturbance. When a
failure occurs, signal xn gets corrupted by noise vn, which is captured by the
(unspecified) function ψ; otherwise, yn = xn. Since model (1) involves the
delayed signal xn−1, an initial condition for this signal is specified by x0 = cx,
where cx is some constant of same type as signal xn. Model (1) is a dynamical
system as usual, with inputs u, f , and v, state x, and output y. Unspecified
functions ϕ and ψ are assumed total.

Our special syntax, however, suggests that we are interested in a different
interpretation, by which model (1) specifies what is observed/unobserved: un
is observed at every instant, whereas other signals are unobserved (the default
case). From this perspective, signals f, v, x, and y are unknown and otherwise
subject to (1). Thus, model (1) involves nondeterminism.

Next, consider the following stochastic model for noise vn:

S2 : vn ∼ µ (2)

where vn∼µ means that variable vn has distribution µ at each instant n. As
an essential convention of our modeling framework, statement vn∼µ, taken in
isolation, also means that the random sequence vn is independent, identically
distributed (i.i.d.). No signal is observed in this model (capturing that we are
considering an unobserved disturbance).

Having the two models S1 and S2, we like to compose them, thus consid-
ering S1 and S2, defined as the conjunction of the two systems of equations
(1,2). S1 and S2 combines stochastic behavior with nondeterminism (since fail-
ure signal fn is still unknown and unobserved). As a consequence of this com-
position, the nature of signal yn may or may not involve randomness due to
the if-then-else statement occurring in S1.

Consider next the following S3 model specifying the behavior of the failure
signal f :

S3 :

 f0 = F

fn = (rf n and not bkn) or fn−1
rf n ∼ β =def Bernoulli(10−6)

(3)



6 Albert Benveniste, Jean-Baptiste Raclet

In this model, “root failure” signal rf is modeled as a Bernoulli sequence, i.e.,
P (rf = T) = β(T) = 10−6; boolean signal bk indicates that a “backup sensor”
is provided. Thus, a failure is raised (f = T) if a root failure occurs and no
backup sensor is provided, and it remains subsequently raised. In S3, no signal
is observed, thus bk is nondeterministic. Model (3) is mixed probabilistic/non-
deterministic. If bk was specified as being observed, this model would become
probabilistic in that, once the value of random signal rf n is known, the actual
value of fn is determined.

The next step is to further compose S1 and S2 with S3. By convention of
the parallel composition, as a consequence of composing the two statements
“vn ∼ µ” and “rf n ∼ β”, the two random sequences vn and rf n are a priori
mutually independent.

As a safety issue, we could be interested in evaluating the risk of missing an
alarm raised by having signal y exceeding some threshold: an alarm is raised
when yn > ymax. This alarm triggers some reconfiguration which is not shown
here. This reconfiguration action was designed to act under the hypothesis
that the system is fault-free, i.e., yn = xn always holds. Consider the following
question: what is the “risk” that an alarm is missed when it should have
occurred, due to a fault? More precisely,

what is the risk that “xn > ymax and yn ≤ ymax” occurs? (4)

So far, we did not define what we mean by “risk”. A probability cannot measure
it, since S1 and S2 and S3 mixes probability with nondeterminism. By “risk”,
we mean a pessimistic evaluation of this probability, with nondeterminism
acting as an adversary.

Suppose, next, that we want to specify that signal y is observed in the
system S1 and S2 and S3. To this end, we consider the system

S4 : observe yn (5)

where no dynamics is otherwise specified. Parallel composition S1 and S2 and S3

and S4 expands as the following model (equation labels sitting on the right
column are for subsequent use):

x0 = cx , f0 = F (e0)
observe un (e1)
observe yn (e2)
xn = ϕ(un, xn−1) (e3)
yn = if fn then ψ(xn, vn) else xn (e4)
fn = (rf n and not bkn) or fn−1 (e5)

(6)

 rf n ∼ β (p1)
vn ∼ µ (p2)
(rf n and vn are mutually independent i.i.d. signals)

(7)

The intended semantics of model (6,7) is as follows: (7) specifies the prior
distribution of the pair (v, rf ) of random signals, where, by convention, the



Mixed Nondeterministic-Probabilistic Automata 7

two signals are considered independent. (6) defines a constraint on the set of
variables involved in the system. The observe constraint on the pair u, y states
that its joint trajectory is given by an oracle (the sensors). Consequently, the
pair (v, rf ) of random signals is now equipped with the posterior distribution
resulting from constraint (6) being enforced.

Use of the running example: the above example will be referred to in the
sequel by regarding it in two different ways:

Static setting: in this setting, we focus on the transition relation: the
initial conditions are discarded, and the values of delayed signals are
considered as fixed; for example, in equation xn = ϕ(un, xn−1), the
value of xn−1 is given and the equation specifies a constraint involving
the two variables xn and un.

(8)

Dynamic setting: in this setting, time index n ranges over N and the
models (1)–(7) are considered as specifying dynamical systems.

(9)

If we regard systems S1, . . . , S4 as boxes with wires (the involved signals),
this modeling approach naturally leads to graphical models similar to Factor
Graphs. Indeed, this way of specifying mixed probabilistic/nondeterministic
systems is fully modular: component models can be freely assembled to yield
system models. Primitive statements are: 1) declarations of prior distributions;
2) declarations of constraints on signals through equations relating them, im-
plicitly resulting in the definition of a posterior distribution; and 3) a parallel
composition in which composing prior distributions considers them indepen-
dent, and systems of equations are composed as usual. Closest to this approach
are [9] (born from synchronous programming [12]) or [35] (born from concur-
rent constraint programming).

1.3 Contribution

As a semantic domain for the above modeling approach, we propose a compre-
hensive suite of mathematical frameworks blending probability and nondeter-
minism, consisting of: Mixed Probabilistic Systems, Mixed Bayesian Networks,
and Mixed Automata—the term “mixed” refers to the blending with nondeter-
minism. We focus on semantics issues, such as: What is the probabilistic model
specified? Given seemingly different system specifications, are they equivalent,
or do they differ? Can one define a parallel composition of models?

Initially proposed in [13], Mixed Probabilistic Systems, termed Mixed Sys-
tems in the sequel, are pairs consisting of a private probability space and a
visible state space, related through a relation. This pair specifies a posterior
distribution, namely the conditional distribution, given that the relation be-
tween states and random outcomes is satisfied. Visible states are exposed for
possible interaction with other Mixed Systems. Mixed Systems are equipped
with a parallel composition. We show that Mixed Systems naturally inherit a
notion of graphical structure, which subsumes Factor Graphs. Mixed Systems



8 Albert Benveniste, Jean-Baptiste Raclet

offer the counterpart of angelic/demonic nondeterminism [20] and hard/soft
conditioning [59,62], which are essential notions in probabilistic programming.
In basic probability theory, kernels (also called transition probabilities) are
functions, mapping each point of a set to a probability. Kernels are used to
reason on conditional probabilities. Networks of kernels are called Bayesian
Networks, extensively used in Bayesian reasoning. We propose Mixed Kernels
and Mixed Bayesian Networks as mild extensions of kernels and Bayesian Net-
works to encompass nondeterminism. We study how Mixed Systems and Mixed
Bayesian Networks relate to each other. So far, the above frameworks do not
support recursion, even in the restricted form combining time and dynamics.
Probabilistic Automata [58] derive from automata by considering transitions
mapping states to probabilistic states, from which the next state is sampled.
Replacing probabilities by Mixed Systems in a similar construction, we pro-
pose Mixed Automata as an extension of Automata supporting probability and
nondeterminism.

The paper is organized as follows. Mixed Systems are introduced and fur-
ther studied in Section 2. Mixed Automata are introduced and studied in Sec-
tion 4, and then compared to Probabilistic Automata in Section 5. We use this
apparatus in Section 6 to give the semantics of mini-language ReactiveBayes
formalizing our running example. Related work is discussed more broadly in
Section 7. Missing proofs are deferred to appendices. Focused bibliographical
discussions are presented following each important notion. The reason is that
the same mathematical notion occurs in different communities under different
names. Hence, we felt it worthwhile to relate them.

2 Mixed Systems, parallel composition, and Factor Graphs

X shall denote an underlying set of variables, of finite domain. Elements of
X are denoted by lower case letters x, y, z . . . , and finite subsets of X are
denoted by upper case letters X,Y, Z. We use set theoretic operations on
sets of variables. The domain of x is denoted by Qx and the domain of X is
QX =def

∏
x∈X Qx, we call it the state space; the generic element of QX is

called a state and is denoted by qX or simply q.
The pair (Ω, π) shall denote a discrete probability space. The elements of

Ω are denoted by the symbol ω. Thus, π is a countably additive function, from
2Ω to [0, 1], such that π(∅) = 0 and π(Ω) = 1. We simply write π(ω) instead of
π({ω}). The support of π is the set supp(π) =def {ω | π(ω) > 0}. For a subset

W⊆Ω such that π(W )>0, the conditional probability π(V |W ) =def
π(V ∩W )
π(W )

is well defined.
Finally, we will consider relations (or constraints) C ⊆ Ω × Q. Relations

are composed by intersection.

Disclaimer: in this paper, we consider only discrete probability spaces. This
restriction is technically important since it allows for a straightforward defi-
nition of conditional probabilities, and the notion of support of a probability



Mixed Nondeterministic-Probabilistic Automata 9

is easily defined. For the general case, the notion of conditional expectation is
always defined [24], whereas conditional distributions require additional topo-
logical assumptions for their existence, and so does the notion of support. We
decided not to cover those extensions to keep our work more straightforward.

2.1 Mixed Systems, definition and semantics

In this section we introduce Mixed Systems and show that they extend and
subsume in a unified framework: nondeterminism, probability spaces, and fac-
tor graphs. This section is inspired in part by [13].

Fig. 1 Intuitive picturing of a Mixed System having two variables x and y.

The intuition is illustrated in Figure 1, which will guide us through the
different notions attached to Mixed Systems. A Mixed System will be a pair
consisting of a probability space (Ω, π) and a state space Q collecting the con-
figurations of a set of state variables (here: x and y), related by a relation C.
The probability space is “private” in that it is not directly exposed to any in-
teraction with the environment. Interactions with the environment only occur
through the state variables, thus seen as “visible”. This distinction between
private/visible is shown in Figure 1 by the outgoing pins x, y, which contrast
with the absence of outgoing pin for the probabilistic box. The diagram of
Figure 1 specifies

a probability distribution of
nondeterministic choices over a set of states.

(10)

This intuition is formalized next.

Definition 1 (Mixed System, consistency) A Mixed System (or system
for short) is a tuple S = (Ω, π,X,C), where: (Ω, π) is a probability space; X
is a finite set of variables with domain Q =

∏
x∈X Qx ; and C ⊆ Ω×Q is a

relation. In the sequel, we write
ωCq

to mean (ω, q) ∈ C. S is called consistent if

π(Ωc) > 0 ,

where Ωc =def {ω∈Ω | ∃q : ωCq}, called the consistent subset, is the projec-
tion of C over Ω.



10 Albert Benveniste, Jean-Baptiste Raclet

Example 1 (Specializing to pure nondeterministic systems) A pure nondeter-

ministic system is specified as a subset Ĉ ⊆ Q of the state space. To refor-
mulate it as a Mixed System, take (Ω, π) trivial, i.e., Ω = {ω}, a singleton,
equipped with the trivial probability such that π(ω) = 1, and define ωCq iff

q ∈ Ĉ. Consider the running example of Section 1.2 in its static setting (8).
Then, system (1), or any single equation involved in this system, are examples

of constraint Ĉ giving rise to such pure nondeterministic systems.

Example 2 (Specializing in pure probabilistic systems) A pure probabilistic
system is specified as a pair (Ω, π). To reformulate it as a Mixed System,
take Q = Ω, and let C be the diagonal of Ω × Q; finally, let x be the vari-
able with domain Q. Referring to the running example of Section 1.2 in its
static setting (8), system (2) and (7) are examples giving rise to such a pure
probabilistic system.

Example 3 (Nondeterministic choice between probabilities) Referring to (10),
one more traditional way of mixing probabilities and nondeterminism is by
considering the nondeterministic choice between probabilities, i.e., for exam-
ple, the nondeterministic choice between two different distributions π1 and
π2 defined over the same finite set W . Sampling this model consists in 1)
nondeterministically selecting π1 or π2, and 2) drawing at random w ∈ W
with the selected probability. We capture this by the following Mixed System:
Ω = W×W ; π = π1×π2; Q = {1, 2} ×W , and

C =
{(

(w1, w2), (1, w1)
)
,
(
(w1, w2), (2, w2)

)
| (w1, w2) ∈ Ω

}
This method for mapping the nondeterministic choice between probabilities,
to Mixed Systems, extends to any finite number of probabilities. 2

Example 4 (inconsistent system) Let C ⊆ Ω×Q and D ⊆ Ω be such that
(D×Q) ∩ C = ∅, and let π be the uniform probability over D. Then, the
system S = (Ω, π,X,C) is inconsistent: sampling π will never return an ω
such that ∃q.ωCq is satisfiable, i.e., the system is self-contradicting. Indeed,
the same holds for any π such that (supp(π)×Q) ∩ C = ∅. 2

We are interested in understanding how Mixed Systems are “executed” and
how state properties—which are not random—can still get some probabilistic
evaluation. This is answered next by the sampling semantics and probabilistic
semantics, which will be defined only for consistent systems.

Definition 2 (Sampling semantics) If S is consistent, its sampling is well
defined as follows. Considering the posterior probability πc, defined by

∀A ⊆ Ω : πc(A) =def π(A | Ωc) = π(A∩Ωc)
π(Ωc) ; (11)

1. sample ω∈Ω according to posterior probability πc;
2. nondeterministically select q∈Q such that ωCq.



Mixed Nondeterministic-Probabilistic Automata 11

This two-step procedure is denoted by S; q. 2

Unlike for example 4, step 2 in the definition of the sampling is, by construc-
tion, always satisfiable.

Example 5 (sampling) We illustrate sampling on Example 3. The system prob-
ability is π = π1×π2 and πc = π for this example. Hence, sampling this system
proceeds as follows:

1. Sample independently π1 and π2, which yields w1 and w2, respectively.
2. Select nondeterministically state 1 or 2; if 1 is selected, then produce the

pair (1, w1) and similarly if 2 is selected.

One of the two independent samplings (of π1 and π2) is useless in our sampling
scheme, and could be discarded. Thus, sampling this example could equiv-
alently proceed by 1) nondeterministically selecting state 1 or 2, and then
drawing w from π1 or π2, accordingly.

Definition 3 (Probabilistic semantics) If S is consistent, its probabilistic
semantics is defined as the pair π, π : 2Q → [0, 1], where, for any state property
A ⊆ Q:

π(A) =def π
c(Ω∃A) where Ω∃A =def {ω ∈ Ω | ∃q ∈ A : ωCq} (12)

π(A) =def π
c(Ω∀A) where Ω∀A =def {ω ∈ Ω | ∀q ∈ A : ωCq} (13)

π defined by formula (12) is not a probability on Q, but only an outer proba-
bility1, i.e., a function π : 2Q → [0, 1] such that π(∅) = 0, π(Q) = 1, and π is
sub-additive, meaning that it satisfies

∀A, (An)n∈N subsets of Q : A ⊆
⋃
n∈NAn =⇒ π(A) ≤

∑
n∈N π(An) .

Similarly, π is an inner probability, i.e., it is super-additive. Note that,

if A = {q} is a singleton, then π(A) = π(A). (14)

Example 6 (probabilistic semantics) We now illustrate outer probability π on
Example 3. Let W ′⊆W and consider the state property A1 = {1}×W ′ ⊆ Q
of the state space (subset A2 = {2}×W ′ is handled similarly). Recall that πc =
π1×π2. Then,Ω∃A1 = {(w1, w2) | w1∈W ′}, hence, π(A1) = (π1×π2)(W ′×W ) =
π1(W ′).
For A = A1∪A2 = {1, 2}×W ′, we get Ω∃A = {(w1, w2) | w1∈W ′ or w2∈W ′},
hence, π(A) = (π1×π2)

(
(W ′×W )∪ (W×W ′)

)
, which is ≤ π(A1) +π(A2). For

the inner probability, Ω∀A1
= ∅, hence π(A) = 0. 2

1 sometimes called also exterior or upper probability.



12 Albert Benveniste, Jean-Baptiste Raclet

For inference purposes, the following generalized likelihood ` : 2Q → [0, 1] is
also of interest:

`(A) =def maxω∈Ω∃A πc(ω) . (15)

Note that (15) resembles (12) if we rewrite the latter as π(A) =
∑
ω∈Ω∃A π

c(ω).

Example 7 (probabilistic semantics, running example) Consider the model in-
troduced in Section 1.2 denoted S1 and S2 and S3 , interpreted in its static
setting (8). Pick an instant n and let S =def S(n, xn−1, fn−1) be the Mixed
System defined by (1,2,3) for instant n and given values for xn−1, fn−1. With
reference to (4), we wish to evaluate the probability that xn > ymax and
yn ≤ ymax occurs under adversarial nondeterminism. We denote by Qv the
domain of v and by Brf the Boolean domain for variable rf . The underlying
probability space of S is (Ω, π), where Ω = Qv×Brf and π = µ×β. Domain Q
for the variables of S is

Q = Qx ×Qy ×Qu ×Qv × Brf × Bf × Bbk ,

and relation C is defined by collecting the nonprobabilistic equations of S
while discarding the initial conditions, i.e.,

C is defined by


observe un
xn = ϕ(un, xn−1)
yn = if fn then ψ(xn, vn) else xn
fn = (rf n and not bkn) or fn−1

(16)

For any valuation of the pair (rf n, vn), a solution exists for state variables in
(16). Hence, Ωc = Ω, which implies πc = π = µ×β.

Let C(un) denote the relation C in which the value of un is given (u is
observed). Then

π(xn>ymax and yn≤ymax) = πc(W ) = (µ×β)(W ) , where

W =

{
(vn, rf n)

∣∣∣∣∃xn, yn, fn, bkn :
xn>ymax and yn≤ymax , and
(xn, yn, vn, rf n, fn, bkn) ∈ C(un)

}
(17)

Inspecting (16) shows that condition xn>ymax and yn≤ymax requires fn = T,
since, if fn = F, then yn = xn. Hence, the condition defining W rewrites as{

xn>ymax and ψ(xn, vn)≤ymax and fn=T

and (xn, yn, vn, rf n, fn, bkn) ∈ C(un)
(18)

First, if ϕ(un, xn−1) ≤ ymax holds, then W = ∅. We thus assume in the sequel
ϕ(un, xn−1) > ymax. Thus we need to evaluate with respect to π the predicate

Z =def ψ(xn, vn)≤ymax and fn=T and (xn, yn, vn, rf n, fn, bkn) ∈ C(un) .

We distinguish the following two cases, according to the value of fn−1:

1. fn−1=T: then, fn=T whatever the value of bkn is, and, using (18):

π(xn>ymax and yn≤ymax) = µ
{
v | ψ(ϕ(un, xn−1), v) ≤ ymax

}
.



Mixed Nondeterministic-Probabilistic Automata 13

2. fn−1=F: then, fn=T if and only if rf n=t and bkn=F. For the nondetermin-
istic choice of the state, we thus chose bkn=F. By definition of the outer
probability (12), we finally get, using (18):

π(xn>ymax and yn≤ymax) = β(rf =T)× µ
{
v | ψ(ϕ(un, xn−1), v) ≤ ymax

}
.

This corresponds to the probabilistic evaluation of the predicate “xn>ymax

and yn≤ymax” following [20], if the nondeterministic alternative bkn=F/T
is interpreted as demonic. See Discussion 1 for further comparison with the
literature. 2

Equivalence: We move to equivalence. To this end, we introduce the following
operation of compression, on top of which equivalence is defined:

Definition 4 (compression) For S = (Ω, π,X,C) a Mixed System, we de-
fine the following equivalence relation on Ω, i.e., ∼ ⊆ Ω×Ω is such that:

(ω, ω′) ∈ ∼ if and only if: ∀q ∈ Q : ωCq ⇔ ω′ Cq . (19)

As usual, we write ω ∼ ω′ to mean (ω, ω′) ∈ ∼. The compression of S, denoted

by S̃ = (Ω̃, π̃,X, C̃), is then defined as follows:

– Ω̃ is the quotient Ω/∼, which elements are written ω̃;

– ω̃C̃q iff ωCq for ω ∈ ω̃; and
– π̃(ω̃) =

∑
ω∈ω̃ π(ω).

Say that S is compressed if it coincides with its compression. 2

Distinguishing ω and ω′ is impossible if ω∼ω′. Equivalence is defined on top
of compression. For C and π as before, define

Cπ =def C ∩ (supp(π)×Q) = {(ω, q) ∈ C | π(ω) > 0}

Definition 5 (equivalence) Two compressed mixed systems S and S′ are
equivalent if they possess identical sets of variables X=X ′, and there exists a
bijective map ϕ : Cπ 7→ C ′π′ satisfying the following conditions for every pair
(ω, q) ∈ Ω ×Q, where (ω′, q′) =def ϕ(ω, q):

ω Cπ q ⇔ ω′ C ′π′ q
′ ; π′(ω′) = π(ω) ; q′ = q . (20)

S and S′ are equivalent, written S≡S′, if their compressions are equivalent.2

The following result expresses that mixed system equivalence preserves prob-
abilistic semantics:

Lemma 1 Any two equivalent mixed systems, S1 ≡ S2, possess identical prob-
abilistic semantics: π1 = π2 and π1 = π2.



14 Albert Benveniste, Jean-Baptiste Raclet

Proof It is enough to prove the lemma in the following two cases: 1) S1 and

S2 are both compressed, and 2): S2 = S̃1. The result is immediate for case 1),
so we focus on case 2). Let Q be the common domain of X1 = X2 and A ⊆ Q
be a state property. Then,

π1(A) = πc
1

(
{ω1 | ∃q ∈ A : ω1C1q}

)
= πc

1

(
{ω1 | ω1 ∈ ω̃1 and ∃q ∈ A : ω̃1C̃1q}

)
= π̃c

1

(
{ω̃1 | ∃q ∈ A : ω̃1C̃1q}

)
= π̃1(A) = π2(A) .

A similar proof holds for inner probabilities. 2

Marginal: For (X,Y ) a pair of random variables with joint distribution P (x, y),
the distribution of X is given by the marginal of P , namely: P (x) =def∑
y P (x, y). We extend this notion to Mixed Systems, by viewing it as a hiding

operation, see Figure 2. For C ⊆ Ω × Q a relation where Q is the domain of

Fig. 2 The marginal on y for the Mixed System of Figure 1 is by hiding x (in red).

set X, Y ⊆ X a subset of variables, and Z = X − Y , we denote by

PrY : 2Ω×Q → 2Ω×QY : PrY(C) =def {(ω, qY ) | ∃qZ : ωC(qY , qZ)}

the projection of C over Y .

Definition 6 (marginal) Let S = (Ω, π,X,C) be a Mixed System, and
let Y ⊆ X be a subset of variables. The marginal of S on Y , denoted by
MarginY (S), is the Mixed System MarginY (S) =def (Ω, π, Y,PrY(C)). 2

Even if S was itself compressed, due to the projection of relation C, the Mixed
System defining the marginal in Definition 6 may require a compression.

Example 8 (Link with the classical notion of marginal for probabilities) Let us
apply Definition 6 to the purely probabilistic system of Example 2, namely
Sproba = (Q, π, {x, y}, diag) , having two variables x, y, corresponding state
space Q = Qx×Qy, and Ω = Q with C = diag , the diagonal. This is the model
of a pair (x, y) of visible variables with joint probability distribution π(qx, qy),
where qx and qy denote values for x and y, respectively. The projection of diag
on y is

Pry(diag) = {(qx, qy, q′y) | qy = q′y} .



Mixed Nondeterministic-Probabilistic Automata 15

Thus, (qx, qy) ∼ (q′x, q
′
y) if and only if qy = q′y. Thus, when using the formula

of Definition 6 to define Marginy(Sproba), the private probability space (Q, π)
must be compressed as π̃(qy) =

∑
qx
π(qx, qy), showing that our notion of

marginal boils down to the classical notion for probabilities in this case. 2

2.2 Parallel composition

In this section, we study the modular construction of Mixed Systems.
In statistics, Factor Graphs allow for the modular specification of unnor-

malized probabilities based on a nondirected bipartite graph (V, F,E), where
V ∪F is the set of vertices and E⊆V×F is the set of edges; let Vf be the subset
of v∈V such that (v, f)∈E. V is a set of random variables, and, to each factor
f∈F is associated with an unnormalized probability pf (Vf ) for the set Vf of
random variables. This model defines the unnormalized probability distribu-
tion of V as the product P (V ) =

∏
f∈F pf (Vf )—logarithms of probabilities

are often considered instead and added under the name of potential [40]. This
naturally leads to a notion of parallel composition: for (Vi, Fi, Ei), i=1, 2 two
factor graphs in which the factors and edges are private but variables can be
shared, taking the union of the two graphs amounts to taking the product of
the two unnormalized probabilities.

Similarly, Mixed Systems can be equipped with a parallel composition:
common state variables are unified (thus causing synchronization constraints);
conversely, probabilistic parts remain local and independent, conditionally to
the satisfaction of synchronization constraints. This is illustrated in Figure 3.

Fig. 3 Illustrating the parallel composition, for y1, y2 local variables and x shared. The
factor graph, capturing the connection via identical wires, is depicted on the top in black;
the definition using formulas (23) is shown in blue.



16 Albert Benveniste, Jean-Baptiste Raclet

Formally, let I be a finite set, and, for each i∈I, let Xi be a finite set of
variables with domain Qi, and set X =

⋃
i∈I Xi with domain Q. Say that

tuple (qi)i∈I is compatible, written

./ i∈I qi , (21)

if qi(x) = qj(x) for any pair (i, j) of indices and every shared variable x ∈
Xi ∩Xj . If ./ i∈I qi, their join

t i∈I qi ∈ Q (22)

is defined by t i∈I qi(x) = qi(x) whenever x ∈ Xi.

Definition 7 (parallel composition and Factor Graph) The parallel
composition S1 ‖S2 of two mixed systems S1 and S2 is the Mixed System
S such that:

X = X1∪X2 , Ω = Ω1×Ω2 , π = π1×π2 (cartesian product), and
C =

{(
(ω1, ω2), q1 t q2

)
| q1 ./ q2 and ω1C1q1 and ω2C2q2

}
,

(23)

We attach to parallel composition S = ‖i∈ISi its Factor Graph GS , which is
a nondirected bipartite graph whose vertices connect systems and variables:{

Si | i ∈ I
}
∪
{
x | x ∈

⋃
i∈I Xi

}
,

and GS has edges (Si, x), for i ∈ I and x ∈ Xi, also denoted by Si —x. 2

Example 9 (parallel composition) Consider the running example of Section 1.2
in its static setting (8). Focus first on its pure nondeterministic part, collected
in Model (6) with its equations (e1)–(e5). We can first consider (6) as a whole,
and, by following the method of Example 1, encode it as a pure nondetermin-
istic Mixed System denoted by S(6). Alternatively, we can consider the pure
nondeterministic Mixed Systems S(e1), . . . , S(e5), respectively encoding each
of the equations (e1), . . . , (e5). By definition of our parallel composition, we
have S(6) ≡ S(e1) ‖ . . . ‖S(e5), reflecting that pure nondeterministic systems
compose as their associated constraints do. The reason for probabilistic parts
playing no role in the parallel composition of pure nondeterministic systems,
is that each Si =def S(ei), i=1, . . ., 5, has its probabilistic part being a triv-
ial singleton probability s ce of the form ({ωi}, 1), and the Cartesian product
({ω1}, 1)×. . .×({ω5}, 1) is isomorphic to ({ω}, 1) for any ω.

Similarly, by following the method of Example 2 for the purely probabilistic
part (7) of the running example, we have, using the same notational conven-
tions, S(7) ≡ S(p1) ‖S(p2), where the parallel composition corresponds to the
Cartesian product µ×β of the two constitutive probability distributions.

The parallel composition S =def S(6) ‖S(7), which composes the nonde-
terministic and probabilistic parts, is more interesting. As discussed before,
if S is the tuple (Ω, π,X,C), then (Ω, π) is such that π = µ×β (the trivial
probability distributions associated with the pure nondeterministic part S(6)

play no role). In turn, S(6) contributes to the definition of the consistent subset



Mixed Nondeterministic-Probabilistic Automata 17

Ωc, which is the subset of values for the pair (vn, rf n) for which there exists a
solution to the system (e1)–(e5) of equations. The (sampling or probabilistic)
semantics of S uses the posterior probability distribution πc =def π(·|Ωc). Let
us analyse how this posterior distribution relates to the prior one µ×β. Recall
the system (e1)–(e5) for convenience:


observe un (e1)
observe yn (e2)
xn = ϕ(un, xn−1) (e3)
yn = if fn then ψ(xn, vn) else xn (e4)
fn = (rf n and not bkn) or fn−1 (e5)

(24)

If functions ϕ and ψ are total, then the subsystem (e1, e3, e4, e5) (e2 was dis-
carded) specifies a function (un, vn, rf n, bkn) 7→ (fn, xn, yn), meaning that no
constraint is set on the pair (vn, rf n) by the consideration of Ωc. Including
(e2) : observe yn, however, changes the situation. The value of yn is then
known, and the existence of a solution to (24) induces a constraint on the tu-
ple (un, vn, rf n, bkn), which projects to the consistency constraint Ωc on the
pair (vn, rf n). The result is that, due to the statement observe yn in (24), the
posterior distribution πc differs from the prior distribution π = µ×β. 2

In the sequel, ε shall denote a distinguished state. Let

nil = ({1}, δ1, ∅, {(1, ε)}) (25)

be the nil system, with trivial probability space (Ω, π) = ({1}, δ1) and no
visible variable; its state space is the singleton Qnil = {ε}, and its relation is
the singleton C = {(1, ε)}. The nil system is neutral for parallel composition:
nil ‖S ≡ S holds, for every S.

Factor Graphs obey the following rule, where ∪ denotes the union of graphs:

GS1‖S2
= GS1

∪ GS2
. (26)

The associativity and commutativity of this parallel composition are immedi-
ate, as it is directly inherited from the same properties satisfied by the Carte-
sian product of probability spaces and the conjunction of relations. Factor
Graphs and the parallel composition of Mixed Systems help decompose large
but sparse systems into a parallel composition of smaller, locally interacting
subsystems.

Lemma 2 S1 ≡ S′1 implies S1 ‖S2 ≡ S′1 ‖S2, expressing that parallel compo-
sition preserves equivalence.

See Appendix A.2 for the proof.



18 Albert Benveniste, Jean-Baptiste Raclet

2.3 Discussion and comparison with related work

We now collect technical discussions on the topics discussed in this section and
formulate comparisons with related work from different communities.

Discussion 1 (blending nondeterminism and probability) To capture
the blending of nondeterminism and probability, outer probabilities are di-
rectly used in the Dempster-Shafer theory of evidence [25,26,57].2 Outer prob-
abilities do not support key limit theorems for use in statistics, such as the
law of large numbers, the central limit theorem, and more. Hence, whereas
the theory of evidence comes with reasoning capabilities, it does not directly
support learning or estimation.

In formal methods for probabilistic systems (in the context of imperative
programming), the blending of probability and nondeterminism was addressed
by a number of authors, see, e.g., [46,8,47,39,49,20,63]. Nondeterministic
choice between alternatives is considered in [47] and written P uP ′, whereas
probabilistic choice is specified as P a⊕P ′ (P is selected with probability a
and P ′ with probability 1−a) or P a⊕b P ′ (P is selected with probability at
least a and P ′ with probability at least b). The evaluation of formulas must
specify how nondeterminism interplays with probabilities. A comprehensive
approach was proposed in [20], where demonic and angelic nondeterminisms
are considered as adversarial and beneficial, respectively. These notions mirror
the outer and inner probabilities used in Dempster theory.

Through formulas (12,13) in Definition 1, the probabilistic semantics of
Mixed Systems is defined as the associated outer and inner probabilities.
Hence, Mixed Systems offer the calculus of the theory of evidence, and mirror
the demonic and angelic types of nondeterminism. But, on the other hand,
since classical probability spaces are first class citizens of the model of Mixed
Systems, this model also preserves the apparatus needed for machine learning.
In Appendix A.1, we develop a more detailed comparison of the semantics
of Mixed Systems versus imperative probabilistic programming with demonic
and angelic nondeterminism, following [20].

Finally, the generalized likelihood of formula (15) is the basis for inference,
estimation, or machine learning when multiple hypotheses or nuisance param-
eters are considered [42]—we are not aware of any use of a mirror notion where
“min” would be substituted for “max”. 2

Discussion 2 (Conditioning and its variations) Conditioning is generally
not considered in probabilistic automata. It is, however, central in probabilis-
tic programming; see, e.g., [49,21,62] for studies in which conditioning is the
main subject. The observe primitive, pervasive in all tools, is used to specify
posterior distributions given constraints (as we do in Definition 1). The lit-
erature on probabilistic programming distinguishes between hard (also called
deterministic) and soft (also called stochastic) conditioning [59,62]. In the
basics of probability theory, however, the only notion is that of conditional

2 Outer and inner probabilities were called upper and lower in [25].



Mixed Nondeterministic-Probabilistic Automata 19

expectation [24], from which other notions are derived, e.g., conditional proba-
bility (corresponding to hard conditioning), transition probability, or stochas-
tic kernel (corresponding to soft conditioning), and disintegration (or regu-
lar version of conditional expectation). These notions are all straightforward
in our case since we restrict ourselves to discrete probability spaces (Ω, π).
Indeed, for V,W ⊆ Ω, the hard conditioning of V knowing W is given by

π(V |W ) =def
π(V ∩W )
π(W ) , which is well defined if and only if π(W ) > 0, see the

introductory paragraph of Section 2. If x : Ω → Qx is a random variable, then
the soft conditioning of V knowing x is the function π(V |x) : Q′x → [0, 1],
such that qx 7→ π(V |x=qx), where Q′x = {qx∈Qx | π(x=qx) > 0}. We will
discuss this further when extending Bayesian networks to Mixed Systems, in
Section 3. 2

Discussion 3 (more on consistency) Inconsistency formalizes the intuition
of self-contradiction, for Mixed Systems, see Example 4. The condition “π(Ωc) >
0” in Definition 1 means that Ωc has non-empty intersection with the support
of π, defined as the set of ω’s of positive probability: π(ω) > 0. This simple def-
inition for the support, which is only valid for discrete probabilities, allows us
to propose a simple definition for the notion of consistency. When continuous
probability spaces are considered (like the Gaussian), the above definition for
the support no longer holds. The correct definition relies on topological prop-
erties. As a consequence, our elementary definition of consistency would no
longer apply. This is next illustrated by using our running example developed
in the introduction.

Example 10 (consistency for a non-discrete (Ω, π)) Consider model (6,7). Def-
inition 1 defines consistency as the existence of a state q in relation through C
with some ω belonging to the support of π, which is fairly simple. Suppose, for
a while, that un, xn, yn, vn possess real domain, µ(dv) = χ(v)dv, where dv de-
notes the Lebesgue measure, density χ is continuous and everywhere positive,
and function v 7→ ψ(x, v) is bijective and bi-continuous for every fixed x (the
condition of bi-continuity is technical and is intended to avoid discussing is-
sues of measurability). Then, fixing the value of yn, for a given pair (un, xn−1),
will fix the value of vn if fn=T in the equation defining yn. Regarding again
Example 7, the only difference is that, in (6), a parallel composition with the
statement observe yn was added. Thus, we now consider C(un, yn) where the
values of un and yn are fixed. It still makes sense to consider the two cases 1
(fn−1 = T) and 2 (fn−1 = F) of Example 7. Regarding the set W , we are
interested in the case when yn≤ymax holds. In case 1, we get

W =

{
(vn, rf n)

∣∣∣∣∃xn, yn, fn, bkn :
xn>ymax , and
(xn, vn, rf n, fn, bkn) ∈ C(un, yn)

}
⊆
{

(vn, rf n) |ψ(ϕ(un, xn−1), vn)=yn
}

implying (µ×β)(W )=0. Thus, according to our Definition 1 where consistency
is defined, we should deduce that the system is inconsistent in case 1, be-
cause fixing the value of un, xn−1, and yn fixes the value of vn, which has



20 Albert Benveniste, Jean-Baptiste Raclet

µ-probability zero. However, the assumption on µ implies that its support is
R, which does not fit with inconsistency. This illustrates that our pedestrian
definition of consistency no longer works if real variables and distributions
having densities with respect to Lebesgue measure are considered. Hints to-
ward a correct definition are presented in Appendix D of [14]. 2

Discussion 4 (equivalence) Floyd/Hoare/Dijkstra logic of pre- and post-
conditions for imperative languages was extended to encompass probabil-
ity and nondeterminism with pGCL (probabilistic Guarded Command Lan-
guage) [41,21,46,39,49,47]. The semantics is defined as the probability of
weakest preconditions under demonic nondeterminism. McIver-Morgan no-
tions of refinement and equivalence follow from this semantics. This approach
is also used to define the equivalence of probabilistic programs, see, e.g., Sec-
tion 3.1 of [48].

As pointed out in Discussion 1, the above semantics parallels our consider-
ation of outer/inner probabilities in Definition 3. Compared to McIver-Morgan
notion of equivalence, the notion of equivalence we propose in Definition 5 is
more basic and direct. It implies the equivalence of the evaluation of state
properties using outer/inner probabilities. 2

3 Mixed Bayesian Networks and causal reasoning

So far, Factor Graphs and related algorithms can capture joint distributions
relating to different statistical data, but they cannot capture causality, as
argued by Judea Pearl [51]. Judea Pearl states that causality requires extra
structural information that must be added to the specification of probability
distributions: directed graphs are used to this end.

Another issue is that of incremental sampling of a compound system:
Whereas the sampling of a parallel composition is generally global (or using
the sophisticated iterative methods used, e.g., in [19]), one could ask whether
it could be performed incrementally.

In statistics based on graphical models, these questions are answered by
considering, in addition to Factor Graphs, so-called Bayesian Networks [50].
Bayesian networks specify causality information through directed graphs. A
Bayesian Network is a tuple (V,E, p), where: V is a set of random variables;
(V,E) is an acyclic directed graph (for each v∈V , we let pa(v) denote its par-
ents); p(v|pa(v)) specifies, for each valuation of the parents pa(v), a conditional
distribution for the variable v. The semantics of a Bayesian Network is that
the joint distribution of V factorizes as the product P (V ) =

∏
v∈V p(v|pa(v)).

Bayesian Networks are thus causal graphical probabilistic models and the spec-
ification of causality comes extra to the specification of the underlying proba-
bility distribution, in the form of directed branches of the graph. Judea Pearl
pointed out that causality is an extra information relating to random vari-
ables, not inferrable from their joint probability distribution [51]. Bayesian



Mixed Nondeterministic-Probabilistic Automata 21

networks also naturally support incremental execution. In this section, we
show how these concepts supporting causality and incremental sampling, can
be extended to support nondeterminism.

3.1 Mixed Kernel and Mixed Bayesian Network

In basic probability theory, a transition probability (also called probability ker-
nel), is a map y 7→ P (x|y) that specifies the probability that a random variable
X takes the value x knowing that another random variable Y takes the value
y. This notion is extensively used in Bayesian reasoning.

We begin by extending the notion of probability kernel to that of Mixed
Kernel. The starting idea consists in defining a Mixed Kernel as a function,
mapping every Y -state of a set Y of variables, to a Mixed System having X as
its set of variables. For the notations used in the sequel, the reader is referred
to the beginning of Section 2. We shall denote by

S(X) (27)

the class of all (possibly inconsistent) Mixed Systems having X as their set of
variables.

Definition 8 (Mixed Kernel) A Mixed Kernel (or simply kernel) is a map

K : QX → S(X ′) ,

where X and X ′ are two finite sets of variables such that X ∩X ′ = ∅, called
the sets of inputs and outputs of kernel K. In the sequel, we shall denote these
two sets X and X ′ by X in

K and Xout
K , respectively.

The probabilistic semantics of K is the map

qin 7→ π(qin) (28)

where qin is a value for the input variables X in
K and π(qin) is the outer proba-

bility associated to Mixed System K(qin)—by (14) there is no need to consider
π(qin). 2

For q∈Q,ω∈Ω and C ⊆ Ω×Q, we write

Cq =def {ω∈Ω | ωCq}, and Cω =def {q∈Q | ωCq} . (29)

Convention 1 A Mixed Kernel K whose input set X is empty identifies with
the Mixed System S = K(ε) it defines, where QX is the singleton {ε} (the dis-
tinguished state ε was introduced in (25)). Vice-versa, any system S identifies
with the Mixed Kernel K whose input set X is empty and K(ε) = S. 2



22 Albert Benveniste, Jean-Baptiste Raclet

Definition 9 (Mixed Bayesian Network) Let N=(X ∪ K, ↪→) be a di-
rected acyclic bipartite graph, where X and K are finite sets of variables and
Mixed Kernels, and ↪→⊆ (X×K) ∪ (K×X) is the set of edges. For K ∈ K,
we denote by •K and K• the sets of variables x ∈ X such that x ↪→ K and
K ↪→ x, respectively. N is called a Mixed Bayesian Network if satisfies the
following conditions:

∀K ∈ K =⇒ X in
K ⊆ •K and Xout

K = K• . (30)

∀K1,K2 ∈ K,K1 6= K2 =⇒ K•1 ∩K•2 = ∅ (31)

For convenience, we will denote by

K1;K2 (32)

a Bayesian network N=(X∪K, ↪→) whose set K contains only two Mixed Ker-
nels K1 and K2, such that K1 ↪→ K2 and X = X in

K1
∪Xout

K1
∪X in

K2
∪Xout

K2
. 2

This notion is illustrated on Figure 4 for two Mixed Kernels communicating
via variable x (compare with Figure 3).

Fig. 4 Bayesian Network S1;K2. Mixed Kernel K2 has input x.

Example 11 (Mixed Bayesian Network from running example) This example is
a follow-up of Example 9, whose notations are reused. Consider again the run-
ning example (6,7), in which we discard equations (e0) and (e2), and rewrite
it for convenience as shown in Figure 5, left. In the same figure, we show the



observe un (e1)
xn = ϕ(un, xn−1) (e3)
yn = if fn then ψ(xn, vn) else xn (e4)
fn = (rf n and not bkn) or fn−1 (e5)
rf n ∼ β (p1)
vn ∼ µ (p2)

Fig. 5 Left: a subsystem of running example (6,7); right: the associated dataflow graph
(time indices were discarded).



Mixed Nondeterministic-Probabilistic Automata 23

dataflow graph defined by this subsystem on the right: it is a directed bipartite
graph whose vertices are the variables and the equations. A directed branch
(e, x) exists if variable x is determined by equation e, and a directed branch
(u, e) exists if u is a free variable in equation e. The directed graph shown is
acyclic. To regard this diagram as a Bayesian network following Definition 9,
it remains to map every equation vertex to a Mixed Kernel possessing the due
properties. Consider box p1, representing the statement rf ∼ β; p1 is a prob-
ability distribution producing rf , which is a Mixed Kernel by Convention 1.
Consider then box e4, representing the statement y = if f then ψ(x, v) else x;
it is a Mixed Kernel having f, x, v as inputs and producing y via a pure non-
deterministic Mixed System once the input values are given.

We could also remove the directions of the arrows from the above dataflow
graph, thus regarding it as a factor graph, representing the parallel composition
S(p1) ‖S(p2) ‖S(e1) ‖S(e3) ‖S(e4) ‖S(e5). A natural question is to compare the
above two alternative semantics given to the same model, via Mixed Bayesian
Networks and via Mixed Systems, respectively. This will be addressed in The-
orem 4 and illustrated with Example 15. 2

We associate a Mixed Bayesian Network N=(X∪K, ↪→) with the partial order
(X∪K,�), where � is the transitive closure of ↪→. Let q be a valuation of the
set X of variables and K a kernel belonging to K, we write q•K and qK• for
the restriction of q to the variables belonging to •K and K•, respectively.

Definition 10 (incremental sampling and probabilistic semantics) The
incremental sampling of a Mixed Bayesian Network N is defined by structural
induction over � as follows:

1. Initial condition: we assume a value for every variable x ∈ min(X ∪ K),
where min refers to �; we set X− = min(X ∪K) ∩X and K− = ∅;

2. Induction hypothesis: X− ∪ K− ⊆ X ∪ K is a downward closed subset of
vertices of N such that
(a) K•− ⊆ X−;
(b) every variable x ∈ X− holds a value, whereas every x 6∈ X− does not;

3. Induction step: while X− 6=X, do:
(a) let K∗ ⊆ K−K− collect the kernels K such that •K⊆X− and K• 6=∅;
(b) for every K∈K∗, every variable belonging to •K holds a value, hence

we can sample Mixed System K(q•K), which returns a value for qK• ;
(c) doing this for all K∈K∗ yields a value for every variable belonging to

X− ∪K∗• ⊃ X− (the inclusion is strict);
(d) set K− := K− ∪K∗ and X− := X− ∪K∗• and return to 3.

4. Done.

Sampling N thus returns a value q ∈ QX for every variable belonging to X, we
denote this by N ; q. The probabilistic semantics of N is the map q 7→ π(q),
associating every q∈QX such that N ; q, with its probabilistic score

π(q) =
∏
K∈K

π
(
K, q•K

)(
qK•

)
. (33)



24 Albert Benveniste, Jean-Baptiste Raclet

In (33), π(K, q•K)(qK•) is the score assigned to state qK• by the outer proba-
bility associated with the mixed system K(q•K). 2

Since inclusion X− ∪ K∗• ⊃ X− in step 3c is strict, the inductive procedure
terminates in finitely many steps. The inductive procedure of Definition 10 is
formalized in Algorithm 1.

Algorithm 1 Incremental sampling of Mixed Bayesian Network N
Require: ∀x ∈ min(X ∪ K), x is defined
Ensure: ∀x ∈ X, x is defined
X− ← X ∩min(X ∪ K) and K− ← ∅
while X− 6=X do

K∗ ← { K | •K⊆X− and K• 6=∅ }
for all K∈K∗ do

sample(K(q•K))
end for

end while
K− ← K− ∪ K∗
X− ← X− ∪ K∗•

Definition 11 (Mixed Bayesian Network equivalence) Let N1 and N2

be two Mixed Bayesian Networks such that X1 = X2. Say that N1 and N2

are probabilistically equivalent, written N1 ≡P N2, if they possess equal prob-
abilistic semantics: π1 = π2. 2

By Lemma 1, S ≡ S′ implies S ≡P S′, when regarding mixed systems S and
S′ as Mixed Bayesian Networks.

Example 12 (Finite Markov chain as a Mixed Bayesian Network) Recall that
a finite sequence of random variables X1, X2, . . . , Xn is called a Markov chain if
the joint distribution of (X0, X1, . . . , Xn) factorizes as π(X0=x0, . . . , Xn=xn) =
µ(x0)

∏n
i=1 P (xi|xi−1), where the probability µ over X, the state space of the

Markov chain, is the initial condition and P (x′|x) is the transition kernel, i.e.,
for x fixed, x′ 7→ P (x′|x) is a probability over x′. Markov chains are thus a
particular case of the Mixed Bayesian Networks proposed in Definition 9. 2

Theorem 1 (composing Mixed Bayesian Networks) Let N1 and N2 be
two Mixed Bayesian Networks such that K1 ∩ K2 = ∅. The union N =def

N1 ∪ N2 of the two directed graphs yields a Mixed Bayesian Network if the
following conditions hold:

1. Directed graph N1 ∪N2 is acyclic; and
2. Condition (31) of Definition 9 is satisfied.

The two graphs interact via their shared variables X1 ∩X2.



Mixed Nondeterministic-Probabilistic Automata 25

Proof Condition(30) of Definition 9 is local to the Mixed Kernels, and remains
satisfied when taking the union of the graphs. Thus the satisfaction of Condi-
tions 1 and 2 implies that all conditions of Definition 9 are satisfied. 2

3.2 Bayesian calculus: relating Mixed Bayesian Networks and
Mixed Systems

As a preamble, we recall some facts from basic probability theory. For a pair
(X,Y ) of random variables with joint distribution P (x, y), usual Bayes formula
writes P (x, y)=P (y)P (x|y), where P (y) =def

∑
x P (x, y) is the marginal dis-

tribution of Y and P (x|y) is the conditional distribution of X given that Y=y,
assigning, to each value y of Y , a probability for X. In this section, we extend
Bayesian reasoning to the blending of probability and nondeterminism, and
we relate the two models of Mixed Bayesian Networks and Mixed Systems.

As a first step, we extend the notion of conditional distribution to mixed
systems. We will use the following notation: Given a set of variables Y and
qY ∈ QY , we write

(Y=qY ) (34)

denotes the Mixed System defined as follows: Ω is the singleton {1} with trivial
probability on it, Y is the set of variables, and C = {(1, qY )} is a singleton,
expressing that Y is constrained to take the value qY .

Definition 12 (conditional) Let S = (Ω, π,X,C) be a Mixed System, and
let Y ⊆ X be a subset of variables. The conditional of S on Y , denoted by
CondY (S), is the kernel defined by CondY (S) (qY ) =def (Y=qY ) ‖S. 2

Example 13 (Link with the classical notion) Consider the following particu-
lar case for S: Ω=Q, and C is the diagonal of Ω×Q. Then, S specifies the
joint distribution π for set X of random variables. Decompose X = Y ∪Z
where Y ∩Z = ∅. Compressing MarginY (S) yields the marginal distribution
of Y . Compressing (Y=qY ) ‖S yields the conditional distribution π(qZ |qY ).
Therefore, Definitions 6 and 12 extend the notions of marginal and condi-
tional existing on purely probabilistic systems. 2

Generally, sampling the parallel composition S1 ‖S2 yields a result that differs
from the incremental sampling of S1; CondX1

(S2) (by Convention 1 we can
regard S1 as a kernel and consider this incremental sampling). Nevertheless,
the following result holds (see Definition 11 regarding ≡P ):

Theorem 2 (Bayes formula) Let S = (Ω, π,X,C) be a Mixed System and
Y ⊆ X a subset of variables. Then, the following Bayes formula holds:3

S ≡P MarginY (S) ; CondY (S) .

3 This theorem and formula (12) correct the erroneous construction of the conditional
CondY (S) in Appendix A of [13].



26 Albert Benveniste, Jean-Baptiste Raclet

Proof See Appendix B.1 for the proof. 2

The following corollary of Bayes formula is needed in the proof of Theorem 3.

Corollary 1 Let S1, S2 be any two Mixed Systems, and let Y be a set of
variables containing X1∩X2. Then:

S1 ‖S2 ≡P
(
S1 ‖MarginY (S2)

)
; CondY (S2) . (35)

Proof See Appendix B.2. 2

By Definition 7, the parallel composition S =
∏
S∈S S defines a Factor Graph

GS , having nondirected bipartite edges S—x, for every S ∈ S and every visible
variable x of S. Message passing algorithms transform certain Factor Graphs
associated with a parallel composition of several Mixed Systems, to Mixed
Bayesian Networks while preserving probabilistic equivalence. This provides
such Factor Graphs with an incremental sampling:

Theorem 3 (message passing algorithm) If the Factor Graph GS of sys-
tem S is a tree, we can transform it into a Mixed Bayesian Network NS while
preserving its probabilistic semantics.

See Appendix B.3 for a proof.

Example 14 (running example, message passing) The following picture dis-
plays, on the top, the Factor Graph associated with S1 and S2 and S3 and S4,
and, on the bottom, the Mixed Bayesian Network resulting from applying the
message passing algorithm—for better readability we show only shared vari-
ables:

where S1 =def S1 ‖Marginv(S2) ‖Marginf (S3) ‖Marginy(S4). 2

In the second part of this section we further study the link between the two
models of Mixed Systems and Mixed Bayesian Networks. We begin with a key
lemma:

Corollary 2 Let S1, S2 be any two Mixed Systems, and let Y be a set of
variables containing X1∩X2. If S1 ‖MarginY (S2) ≡ S1 holds, then it follows
that

S1 ‖S2 ≡P S1; CondY (S2) . (36)



Mixed Nondeterministic-Probabilistic Automata 27

Condition S1 ‖MarginY (S2) ≡ S1 expresses that composing S2 with S1 does
not affect S1. That is, when sampling the parallel composition S1 ‖S2, we
can first sample S1, which in turn affects the sampling of S2. Equivalently,
S1 ‖S2 can be seen as a dataflow network in which S1 executes first. How the
sequential execution proceeds is formalized by the right-hand side of (36).

Proof Direct consequence of Corollary 1. 2

To compare the two models of Mixed Systems and Mixed Bayesian Networks,
we first need to define an embedding, from the former into the latter. We begin
with Mixed Kernels. To each Mixed Kernel

K : QY → S(Y ′) , where K(qY ) =
(
ΩqY , πqY , Y

′, CqY
)
,

we associate the Mixed System SK = (Ω, π,X,C), defined as follows:

Ω =
∏
qY ∈QY

ΩqY ; π =
∏
qY ∈QY

πqY ; X = Y ∪ Y ′

C =
{(
ω, (qY , qY ′)

) ∣∣ ωqY CqY qY ′} (37)

This mapping is constructed by reusing the method of Example 3: the variables
of the Mixed System are the union of inputs and outputs of the Mixed Kernel;
the probability space is the product of all probability spaces of the targets of
the Mixed Kernel, i.e., the ΩqY ’s; and the relation CqY of K(qY ) is satisfied
by qY ′ . Then, to any Mixed Bayesian Network N = (X ∪K, ↪→), we associate
the Mixed System

SN = ‖K∈K SK . (38)

The following theorem relates SN to N :

Theorem 4 The following conditions ensure that SN and N are probabilisti-
cally equivalent: SN ≡P N :

1. All the minimal vertices of N are Mixed Systems, and
2. For every K ∈ K and every q ∈ •K, Mixed System K(q) is consistent.

Condition 1 ensures that N is free from nondeterministic input variables, and
Condition 2 guarantees that every K ∈ K is non-blocking.

Proof See Appendix B.4. 2

Example 15 (follow-up of Example 11) We consider the example of Figure 5
again. Since the considered example can be given a dataflow graph, Theorem 4
applies, showing the probabilistic equivalence between the two semantics. In
Section 6 regarding the semantics of ReactiveBayes mini language, the above
argument is made systematic in Theorem 7. 2

Thus, Theorem 4 can be interpreted as follows: if a parallel composition of
Mixed Systems can be seen as a dataflow graph, then it can be executed
incrementally.



28 Albert Benveniste, Jean-Baptiste Raclet

3.3 Discussion

Discussion 5 (computing generalized likelihoods) The purpose of prob-
abilistic languages [44,19,34] is not only (actually, not so much) sampling but
rather estimation/inference. Of course, in addition to performing incremental
sampling, Bayes’ formula also allows evaluating probabilities of properties in-
crementally. Then, a counterpart of Bayes’ formula exists for performing max-
imum likelihood estimation incrementally—it is known in the pattern recogni-
tion literature as the Viterbi algorithm [29,54]. Theorem 3 shows that message
passing algorithms also allow for an incremental evaluation of generalized like-
lihoods.

So far, we have presented models involving no dynamics. In the next section, we
move to our proposed formal model for dynamical systems: Mixed Automata.

4 Mixed Automata

The idea is the following: we upgrade notions, from automata, to Probabilistic
Automata, and to Mixed Automata:

1. Transitions q
α−→ q′, where q and q′ are states and α is an action, corre-

spond to automata.
2. Upgrading them to q

α−→ π′; q′, where π′ is the next probabilistic state
and ; denotes probabilistic sampling, yields Simple Probabilistic Au-
tomata following Segala and Lynch [56,45].

3. Upgrading them further to q
α−→ S′; q′, where S′ is a Mixed System and

; denotes sampling, yields Mixed Automata.

4.1 The model of Mixed Automata

The formal definition is introduced next. It uses the notation S(X), introduced
in (27). We assume an underlying alphabet Σ of actions.

Definition 13 (Mixed Automaton) A Mixed Automaton is a tuple

M = (Σ,X, q0,→),

where: Σ ⊆ Σ is a finite set of actions, X is a finite set of variables having
domain Q =

∏
x∈X Qx, q0 ∈ Q is the initial state, and → ⊆ Q×Σ×S(X) is

the transition relation. We write

q
α−→ S (or q

α−→M S when we wish to make M explicit)

to mean (q, α, S) ∈ →. We require M to be deterministic:

for any pair (q, α) ∈ Q×Σ, q
α−→ S and q

α−→ S′ implies S=S′. (39)



Mixed Nondeterministic-Probabilistic Automata 29

The sampling of M is its set of runs r, which are finite sequences of chained
transitions:

r = q0
α1−→ S1 ; q1

α2−→ S2 ; q2 . . . qk−1
αk−→ Sk ; qk , (40)

where Mixed Systems S1, . . . , Sk are consistent, and S; q is the sampling
introduced in Definition 1. 2

The transitions of Mixed Automata target Mixed Systems, which combine
nondeterminism with probabilities. Therefore, Mixed Automata capture non-
determinism despite Condition (39).

Example 16 (comparing with classical notions) Let (Xn)n≥0 be a Markov chain
with state space Q, initial state q0, and transition probability P (q′ | q). We can
reformulate it as the Mixed Automaton M = (Σ,X, q0,→), where: Σ is the
singleton {α}; variable X has domain Q; → maps (q, α) to the purely prob-
abilistic Mixed System of Example 2, representing probability q′ 7→ P (q′ | q)
for given state q. 2

Like automata and Probabilistic Automata, Mixed Automata come equipped
with a notion of parallel composition, built on top of the parallel composition
of Mixed Systems. The simplest idea is that the transitions of parallel compo-
sition M1 ‖M2 will take the form q1 t q2

α−→ S′1 ‖S′2 ; q′1 t q′2, where q′1 t q′2
and S′1 ‖S′2 are defined in (22) and Definition 7, respectively. In this simple
construction, synchronizing the two transitions is by having them perform the
same action α.

To be able to define the semantics of our ReactiveBayes mini language,
we will, however, need the more flexible synchronization mechanism of “com-
patible actions”, provided by the standard synchronization algebra of process
calculi, see, e.g. [16]. We thus assume that the underlying alphabet Σ of ac-
tions is equipped with a commutative and associative join partial operation
tΣ : Σ×Σ→ Σ, where α1 tΣ α2 is defined whenever the two actions are
compatible, written α1 ./Σ α2. In the composition of Mixed Automata, the
components synchronize on compatible actions and move to the parallel com-
position of target systems by performing the join of the two actions:

Definition 14 (parallel composition) Let M1 and M2 be two Mixed Au-
tomata having compatible initial states q0,1 ./ q0,2. Their parallel composi-
tion M1 ‖M2 has alphabet Σ1∪Σ2, set of variables X1∪X2, and initial state
q0,1 t q0,2. Its transition relation −→M is the minimal relation satisfying the
following condition, where S1 ‖S2 was defined in Definition 7:

qi
αi−→Mi Si for i = 1, 2

q1 ./ q2 and α1 ./Σ α2

}
=⇒ q1 t q2

α−→M S1 ‖S2, where α = α1 tΣ α2 . 2

The next important notion is (bi)simulation, which is central to automata
theory. We upgrade it, from the basic notion for automata to the extended
notion for Mixed Automata:



30 Albert Benveniste, Jean-Baptiste Raclet

1. In the context of automata, a relation ≤ on pairs of states is a simulation
if it satisfies [55]:

q1
α−→ q′1

q1 ≤ q2

}
=⇒ ∃q′2 :

{
q2

α−→ q′2
q′1 ≤ q′2

2. This definition is upgraded to Probabilistic Automata as follows [55]:

q1
α−→ π′1

q1 ≤ q2

}
=⇒ ∃π′2 :

{
q2

α−→ π′2
π′1 ≤P π′2

where ≤P is the lifting of ≤ to pairs of probabilistic states. We have:

π′1 ≤P π′2 ensures, for each q′1 such that π′1 ; q′1,
the existence of q′2 satisfying π′2 ; q′2 and q′1 ≤ q′2.

(41)

3. This definition will be further upgraded to Mixed Automata as follows:

q1
α−→ S′1

q1 ≤ q2

}
=⇒ ∃S′2 :

{
q2

α−→ S′2
S′1 ≤S S′2

(42)

where ≤S is the lifting of ≤ to pairs of Mixed Systems. We request:

S′1 ≤S S′2 shall ensure, for each q′1 such that S′1 ; q′1,
the existence of q′2 satisfying S′2 ; q′2 and q′1 ≤ q′2.

(43)

Such a lifting is introduced next. Let S1 and S2 be two Mixed Systems.

Definition 15 (lifting relations on Mixed Systems states) Let ρ ⊆
Q1×Q2 be any state relation. Mixed System relation ρS ⊆ S(X1)×S(X2) is
the lifting of ρ if there exists a weighting function w : Ω1×Ω2 → [0, 1] such
that:

1. For every triple (ω1, ω2, q1) ∈ Ω1×Ω2×Q1 such that w(ω1, ω2) > 0 and
ω1 C1 q1, there exists q2 ∈ Q2 such that q1 ρ q2, and ω2 C2 q2;

2. Weighting w projects to π1 and π2:∑
ω2

w(ω1, ω2)=π1(ω1) and
∑
ω1

w(ω1, ω2)=π2(ω2). 2

By construction, this definition for the lifting of state relations to relations on
Mixed Systems satisfies (43). Note the existential quantifier in Condition 1. By
Condition 2, w induces a probability on Ω1×Ω2. We write S1 ρ

S S2 to mean
(S1, S2) ∈ ρS .

Lemma 3 S1 ρ
S S2 and S′1≡S1 together imply S′1 ρ

S S2.

See Appendix C.1 for a proof. 2



Mixed Nondeterministic-Probabilistic Automata 31

Definition 16 (simulation) Given two Mixed Automata M1,M2, we say
that M2 simulates M1, written M1≤M2, if they possess a simulation, i.e., a
relation ≤ ⊆ Q1×Q2 such that q0,1≤q0,2 and, for every pair q1≤q2 and every

transition q1
α−→1 S1, there exists a transition q2

α−→2 S2 such that S1 ≤S S2,
where ≤S denotes the lifting of ≤. M1 and M2 are called simulation equivalent
if they simulate each other. M1 and M2 are called bisimilar if there exists a
relation ∼⊆ Q1×Q2 such that both ∼ and its transpose are simulations. 2

The notion of simulation and its derived constructs are the core topic of
the literature on automata and their probabilistic extensions. The reader is
referred to the next section for a bibliographical discussion.

Lemma 4 Parallel composition preserves simulation: M ′1≤M1 and M ′2≤M2

together imply M ′1 ‖M ′2 ≤M1 ‖M2.

See Appendix C.2 for a proof. 2

4.2 Bibliographical discussions

We conclude this section with some bibliographical discussions.

Discussion 6 (lifting and coupling) Our lifting is a direct extension of the
technique used in [55] for Probabilistic Automata. In the context of proba-
bilistic reasoning, the same technique was also extensively studied under the
name of probabilistic coupling [8,36]. Weighting function w(ω1, ω2) of Defini-
tion 15 transposes probabilistic coupling to our model of Mixed Automata in
which nondeterminism and probability are combined. In a different commu-
nity, “stochastic nondeterminism” was extensively studied through the notion
of nondeterministic labeled Markov process in [22,27], in a categorical frame-
work; the second reference encompasses continuous distributions (beyond dis-
crete).

Discussion 7 (simulation equivalence vs. bisimilarity) Despite the con-
dition (39) that the transition relation shall be deterministic, the two notions
of “‘simulation equivalence” and “bisimilarity” differ. The reason is that non-
determinism is hidden behind the Mixed Systems targeted by transitions. In
our forthcoming Theorem 6, we will prove that Segala’s Probabilistic Au-
tomata [55,56,45], which possess nondeterministic transition relations, can be
embedded into Mixed Automata while preserving simulations.

Discussion 8 (Mixed Automata are causal in time) Mixed Automata
remain a causal model in time since the current transition depends on the
past, not on the future. Consequently, Mixed Automata cannot be used to
specify acausal estimation problems, e.g., estimating unmeasured variable zk
based on observations of X0, . . . , Xk, . . . , XN . To perform this, we must “un-
fold time as space”, i.e., regard X0, . . . , XN as a (N+1)-set of variables, not as
successive occurrences in time of variable X. Note that the transition relations
of Mixed Automata inherit, from Mixed Systems, the Bayesian Calculus and
the notions of Factor Graph and Mixed Bayesian Network.



32 Albert Benveniste, Jean-Baptiste Raclet

5 Comparison with Segala’s Probabilistic Automata

Segala and Lynch originally proposed Probabilistic Automata (pa) [55,56,45].
To simplify our comparison, we discuss the version of pa without internal
actions. According to the classification made by Sokolova and de Vink [58],
we study the link with both the Simple (Segala) Probabilistic Automata and
the (Segala) Probabilistic Automata. For the former, actions are selected, and
then a transition to a probabilistic state is selected nondeterministically. For
the latter, both the action and a state are jointly selected, probabilistically.
This distinction is referred to as reactive vs. generative models in [58].

Simple Probabilistic Automata existed way before the work of Segala and
Lynch [55,56,45], in the community of applied mathematics and probability
theory, where they are known under the name of Markov Decision Processes
(MDP) [10,53]. In this context, the main considered problem is the synthesis
of an optimal policy to minimize some expected cost function on the trajec-
tories of the system. The minimization is over scheduling policies, which are
causal rules for selecting the next action given the past trajectory. Once this
policy has been fixed, the resulting dynamics is a Markov Chain. Studies on
(bi)simulation were more recently developed for MDP’s [31], and further de-
veloped to support robustness by defining metrics between finite MDP’s [28].
In the following, P(Q) denotes the set of all probability distributions over the
set Q. Formally, we consider a tuple P = (Σ,Q, q0,→), where Σ is the finite
alphabet of actions, Q is a finite state space, q0∈Q is the initial state, and the
probabilistic transition relation → is defined in two different ways:

Simple Probabilistic Automaton (spa) :→⊆ Q×Σ×P(Q) (44)

Probabilistic Automaton (pa) : →⊆ Q×P(Σ×Q) (45)

In the following definitions, relation ≤P is the lifting, to probability distribu-
tions over Q×Q′, of the relation ≤ over Q×Q′—for the definition of the lifting
≤P , the reader can use Definition 15 adapted by ignoring relations C1 and C2.

5.1 Details for SPA, model (44)

We write q
α−→P µ to mean (q, α, µ) ∈ → and µ; q′ to mean that sampling µ

returns next state q′. The sampling is: if P is in state q∈Q, performing α∈Σ
leads to some target set of probability distributions over Q, of which one is
selected, nondeterministically, and used to draw at random the next state q′.
A simulation relation is a relation ≤ ⊆ Q×Q′ such that, for any q ≤ q′, the
following holds: if q

α−→P µ, there exists µ′ such that q′
α−→P ′ µ

′ and µ ≤P µ′.
The parallel composition of spa [45] is defined by: P1 ‖P2 = (Σ,Q, q0,→),

where Σ = Σ1∪Σ2, Q = Q1×Q2, q0 = (q0,1, q0,2), and (q1, q2)
α−→ µ1×µ2

holds iff qi
α−→i µi for i = 1, 2.



Mixed Nondeterministic-Probabilistic Automata 33

5.2 Details for PA, model (45)

We write q −→P µ to mean (q, µ) ∈ → and µ; (α, q′) to mean that sampling
µ jointly returns action α and next state q′. The sampling is: P being in state
q∈Q leads to some target set of probability distributions over Σ×Q, of which
one is selected, nondeterministically, and used to draw at random the next
pair (α, q′) of action and state. A simulation relation is a relation ≤ ⊆ Q×Q′
such that, for any q ≤ q′, the following holds: if q −→P µ, there exists µ′ such
that q′ −→P ′ µ

′ and µ ≤P µ′.
The parallel composition P = P1 ‖P2 faces the following difficulty: there is

a conflict between (1) the probabilistic choice of actions α1 and α2 in each com-
ponent, and (2) the synchronization constraint on the pair (α1, α2) possibly
required by the parallel composition.

This difficulty does not exist if no synchronization constraint exists, e.g., if
the composition of actions α = α1.α2 is always defined. In this case, the parallel
composition is straightforward: (q1, q2) −→P µ1×µ2 iff qi −→Pi µi holds for
i = 1, 2. This kind of parallel composition does not capture synchronization,
however.

In contrast, if strong synchronization is imposed, e.g., by requiring that
α1=α2 whenever one of the two actions is shared by the two components—this
is the policy followed in our model of Mixed Automata—, then the above con-
flict exists. This conflict is usually resolved by adding a probabilistic scheduling
policy specified through an auxiliary probability distribution; see the detailed
discussion in [58] and references therein. A typical approach to compose the
two transitions qi −→Pi

µi; (αi, q
′
i), i = 1, 2 is the following:

– If synchronization constraint α1 = α2 = α happens to be satisfied, then
the two transitions synchronize and (q1, q2) leads to (α, (q′1, q

′
2)) with prob-

ability µ1(α, q′1)× µ2(α, q′2).
– If both actions α1 and α2 are local αi 6∈ Σ1∩Σ2, i = 1, 2, then the syn-

chronization constraint is not violated. However, since only one action is
permitted at a time in pa, one between the two transitions must be elected
while the other is freezed. This is achieved by tossing a (possibly biased)
coin with parameter σ ∈ (0, 1), so that (q1, q2) leads to (α1, (q

′
1, q2)) with

probability µ1(α, q′1)×σ and (q1, q2) leads to (α2, (q1, q
′
2)) with probability

µ2(α2, q
′
2)× (1− σ).

– Other cases are forbidden.

Collecting the outcomes that are not forbidden results in a transition of the
form q −→P µ̄; (α, q′), where µ̄ is unnormalized. A subsequent normalization
is performed to get the final definition q −→P µ; (α, q′) for the transitions
of the parallel composition. The definition of this parallel composition thus
requires specifying an additional probability distribution (the parameter σ
of the biased coin). In other variants, the conflict is solved by introducing
schedulers as additional probability distributions.



34 Albert Benveniste, Jean-Baptiste Raclet

5.3 Comparison results

The following theorems relate spa and pa to Mixed Automata (proofs are
constructive).

Theorem 5 (SPA vs. Mixed Automata)

1. There exists a mapping P 7→MP , from spa to Mixed Automata, preserving
both simulation and parallel composition: P1≤P2 iff MP1

≤MP2
, whereas

MP1 ‖P2
and MP1

‖MP2
are simulation equivalent.

2. There exists a reverse mapping M 7→PM , from Mixed Automata to spa,
preserving simulation. No reverse mapping exists, however, that preserves
parallel composition.

See Appendices D.1.1 and D.1.2 for proofs of Statements 1 and 2 of this theo-
rem. The two mappings P 7→MP and M 7→PM are not opposite, which makes it
possible for the two statements not to contradict each other. The non-existence
of a reverse mapping M 7→PM preserving parallel composition highlights that
the difference in the parallel compositions, for SPAs vs. for Mixed Automata,
is deep.

Theorem 6 (PA vs. Mixed Automata) There exists a mapping P 7→MP ,
from pa to Mixed Automata, preserving simulation. Parallel composition, how-
ever, is not preserved.

See Appendix D.2 for a proof.
Due to Statement 2 of Theorem 5 and the existence of an embedding

spa→pa [58] preserving simulation, a reverse mapping exists from Mixed Au-
tomata to pa.

In [58], it is proved that spa can be embedded into pa, by simply “pushing”
actions from occurring prior to probabilistic choice to being part of probabilis-
tic choice (in which case alternatives to emitting action α sum up to probability
1). So, it seems unnecessary to study the embeddings spa→Mixed Automata
and pa→Mixed Automata separately since mapping the second one seems
sufficient. This is, however, not a good idea since the two embeddings differ,
in that parallel composition is preserved for spa but not for pa.

5.4 Bibiographical discussions

We conclude this section with some bibliographical discussions.

Discussion 9 (who comes first: nondeterminism or probability?)
The following question is often considered [63]: should nondeterminism be re-

solved prior to or after probabilistic sampling? Since the selection of the per-
formed action followed by that of one probability from a subset of P(Q) (for
spas), or the selection of one probability from a subset of P(Σ×Q) (for pas) is
performed prior to probabilistic sampling, both spa and pa models follow the
first alternative. Our model of Mixed Automata follows a schizophrenic ap-
proach: first, external nondeterminism is resolved by synchronizing on actions,



Mixed Nondeterministic-Probabilistic Automata 35

then, a probabilistic choice is performed by the so reached Mixed System, and
finally, internal nondeterminism is resolved—one can thus say that nondeter-
minism is resolved “first-and-last”. As we have seen in Section 5.3, the main
difference between our model and models from the pa family is not in this
“prior vs. after” issue, but instead in our handling of conditioning and parallel
composition.

Discussion 10 (More on spa/pa versus Mixed Automata) So far, The-
orems 5 and 6 compare spa/pa and Mixed Automata regarding the core no-
tions of pa, namely simulation and parallel composition. Conditioning is not
considered in pa theories—this indeed is the reason for them to have problems
when handling synchronization in the parallel composition. Furthermore, we
do not see how factor graphs can be reflected in pa theories. In contrast, these
concepts are naturally supported by our model of Mixed Automata. In addi-
tion, our model offers the classical concepts of pa theories, namely simulation,
and equivalence.

6 The ReactiveBayes mini language and its semantics

In this section, we use the models of Mixed Systems and Mixed Automata
to specify the semantics of the mini language we informally introduced in the
introduction for our running example. To make this precise, we formalize this
informal language through the “ReactiveBayes” syntax presented hereafter.

To prevent decidability issues in constraint solving, domains of variables
and random variables are all assumed finite. Finally, to simplify our presenta-
tion of the syntax, domains are omitted.

6.1 Syntax of ReactiveBayes

Here is the syntax, where keywords are highlighted in blue:

e ::= c | x | (e, e) | op(e) | f(e) | pre x | init x = c
S ::= x∼P (e) | e = e | observe x | S and S

(46)

– An expression e is a constant c, a variable x, an external operator applica-
tion op(e), a function application f(e), or a delayed version pre x for the
variable x. Initial condition init x = c is required whenever pre x occurs
in the program; it fixes the initial value for x.

– A program S is the declaration of a prior distribution P (e) for variable
x, thus making it random; distribution P (e) has, optionally, parameters
set by expression e, an equation e = e, the declaration that variable x is
actually observed, or the parallel composition and . For each term P we
assume a semantics denoted by πP , which is a probability.

No provision is given by syntax (46) for writing equations relating systems. In
particular, fixpoint equations S = S′ and S cannot be expressed: ReactiveBayes



36 Albert Benveniste, Jean-Baptiste Raclet

does not offer full recursion. However, statements pre and init provide a
limited form of recursion, supporting dynamical systems. This will be made
clear in Section 6.3, where the semantics of full ReactiveBayes will be given.

Example 17 (running example in ReactiveBayes) The following two Reactive-
Bayes programs are proposed to formalize S1, described in (1):

S1 : observe u

and init x = x0

and y = phi(u,pre x)

and x = if fail then psi(y,noise) else y

and S2, described in (2):

S2 : init noise = n0

and noise = chi(pre noise,w)

and w ∼ mu

6.2 Semantics of the static fragment of ReactiveBayes

We now give the semantics of the static fragment of ReactiveBayes, namely
ignoring in (46) the statements pre and init. [[S]] denotes the semantics of
ReactiveBayes program S. Two semantic domains can be considered, for this
static fragment, namely:

– Mixed Systems, and
– Mixed Bayesian Networks.

6.2.1 Using Mixed Systems as a semantic domain

The semantics of a program will thus consist of a Mixed System (Ω, π,X,C).
In writing this semantics, we will use the following notational conventions for
specifying relation C ⊆ Ω ×Q:

e = e′ is {(ω, q) ∈ Ω×Q | e(X/q) = e′(X/q)}
x = ω is {(ω, q) ∈ Ω×Q | qx = ω}

In the first line, e and e′ denote expressions over a set X of variables, and
e(X/q) denotes the value taken by the expression when q is substituted for X
in e. In the second line, Q = QX for a set X of variables, x ∈ X, and qx is the
value of x in state q. With these conventions, the semantics is:

(i) [[observe x]] = ({ω}, δω, {x}, x = q)

(ii) [[x∼P ]] = (Ωx, πP , {x}, x = ωx)

(iii) [[x∼P (e)]] =
(∏

q∈Qe
Ωq,

∏
q∈Qe

πq, {x, e},
⋃
q∈Qe

(e=q ∩ x=ωq)
)

(iv) [[e = e′]] = ({ω}, δω, vars(e) ∪ vars(e′), e = e′)

(v) [[S1 and S2]] = [[S1]] ‖ [[S2]]

(47)



Mixed Nondeterministic-Probabilistic Automata 37

In (i), the probabilistic part is trivial (Ω = {ω} is a singleton and π = δω is
the Dirac probability at that singleton), and there is a single visible variable
x whose value q ∈ Qx is given but left unspecified. In (ii), probability dis-
tribution P is fixed; the semantics consists of the probability space (Ωx, πP ),
where Ωx is a private copy of the domain of x equipped with probability πP
and having generic element ωx ∈ Ωx; equation x = ωx exposes ωx for further
interactions through x. Line (iv) defines the semantics of equations; “vars(e)”
denotes the set of variables involved in expression e; the semantics has a trivial
probabilistic part, as in (i). Line (v) makes this semantics structural.

Line (iii) of the semantics deserves more explanations. The Mixed System
defining this semantics involves two variables: x and e (a name for the expres-
sion). Variable e has domain Qe. For each value q∈Qe, a copy of the domain
Qx for variable x is created and called Ωq. Ωq is equipped with probability πq,
which is the semantics of P (e) when e takes the value q. Cartesian product∏
q∈Qe

Ωq is equipped with the Cartesian product
∏
q∈Qe

πq. Thus, each ωq is
obtained by sampling, independently from each other, Ωq with distribution πq.
Finally, the relation C expresses that x = ωq holds when e = q. Equivalently,
x is sampled using distribution πq when expression e takes the value q, which
is the intent of this statement. This semantics reuses the method (37,38) for
mapping Mixed Bayesian Networks to Mixed Systems. This complex seman-
tics should be compared with the semantics of the same statement in terms of
Mixed Bayesian Networks.

6.2.2 Using Mixed Bayesian Networks as semantic domain

In the following formulas, [[[ S ]]] denotes the Mixed Bayesian Network defined
by S, when it exists. Conditions for the existence of [[[ S ]]] is that 1) equations
are restricted to be assignments of expressions (see (48,iv)), and 2) a success
condition for (48,v) to be applicable is required, see hereafter. The Mixed
Bayesian Network semantics thus applies only to a fragment of ReactiveBayes.

According to the definition of Mixed Bayesian Networks, the semantics
consists of a bipartite directed graph whose vertices are either variables or
Mixed Kernels, and the directed branches are denoted by ↪→.

(i) [[[ observe x ]]] = [[observe x]] ↪→ x
(ii) [[[ x∼P ]]] = [[x∼P ]] ↪→ x
(iii) [[[ x∼P (e) ]]] = vars(e) ↪→ [[x∼P (e/q)]] ↪→ x
(iv) [[[ x = e ]]] = vars(e) ↪→ [[x = e]] ↪→ x
(v) [[[ S1 and S2 ]]] = [[[ S1 ]]] ∪ [[[ S2 ]]]

(48)

In (i), [[observe x]] is the Mixed System that was specified in (47) as being the
semantics of statement observe x. Thus, (i) specifies that this system causes
the value of x. In (ii), [[x∼P ]] is the Mixed System that was specified in (47)
as being the semantics of statement x∼P ; it causes the value of x.

In (iii), the bipartite graph specifies that the network has one kernel vertex
and input and output variables. The input variables are the variables involved
in expression e, and the output variable is x. Once expression e is evaluated to



38 Albert Benveniste, Jean-Baptiste Raclet

q∈Qe, q is substituted for e in P (e) (which is specified by e/q), and the Mixed
System semantics of x∼P (q) is given by (47,ii). This is much simpler and
more concise than (47,iii). The reason is that the intuition of the statement is
causal: first, e gets evaluated, and then, x is sampled. Thus, Mixed Bayesian
Networks, being naturally causal, are appropriate. In contrast, the semantics
of (47,iii) had to be noncausal, since the domain was that of Mixed Systems,
not Mixed Bayesian Networks.

Consider (47,i–iv) and (48,i–iv), providing the Mixed System and Mixed
Bayesian Network semantics of primitive statements of the static fragment of
ReactiveBayes. We wish to relate (47,i) and (48,i), etc. Let S(47,i) and K(48,i)

be the Mixed System and Mixed Kernel giving the semantics of statement (i)
of ReactiveBayes in (47) and (48), respectively, with corresponding notations
for the other primitive statements (ii)–(iv). Referring to the correspondence
(37), we claim that

S(47,i) ≡P K(48,i) (49)

with corresponding properties for statements (ii)–(iv). This is immediate for
statements (i), (ii) and (iii). In contrast, statement (iv) is purely nondetermin-
istic and possesses inputs; its semantics in (47) does not exhibit the product
probability space occurring in (37). Instead a trivial probability space ({ω}, δω)
is specified. But products of such trivial probability spaces remain isomorphic
to ({ω}, δω). So, our claim holds also for statement (iv).

Now, by Theorem 4, (49) implies that the two semantics are probabilisti-
cally equivalent.

To compare the two semantics for programs, we now consider (v). Not all
well formed ReactiveBayes programs can be given a semantics in terms of Mixed
Bayesian Networks. Indeed, the application of Rule (v) in (48) is subject to the
following success condition (whose intuition is the dataflow diagram condition
in Example 11):

Condition 1 (success condition for the existence of [[[ S1 and S2 ]]])
The union of the two directed acyclic graphs [[[ S1 ]]] ∪ [[[ S2 ]]] possesses no
circuit and satisfies condition (31) of Definition 9.

Say that ReactiveBayes program S satisfies success condition 1 if it decomposes
as S = S1 and S2 satisfying Condition 1, for two nonempty programs S1 and
S2 themselves satisfying success condition 1. The following result holds, which
relates the two different semantics, when the success condition is satisfied:

Theorem 7 (equivalence of the two semantics) Let S be a ReactiveBayes
program satisfying the success condition 1, and such that all the minimal ver-
tices of [[[ S ]]] are Mixed Systems. Then, its two semantics are probabilistically
equivalent: [[S]] ≡P [[[ S ]]].

The additional condition ensures that S is free from nondeterministic input
variables. Thus, the minimal vertices of [[[ S ]]] are statements of the form
(48,(i),(ii)).



Mixed Nondeterministic-Probabilistic Automata 39

Proof A direct consequence of Theorem 4.

The message Passing algorithm presented in Theorem 3 allows source-to-source
rewriting for mapping tree-shaped non-directed Factor Graphs to directed
Mixed Bayesian Networks.

Discussion 11 (if-then-else) In Example 17, system S1 involves an “if-
then-else” statement. Syntax (46), however, does not involve such statements.
This means that “if-then-else” statements are seen by syntax (46) as one in-
stance of “f”, to which no particular attention is paid. The semantics of this
“f” obviously depends on the value of the Boolean control signal. However,
neither the factor graph, nor the Mixed Bayesian network associated to S1,
depend on which branch is active in this “if-then-else” statement. This is
harmless if the focus is on modeling. Considering “if-then-else” and paying
attention to it is needed in probabilistic reasoning [20], see Appendix A.1. The
same holds when performing inference or learning [37]; see also the discussion
of objective 3 of probabilistic programming on page 3.

6.3 Completing the semantics of ReactiveBayes

Recall that the semantics of the static part of ReactiveBayes was given in
(47,(i)–(v)). In this section, we first give the semantics of the dynamic frag-
ment of ReactiveBayes (46) in terms of Mixed Automata. Then, we show that
the model of Mixed Automata supports the semantics of an extension of Re-
activeBayes with states and actions.

6.3.1 Semantics of the dynamic fragment of ReactiveBayes

Notations: To every variable x, we associate its successive previous versions
•x, •2x, •3x, . . . , where

•(n+1)x =def
•(•nx) and Q•x = Qx . (50)

Then, we define

•e(x) =def e(
•x) (51)

as being the expression e in which every variable x is replaced by its previous
version •x. We will use the Mixed System (x=qx), defined in (34): this system
has trivial probabilistic part, variable x, and enforces the value qx for it. 2

We begin with delay pre and initialization init:

(vi) [[pre x]] =
(
{t} , {x, •x} , − , {q t−→ (•x=qx) | ∀q ∈ Q}

)
(vii) [[init x = c]] =

(
{t} , {x} , c , c t−→ nil and ε

t−→ nil
) (52)



40 Albert Benveniste, Jean-Baptiste Raclet

The semantics of pre is stated in (vi). It is the Mixed Automaton with trivial
action alphabet (singleton {t}), two variables x (receiving the current value)
and •x (delivering the previous value), an undefined initial state, and the set
of transitions

q
t−→ (•x = qx) ,

where q ranges over the set of all states and qx is the x-coordinate of q—this
transition relation formalizes the constraint that (pre x)n holds the value of
xn−1.

Since the initial state is undefined in the delay statement, a specification
of the initial value is required by using the initialization statement init. Its
semantics is stated in (vii), where nil is the trivial Mixed System defined
in (25). This Mixed Automaton possesses x as its only variable, c ∈ Qx as
its initial state, and otherwise does nothing, i.e., sets no constraint on its
environment.

6.3.2 Extending ReactiveBayes with states and actions

So far, we have completed the semantics of ReactiveBayes as defined in (46),
for which actions were not used—only the trivial “true” action was used in
the semantics. Since Mixed Automata is a richer framework, it can support
the following richer language involving state machines by adding the following
syntax, with reference to (46):

α ::= •e, where e has Boolean type
A ::= on α then S else S | A and A

(53)

Actions α are previous versions of expressions of Boolean type. In the addi-
tional statement “on α then S else S”, actions α and ¬α trigger the transi-
tion leading to the first and second system, respectively. If α is the constant
“true”, we simply write S instead of “on true then S”.

We now give the corresponding semantics (t denotes the Boolean value
“true”, and we refer the reader to Definition 1 regarding nil and the distin-
guished state ε):

(viii) [[on α then S else S′]] =
S and S′ have previous state p{α,¬α} , X ∪X ′ , ·{

p
α−→ S, p

¬α−→ S′
} 

(ix) [[A1 and A2]] = [[A1]] ‖ [[A2]]

(54)

The right-hand side of (viii) is an inference rule meaning “numerator entails
denominator”. By (51) and the syntax for actions in (53), action α in (viii) is
evaluated by using the previous state p. At a given instant, the previous state
is known and can thus be used as the source state of the two transitions. The
initial state is left unspecified. Focus on the parallel composition (ix). With
reference to Definition 14, we now formalize the compatibility relation ./Σ
and the join operator tΣ :

α1 ./Σ α2 always holds, and α1 tΣ α2 =def α1 ∧ α2. (55)



Mixed Nondeterministic-Probabilistic Automata 41

7 Other related work

So far, we have discussed work closely related to the different topics we covered.
In this section, we broaden our discussion by considering side topics relevant
to our study.

Regarding semantic studies, we did not address denotational semantics—
our sampling (Definition 1) is an operational semantics. By denotational se-
mantics, we mean a mathematical characterization of the set of all traces that
the considered system can produce. The subject was indeed addressed in core
mathematical probability theory—it was not called this way—with the Kol-
mogorov extension theorem: this theorem gives the denotational semantics
of a sequence of independent identically µ-distributed random variables as a
probability space (Ω,F , π), where Ω is the set of trajectories, F the associ-
ated product σ-algebra, and π = µN, whose existence and uniqueness follows
from this extension theorem. Since the 1970s, mathematicians in probability
theory gave a denotational semantics (this term was not used) to stochastic
differential equations in a very general setting, see e.g., the seminal paper [60].
In our context of nondeterministic/probabilistic dynamical systems, the task
was not really investigated by mathematicians, and one should instead look at
the literature closer to computer science. The seminal paper by Kozen [41] de-
fines two kinds of semantics of simple imperative probabilistic programs. The
first semantics has a finite horizon [0, S] where S is a stopping time (causally
defined random time) and closely follows probability theory with its construc-
tion of probability spaces of program traces; the second semantics, advocated
by the author, is more denotational, uses Scott-like techniques of continuous
linear operators on a Banach space of measures, and supports infinite traces,
see also [61,34]. This approach was extended in [38,39,21] in order to provide
semantics to the observe statement present in most modern probabilistic pro-
gramming languages. In [15], the semantics of a functional language supporting
mixtures of continuous and discrete distributions and dedicated to certainly
terminating programs, is specified as measure transformers, describing how
the program itself propagates the distribution of the probabilistic inputs.

Major probabilistic programming languages do offer recursion [19,48], all
of them offer while loops. These features raise the issue of possible nontermi-
nation. Nonterminating while loops are the essence of [9]. We did not con-
sider recursion in its full generality, but only under the limited form of non-
terminating time-recursion, with Mixed Automata. Time recursion is the most
widely used form of recursion considered in statistics and learning.

Inference and learning are the main concerns of probabilistic programming.
Due to the generality of the considered models, Monte-Carlo based inference
algorithms are preferred [37,19,32,33]. Nondeterminism, which is supported
by probabilistic languages, breaks the stationarity (or time-invariance) of the
specified statistical models. This is a source of difficulties when invoking limit
theorems of probability theory to support learning algorithms [37]. We did not
consider learning in this work. Our model of Mixed Automata would face the
same challenge if inference were considered. Extension of model-based IOCO



42 Albert Benveniste, Jean-Baptiste Raclet

testing with probabilities was considered in [30]—this is a different subject
than statistical testing in the sense of [42].

In Section 5, we have shown that Mixed Automata subsume pa. Tuto-
rial [58] investigates more variants of pa. We conjecture that similar results
hold for these as well: mappings exist that preserve simulation but not parallel
composition. Abstract Probabilistic Automata [23] are an interface model that
support specification, not programming. In addition to parallel composition,
Abstract Probabilistic Automata offer refinement and possess Probabilistic
Automata as their models, two concepts irrelevant to our study.

In our work, we have considered only automata, whose dynamics is indexed
by discrete time n. Equipping true concurrency models with probability was
classical for some net models. Free choice (or confusion free) nets are models for
which this is relatively simple; since choices remain local and statically defined,
it is easy to turn them into probabilistic choices. However, this is no longer the
case for event structures with confusion: concurrency interferes with choice,
making the latter dynamically defined. This makes it intricate, to equip choices
with probabilities while maximally preserving concurrency. First constructions
were proposed in [4,5,6,7] based on the notion of branching cells, capturing
the above difficulty. Infinite event structures are supported (with restrictions)
for which the law of large numbers is proved. Drawbacks are: 1) different
sequences of events corresponding to the same configuration may be given
different probabilities, and 2) the overall probability is globally defined; hence
no parallel composition can be proposed. A different construction was proposed
for occurrence nets in [17,18], addressing the above drawback. The net is
augmented with “negative places”, thus enforcing supplementary causalities
with the result of deferring choices until they become local. Through the notion
of statically defined s-cell, the so augmented net can be given probabilistic
choices meeting full concurrency, and parallel compositions of such nets is
supported. In turn, the construction of the negative places works for finite
nets only. In [18], a link of such augmented nets is established with Bayesian
networks, thus providing a result similar to ours in Section 3. Finally, [1,2,3]
study trace monoids by equipping them with probabilities derived from local
specifications using analytic combinatorics techniques. As far as we know, this
is the only approach supporting true concurrency with probabilistic choice
and parallel composition for infinite traces. Unfortunately, concurrency makes
everything more complicated.

8 Conclusion

We developed the Mixed (Probabilistic-Nondeterministic) Automata model
that subsumes nondeterministic automata, probabilistic automata, and graph-
ical probabilistic models. In a Mixed Automaton, transitions are triggered by
actions and map states to Mixed Systems, from which the next state is sam-
pled.



Mixed Nondeterministic-Probabilistic Automata 43

Mixed Systems are stateless and involve no dynamics. They combine non-
determinism and probability in a simple setting, providing an elegant theory of
equivalence and a parallel composition. We proposed the notion of Mixed Ker-
nel equipped with an incremental composition. We generalized Bayes formula
by extending, to Mixed Systems and Mixed Kernels, the notions of marginal
and conditional probabilities. The parallel composition of Mixed Systems nat-
urally brings a notion of graphical structure, which subsumes Factor Graphs;
similarly, the incremental composition of Mixed Kernels supports an extension
of Bayesian Networks. Message-passing algorithms allow for transforming tree-
shaped Factor Graphs to Bayesian Networks, as already known for the classical
notions. To summarize, our model extends graphical probabilistic models to a
framework in which nondeterminism and probabilities can be freely combined.
This framework also subsumes Dempster’s belief theory.

On top of Mixed Systems, we defined Mixed Automata and equipped them
with a simulation and a parallel composition where probabilistic parts of sys-
tems can interact. This is in contrast to existing models of probabilistic au-
tomata, which do not support conditioning. Developing an interface theory
with Mixed Automata as models and Abstract Probabilistic Automata [23]
would make sense. We believe that the simplicity of Mixed Systems makes
them an interesting candidate for the semantics of probabilistic programs—
there is still a long way to go before justifying this claim.

To avoid technicalities, we decided to restrict ourselves to the consider-
ation of finite or denumerable probability spaces. This makes the definition
of support of a probability and conditional probability straightforward. Since
conditioning is the heart of our approach, relaxing this restriction is far from
obvious, with a deep revisiting of consistency for Mixed Systems. In the last
appendix of [14] gives hints for such an extension.

We did not investigate decidability and complexity issues, however, neither
we paid attention to effectiveness. Handling constraints C is the first difficulty.
To reason on control, we could keep solving simple (e.g., Boolean) constraints,
e.g., by distinguishing, in our model syntax, if-then-else statements. Other
constraints may be abstracted by their associated directed or nondirected bi-
partite graph. Then, techniques such as the conditional dependency graphs of
synchronous languages [12] could be adapted.

We did not investigate either the design of learning and inference algo-
rithms, a central motivation of probabilistic programming. When considering
this subject, we would encounter the problem of correct Monte-Carlo sampling
in learning algorithms, which is extensively studied in [37]. In our context, this
amounts to 1) identifying time-invariant model fragments, 2) applying limit
theorems to them, and finally, 3) combining the results to derive learning al-
gorithms for Mixed Systems or Automata models.

Acknowledgements: The reviewers are gratefully thanked for pointing out weak-
nesses and suggesting improvements, as well as providing important biblio-
graphical items while commenting on the previous versions of this paper.



44 Albert Benveniste, Jean-Baptiste Raclet

9 Conflicts of interest

The authors have no conflict of interest to declare that are relevant to this
article.

References

1. Abbes, S.: Markov two-components processes. Logical Methods in Computer Sci-
ence 9(2) (2013). DOI 10.2168/LMCS-9(2:14)2013. URL https://doi.org/10.2168/

LMCS-9(2:14)2013
2. Abbes, S.: Synchronization of bernoulli sequences on shared letters. Inf. Comput.

255, 1–26 (2017). DOI 10.1016/j.ic.2017.04.002. URL https://doi.org/10.1016/j.

ic.2017.04.002
3. Abbes, S.: Markovian dynamics of concurrent systems. Discrete Event Dynamic Systems

29(4), 527–566 (2019). DOI 10.1007/s10626-019-00291-z. URL https://doi.org/10.

1007/s10626-019-00291-z
4. Abbes, S., Benveniste, A.: Branching cells as local states for event structures and nets:

Probabilistic applications. In: V. Sassone (ed.) Foundations of Software Science and
Computational Structures, 8th International Conference, FOSSACS 2005, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings, Lecture Notes in Computer Science, vol.
3441, pp. 95–109. Springer (2005). DOI 10.1007/978-3-540-31982-5\ 6. URL https:

//doi.org/10.1007/978-3-540-31982-5_6
5. Abbes, S., Benveniste, A.: True-concurrency probabilistic models: Branching cells and

distributed probabilities for event structures. Inf. Comput. 204(2), 231–274 (2006).
DOI 10.1016/j.ic.2005.10.001. URL https://doi.org/10.1016/j.ic.2005.10.001

6. Abbes, S., Benveniste, A.: True-concurrency probabilistic models: Markov nets and a
law of large numbers. Theor. Comput. Sci. 390(2-3), 129–170 (2008). DOI 10.1016/j.
tcs.2007.09.018. URL https://doi.org/10.1016/j.tcs.2007.09.018

7. Abbes, S., Benveniste, A.: Concurrency, sigma-algebras, and probabilistic fairness. In:
L. de Alfaro (ed.) Foundations of Software Science and Computational Structures,
12th International Conference, FOSSACS 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-
29, 2009. Proceedings, Lecture Notes in Computer Science, vol. 5504, pp. 380–394.
Springer (2009). DOI 10.1007/978-3-642-00596-1\ 27. URL https://doi.org/10.

1007/978-3-642-00596-1_27
8. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Stefanesco, L., Strub, P.: Relational

reasoning via probabilistic coupling. In: M. Davis, A. Fehnker, A. McIver, A. Voronkov
(eds.) Logic for Programming, Artificial Intelligence, and Reasoning - 20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, Lecture
Notes in Computer Science, vol. 9450, pp. 387–401. Springer (2015). DOI 10.1007/
978-3-662-48899-7\ 27. URL https://doi.org/10.1007/978-3-662-48899-7_27

9. Baudart, G., Mandel, L., Atkinson, E., Sherman, B., Pouzet, M., Carbin, M.: Reac-
tive probabilistic programming. In: Conference on Programming Language Design and
Implementation (PLDI’20). London, UK (2020). To appear.

10. Bellman, R.: A markovian decision process. Journal of Mathematics and Mechanics
6(5), 679–684 (1957). URL http://www.jstor.org/stable/24900506

11. Benveniste, A., Bourke, T., Caillaud, B., Colaço, J., Pasteur, C., Pouzet, M.: Building
a hybrid systems modeler on synchronous languages principles. Proceedings of the
IEEE 106(9), 1568–1592 (2018). DOI 10.1109/JPROC.2018.2858016. URL https:

//doi.org/10.1109/JPROC.2018.2858016
12. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone, R.:

The synchronous languages 12 years later. Proceedings of the IEEE 91(1), 64–83 (2003)
13. Benveniste, A., Levy, B.C., Fabre, E., Guernic, P.L.: A calculus of stochastic systems

for the specification, simulation, and hidden state estimation of mixed stochastic/non-
stochastic systems. Theor. Comput. Sci. 152(2), 171–217 (1995)

https://doi.org/10.2168/LMCS-9(2:14)2013
https://doi.org/10.2168/LMCS-9(2:14)2013
https://doi.org/10.1016/j.ic.2017.04.002
https://doi.org/10.1016/j.ic.2017.04.002
https://doi.org/10.1007/s10626-019-00291-z
https://doi.org/10.1007/s10626-019-00291-z
https://doi.org/10.1007/978-3-540-31982-5_6
https://doi.org/10.1007/978-3-540-31982-5_6
https://doi.org/10.1016/j.ic.2005.10.001
https://doi.org/10.1016/j.tcs.2007.09.018
https://doi.org/10.1007/978-3-642-00596-1_27
https://doi.org/10.1007/978-3-642-00596-1_27
https://doi.org/10.1007/978-3-662-48899-7_27
http://www.jstor.org/stable/24900506
https://doi.org/10.1109/JPROC.2018.2858016
https://doi.org/10.1109/JPROC.2018.2858016


Mixed Nondeterministic-Probabilistic Automata 45

14. Benveniste, A., Raclet, J.: Mixed nondeterministic-probabilistic automata: Blending
graphical probabilistic models with nondeterminism. CoRR abs/2201.07474 (2022).
URL https://arxiv.org/abs/2201.07474. Https://arxiv.org/abs/2201.07474

15. Borgström, J., Gordon, A.D., Greenberg, M., Margetson, J., Gael, J.V.: Measure trans-
former semantics for bayesian machine learning. In: ESOP, Lecture Notes in Computer
Science, vol. 6602, pp. 77–96. Springer (2011)

16. Boudol, G.: Notes on algebraic calculi of processes. In: K.R. Apt (ed.) Logics and Models
of Concurrent Systems - Conference proceedings, Colle-sur-Loup (near Nice), France,
8-19 October 1984, NATO ASI Series, vol. 13, pp. 261–303. Springer (1984). DOI
10.1007/978-3-642-82453-1\ 9. URL https://doi.org/10.1007/978-3-642-82453-1_9

17. Bruni, R., Melgratti, H.C., Montanari, U.: Concurrency and probability: Removing
confusion, compositionally. Log. Methods Comput. Sci. 15(4) (2019). DOI 10.23638/
LMCS-15(4:17)2019. URL https://doi.org/10.23638/LMCS-15(4:17)2019

18. Bruni, R., Melgratti, H.C., Montanari, U.: Bayesian network semantics for petri nets.
Theor. Comput. Sci. 807, 95–113 (2020). DOI 10.1016/j.tcs.2019.07.034. URL https:

//doi.org/10.1016/j.tcs.2019.07.034
19. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,

Brubaker, M., Guo, J., Li, P., Riddell, A.: Stan: A Probabilistic Programming Language.
Journal of Statistical Software, Articles 76(1), 1–32 (2017). DOI 10.18637/jss.v076.i01.
URL https://www.jstatsoft.org/v076/i01

20. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of qual-
itative and quantitative termination problems for affine probabilistic programs. ACM
Trans. Program. Lang. Syst. 40(2), 7:1–7:45 (2018). DOI 10.1145/3174800. URL
https://doi.org/10.1145/3174800

21. Dahlqvist, F., Kozen, D.: Semantics of higher-order probabilistic programs with con-
ditioning. Proc. ACM Program. Lang. 4(POPL), 57:1–57:29 (2020). DOI 10.1145/
3371125. URL https://doi.org/10.1145/3371125

22. D’Argenio, P.R., Terraf, P.S., Wolovick, N.: Bisimulations for non-deterministic labelled
markov processes. Math. Struct. Comput. Sci. 22(1), 43–68 (2012). DOI 10.1017/
S0960129511000454. URL https://doi.org/10.1017/S0960129511000454

23. Delahaye, B., Katoen, J., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wasowski,
A.: Abstract probabilistic automata. Inf. Comput. 232, 66–116 (2013). DOI 10.1016/
j.ic.2013.10.002. URL https://doi.org/10.1016/j.ic.2013.10.002

24. Dellacherie, C., Meyer, P.: Probabilities and potentials. North-Holland Mathematics
Studies, North-Holland, Amsterdam (1978)

25. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann.
Math. Statist. 38(2), 325–339 (1967). DOI 10.1214/aoms/1177698950. URL https:

//doi.org/10.1214/aoms/1177698950
26. Dempster, A.P.: A generalization of bayesian inference. Journal of the Royal Statistical

Society. Series B (Methodological) 30(2), 205–247 (1968). URL http://www.jstor.

org/stable/2984504
27. Doberkat, E., Terraf, P.S.: Stochastic non-determinism and effectivity functions. J. Log.

Comput. 27(1), 357–394 (2017). DOI 10.1093/logcom/exv049. URL https://doi.org/

10.1093/logcom/exv049
28. Ferns, N., Panangaden, P., Precup, D.: Bisimulation metrics for continuous markov de-

cision processes. SIAM J. Comput. 40(6), 1662–1714 (2011). DOI 10.1137/10080484X.
URL https://doi.org/10.1137/10080484X

29. Forney, D.: Maximum-likelihood sequence estimation of digital sequences in the presence
of intersymbol interference. IEEE Trans. Information Theory 18(3), 363–378 (1972).
DOI 10.1109/TIT.1972.1054829. URL https://doi.org/10.1109/TIT.1972.1054829

30. Gerhold, M., Stoelinga, M.: Model-based testing of probabilistic systems. Formal As-
pects Comput. 30(1), 77–106 (2018). DOI 10.1007/s00165-017-0440-4. URL https:

//doi.org/10.1007/s00165-017-0440-4
31. Givan, R., Dean, T.L., Greig, M.: Equivalence notions and model minimization in

markov decision processes. Artif. Intell. 147(1-2), 163–223 (2003). DOI 10.1016/
S0004-3702(02)00376-4. URL https://doi.org/10.1016/S0004-3702(02)00376-4

32. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. CoRR abs/1206.3255 (2012). URL
http://arxiv.org/abs/1206.3255

https://arxiv.org/abs/2201.07474
https://doi.org/10.1007/978-3-642-82453-1_9
https://doi.org/10.23638/LMCS-15(4:17)2019
https://doi.org/10.1016/j.tcs.2019.07.034
https://doi.org/10.1016/j.tcs.2019.07.034
https://www.jstatsoft.org/v076/i01
https://doi.org/10.1145/3174800
https://doi.org/10.1145/3371125
https://doi.org/10.1017/S0960129511000454
https://doi.org/10.1016/j.ic.2013.10.002
https://doi.org/10.1214/aoms/1177698950
https://doi.org/10.1214/aoms/1177698950
http://www.jstor.org/stable/2984504
http://www.jstor.org/stable/2984504
https://doi.org/10.1093/logcom/exv049
https://doi.org/10.1093/logcom/exv049
https://doi.org/10.1137/10080484X
https://doi.org/10.1109/TIT.1972.1054829
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1016/S0004-3702(02)00376-4
http://arxiv.org/abs/1206.3255


46 Albert Benveniste, Jean-Baptiste Raclet

33. Goodman, N.D., Stuhlmüller, A.: The Design and Implementation of Probabilistic Pro-
gramming Languages. http://dippl.org (2014). Accessed: 2021-4-20

34. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming.
In: J.D. Herbsleb, M.B. Dwyer (eds.) Proceedings of the on Future of Software Engineer-
ing, FOSE 2014, Hyderabad, India, May 31 - June 7, 2014, pp. 167–181. ACM (2014).
DOI 10.1145/2593882.2593900. URL https://doi.org/10.1145/2593882.2593900

35. Gupta, V., Jagadeesan, R., Panangaden, P.: Stochastic processes as concurrent con-
straint programs. In: POPL, pp. 189–202. ACM (1999)

36. Hsu, J.: Probabilistic couplings for probabilistic reasoning. CoRR abs/1710.09951
(2017). URL http://arxiv.org/abs/1710.09951

37. Hur, C., Nori, A.V., Rajamani, S.K., Samuel, S.: A provably correct sampler for proba-
bilistic programs. In: P. Harsha, G. Ramalingam (eds.) 35th IARCS Annual Conference
on Foundation of Software Technology and Theoretical Computer Science, FSTTCS
2015, December 16-18, 2015, Bangalore, India, LIPIcs, vol. 45, pp. 475–488. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2015). DOI 10.4230/LIPIcs.FSTTCS.2015.
475. URL https://doi.org/10.4230/LIPIcs.FSTTCS.2015.475

38. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: LICS, pp.
186–195. IEEE Computer Society (1989)

39. Katoen, J., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding proba-
bilistic programs. In: R. Meyer, A. Platzer, H. Wehrheim (eds.) Correct System Design
- Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday,
Oldenburg, Germany, September 8-9, 2015. Proceedings, Lecture Notes in Computer
Science, vol. 9360, pp. 15–32. Springer (2015). DOI 10.1007/978-3-319-23506-6\ 4.
URL https://doi.org/10.1007/978-3-319-23506-6_4

40. Kindermann, R., Snell, L.: Markov random fields and their applications, vol. 1. American
Mathematical Society (1980). DOI http://dx.doi.org/10.1090/conm/001

41. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–350
(1981)

42. Lehmann, E.L., Romano, J.P.: Testing statistical hypotheses, third edn. Springer Texts
in Statistics. Springer, New York (2005)

43. Loeliger, H..: An introduction to factor graphs. IEEE Signal Processing Magazine 21(1),
28–41 (2004)

44. Lunn, D., Spiegelhalter, D., Thomas, A., Best, N.: The BUGS project: Evolution, cri-
tique and future directions. Statistics in Medicine 28(25), 3049–3067 (2009). DOI 10.
1002/sim.3680. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.3680

45. Lynch, N.A., Segala, R., Vaandrager, F.W.: Compositionality for probabilistic au-
tomata. In: Proc. of the 14th International Conference on Concurreny Theory (CON-
CUR’03), Lecture Notes in Computer Science, vol. 2761, pp. 204–222. Springer (2003)

46. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems.
Monographs in Computer Science. Springer (2005). DOI 10.1007/b138392. URL https:

//doi.org/10.1007/b138392

47. McIver, A., Morgan, C.: Correctness by construction for probabilistic programs. In:
T. Margaria, B. Steffen (eds.) Leveraging Applications of Formal Methods, Verifica-
tion and Validation: Verification Principles - 9th International Symposium on Lever-
aging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30,
2020, Proceedings, Part I, Lecture Notes in Computer Science, vol. 12476, pp. 216–
239. Springer (2020). DOI 10.1007/978-3-030-61362-4\ 12. URL https://doi.org/10.

1007/978-3-030-61362-4_12

48. van de Meent, J.W., Paige, B., Yang, H., Wood, F.: An introduction to probabilistic
programming (2018)

49. Olmedo, F., Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J., McIver, A.: Conditioning
in probabilistic programming. ACM Trans. Program. Lang. Syst. 40(1), 4:1–4:50 (2018).
DOI 10.1145/3156018. URL https://doi.org/10.1145/3156018

50. Pearl, J.: Fusion, propagation, and structuring in belief networks. Artif. Intell. 29(3),
241–288 (1986). DOI 10.1016/0004-3702(86)90072-X. URL https://doi.org/10.1016/

0004-3702(86)90072-X

51. Pearl, J.: Causality, 2 edn. Cambridge University Press, Cambridge, UK (2009). DOI
10.1017/CBO9780511803161

http://dippl.org
https://doi.org/10.1145/2593882.2593900
http://arxiv.org/abs/1710.09951
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.475
https://doi.org/10.1007/978-3-319-23506-6_4
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.3680
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/978-3-030-61362-4_12
https://doi.org/10.1007/978-3-030-61362-4_12
https://doi.org/10.1145/3156018
https://doi.org/10.1016/0004-3702(86)90072-X
https://doi.org/10.1016/0004-3702(86)90072-X


Mixed Nondeterministic-Probabilistic Automata 47

52. Plummer, M.: JAGS: A program for analysis of Bayesian graphical models using Gibbs
sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical
Computing (DSC 2003) (2003). DOI 10.1007/b98484. URL https://www.r-project.

org/conferences/DSC-2003/. K Hornik, F Leisch, A Zeileis (eds.)
53. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic programming.

John Wiley & Sons (2014)
54. Rabiner, L.R., Juang, B.H.: An introduction to hidden markov models. IEEE ASSp

Magazine (1986)
55. Segala, R.: Probability and nondeterminism in operational models of concurrency. In:

Proc. of the 17th International Conference on Concurrency Theory (CONCUR’06),
Lecture Notes in Computer Science, vol. 4137, pp. 64–78. Springer (2006)

56. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. In: Proc.
of the 5th International Conference on Concurrency Theory (CONCUR’94), Lecture
Notes in Computer Science, vol. 836, pp. 481–496. Springer (1994)

57. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton
(1976)

58. Sokolova, A., de Vink, E.P.: Probabilistic automata: System types, parallel composition
and comparison. In: C. Baier, B.R. Haverkort, H. Hermanns, J. Katoen, M. Siegle (eds.)
Validation of Stochastic Systems - A Guide to Current Research, Lecture Notes in Com-
puter Science, vol. 2925, pp. 1–43. Springer (2004). DOI 10.1007/978-3-540-24611-4\ 1.
URL https://doi.org/10.1007/978-3-540-24611-4_1

59. Staton, S., Yang, H., Wood, F.D., Heunen, C., Kammar, O.: Semantics for probabilistic
programming: higher-order functions, continuous distributions, and soft constraints. In:
M. Grohe, E. Koskinen, N. Shankar (eds.) Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8,
2016, pp. 525–534. ACM (2016). DOI 10.1145/2933575.2935313. URL https://doi.

org/10.1145/2933575.2935313

60. Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications
to the strong maximum principle. In: Proceedings of the Sixth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 3: Probability Theory, pp. 333–359.
University of California Press, Berkeley, Calif. (1972). URL https://projecteuclid.

org/euclid.bsmsp/1200514345

61. Tix, R., Keimel, K., Plotkin, G.: Semantic domains for combining probability and non-
determinism. Electr. Notes Theor. Comput. Sci. 222, 3–99 (2009)

62. Tolpin, D., Zhou, Y., Rainforth, T., Yang, H.: Probabilistic programs with stochas-
tic conditioning. In: M. Meila, T. Zhang (eds.) Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, Proceed-
ings of Machine Learning Research, vol. 139, pp. 10312–10323. PMLR (2021). URL
http://proceedings.mlr.press/v139/tolpin21a.html

63. Wang, D., Hoffmann, J., Reps, T.W.: A denotational semantics for low-level probabilistic
programs with nondeterminism. In: B. König (ed.) Proceedings of the Thirty-Fifth
Conference on the Mathematical Foundations of Programming Semantics, MFPS 2019,
London, UK, June 4-7, 2019, Electronic Notes in Theoretical Computer Science, vol.
347, pp. 303–324. Elsevier (2019). DOI 10.1016/j.entcs.2019.09.016. URL https://doi.

org/10.1016/j.entcs.2019.09.016

https://www.r-project.org/conferences/DSC-2003/
https://www.r-project.org/conferences/DSC-2003/
https://doi.org/10.1007/978-3-540-24611-4_1
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1145/2933575.2935313
https://projecteuclid.org/euclid.bsmsp/1200514345
https://projecteuclid.org/euclid.bsmsp/1200514345
http://proceedings.mlr.press/v139/tolpin21a.html
https://doi.org/10.1016/j.entcs.2019.09.016
https://doi.org/10.1016/j.entcs.2019.09.016


48 Albert Benveniste, Jean-Baptiste Raclet

In this supplementary material, we further detail the comparison between our model
and imperative probabilistic programming. Then, we collect all the missing proofs.

A Addendum and Proofs Regarding Mixed Systems

A.1 Comparison with imperative probabilistic programming, see Discussion 1

In this appendix, we compare our model of Mixed Systems with imperative probabilistic
programming following the approach promoted by Mc Iver and Morgan [46,47]. This line of
work addresses probabilistic extensions of Hoare logic for imperative programs, focusing on
evaluating the probability of the weakest preconditions of properties. In addition, we like to
compare our approach with one aspect of this work, namely the modeling of the blending
of probability and nondeterminism—this is only a minor aspect of the work of Mc Iver and
Morgan, which focuses on decidability issues and computational cost of their proposed logic.

A.1.1 Demonic/angelic nondeterminism

We choose to base our comparison on a different work in the same direction: [20], which
provides the most extensive development on demonic/angelic blending of probability and
nondeterminism in the language Apps. We do not claim to cover all aspects of Apps, since
this reference focuses on checking almost sure termination using supermartingale techniques.
Since our scope is more modest in this appendix, we will only develop an informal comparison
based on the following example corresponding to Fig. 2 of [20], reproduced here as Figs. 6
and 7.

The program and its semantics are self-speaking. A key point here is the role of demonic
and angelic nondeterminisms, and their combination in this program. Let us consider the
post-condition

P : x gets increased by one by performing Q3 . (56)

The question is: how do we assess P? Under demonic choice, P is violated if there exists some
branch in the nondeterministic choice under which P is violated. Under angelic choice, P is
violated if, for all branches in the nondeterministic choice, P is violated. Inspecting Fig. 7
shows that P is violated if and only if Q1 is selected. Thus the probabilistic score that P is
violated is 0.6—we do not use the term “probability” since P combines both probabilistic
and nondeterministic features and cannot be given a true probability.

Can we cast this example into Mixed Systems?

A.1.2 Casting this example to Mixed Systems?

Consider the following attempt by defining the Mixed System SQ3
= {(Ω, π), C, {x, x′}},

where:

– Ω = {Q1, Q2} and π(ω=Q1) = 0.6, π(ω=Q2) = 0.4;
– Variable x, x′ correspond to the statuses of variable x of Q3 from Fig. 7, before and

after executing Q3; the value of x is assumed and the value of x′ will be established by
sampling SQ3

;
– It remains to define relation C involving ω, x, x′. To mimic Fig. 7, we would like to write

something like
x′ = if ω = Q1 then angel x′ ∈ {x− 1, x+ 1}

else demon x′ ∈ {x− 1, x+ 1}
Unfortunately, angelic/demonic choices are not concepts of our Mixed Systems model
following Definition 1. Concerning probabilistic evaluation of state properties (item 3 of Def-
inition 1), we could specify whether we use π (mirroring demonic) or π (mirroring angelic).
Still, this does not allow to combine of both alternatives for different parts of the system.



Mixed Nondeterministic-Probabilistic Automata 49

x := 0;
while x ≥ 0 do

if prob(0.6) then
if angel then

x := x+ 1
else

x := x− 1
fi

else

if demon then

x := x+ 1
else

x := x− 1
fi

fi

od

Q1

Q2

Verbatim from [20]: There is only one program variable x
and no random variables. There is a while loop, where given
a probabilistic choice, one of two statement blocks Q1 or Q2

is executed. The block Q1 (resp., Q2) is chosen to execute
stochastically w.r.t. the probabilistic choice (Q1 is selected
with probability 0.6). The statement block Q1 (resp., Q2) is
an angelic (resp., demonic) conditional statement to either
increment or decrement x.
Following [20], call Q3 the body of the while loop of this
example: while x ≥ 0 do Q3.

Fig. 6 Example of Fig. 2 of [20]

Fig. 7 Semantics: SGS (Stochastic Game Structure) of Q3, Fig. 6 of [20]. The execution be-
gins with the probabilistic choice. The left branch (corresponding toQ1) is selected according
to demonic nondeterminism figured by a triangle, and the right branch (corresponding to
Q2) is selected according to angelic nondeterminism, figured by a diamond.

We propose to refine Definition 1 so that both types of nondeterminism can be freely
combined. Let us investigate this in the above example. Consider the Mixed System

S = (Ω, π,X,C) , (57)

where:

– Ω = {Q1, Q2} and π(ω = Q1) = 0.6, π(ω = Q2) = 0.4;
– Variable x, x′ correspond to the statuses of variable x of Q3 from Fig. 7, before and

after executing Q3; the value of x is assumed and the value of x′ will be established by
sampling SQ3

;
– Relation C is (yet informally) defined by

ωCx′ iff

ω = Q1 ∧ angel x′ ∈ {x−1, x+1}
or
ω = Q2 ∧ demon x′ ∈ {x−1, x+1}

(58)

This definition for C is informal, since keywords demon and angel have no mathematical
meaning by themselves. We will give a semantics to (58) by assigning, to each state predicate,



50 Albert Benveniste, Jean-Baptiste Raclet

a probabilistic score π∗. More precisely, we define π∗(¬P ), the probabilistic score of predicate
¬P , by the following formula:

π∗(¬P ) =def πc ({ω | ω=Q1 ∧ ∃x′∈{x−1, x+1} : ¬P})
+πc ({ω | ω=Q2 ∧ ∀x′∈{x−1, x+1} : ¬P}) (59)

In this formula, we give a semantics to angel in (58) by using the existential quantifier,
i.e., we use the outer probability to evaluate the corresponding state predicate; we give a
semantics to the demon in (58) by using the universal quantifier, i.e., we use the inner
probability to evaluate the corresponding state predicate. Now, for this example, πc = π
since, with relation (58), for both choices ω = Q1 and ω = Q2, corresponding values for
state x′ exist. Formula (59) finally yields π∗(¬P ) = 0.6.

The above coding applies only to a restricted class of relations C. In formula (59),
we exploited the fact that, in relation C defined by (58), a partition of Ω is performed
first (probabilistic choice). Then, each branch of this choice involves a pure state predicate
independent from ω.

Here are some hints to extend this link beyond the particular example. Our starting
point is the semantics of Apps, which is expressed in terms of Stochastic Game Structures
(SGS); see Definition 2.3 of [20]. Since Mixed Systems do not support recursion, we consider
only the subclass of SGS that are DAGs. Then, picking a probabilistic location ` of this
SGS, we consider the maximal subgraph of this SGS that has ` as its only minimal location,
and contains no other probabilistic location. For our example (57,58,59), this yields the
whole SGS. For each such subgraph, a coding similar to (57,58,59) can be given. The par-
tially ordered execution of the whole SGS is then mapped to a Bayesian network following
Definition 9. The incremental sampling of this Bayesian Network would correspond to the
execution of the SGS as a game.

We preferred not to refine our Mixed System model with this additional feature since:
1) it applies only to a restricted class of relations C, and 2) we believe it to be incompatible
with having a parallel composition.

A.2 Proof of Lemma 2

Proof It is enough to prove the result for compressed systems. For i = 1, 2, let Si ≡ S′i and
let ϕi be the bijections defining the two equivalences. We define

ϕ(ω, q1 t q2) =
(
(ω′1, ω

′
2), q′1 t q′2

)
where (ω′i, q

′
i) = ϕi(ωi, qi), i = 1, 2

and we have to verify that ϕ defines the desired equivalence between S =def S1 ‖S2 and
S′ =def S

′
1 ‖S′2. Using the fact that π = π1 × π2, we get

Cπ = {(p1 t p2, ω, q1 t q2) | q1 ./ q2 ∧ ω1C1q1 ∧ π1(ω1)>0 ∧ ω2C2q2 ∧ π2(ω2)>0}
= {(p, ω, q1 t q2) | q1 ./ q2 ∧ ω1C1πq1 ∧ ω2C2πq2}

Thus, for every (p, ω, q1 t q2) ∈ Cπ , we have q′1 = q1 ./ q2 = q′2 and ω′iCiπq
′
i, i = 1, 2, whence

ω′C′πq
′ and ϕ is a bijection. Since π′ = π′1 × π′2 we get π′(ω′) = π(ω), which finishes the

proof.

B Proofs Regarding Mixed Bayesian Networks

B.1 Proof of Theorem 2

Proof We will repeatedly use notation (34). Without loss of generality we can assume that
S is compressed. We first compress MarginY (S) by considering the following equivalence



Mixed Nondeterministic-Probabilistic Automata 51

relation, where Z = X \ Y and qY , qZ are valuations for Y and Z:

ω′ ∼Y ω iff ∀qY :

 ∃qZ : ωC(qY , qZ)
m

∃q′Z : ω′C(qY , q
′
Z)

; let ωY be the equivalence class of ω.

Let

CY =def {(ωY , qY ) ∈ ΩY ×QY | ∃ω ∈ ωY : ωPrY(C) qY }

be the associated relation, and let πY be the compressed probability defined by πY (ωY ) =∑
ω∈ωY

π(ω). Let us denote by

SY = (ΩY , πY , Y, CY )

the resulting compressed system, and we recall that Ωc
Y = {ωY | ∃qY : ωY CY qY }. In the

sequel, we feel free to identify ωY ∈ ΩY , an element of the set of equivalence classes, with
ωY seen as a subset of Ω saturated for ∼Y . This way, a subset of ΩY can also be interpreted
as a subset of Ω.

To prove the theorem, we compare the two probabilistic semantics, namely: which state
can be output and what is the outer probability of producing it. By definition of the se-
quential composition of kernels, MarginY (S) ;CondY (S)

1. samples MarginY (S) ; qY ; and, then

2. given qY , samples (Y=qY ) ‖S.

Regarding the relations governing the nondeterministic choice, the combination of these two
steps is identical to C. Let q∗ be such that S ; q∗, implying that MarginY (S) ; q∗Y ,
where q∗Y =def PrY(q∗). Let us evaluate the outer probabilistic score of q∗ for the Bayesian
network MarginY (S) ;CondY (S), i.e., the probability that q∗ is a possible outcome of
sampling MarginY (S) ;CondY (S). We need to prove that it is equal to the probability
that q∗ is a possible outcome of S, namely πc(Cq∗ )—we used notation (29). To show this,
we note the following:

1. To output q∗ we first must output q∗Y , which amounts to selecting ωY such that
ωY CY q∗Y . Using (12), (28) and notation (29), the probabilistic score of q∗Y , i.e., the
probability that q∗Y is a possible outcome of MarginY (S), is equal to

πc
Y

(
(CY )q∗Y

)
(60)

which is > 0 since MarginY (S) ; q∗Y .

2. Then, we must select ω using S, under the additional constraint that PrY(q) =q∗Y ,
which requires that we sample ω ∈ Ω under the constraint that ω ∈ ωY for some
ωY ∈ (CY )q∗Y . The corresponding probabilistic score is thus equal to the conditional
probability

πc
(
Cq∗ | (CY )q∗Y

)
, (61)

which is well defined since πc
Y ((CY )q∗Y ) > 0.

3. By (33), the probabilistic score of q∗ is equal to the product of the two scores (60) and
(61):

πc
(
Cq∗ | (CY )q∗Y

)
πc
Y

(
(CY )q∗Y

)
= πc

(
Cq∗ ∩ (CY )q∗Y

)
= πc

(
Cq∗

)
,

where the last equality follows from Cq∗ ⊆ (CY )q∗Y .

This shows that q∗ possesses identical probabilistic semantics, for the left and right hand
side of Bayes formula.



52 Albert Benveniste, Jean-Baptiste Raclet

B.2 Proof of Corollary 1

As a prerequisite, we need the following result:

Lemma 5 Let S1 and S2 be any two Mixed Systems, and let Y be a set of variables
containing X1∩X2. Then, we have: MarginX1∪Y (S1 ‖S2) ≡ S1 ‖MarginY (S2).

Proof This is immediate by observing that, first, MarginX1∪Y (S1 ‖S2) on the one hand,
and S1 ‖MarginY (S2) on the other hand, possess identical probability spaces, namely
(Ω1, π1)×(Ω2, π2), and, second, they possess identical relations PrX1∪Y(C1∧C2) = C1 ∧
PrX1∪Y(C2) = C1 ∧PrY(C2). 2

With this lemma, we can now proceed to the proof of Corollary 1. For proving formula
(35), we first apply Theorem 2 with S replaced by S1 ‖S2, which yields: S1 ‖S2 ≡P
MarginX1∪Y (S1 ‖S2) ;CondY (S1 ‖S2). Then, by Lemma 5, MarginX1∪Y (S1 ‖S2) ≡
S1 ‖MarginY (S2) and then we conclude by observing that(

S1 ‖MarginY (S2)
)
;CondY (S1 ‖S2) ≡P

(
S1 ‖MarginY (S2)

)
;CondY (S2) ,

since the outcome of S1 is determined by the left hand factor of “;”.

B.3 Proof of Theorem 3

Having proved Lemma, the proof of Theorem 3 reproduces exactly the reasoning steps estab-
lishing the message-passing algorithm mapping factor graphs to Mixed Bayesian Networks
in the classical setting [43]; thus, we only sketch the argument of the proof here.

Proof Since GS is a tree, a natural distance can be defined on the set of vertices of GS by
taking the length of the unique path linking two vertices. Select an arbitrary system So as
an origin and partially order other systems according to their distance to the origin, let �
be this partial order. We have thus made GS a rooted tree, which we can see as a DAG.
Then, the following two rules, known as message passing, are considered:

R1: Pick S ∈ GS , let S↑ be its (unique) ancestor in the tree and let X↑ be the set of common
variables of S↑ and S. Then, let S< denote the parallel composition of all strict ancestors
of S in GS and let X< be the set of variables of S<. Using Bayes formula, factor S as

S ≡P MarginX↑ (S) ;CondX↑ (S) ≡P MarginX< (S) ;CondX< (S) ,

where the second equivalence follows from the fact that additional variables belonging
to X< \X↑ are not shared with S.

R2: Using formula (35) of Lemma 1, reorganize S by rewriting

S< ‖S ≡P
(
S< ‖MarginX< (S)

)
; CondX< (S) .

Rules R1 followed by R2 are successively applied starting from the leaves of the tree, down
to its root. The result is a Mixed Bayesian Network.

B.4 Proof of Theorem 4

The proof is by induction over the cardinality n of the set K of Mixed Kernels involved in
N . Its induction step uses the formula (36) of Corollary 2.

If n = 1, then, by Condition 1, N is a Mixed Kernel K with no input, i.e., a Mixed
System S by Convention 1. By (37), we have S ≡ SK , hence SK ≡P K. Thus, N and SN
are probabilistically equivalent.



Mixed Nondeterministic-Probabilistic Automata 53

We assume the theorem is true for a cardinality of n−1 and prove it for a cardinality of
n. Chose K∗ ∈ K such that K is maximal for the order defined by DAG N , and let N1 be
the restriction of N to K−{K∗} and N2 =def {K∗}. Then, N = N1 ∪N2 by construction.
Referring to (38), set S =def SN , S1 =def SN1

, and S2 =def SN2
.

First, S ≡ S1 ‖S2 holds by construction of the embedding N 7→ SN defined in (38).
Next, since the inputs of N2 are outputs of N1 and by Condition 2 of Theorem 4, it follows
that

S1 ‖MarginY (S2) ≡ S1 ,

where Y is the set of shared variables between S1 and S2. Hence, we can apply formula (36)
of Corollary 2 to the pair (S1, S2) of Mixed Systems, which yields:

S ≡ S1 ‖S2 ≡P S1;CondY (S2) . (62)

By induction hypothesis, we have

S1 ≡P N1 and S2 ≡P N2 . (63)

By definition of the binary operator “;”, see (32), the following identity holds:

N1;CondY (S2) = N1 ∪N2 .

Combining this identity with (62) and (63) finishes the proof of the induction step.

C Proofs Regarding Mixed Automata

C.1 Proof of Lemma 3

Proof The result is immediate if both S1 and S′1 are compressed, see Definition 4. It is thus
sufficient to prove the lemma for the following two particular cases: S1 compresses to S′1,
and the converse.

Consider first the case: S1 compresses to S′1. Let w(ω1, ω2) be the weighting function
associated to the lifting S1 ρS S2, and let π′1(ω′1) =

∑
ω1∈ω′1

π1(ω1) be the relation between

π′1 and π1 in the compression of S1 to S′1. Then w′(ω′1, ω2) =
∑
ω1∈ω′1

w(ω1, ω2) defines

the weighting function associated to the lifting S′1 ρ
S S2. The other properties required to

deduce S′1 ρ
S S2 are immediate to prove.

Now, consider the alternative case: S′1 compresses to S1, with relation

π1(ω1) =
∑
ω′1∈ω1

π′1(ω′1) (64)

between π′1 and π1, where ω′1 ∈ ω1 means that ω1 is the equivalence class of ω′1 with respect
to relation ∼ defined in (19) when compressing S′1. This case is slightly more involved since
the weighting function w′(ω′1, ω2) needs to be constructed. We need w′(ω′1, ω2) to satisfy
the following relations:

∀ω′1 : π′1(ω′1) =
∑
ω2
w′(ω′1, ω2)

∀ω2 : π2(ω2) =
∑
ω′1
w′(ω′1, ω2)

∀(ω′1, ω2; q1) :

[
w′(ω′1, ω2) > 0

ω′1 C
′
1 q1

]
⇒ ∃q2 :

[
ω2 C2 q2
q1 ρ q2

]
.

(65)

Focus first on the first two lines of (65). The following calculation shows that

w′(ω′1, ω2) =def w(ω1, ω2)×
π′1(ω′1)

π1(ω1)
× 1(π1(ω1)>0) ,



54 Albert Benveniste, Jean-Baptiste Raclet

where ω1 is such that ω′1 ∈ ω1 and 1(B) equals 1 if predicate B is true and 0 otherwise,
yields a weighting function w′ satisfying the first two lines of (65):

∑
ω2

w′(ω′1, ω2) =
∑
ω2

(
w(ω1, ω2)×

π′1(ω′1)

π1(ω1)
× 1(π1(ω1)>0)

)

=
π′1(ω′1)

π1(ω1)
× 1(π1(ω1)>0)×

∑
ω2

w(ω1, ω2) = π′1(ω′1)

∑
ω′1

w′(ω′1, ω2) =
∑
ω′1

(
w(ω1, ω2)×

π′1(ω′1)

π1(ω1)
× 1(π1(ω1)>0)

)

=
∑
ω1

(
w(ω1, ω2)×

1

π1(ω1)
× 1(π1(ω1)>0)

) ∑
ω′1∈ω1

π′1(ω′1)

︸ ︷︷ ︸
=π1(ω1)

=
∑
ω1

w(ω1, ω2) = π2(ω2) .

We move to the third line of (65). The conditions w′(ω′1, ω2) > 0 and ω′1 C
′
1 q1 together

imply w(ω1, ω2) > 0 and ω1 C1 q1 where ω1 is the equivalence class of ω′1, i.e., ω′1 ∈ ω1. The
right hand side then follows since we have S1 ρS S2. This finishes the proof.

C.2 Proof of Lemma 4

Proof Set M ′ =def M
′
1 ‖M ′2 and M =def M1 ‖M2. Define the relation ≤ between Q′ and

Q by: q′ ≤ q iff q′1 ≤1 q1 and q′2 ≤2 q2. Let us prove that ≤ is a simulation. Let q′ be

such that q′
α−→M′ S

′ for some consistent S′. Then, q′ = q′1 t q′2 and S′ = S′1 ‖S′2. By

definition of the parallel composition, we have q′i
αi−→M′i

S′i for i = 1, 2, with α1 ./Σ α2

and α = α1 tΣ α2. Since q′i ≤ qi, we derive the existence (and uniqueness) of consistent

systems Si, i = 1, 2 such that qi
αi−→Mi

Si. Since q = q1 t q2 we have q1 ./ q2 and, thus, by

definition of the parallel composition, we deduce r
α−→M S1 ‖S2. It remains to show that

S1 ‖S2 is consistent. To prove this, remember that S′ = S′1 ‖S′2 is consistent. Thus, there
exist compatible q′1 and q′2 such that S′i; q′i, i = 1, 2. By definition of the simulations ≤i,
we deduce that Si; qi, i = 1, 2, which shows that S1 ‖S2 is consistent.

D Proofs Regarding the comparison with Probabilistic Automata

D.1 Proof of Theorem 5 regarding Simple Probabilistic Automata

D.1.1 Statement 1 of Theorem 5: from SPA to Mixed Automata

Proof The sampling of spa P is: if P is in state q∈Q, performing α∈Σ leads to some target
set of probability distributions over Q, of which one is selected, nondeterministically, and
used to draw at random the next state q′.

We can reinterpret this sampling as follows: performing α∈Σ while being in state q∈Q
leads to the same target set of probability distributions over Q, that we use differently. We
form the direct product of all distributions belonging to the target set and, we perform
one trial according to this distribution, i.e., we perform independent random trials for all
probabilities belonging to the target set. This yields a tuple of candidate values for the next
state, of which we select one nondeterministically.



Mixed Nondeterministic-Probabilistic Automata 55

Clearly, these two samplings produce identical outcomes. The latter is the sampling of
Mixed Automaton

MP = (Σ, {ξ}, q0,→P ) , (66)

defined as follows:

1. Alphabet Σ of MP is identical to that of P ;
2. The unique variable ξ of MP enumerates the values of Q, and initial state q0 is identical

to that of P ; hence, P and MP possess identical sets of states, related via the identity
map;

3. →P maps a pair (q, α) ∈ Q×Σ to the mixed system S(q) = (Ω,Π, ξ, q, C), where:
(a) Ω is the product of n copies of Q, where n is the cardinality of the set {π |

(q, α, π)∈ →}; thus, ω is an n-tuple of states: ω=(q1, . . . , qn).
(b) Π is the product of all probabilities belonging to {π | (q, α, π)∈ →};
(c) Relation C is defined by (ω, q′) ∈ C if and only if q′ ∈ {q1, . . . , qn}.

So, we map spa P to Mixed Automaton MP , defined in (66).

Mapping simulation relations: Defining simulation relations for pa requires lifting relations
from states to distributions over states. The formal definition for this lifting, as given in
Section 4.1 of [55], corresponds to our Definition 15 when restricted to purely probabilistic
mixed systems. The same holds for the strong simulation relation defined in Section 4.2 of
the same reference: it is verbatim our Definition 16 when restricted to purely probabilistic
mixed systems. This proves the part of Theorem 5 regarding simulation.

Mapping parallel composition: We move to parallel composition, for which the reader is
referred to [45], Section 3. For P1 = (Σ,Q1, q0,1,→1) and P2 = (Σ,Q2, q0,2,→2) two PA,
their parallel composition is P = P1 ‖P2 = (Σ,Q1 ×Q2, (q0,1, q0,2),→), where

(q1, q2)
α−→ π1×π2 iff qi

α−→i πi for i = 1, 2 (67)

So, on one hand we consider the Mixed Automaton MP . On the other hand, we con-
sider the parallel composition of their images MP1

and MP2
, namely M = MP1

‖MP2
=

(Σ, {ξ1, ξ2}, (q0,1, q0,2),→12). In M , the state space is the domain of the pair (ξ1, ξ2), namely
Q1×Q2, and, since there is no shared variable between the two Mixed Automata, the tran-
sition relation →12 is given by:

(q1, q2)
α−→12 S1 ‖S2 iff qi

α−→i Si for i = 1, 2 (68)

We thus need to show that

MP and M are simulation equivalent. (69)

We will actually show that the identity relation between the two state spaces (both are equal
to Q1 ×Q2) is a simulation relation in both directions.

Observe first that (67) and (68) differ in that the former involves a nondeterministic
transition relation, whereas the latter involves a deterministic transition function, mapping
states to mixed systems. Pick (q1, q2) ∈ Q1 ×Q2 and consider a transition for MP :

(q1, q2)
α−→MP

S = ((Ω,Π), ξ, (q1, q2), C)

where we have, for S:

– Ω is the product of n1 copies of Q1 and n2 copies of Q2, where, for i = 1, 2, ni is the
cardinality of the set {πi | (qi, α, πi) ∈→i}, so that ω identifies n1 × n2-tuple of states:
ω = (q11, . . . , q1n1 ; q21, . . . , q2n2 );

– Π is the product of all probabilities belonging to set {π1 × π2 | (qi, α, πi) ∈→i};
– ξ has domain Q1 ×Q2;
– (ω, (q′′1 , q

′′
2 )) ∈ C if and only if

(q′′1 , q
′′
2 ) ∈ {(q1i1 , q2i2 ) | i1 ∈ {1, . . . , n1} and i2 ∈ {1, . . . , n2}} .



56 Albert Benveniste, Jean-Baptiste Raclet

Next, pick (q1, q2) ∈ Q1 ×Q2 and consider a transition for M , see (68). We need to detail
what S1 ‖S2 = ((Ω′, Π′), ξ′, (q1, q2), C′) is. We have, for S1 ‖S2:

– Ω′ is still the product of n1 copies of Q1 and n2 copies of Q2;
– Π′ is the product Π1×Π2, where Πi is the product of all probabilities belonging to set
{πi | (qi, α, πi) ∈→i};

– ξ′ has domain Q1 ×Q2;
– (ω, (q′1, q

′
2)) ∈ C′ if and only if

(q′1, q
′
2) ∈ {(q1i1 , q2i2 ) | i1 ∈ {1, . . . , n1} and i2 ∈ {1, . . . , n2}} .

By associativity of ×, Π′ = Π, whereas other items for S on the one hand and other items
for S1 ‖S2 on the other hand, are synctatically identical. Thus (69) follows.

D.1.2 Statement 2 of Theorem 5: from Mixed Automata to SPA

Proof Consider the following reverse mapping M 7→PM , from Mixed Automata to spa:

1. The alphabet Σ of PM is identical to that of M ;
2. The set of states Q of PM is equal to the set of states of M , namely the domain of its

set X of variables;
3. For S = (Ω, π,X, p, C), decompose relation {(ω, q)|ωCq} as

⋃
ψ∈ΨC

graph(ψ), where ΨC
denotes the set of all partial functions Ω → Q, mapping each ω ∈ ∃q.C to some q such
that ωCq. Then, we consider, for each ψ ∈ ΨC , the measure defined by ψ[π](q) =def

π(ψ−1(q)), where ψ−1(q) = {ω|ψ(ω)=q} (ψ[π] is the image of π by ψ), and we renor-
malize it by considering

ψ[π]

ψ[π](Q)
,

thus obtaining a probability distribution over Q. This defines a subset PS ⊆ P(Q) of
probability distributions.

4. The transition relation of PM is defined as follows:

→PM
= {(p, α, µ) | ∃S : (p, α, S) ∈ →M and µ ∈ PS} (70)

Consider two Mixed Automata M,M ′ and let ≤ be a simulation relation between their state

spaces Q and Q′: q ≤ q′ and q
α−→M S imply the existence of S′ ∈ S(Q′) such that S ≤S S′

and q′
α−→M′ S

′. We need to show that the same relation ≤ ⊆ Q×Q′ is also a simulation

relation for spa. Let q
α−→PM

µ be a transition of spa PM . By (70), there exists a Mixed

System S such that q
α−→M S and µ ∈ PS . Since ≤ is a simulation relation for Mixed

Automata, there exists S′ ∈ S(Q′) such that S ≤S S′ and q′
α−→M′ S

′. Now, S ≤S S′

expands as follows: There exists a weighting function w : Ω × Ω′ → [0, 1] such that the
following two conditions hold:

1. For every triple (ω, ω′; q) such that w(ω, ω′) > 0 and ωCq, there exists q′ such that
ω′C′q′ and q ≤ q′;

2. w projects to π and π′, respectively.

Let ψ ∈ ΨC be the selection function giving rise to µ following step 3, meaning that µ is
obtained by renormalizing ψ[π]. Select any ω ∈ ∃q.C and let q = ψ(ω). Select any ω′ such
that w(ω, ω′) > 0 and assign to it one q′ such that ω′C′q′ and q ≤ q′ (such an q′ exists by
the above Condition 1). This selection procedure defines a selection function ψ′ : ∃q′C′ →
Q′, mapping the ω′ of the above Condition 1 to q′, which in turn defines a probability
distribution µ′, obtained by renormalizing ψ′[π′]. Consider the following weighting function
over Q×Q′:

v = (ψ,ψ′).w , which expands as

v(q, q′) = w{(ω̂, ω̂′) | ψ(ω̂) = q, ψ′(ω̂′) = q′}



Mixed Nondeterministic-Probabilistic Automata 57

In particular v(q, q′) ≥ w(ω, ω′) > 0 by construction of ψ,ψ′, and v. Then, v projects to µ,
and to µ′:

∀q :
∑
q′
v(q, q′) =

∑
q′
w{(ω̂, ω̂′) | ψ(ω̂) = q, ψ′(ω̂′) = q′}

=
∑
ω′

w{(ω̂, ω̂′) | ψ(ω̂) = q} = µ(q)

and

∀q′ :
∑
q

v(q, q′) =
∑
q

w{(ω̂, ω̂′) | ψ(ω̂) = q, ψ′(ω̂′) = q′}

=
∑
ω

w{(ω̂, ω̂′) | ψ′(ω̂′) = q′} = µ′(q′)

To summarize, we have constructed a probability distribution µ′ such that µ ≤P µ′ and

q′
α−→PM′

µ′, showing that ≤ was also a simulation relation for spa.

To complete our proof, it remains to show the following lemma:

Lemma 6 There is no mapping M 7→ PM that preserves the parallel composition.

To support the above claim, we consider the following counter-example, where S(p) indicates
that S has previous state p:

Example 18 LetX = {x1, x, x2} be a set of three variables with finite domainsQx1 , Qx, Qx2 .
Consider the two systems Si(pi) = (Ωi, πi, Xi, pi, Ci), i = 1, 2, where: X1 = {x1, x},
X2 = {x, x2}; p1 ./ p2; Ωi = Qi with Q1 = Qx1×Qx and Q2 = Qx×Qx2 ; πi is a prob-
ability over Ωi; and ωiCiqi iff ωi = qi. Define

x : Ω1 ]Ω2 → Qx, such that

{
x(ω1) = q if ω1 = (q1, q)
x(ω2) = q′ if ω2 = (q′, q2)

(71)

System S1 amounts to defining the pair (x1, x) as random variables with joint distribution
π1; similarly, S2 amounts to defining the pair (x, x2) as random variables with joint distribu-
tion π2. We assume that the set of all q∈Qx such that π1(Q1×{q})>0 and π2({q}×Q2)>0
is non empty. Forming the composition S1 ‖S2 yields the system S(p)=(Ω, π,X, p, C),
where X = X1∪X2 = {x1, x, x2}, Q = Qx1×Qx×Qx2 , p = p1 t p2, Ω = Ω1 × Ω2,
π = π1×π2, and ωC(q1, q, q2) iff ω1C1(q1, q) and ω2C2(q, q2). According to Definition 1, the
sampling of S is the following: draw (ω1, ω2) at random with the conditional distribution
π1×π2

(
(ω1, ω2)|x(ω1)=x(ω2)

)
, where the map x was defined in (71); the resulting (ω1, ω2)

uniquely defines (q1, q, q2) ∈ Q (no nondeterminism). In words, the parallel composition
S1 ‖S2 amounts to making the triple of variables (x1, x, x2) to be random with the joint
distribution π1 × π2

(
(ω1, ω2) | x(ω1) = x(ω2)

)
.

Next, consider the Mixed Automaton M=({α}, X, q0,→), where X={x1, x, x2}, set Q
of states is defined accordingly Q=Qx1×Qx×Qx2 , and → maps, through action α, any
state p∈Q to the above system S(p). Similarly, we consider the two Mixed Automata Mi =
({α}, Xi, qi,0,→i), i=1, 2, where Xi is as above, qi,0 is the projection of q0 on Qi, and →i

maps, through action α, any state pi∈Qi to the above system Si(pi). We have M = M1 ‖M2.

The only candidate way of mapping Mi to a spa is by considering the two spa Pi with

sets of states Qi and transition relation pi
α−→i πi, where πi was defined above. Now, P1 ‖P2

has transition relation p
α−→ π1 × π2, which reflects no interaction between the two spa, so

it cannot represent M1 ‖M2.



58 Albert Benveniste, Jean-Baptiste Raclet

D.2 Proof of Theorem 6 regarding Probabilistic Automata

Proof We consider the mapping P 7→ MP = ({1}, X, q0,→MP
), from pa to Mixed Au-

tomata, defined as follows:

1. Alphabet {1} is the trivial singleton (the particular element does not matter);
2. X = {ξΣ , ξQ}, where the variables ξΣ and ξQ enumerate Σ and Q;
3. Transition →MP

maps state p to system S(p) = ((Ω, π), X, p, C), where
– Ω = (Σ×Q)n, where n is the cardinal of the image of p by transition →;
– π is the product of all the distributions selected by transition → starting from p;
– C is the nondeterministic selection of one component of ω.

We only need to prove the positive statement related to simulation. Consider a simulation
relation for pa q ≤ q′. We need to prove that ≤ is also a simulation relation for Mixed
Automata. Let µ be such that (q, µ) ∈ →. Since ≤ is a simulation relation for pa, there
exists µ′ such that (q′, µ′) ∈ →′ and µ ≤P µ′. Let S and S′ be the mixed systems to which
q and q′ are mapped by step 3 of the mapping P 7→ MP . We have to prove that S ≤S S′.
For each µ such that (q, µ) ∈ →, let the function χ : P(Q) → P(Q′) select one µ′ such
that (q′, µ′) ∈ →′ and µ ≤P µ′ and let vµ be a weighting function associated to relation
µ ≤P µ′. The following weighting function

w(ω, ω′) =def

∏
µ:(q,µ)∈ →

vµ(qµ, q
′
µ)

where (qµ, q′µ) ∈ Q×Q′, solves the problem.


	Introduction 
	Mixed Systems, parallel composition, and Factor Graphs
	Mixed Bayesian Networks and causal reasoning
	Mixed Automata
	Comparison with Segala's Probabilistic Automata
	The ReactiveBayes mini language and its semantics
	Other related work
	Conclusion
	Conflicts of interest
	Addendum and Proofs Regarding Mixed Systems
	Proofs Regarding Mixed Bayesian Networks
	Proofs Regarding Mixed Automata
	Proofs Regarding the comparison with Probabilistic Automata

