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Abstract The aim of this paper is to propose a fast FEM strategy for sim-
ulating molten metal deposition geometry during additive manufacturing for
studying the influence of the sequence of deposition on the geometry. The ap-
proach is inspired by the algorithm initially proposed by Feulvarch et al. [Eur.
J. of Mech. / A 89 (2021) 104290] for coatings. In this article, the membrane
finite element is notably improved and extended for simulating of a large stack
of deposits in order to study the building of 3D geometries. A constant vertical
evolution rate of the surface tension is introduced to adjust the geometry of
the free surface of the molten pool which depends on the hydrodynamics of
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the liquid phase. The simulation is very fast because it is carried out on a 2D
mesh composed of linear triangles that corresponds to the sole free surface of
the liquid phase at each time step. Moreover, the implicit nonlinear algorithm
developed has the advantage of avoiding matrix systems resolution (reduced
RAM memory, efficient parallel computing). In addition, a simple and robust
remeshing procedure is detailed in order to avoid too large distortions of the
triangular elements during the ’inflating’ stage of the workpiece. Its interest
lies in the fact that it does not require any field projection typically employed
in remeshing procedures, as the geometry serves as the only historical data re-
quired to resume FEM computations following each remeshing step. Examples
are proposed to clearly evidence the efficiency and robustness of the method
developed in terms of geometry and CPU time.

Keywords Simulation · Direct Energy Deposition · Surface tension · Additive
manufacturing

1 Introduction

The numerical modeling of metal deposition is a complex problem that involves
mass transfer, heat transfer and stress balance in solid and liquid phases. As
far as the geometry of the deposit is concerned, it depends on the shape of
the free surface of the liquid, especially during the solidification stage at the
rear of the molten pool. Therefore, the hydrodynamics of the weld pool must
be carefully taken into account for simulating the final geometry, especially
the consequences of the Marangoni’s effect and buoyancy forces. In litterature,
several authors simulated the thermo-fluid couplings in the molten pool during
welding or additive manufacturing processes. One can cite Rabier et al. [1],
Zhang et al. [2], Cadiou et al. [3] and Saadlaoui et al. [4] but the CPU times are
always very high for a few seconds of real time of deposition. This is mainly
due to the thin discretization in space and time required for modeling the
transient phenomena such as the motion of the boundary between the liquid
and the solid phases. As an example, Jia et al. [5] used a relatively small time
step of 5.10−5s by applying an implicit (backward) Euler algorithm for time
integration. The simulations focus on the treatment of the liquid phase at the
scale of the molten pool and they are not applied to the building of a complete
workpiece in 3D that would involve a very long CPU time.

The objective of this paper is to propose a fast FEM strategy for simulat-
ing molten deposition geometry produced during additive manufacturing. The
focus is on accurately replicating the geometry induced by the shape of the
molten zone at the scale of an entire workpiece, without considering residual
stress and distortion at the moment. The proposed approach is inspired by the
algorithm initially published by Feulvarch et al. [6] for coatings. Experience
shows that this approach is well suited for modeling a low number of over-
lapping deposits but it is not able simulating satisfactory the shape of a large
stack of deposits. For this purpose, the membrane finite element formulation
is notably improved and extended for simulating of a large stack of deposits in
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order to study the building of 3D geometries. A constant vertical evolution rate
of the surface tension is introduced to adjust the geometry of the free surface
of the molten pool which depends on the hydrodynamics induced by buoyancy
forces and the Marangoni’s effect. It is to be noted that the evolution rate of
the surface tension is not directly determined from the process parameters. It
is calibrated from experimental observations in terms of shape or dimensions
of elementary depositions because it depends on numerous parameters such
as the chemical composition of the material, the laser power distribution, the
orientation of the powder jets, the recoil pressure at high temperature, etc.

The simulation achieves significant computational efficiency by utilizing a
2D mesh composed of linear triangles that dynamically represents the evolv-
ing free surface of the liquid phase at each time step. The implicit nonlinear
resolution algorithm employed in this work avoids matrix systems resolution
to further enhance computational efficiency. In addition, a simple and robust
remeshing procedure is detailed in order to avoid too large distortions of the
triangular elements during the ’inflating’ stage of the workpiece. The interest
of this approach lies in the fact that it does not require any field projection
typically employed in remeshing procedures, as the geometry serves as the only
historical data needed to resume FEM computations following each remeshing
step.

Section 2 of this paper is dedicated to the physical modeling. In Section 3,
the new numerical formulation is detailed. In section 4, examples are proposed
to evidence the efficiency and robustness of the method developed in terms of
geometry and CPU time.

2 Theory

2.1 Physical modeling

During additive manufacturing, the material is fed into the molten pool with
a powder jet as shown in Fig. 1. The objective is here to model the geometry
evolution of the deposition by means of the volume flux balance through the
free surface of the molten pool denoted S. The powder deposition rate is
defined by means of the volume flux Q in Eq.(1). It corresponds to the volume
of material per unit time gained by the molten zone through its free surface.
It is to be noted that Q does not correspond to the volume of powder sprayed.
This is due to multiple collisions in the powder jet that induce the ejection of
some particles out of the molten pool. This phenomenon is taken into account
by means of the efficiency coefficient η as follows:

Q = η

∫
S

−n · q (x, t) ds (1)

where q (x, t) is the powder volume flux per unit surface sprayed downward
which depends on the position x and the time t. n is the local normalized nor-
mal vector to the surface S exiting the molten zone (see Fig. 1). Its orientation
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is opposite to the one of the vector q (x, t).

During the transient deposition of material, the created 3D geometry pro-
gresses following the evolution of the surface S of the molten zone. The geom-
etry of this surface is here assumed as being mainly driven by the curvature
effect of the surface tension. From the physicists point of view [7], such an
effect is equivalent to that of a tight membrane stuck onto the surface of the
molten pool subjected to the surface tension γ and the normal load due to the
overpressure in the liquid phase denoted ∆p.

Surface of the 
molten zone (S) 

Substrate

Powder jet

Scanning velocity

Deposited material

Fig. 1 Longitudinal visualization of the powder sprayed during the LMD-p (Laser Metal
Deposition - powder) process.

Fig. 2 shows the effect of the membrane curvature on the equilibrium of
a portion of elementary length ds = 2αR of the membrane in 2D. The force
∆pn ds due to the overpressure in the molten pool opposes to the normal
force induced by the surface tension: γ t1 + γ t2 = −2αγ n. It is to be noted

that this corresponds to the 2D form of the Laplace’s law ∆p = γ
(

1
R1

+ 1
R2

)
where

(
1
R1

+ 1
R2

)
denotes the curvature in 3D. In 2D, we get R1 = R and

R2 = +∞.
From the numerical point of view, the calculation of the curvature demands

an evaluation of the second spatial derivatives of the surface. This requires the
use of finite elements of class C1 [1,8] which are complex to remesh because
the modification of the discretization must keep not only of the coordinates
but also of their second spatial derivatives.

2.2 Principle of virtual power

In order to avoid the calculation of the curvature, the mechanical impact of
γ can be taken into account by means of the virtual power Pint associated to
the internal tension of the membrane [7,9–12]:

Pint = −
∫
S

δD : (I γ) ds (2)
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Fig. 2 Curvature effect of the surface tension in 2D.

where δD is the symmetric part of the surface gradient of the virtual velocity
δv of the membrane; I corresponds to the local surface unit tensor :

I =

(
1 0
0 1

)
(3)

The advantage of modeling the membrane tension in this way lies in the
fact that the formulation does not involve the second spatial derivatives of the
geometry. Indeed, Eq. (2) only requires the calculation of the gradient of the
virtual velocity field i.e. the evaluation of first spatial derivatives. Thus, it is
possible to use finite elements of class C0 without paying particular attention
to the transfer of curvature during a remeshing step. Regarding the mechanical
equilibrium of the membrane, we propose to express the virtual power Pext

due to the overpressure in the liquid phase as follows:

Pext =

∫
S

δv · (∆pn) ds (4)

As a consequence, the application of the principle of virtual power for the
membrane can be written as follows:

∀δv ,
∫
S

δv · (∆pn) ds−
∫
S

δD : (I γ) ds = 0 (5)

with δv = 0 on the boundary of the membrane S with the surface of the solid
metal around the molten pool.

2.3 The molten pool hydrodynamics

∆p is assumed to play a major role on the geometry of the liquid free surface
S. In this work, ∆p is not calculated from the fluid flow in the molten pool as
would seem natural. We propose to introduce a linear variation of∆p according
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to the vertical coordinate denoted z corresponding to the direction of gravity
forces (see Fig. 1) :

∆p = ∆p+ β z (6)

where ∆p and β are assumed to be constant on the whole surface S.

As far as the LMD process is concerned, β allows introducing a linear dis-
tribution of the overpressure ∆p and therefore, an evolution of the curvature
as illustrated in Fig. 3. If the value of β is negative, the overpressure ∆p de-
creases when z increases and consequently, so does the curvature. Conversely,
a positive value of β leads to an increase in overpressure with z and therefore
in curvature. In this way, the influence of the molten pool hydrodynamics can
be taken into account on the shape of the free surface without simulating the
liquid phase. It is to be noted that the fluid flow depends on buoyancy forces
and the ”Marangoni” effect that are induced respectively by the temperature
dependences of the mass per unit volume and the surface tension. Therefore,
the sole parameter β allows modeling implicitly these physical phenomena in
a simple manner.

0

Fig. 3 Influence of β on the transversal shape of a metal deposition (see Eq. 6 ).

By considering Eq. (6), we get the following form of the principle of virtual
power for modeling the geometry of the molten pool surface :

∀δv ,
∫
S

δv · (∆p+ β z) n ds−
∫
S

δD : (I γ) ds = 0 (7)

From the experimental point of view, the measurement of the surface ten-
sion is a very complex challenge. As mentioned above, the influence of its
variation with temperature is already accounted for in Eq. (7) with β. Thus,
the paramter γ can be assumed to be constant on the surface S and it can be
eliminated of all the terms of Eq. (7) as follows:

∀δv ,
∫
S

δv · (∆p∗ + β∗ z) n ds−
∫
S

δD : I ds = 0 (8)
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where ∆p∗ = ∆p/γ is a scalar parameter depending on the geometry of the
membrane S; β∗ = β/γ appears as a global parameter to be calibrated from
the shape observed experimentally for a set of deposition parameters (power
of laser, flow of powder, deposition velocity...).

The interest of this formulation lies in the fact that it only requires knowl-
edge of the ratio β∗ between the surface tension and its supposed constant
rate of vertical evolution.

3 Finite element modeling

3.1 Discretization

The numerical modeling is based on a 2D mesh made of linear triangles that
inflates in 3D according to the metal deposition trajectory defined by q (x, t) 6=
0 (see Fig. 1). The geometry of the membrane S is computed in order to satisfy
the discrete form of Eq. (8) with a constant value of ∆p∗.

Following the usual finite element procedure, Eq. (8) is applied to the
function δv of the form:

δv =

N∑
i=1

Ni δvi (9)

where δvi denotes the value of δv at the node numbered i; Ni is the basis
function associated with node i; N is the number of nodes belonging to the
surface S. Substituting the nodal approximation (9) into Eq. (8), we obtain
the following discrete equation for each node belonging to the surface S:∫

S

Ni (∆p∗ + β∗ z) n ds−
∫
S

Bi ds = 0 (10)

where the matrix Bi is of the following form in each linear triangle e:

B
(e)
i =

( ∂Ni

∂x
(e)
1

∂Ni

∂x
(e)
2

)
(11)

where x
(e)
1 and x

(e)
2 denote the coordinates in the local 2D reference frame

associated to the finite element e. In order to improve the computation effi-
ciency, the lumping technique [13,14] is applied for the calculation of the first
term:

(∆p∗i + β∗ zi) ni

∫
S

Ni ds−
∫
S

Bi ds = 0 (12)

where ∆p∗i and zi are the values of ∆p∗ and z at node i; ni is the nodal normal
vector taken equal to the normalized average one :

ni =

∑
e∈Ei

n(e)

||
∑

e∈Ei
n(e)||

(13)
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where Ei denotes the set of triangles which are adjacent to node i.
The lumping allows multiplying nodal Eq. (12) by ni for calculating effi-

ciently ∆p∗i as a function of the parameter β∗ and the geometry of adjacent
triangles to node i:

∆p∗i = ni

∫
S

Bi ds∫
S

Ni ds

− β∗ zi (14)

3.2 Resolution procedure

At each time step t+∆t, the simulation consists in first activating the nodes

with coordinates xi belonging to the surface S(0) defined by q(x
(0)
i , t+∆t) 6=

0 (see Eq. (1)) on the geometry of the previous time step. The others are
considered as quiet nodes with nil displacements.

Then, the gain of volume is applied on the activated nodes for building
S(1) as follows :

x
(1)
i = x

(0)
i − η

(
q
(
x
(0)
i , t+∆t

)
n
(0)
i

)
n
(0)
i ∆t (15)

The membrane geometry is updated in a second stage by means of an
iterative procedure in order to satisfy Eq. (10) for all the N activated nodes.
For k > 0, the nodal values ∆p∗i

(k) are first evaluated on the surface S(k)

according to Eq. (14). The average one denoted ∆p∗(k) is then computed as
follows :

∆p∗(k) =

N∑
i=1

∆p∗i
(k)
∫
S(k)

Ni ds

N∑
i=1

∫
S(k)

Ni ds

(16)

The geometry of the membrane is considered as being acceptable if the
difference |∆p∗(k) −∆p∗i

(k)| is lower than ε in a relative way:

max
i

∣∣∣∣∣∆p∗(k) −∆p∗i (k)∆p∗(k)

∣∣∣∣∣ < ε (17)

If it is not, the geometry is updated as follows:

x
(k+1)
i = x

(k)
i + λ(k)

(
∆p∗(k) −∆p∗i

(k)
)

n
(k)
i (18)

with

λ(k) = min
i

(∫
S(k)

Ni ds

) 3
2

(19)
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Remark 1 It is to be noted that the explicit correction of the geometry given
by Eq.(18) does not affect the initial volume gain computed with Eq.(15)
because the volume passing through the surface S(k) can be evaluated in the
following way at each iteration :

N∑
i

∫
S(k)

Ni

(
x
(k+1)
i − x

(k)
i

)
n
(k)
i ds = λ(k)

N∑
i

∫
S(k)

Ni

(
∆p∗(k) −∆p∗i

(k)
)
ds

(20)
with

N∑
i

∫
S(k)

Ni

(
∆p∗(k) −∆p∗i

(k)
)
ds

= ∆p∗(k)
N∑
i

∫
S(k)

Ni ds−
N∑
i

(
∆p∗i

(k)
∫
S(k)

Ni ds

)
= 0

(21)

in accordance with Eq.(16).

Remark 2 The proposed expression of λ is slightly simplified compared to the
one initially proposed by Feulvarch et al. [6]. The interest of this modification
lies in the fact that it decreases the number of iterations at each simulation time
step. This increase in the convergence rate is strongly amplified by updating λ
at each iteration k with S(k) and not retaining the value calculated with S(1).

3.3 Remeshing procedure

During the ’inflating’ stage of the manufactured component, the simulation de-
veloped requires a remeshing procedure in order to avoid too large distortions
of the triangular elements located in the deposition area always surrounded by
the rest of the undeformed 2D mesh. The applied remeshing process is based
on standard topological operations, which involves remeshing a set of elements
sharing a common edge (swapping, splitting) or the nodes of an edge (mesh
coarsening). Remeshing occurs if the new configuration of elements improves
the ”quality” of the mesh that is determined by the quality criterion of the
worst element. Remeshing is performed according to a geometric element qual-
ity criterion ξ that depends on the ratio of the inscribed circle radius Ri to
the longest edge length hmax and a size criterion c [15]:

ξ =
Ri

hmax
c (22)

The objective is to avoid the creation of degenerate elements by controlling
the size to maintain sufficient computational precision. It is assumed that a
mesh of constant size, h, is desirable. At first, we identify edges whose size
exceeds 1.5 times this target size. Then, we perform the remeshing of each
element by cutting edges with a simple marching triangles technique inspired
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Fig. 4 Marching triangles technique : 8 configurations.

by marching squares [16]. The remeshing configurations for 0, 1, 2, or 3 cut
edges are plotted in Fig. 4.

During the cutting stage, small edges may be created. The next step in-
volves deleting ”small edges” with a size less than 0.3*h as shown in Fig. 5
[15,17]. Only the internal edges (connected to 2 triangles) are modified by
merging the two nodes of this edge to form only one as shown in Fig. 5. It is
important to note that with the threshold values for cutting (1.5) and mesh
coarsening (0.3), no spurious loops are created, and the adaptation process
converges. In a second step, the geometric quality of the elements is improved
by the technique of edge diagonal inversion as shown in Fig. 5.

Fig. 5 (a) : Edge collapsing. (b) : Edge swapping.

All these steps are repeated, and the process stops once the mesh is no
longer modified. Generally, less than 5 iterations are required. The computa-
tional cost of all these operations is very low. The new nodes are created at
the midpoints of existing edges. It has been deemed unnecessary to project
the midpoint nodes onto an approximate geometry [15], as this would result
in significantly higher remeshing costs. Moreover, no Laplacian smoothing of
nodes is applied to avoid modifying the geometry.

4 Applications

4.1 Influence of β∗ on the shape of a single metal deposition

The studied application consists of the deposition of one bead on a plane sur-
face. The distribution of the effective source η q (see Eq. (1)) directly depends
on the distribution of energy which is assumed to be nearly constant:

η q =

{
−η qmax z if r < R
0 otherwise.

(23)
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where z is the ascending vertical axis perpendicular to the horizontal surface
of the substrate (see Fig. 1); r denotes the distance to the vertical axis of the
source of radius R. The modeling parameters are summarized in Tab. 1. All
the simulations have been performed using the software Sysweld R© [18] on a
laptop computer (Intel(R) Core(TM) i7-10850H CPU @ 2.70Ghz with RAM
of 16 Gb).

Scanning velocity R η qmax β∗ ∆t ε
16.66mm.s−1 2.65mm 3.6mm.s−1 -1 to 1mm−2 0.01s 5%

Table 1 Simulation parameters.

Fig. 6 shows the impact of β∗ (ratio between the surface tension and its
supposed constant rate of vertical evolution) on the shape of the deposition
for a mesh size h equal to 0.3mm without remeshing. The number of iter-
ations never exceeds 7 per time step and the CPU time is lower than 32s
for a deposition duration of 5s. As described in section 2.3, one can observe
that β∗=1mm−2 leads to a thicker deposition than β∗=-1mm−2 that tends to
broaden the bead through its thickness.

(a) β∗=−1 mm−2

(b) β∗=1 mm−2

Fig. 6 Influence of β∗ on the vertical displacement (mm) of the mesh after deposition.

Fig. 7 shows that the change from −1mm−2 to 1mm−2 can produce an
increase of the thickness of the bead by about 33%. The case β∗=0mm−2

corresponds to the modeling proposed by Feulvarch et al. [6]. One can note that
the mesh size h does not significantly influence the final geometry. Moreover,
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the contact angle on each side of the deposition is not always the same. This
is due to the fact that the nodes on each side are always quiet and the contact
angle is a result of the motion of nodes activated during the deposition. It
depends on the shape and the size of the mesh.

0

0,4

0,8

1,2

1,6

-3 -2 -1 0 1 2 3

z (
m

m
)

Transversal coordinate (mm)

h=0.2 - 𝛽*=1
h=0.2 - 𝛽*=-1
h=0.3 - 𝛽*=0 [5]
h=0.3 - 𝛽*=1
h=0.3 - 𝛽*=-1

Fig. 7 Bead shape as a function of the mesh size h(mm) and β∗(mm−2).

For comparison, the area under each curve in Fig. 7 is evaluated in Tab.
2 using the trapezoidal rule to analyse the volume gained in the transversal
section. It should be noted that the difference between the calculated values
never exceeds 1% (see Tab. 3) and it seems to be mainly due to the size of the
mesh even if β∗ has a significant impact on the final shape of the deposit. In
practice, β∗ can be calibrated by means of experimental observations or the
local multiphysyical simulation of the weld pool [5].

h=0.2 - β∗=1 h=0.2 - β∗=-1 h=0.3 - β∗=0 [5] h=0.3 - β∗=1 h=0.3 - β∗=-1
4.787 4.777 4.751 4.746 4.748

Table 2 Evaluation of the area(mm2) under each curve in Fig. 7 as a function of the mesh
size h(mm) and β∗(mm−2).

h=0.2 - β∗=1 h=0.2 - β∗=-1 h=0.3 - β∗=0 [5] h=0.3 - β∗=1 h=0.3 - β∗=-1
- 0.2% 0.75% 0.86% 0.82%

Table 3 Relative difference between areas under each curve in Fig. 7 as a function of the
mesh size h(mm) and β∗(mm−2).
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4.2 Building of a wall by LMD-p process

A wall is here manufactured with 10 superimposed single deposits of about
200mm long as shown in Fig. 8. A 316L stainless steel is deposited by Laser
Metal Deposition in powder form (LMD-p) on a substrate made of the same
material with a scanning velocity equal to 16.66mm.s−1. The wall is built by
means of a back and forth strategy on a Trumpf TruLaser cell 7040 c© equipped
with a laser TruDisk c©Nd. The power of the laser is equal to 4000W.

Fig. 8 Wall composed of 10 single beads.

The simulation parameters are the same as the one detailed in Sec. 4.1 for
a measured wall width of about 5,3mm (R=2.65mm, ∆t=0.01s and ε=5%).
The mesh size h and the time step ∆t are taken equal to 0.3 mm and 0.01s
respectively. The deposition trajectory was analyzed with a high speed camera
(see Fig. 1) at the start of the bead in order to determine the time delay
between the ignition of the molten pool and the start of the nozzle movement.
It was estimated to be about 0.1s. This time delay was also observed at the end
of the bead between the stopping of the nozzle trajectory and the extinction
of the weld bath. From the numerical point of view, this time delay is modeled
by means of a nil scanning velocity (see Fig. 1) of the source during 0.1s at
the beginning or the end of each bead. The height increment due to each
deposition was measured experimentally in the middle of the wall from lateral
pictures coming from the camera (see Fig. 1). The experimental values are
plotted in Fig. 9.
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Fig. 9 Experimental height increment after each deposition.
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For the simulation developed in section 3, 2 parameters need to be cali-
brated : β∗ and η. In practice, the analysis focuses on η qmax and not η for
more convenience. In order to study the influence of these parameters on the
geometrical response of the numerical model, 3 first simulations have been
carried out considering 3 values for η qmax described in Tab. 4. The chosen
values correspond to a range of admissible volume of material added into the
molten pool.

Minimum value Mean value Maximum value
η qmax (mm.s−1) 2 3 4

Table 4 Simulated values of η qmax.

It is to be noted that experience shows that the numerical method pro-
posed by Feulvarch et al. [6] (β∗=0mm−2) is unable to simulate more than
4 depositions. The resolution procedure does not converge regardless of the
mesh size and the four first superimposed beads give a wall width significantly
lower than the one observed experimentally.

All the simulations have been performed using the software Sysweld R© [18].
The remeshing procedure detailed in Sec. 3.3 is applied after the deposition
of each of the 10 beads of 200mm long. The CPU time is about 1h for the
longest time consuming simulation on a laptop computer (Intel(R) Core(TM)
i7-10850H CPU @ 2.70Ghz with RAM of 16 Gb) without considering parallel
computing.

Fig. 10 shows the impact of η qmax on the increments of height increase
of the wall. One can note that η qmax seems to have a quasi linear influence
especially for the last deposits. By using a linear interpolation for the 10th

bead, it can be evaluated to about 3.5mm.s−1 on Fig. 10 for an experimental
height increase of about 0.86mm (see Fig. 9).
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Fig. 10 Numerical height increment after each deposition for β∗=-1mm−2.
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By considering the value of η qmax calibrated above, Fig. 11 shows the im-
pact of β∗. It is to be noted that this parameter only influences the height
increment of the first 2 deposits, with the same gap. By using a linear inter-
polation for the 1st bead, β∗ can be taken equal to about -1.4mm−2 on Fig.
11 for an experimental height increment of about 1,14mm (see Fig. 9).
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Fig. 11 Numerical height increment after each deposition for η qmax=3.5mm.s−1 as a func-
tion of β∗ (mm−2).

The results of the calibrated simulation and the experimental values are
plotted in Fig. 12. One can note that the comparison is very satisfactory.
Fig. 13 shows the geometry of the wall computed with the numerical method
developed. It is important to notice that the time delay of 0.1s at the beginning
and stopping of each deposition makes it possible to obtain a vertical geometry
at each end of the wall. Without considering this, the numerical wall is oblique
as can be observed in reality.
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Fig. 12 Experimental and numerical height increment after each deposition
(η qmax=3.5mm.s−1 ; β∗=-1,4mm−2).
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Fig. 13 Computed geometry (η qmax=3.5mm.s−1 ; β∗=-1,4mm−2) with the successive
configurations of the mesh after each deposition.

5 Conclusions

A fast FEM method for simulating beads geometry during direct energy depo-
sition additive manufacturing has been proposed. Such a computational tool
can help to study the influence of the sequence of deposition on the geometry
in a quick way.

At first, A constant vertical evolution rate of the surface tension is incor-
porated into the FEM algorithm firstly proposed by Feulvarch et al. [6] to
adjust the geometry of the free surface of the molten pool which depends on
the hydrodynamics induced by buoyancy forces and the Marangoni’s effect.
The interest of the new approach lies in the fact that it is very fast because
it is based on a 2D mesh composed of linear triangles that corresponds to
the sole surface of the 3D manufactured component. Moreover, the advan-
tage of the implicit nonlinear resolution algorithm developed lies in the fact
that it avoids matrix systems resolution allowing efficient parallel computing.
A simple remeshing procedure was also detailed without requiring any field
projection. Indeed, the geometry serves as the only historical data required
to resume FEM computations following each remeshing step. As an example,
it is shown that a wall made of 10 overlapping beads of 200mm long can be
simulated with a CPU time of about 1h on a laptop computer.

Future works will focus on the coupling with heat transfer. The objective
will be to define the surface of the molten pool from the zone having a tem-
perature higher than the solidus and not by means of a radius R as proposed
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in this paper (see Eq. (23)). In this way, it could be possible to numerically
optimize the manufacturing strategy anticipating overheating phenomena that
can lead to a collapse of the component during additive manufacturing. In the
longer term, the objective is to couple the numerical method proposed with
the simulation of heat transfer but also the computation of distortions in order
to optimize the manufacturing strategy at the scale of a complete component
and not only a few beads.
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(2018), Numerical modelling of fluid and solid thermomechanics in additive manufactur-
ing by powder-bed fusion: Continuum and level set formulation applied to track- and
part-scale simulations, C. R. Mecanique, 346, 1055-1071.

3. S. Cadiou, M. Courtois*, M. Carin, W. Berckmans, P. Le masson, 3D heat transfer, fluid
flow and electromagnetic model for cold metal transfer wire arc additive manufacturing
(Cmt-Waam), Additive Manufacturing 36 (2020) 101541.

4. Saadlaoui Y., Feulvarch E., Delache A., Leblond J.-B., Bergheau J.-M. (2018), A new
strategy for the numerical modeling of a weld pool, C. R.Mecanique, 346, p. 999-1017.

5. Yabo Jia, Yassine Saadlaoui, Eric Feulvarch, Jean-Michel Bergheau, An efficient local
moving thermal-fluid framework for accelerating heat and mass transfer simulation during
welding and additive manufacturing processes, Computer Methods in Applied Mechanics
and Engineering, Volume 419, 1 February 2024, 116673.

6. E. Feulvarch, F. Josse, J.-C. Roux, A. Sova, An efficient reduced-physics-coupling FEM
formulation for simulating a molten metal deposition geometry, European Journal of
Mechanics / A Solids 89 (2021) 104290.

7. Leblond J.-B., Amin El Sayed H., Bergheau J.-M. (2013). On the incorporation of surface
tension in finite-element calculations, C. R. Mecanique, 341, p.770-775.

8. Bellet M., Implementation of surface tension with wall adhesion effects in a three-
dimensional finite element model for fluid flow, Commun. Numer. Methods Eng. 17 (2001)
563-579.

9. Ruschak K.J., A method for incorporating free surface boundaries with surface tension
in finite element fluid-flow simulators, Int. J. Numer. Methods Eng. 15 (1980) 639-648.

10. Bach P., Hassager O., An algorithm for the use of the Lagrangian specification in New-
tonian fluid mechanics with applications to free surface fluid flow, J. Fluid Mech. 152
(1985) 173-190.

11. Christodoulou K.N., Scriven L.E., The fluid mechanics of slide coating, J. Fluid Mech.
208 (1989) 321-354.

12. Cairncross R.A. , Schunk P.R., Baer T.A., Bao R.R., Sackinger P.A., Finite element
method for free surface flows of incompressible fluids in three dimensions. PartI. Bound-
ary fitted mesh motion, Int. J. Numer. Methods Fluids 33 (2000) 375-403.

13. Feulvarch E., Bergheau J.-M., Leblond J.-B. (2009), An implicit finite element algorithm
for the simulation of diffusion with phase changes in solids, Int. J. Numer. Meth. Engng,
78, p. 1492-1512.

14. Ciarlet Ph, Segal A. The Finite Element Method for Elliptic Problems. North-Holland:
Amsterdam, 1978.

15. Rassineux, A., Villon, P., Savignat, J.-M., Stab, O., Surface remeshing by local hermite
diffuse interpolation, (2000) International Journal for Numerical Methods in Engineering,
49 (1-2), pp. 31-49.

16. Lorensen, W. E., Cline, H. E. (1987). Marching cubes: A high resolution 3D surface
construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4), 163-169.

17. Rassineux, A. (2021). Robust conformal adaptive meshing of complex textile composites
unit cells. Composite Structures, 114740, DOI: 10.1016/j.compstruct.2021.114740

18. ESI Group, Users Manual, 2024.


