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SHALLOW VERTEX MINORS, STABILITY,
AND DEPENDENCE

by Hector BUFFIÈRE,
Eun Jung KIM & Patrice OSSONA DE MENDEZ (*)

Abstract. — Stability and dependence are model-theoretic notions that have
recently proved highly effective in the study of structural and algorithmic prop-
erties of hereditary graph classes, and are considered key notions for generalizing
to hereditary graph classes the theory of sparsity developed for monotone graph
classes (where an essential notion is that of nowhere dense class). The theory of
sparsity was initially built on the notion of shallow minors and on the idea of
excluding different sets of minors, depending on the depth at which these minors
can appear.

In this paper, we follow a similar path, where shallow vertex minors replace
shallow minors. In this setting, we provide a neat characterization of stable /
dependent hereditary classes of graphs: A hereditary class of graphs C is dependent
if and only if it does not contain all permutation graphs and, for each integer r,
it excludes some split interval graph as a depth-r vertex minor; it is stable if and
only if, for each integer r, it excludes some half-graph as a depth-r vertex minor.

A key ingredient in proving these results is the preservation of stability and
dependence of a class when taking bounded depth shallow vertex minors. We extend
this preservation result to binary structures and get, as a direct consequence, that
bounded depth shallow vertex minors of graphs with bounded twin-width have
bounded twin-width.

1. Introduction

Graph minors are central to structural graph theory and have been ex-
tensively studied by Robertson and Seymour in their Graph minor project.

Keywords: graph, local complementation, shallow vertex minor, dependence, NIP, sta-
bility, twin-width, binary relational structure.
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The shallow version of graph minors then allowed to extend some of the
properties of proper minor closed classes of graphs to classes with bounded
expansion and nowhere dense classes, and constitutes the foundation of the
theory of sparsity initiated by Jaroslav Nešetřil and the third author [13].

Vertex minors have been introduced by Oum [16] in his foundational
paper on rank-width. Recall that a graph H is a vertex-minor of a graph
G if it can be reached from G by the successive application of local com-
plementations and vertex deletions. It appears that vertex minors are a
natural dense analog to graph minors as witnessed, for instance, by the
grid theorem for vertex minors [11].

Shallow vertex minors have been introduced in [15], where it is proved
that shallow vertex minors of graphs in a class with bounded expansion
can be obtained through first-order transductions. This notion is defined
inductively from the one of depth-1 vertex minor. A graph H is a depth-1
vertex-minor of a graph G if it can be reached from G by local complemen-
tation of the vertices of an independent set and vertex deletions. In this
paper, we give further evidence that shallow vertex minors are relevant to
the structural study of hereditary graph classes.

It is known that a class is nowhere dense if it excludes, for each integer
r, some graph (equivalently, some clique) as a depth-r shallow minor and
that, for a monotone class of graphs, being nowhere dense is equivalent to
the model theoretical notions of stability and dependence [1]. Note that
classes excluding a vertex minor are not, in general, dependent. Indeed, as
noticed in [15], if a class is closed under vertex minors, then it is dependent
if and only if it has bounded cliquewidth.

Study of hereditary classes of graphs from the perspective of model the-
ory recently gained a lot of attention, and led to numerous fundamental
results both in structural and algorithmic graph theory. Particularly, stabil-
ity and dependence appeared to play a special role (like in classical model
theory). For instance, it has been proved that first-order model checking is
fixed-parameter tractable on hereditary stable classes of graphs [7], while
it is conjectured that this problem is fixed-parameter tractable on those
hereditary classes of graphs that are dependent. On the dependent but un-
stable regime, it is known that first-order model checking is fixed-parameter
tractable on classes with bounded twin-width [3].

The case of hereditary classes of ordered graphs (that is, of graphs with
a fixed linear order on the vertex set) has been settled.

Innov. Graph Theory 1, 2024, pp. 87–112
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Theorem 1.1 ([2]). — For a hereditary class of ordered graphs C , the
following are equivalent (assuming FPT ̸= AW[∗]):

(1) First-order model checking is fixed-parameter tractable on C ;
(2) C has bounded twin-width;
(3) C is dependent;
(4) C contains neither the class of all ordered permutation graphs, nor

any of 24 special classes encoding ordered matchings.

In the presence of a linear order on the vertex set, a matching can be
viewed as a family of intervals and thus naturally defines an interval graph
with two sorts of intervals, disjoint “short” intervals for the vertices, and
“long” intervals for the matching. In Theorem 1.1, the 24 classes are con-
structed from perfect matchings between two subsets A and B of vertices
with max A < min B. This constraint translates to the property that the
interval graph associated to the ordered matching is split (See Figure 1.1):
its vertex set is the union of an independent set (the vertices) and a clique
(the matching). From this point of view, condition ((4)) of Theorem 1.1 ex-
cludes the ordered analog of permutation graphs and split interval graphs.

a6 a5 a4 a3 a2 a1 b1 b2 b3 b4 b5 b6

(1, 5)

(2, 3)

(3, 6)

(4, 1)

(5, 4)

(6, 2)

Figure 1.1. The split interval graph associated to the matching M =
{(6, 2), (5, 4), (4, 1), (3, 6), (2, 3), (1, 5)}.

In this paper, we provide a full characterization of those hereditary
classes of graphs that are stable or dependent classes in terms of excluded
shallow vertex minors.

Theorem 1.2. — Let C be a hereditary class of graphs. Then, C is
dependent if and only if the class C does not contain all permutation graphs
and, for every integer r, the class C excludes some split interval graph as
a depth-r shallow vertex minor.

This characterization (proved in Section 6 as Theorem 6.1) is based on
the following graphs:

• a permutation graph is a graph with vertex set [n] associated to a
permutation σ ∈ Sn, where ij is an edge if (i, j) is an inversion of
σ (i.e. if (i < j) ↔ (σ(i) > σ(j)));

Innov. Graph Theory 1, 2024, pp. 87–112



90 H. Buffière, E.J. Kim & P. Ossona de Mendez
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(σ = (7 3 4 1 6 2 5))

• a split interval graph is a graph that is both split (meaning that is
vertex set can be partitioned into an independent set and a clique)
and an interval graph (i.e. an intersection graph of intervals of the
line). See [10] for more on split interval graphs.

It is known [14] that stable hereditary classes of graphs are exactly de-
pendent hereditary classes of graphs that do not contain the class of all
half-graphs. This is a key ingredient in proving the next characterization.

Theorem 1.3. — Let C be a hereditary class of graphs. Then, C is
stable if and only if, for every integer r, the class C excludes some half-
graph as a depth-r shallow vertex minor.

This characterization (proved in Section 6 as Theorem 6.3) is based on
the following graphs:

• the half-graph of order n has vertices a1, . . . , an, b1, . . . , bn and edges
aibj where i ⩽ j;

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

The paper is organized as follows: In Section 2 we give some preliminaries
on flips, local complementation, and shallow vertex minors. In Section 3
we analyze in what sense flip and local complementation commute. After
recalling the properties of dependence and stability in Section 4, we prove
that these properties are preserved by taking shallow vertex minors, and
deduce in Section 6 our characterization theorems. In Section 7, we discuss
generalization of the results of Section 4 to binary relational structures.

Innov. Graph Theory 1, 2024, pp. 87–112
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2. Flips, local complementations, and shallow vertex
minors

2.1. Flips

In this paper, it will be convenient to consider that the adjacency relation
EG of a graph G has value in F2, with EG(u, v) = 1 if u and v are adjacent.
This will allow us to use the standard arithmetic operations of F2.

A k-flip on a set V is a pair F = (ι, τ), where ι : V → [k] and τ :
[k]× [k] → F2 is a symmetric function (i.e. τ(i, j) = τ(j, i) for all i, j ∈ [k]).
Given a flip F on V (G), the graph G ⊕ F has the same vertex set as G,
and its adjacency relation is defined by

(2.1) EG⊕F (x, y) = EG(x, y) + τ(ι(x), ι(y)).

Each flip F on V (G) induces a partition of V (G) into k (possibly empty)
parts ι−1(1), . . . , ι−1(k), also called F -classes. More generally, for a sub-
set X of V (G), the flip F induces a partition of X into parts ι−1(1) ∩
X, . . . , ι−1(k) ∩ X, the F -classes of X.

If G is a graph and F = (ι, τ) is a k-flip on a set X ⊇ V (G), then F

naturally defines a k-flip on V (G) by considering the restriction of ι to
V (G). By abuse of notation, we still denote G ⊕ F the graph obtained by
applying the restricted k-flip.

A subset X of vertices of G is F -homogeneous if the adjacency of any two
distinct vertices u, v ∈ X depends only on ι(u) and ι(v). The trace of a set
Y on a set X is the intersection X ∩ Y . A flip F ′ on V (G) is X-compatible
with F if the (non-empty) traces on X of the parts of F ′ are the same
as the (non-empty) traces on X of the parts of F . It is immediate that
X is F -homogeneous if and only if there exists a flip F ′ on V (G) that is
X-compatible with F and such that X is an independent set of G⊕F ⊕F ′.

2.2. Local complementations

Let G be a graph and let v be a vertex of G, the graph obtained from G

by local complementation of v is the graph G ∗ v with same vertex set as
G, with adjacency relation defined by

(2.2) EG∗v(x, y) = EG(x, y) + EG(x, v) · EG(v, y).

If u and v are adjacent, pivoting the edge uv is the operation obtained
by successive local complementation of u, v, and u: G ∧ uv = G ∗ u ∗ v ∗ u

Innov. Graph Theory 1, 2024, pp. 87–112
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(= G∗v∗u∗v). This operation flips the edges between the private neighbors
of u, the private neighbors of v, and the common neighbors of u and v, and
then exchanges u and v. Thus, if x, y are distinct vertices different from u

and v, it is easily checked that

(2.3) EG∧uv(x, y) = EG(x, y) + EG(x, u) · EG(y, v) + EG(x, v) · EG(y, u).

If I = {v1, . . . , vk} is an independent set, then G ∗ v1 ∗ · · · ∗ vk = G ∗
vσ(1) ∗ · · · ∗ vσ(n) for every permutation σ of [k]. This justifies the notation
G ∗ I for the graph obtained from G by successive local complementation
of all the vertices in the independent set I. Note that we will consider the
notation G ∗ X faulty if X is not independent in G. It immediately follows
from (2.2) that if I is an independent set of a graph G, then the adjacency
relation of G ∗ I is

(2.4) EG∗I(x, y) = EG(x, y) +
∑
v∈I

EG(x, v) · EG(v, y).

A depth 1 vertex minor of a graph G is an induced subgraph of G∗ I, for
some independent set I of G. We denote by svm1(G) the set of all the depth
1 vertex minors of G and, more generally, by svm1(C ) the set of all the
depth 1 vertex minors of graphs in C . We further define inductively depth c

vertex minors (for positive integers c > 1) as depth 1 vertex minors of depth
(c − 1) vertex minors. Also, it will be convenient to consider that depth 0
vertex minors are simply induced subgraphs. We consequently extend the
notations svm1(G) and svm1(C ) to depth c vertex minors, as svmc(G) and
svmc(C ).

For a graph G and a vertex v (resp. a subset D of vertices of G), we denote
by G − v (resp. G − D) the induced subgraph of G obtained by deleting
v (resp. D). Thus, a depth-1 vertex minor of G has the form G ∗ I − D,
for some (possibly empty) independent set I and some (possibly empty)
subset D of vertices. It is immediate that if u and v are (distinct) vertices
of G, then (G−u)∗v = (G∗v)−u. Thus, for c ⩾ 1, depth-c shallow vertex
minors of G are graphs of the form G ∗ I1 ∗ · · · ∗ Ic − D, where Ii is an
independent set of G ∗ I1 ∗ · · · ∗ Ii−1 and D is a subset of vertices.

3. Commuting flips and vertex minors

Flips and local complementations do not commute in general. However,
we shall see that the composition of a flip by a shallow vertex minor opera-
tion can be rewritten as the composition of a shallow vertex minor operation
and a flip (and vice versa).

Innov. Graph Theory 1, 2024, pp. 87–112
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We start our study by a special case, considering the graph G ⊕ F ∗ I,
where I is an independent set of both G and G ⊕ F . The general case,
proved in Lemma 3.6 for convenience, is not needed for the main results of
this paper.

Lemma 3.1. — Let I be an independent set of a graph G and let F =
(ι, τ) be a k-flip on V (G). If I is independent in G ⊕ F , then there exists
a k2k-flip F ′ on V (G) such that

G ∗ I ⊕ F ′ = G ⊕ F ∗ I.

Proof. — We have

EG∗I(u, v) = EG(u, v) +
∑
z∈I

EG(u, z) · EG(z, v).

As I is an independent set in G ⊕ F ,

EG⊕F ∗I(u, v) = EG⊕F (u, v) +
∑
z∈I

(
EG⊕F (u, z) · EG⊕F (z, v)

)
= EG(u, v) + τ(ι(u), ι(v))

+
∑
z∈I

(
(EG(u, z)+τ(ι(u), ι(z))) · (EG(v, z)+τ(ι(v), ι(z)))

)
.

For i, j ∈ [k] and u ∈ V (G) we define

ζ(i, j) =
∑
z∈I

τ(i, ι(z)) · τ(j, ι(z))

ς(u, i) =
∑
z∈I

EG(u, z) · τ(i, ι(z)).

Then,

EG⊕F ∗I(u, v) = EG∗I(u, v) + τ(ι(u), ι(v))
+ ζ(ι(u), ι(v)) + ς(u, ι(v)) + ς(v, ι(u)).

Define τ ′ : ([k]×{0, 1}k)×([k]×{0, 1}k) → F2 and ι′ : V (G) → [k]×{0, 1}[k]

(where {0, 1}[k] is interpreted as the set of all functions from [k] to {0, 1})
by

τ ′((i, α), (j, β)) = τ(i, j) + ζ(i, j) + α(j) + β(i)
ι′(v) = (ι(v), ς(v, · )).

Then (τ ′, ι′) defines a k2k-flip F ′ on V (G) such that EG⊕F ∗I(u, v) =
EG∗I(u, v) + τ ′(ι′(u), ι′(v)). □

Innov. Graph Theory 1, 2024, pp. 87–112
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In our study, it will be important to keep some subset of vertices inde-
pendent while performing a flip. The next lemma shows how to handle such
a condition.

Lemma 3.2. — Let I be an independent set of a graph G and let F =
(ι, τ) be a k-flip on V (G). Then, there exists a 2k-flip F ′ on V (G) such that
G ⊕ F ′ is obtained from G ⊕ F by removing all the edges between vertices
of I.

Proof. — Define ι′ : V (G) → [k] × {0, 1} by ι′(v) = (ι(v), 1) if v ∈ I and
ι′(v) = (ι(v), 0), otherwise. Define τ ′ by τ ′((i, a), (j, b)) = τ(i, j) if (a, b) ̸=
(1, 1) and τ ′((i, a), (j, b)) = 0, otherwise. Let F ′ = (τ ′, ι′). Then, if u and v

do not both belong to I, we have EG⊕F ′(u, v) = EG⊕F (u, v). However, if
both u and v belong to I, we have EG⊕F ′(u, v) = EG(u, v) = 0. □

The next lemma expresses that distances cannot be arbitrarily shrunk
in a shallow vertex minors.

Lemma 3.3. — Let H ∈ svm1(G) and let x, y ∈ V (H).
Then, distH(x, y) ⩾ 1

2 distG(x, y).

Proof. — Let H = G ∗ I − D. Assume distH(x, y) = 1. Then, either
distG(x, y) = 1 or some edge between x and y has been created by the
local complementation of the vertices in I. In this later case, x and y have
a common neighbor in I hence distG(x, y) = 2. Generally, considering a
shortest path between x and y in H, we deduce distH(x, y) ⩾ 1

2 distG(x, y).
□

The next lemma, which is a direct consequence of Lemmas 3.1, 3.2
and 3.3, will be the key to the preservation theorems proved in Section 5.

Lemma 3.4. — Let F be a k-flip on V (G) and let I be an independent
set of G. Then, there exists a 2k22k-flip F ′ on V (G) such that, for every
two vertices x, y in V (G) we have

(3.1) distG∗I⊕F ′(x, y) ⩾ 1
2 distG⊕F (x, y).

Proof. — According to Lemma 3.2 there exists a 2k-flip F̂ such that
dist

G⊕F̂
⩾ distG⊕F and I is independent in G ⊕ F̂ . By Lemma 3.1 there

exists a (2k)22k-flip F ′ such that G ∗ I ⊕ F ′ = G ⊕ F̂ ∗ I. According to
Lemma 3.3, for every x, y ∈ V (G), we have

distG∗I⊕F ′(x, y) = dist
G⊕F̂ ∗I

(x, y) ⩾ 1
2 dist

G⊕F̂
(x, y) ⩾ 1

2 distG⊕F (x, y).

□

Innov. Graph Theory 1, 2024, pp. 87–112
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We end this section with an extension of Lemma 3.1, which will not be
needed in the remaining of the paper (and thus can be safely skipped).
Nevertheless, it seemed to us that this result, which clarifies the relation-
ships between flip and shallow vertex minors, has an independent interest
that justifies its inclusion here.

For a class C and an integer k, we denote by Flipk(C ) the class of all
the graphs G ⊕ F , where F is a k-flip.

Proposition 3.5. — For every integer k, there exist integers k′, c such
that

svm1(Flipk(C )) ⊆ Flipk′(svmc(C ))
and Flipk(svm1(C )) ⊆ svmc(Flipk′(C )).

The proof of this proposition will follow from the next technical lemma.
Lemma 3.6. — There exists a function F (k) (basically, a tower of height

k) such that for every graph G, every independent set I of G, and every
k-flip F = (ι, τ) on V (G) there exists a partition J1, . . . , Jp of I into at
most 2k parts and an F (k)-flip F ′ on V (G) such that

G ∗ I ⊕ F ′ = G ⊕ F ∗ J1 ∗ · · · ∗ Jp.

Proof. — First, note that I is F -homogeneous in G ⊕ F as it is indepen-
dent in G. We prove the lemma by induction on the number k of F -classes
of I. We allow I to be empty, so that the base case, k = 0, obviously holds.

Assume that the lemma when the number of F -classes of I is at most
k ⩾ 0, and let I be an independent set with (k + 1) F -classes, denoted
I1, . . . , Ik+1.

• Assume I1 is independent in G ⊕ F .
▷ Claim 1. — There exists a k2k-flip F ′ that is I-compatible with

F , such that G ∗ I1 ⊕ F ′ = G ⊕ F ∗ I1 and I \ I1 is F ′-homogeneous
in G ∗ I1.
Proof of the claim. As I1 is an F -class of I, we have I1 ⊆ ι−1(i0)∩I

for some i0 ∈ [k]. As I is F -homogeneous, there exists a symmetric
function f : [k]×[k] → F2 such that, for x, y ∈ I, we have EG(x, y) =
f(ι(x), ι(y)). Thus, if v ∈ I1 and i ∈ [k], we have

ς(v, i) =
∑
z∈I1

EG(v, z) · τ(i, ι(z))

=
∑
z∈I1

f(ι(v), i0) · τ(i, i0)

= |I1| · f(ι(v), i0) · τ(i, i0),

Innov. Graph Theory 1, 2024, pp. 87–112
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where |I1| is meant as the cardinal of I1 counted in F2, that is the
parity of |I1|. It follows that ς(v, · ) is a function of ι(v), thus F and
F ′ are I-compatible.

Let u, v be distinct vertices in I \ I1. As I is F -homogeneous in
G we have

EG∗I1(u, v) = EG(u, v) +
∑
z∈I1

EG(u, z) · EG(z, v)

= f(ι(u), ι(v)) + |I1| · f(ι(u), i0) · f(ι(v), i0).

Thus, I \ I1 is F ′-homogeneous in G ∗ I1. ◁

As F ′ is I-compatible with F , I2, . . . Ik+1 are the k F ′-classes of
I \ I1 in G ∗ I1. By induction, there exist J1, . . . , Jp and a flip F ′′

such that

(G ∗ I1) ∗ (I \ I1) ⊕ F ′′ = (G ∗ I1) ⊕ F ′ ∗ J1 ∗ · · · ∗ Jp.

Hence,

G ∗ I ⊕ F ′′ = (G ∗ I1) ∗ (I \ I1) ⊕ F ′′

= (G ∗ I1) ⊕ F ′ ∗ J1 ∗ · · · ∗ Jp

= G ⊕ F ∗ I1 ∗ J1 ∗ · · · ∗ Jp,

which has the desired form, as {I1, J1, . . . , Jp} is a partition of I

with p + 1 ⩽ 2(k + 1) parts.
• Otherwise, I1 is not independent in G ⊕ F .

Then, I1 is a clique of size at least two of G ⊕ F . We split I1 into
a singleton {a1} and I1 \ {a1}. According to the above, there exists
a k2k-flip F ′ that is I-compatible with F such that

G ∗ a1 ⊕ F ′ = G ⊕ F ∗ a1

and I \ {a1} is F ′-homogeneous in G ∗ a1. As F ′ is I-compatible
with F , I1 \ {a1}, I2, . . . Ik+1 are the F ′-classes of I \ I1. As I1 is a
clique in G⊕F , I1 \{a1} is independent in G⊕F ∗a1 = G∗a1 ⊕F ′.
Hence, according to Claim 1, there exists a (k2k)2k2k -flip F ′′ that
is I \ {a1}-compatible with F ′ such that

(G ∗ a1) ∗ (I1 \ {a1}) ⊕ F ′′ = (G ∗ a1) ⊕ F ′ ∗ (I1 \ {a1}).

Moreover, as F ′′ is I \ {a1}-compatible with F ′, I2, . . . Ip are the k

F ′′-classes of I \ I1 in G ∗ I1.
By induction, there exist J1, . . . , Jp and a flip F ′′′ such that

(G ∗ I1) ∗ (I \ I1) ⊕ F ′′′ = (G ∗ I1) ⊕ F ′′ ∗ J1 ∗ · · · ∗ Jp.

Innov. Graph Theory 1, 2024, pp. 87–112
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Hence,

G ∗ I ⊕ F ′′′ = (G ∗ I1) ∗ (I \ I1) ⊕ F ′′′

= (G ∗ I1) ⊕ F ′′ ∗ J1 ∗ · · · ∗ Jp

= (G ∗ a1) ∗ (I1 \ {a1}) ⊕ F ′′ ∗ I1 ∗ J1 ∗ · · · ∗ Jp

= (G ∗ a1) ⊕ F ′ ∗ (I1 \ {a1}) ∗ J1 ∗ · · · ∗ Jp

= G ⊕ F ∗ a1 ∗ (I1 \ {a1}) ∗ J1 ∗ · · · ∗ Jp,

which has the desired form, as {{a1}, (I1 \ {a1}), J1, . . . , Jp} is a
partition of I with p + 2 ⩽ 2(k + 1) parts.

□

Proof of Proposition 3.5. — Proposition 3.5 immediately follows from
the next two claims.

▷ Claim 2. — Let F = (ι, τ) be a k-flip of G and let I be an independent
set of G ⊕ F . Then, there exists a partition I1, . . . , Ip of I into at most 2k

parts and an F (k)-flip F ′ on V (G) such that

G ∗ I1 ∗ · · · ∗ Ip ⊕ F ′ = G ⊕ F ∗ I.

Proof of the claim. Applying Lemma 3.6 to G ⊕ F , we obtain a partition
I1, . . . , Ip of I into at most 2k parts and an F (k)-flip F ′ on V (G) such that

(G ⊕ F ) ∗ I ⊕ F ′ = (G ⊕ F ) ⊕ F ∗ I1 ∗ · · · ∗ Ip.

As flips are involutive, we deduce G ∗ I1 ∗ · · · ∗ Ip ⊕ F ′ = G ⊕ F ∗ I. ◁

▷ Claim 3. — Let F = (ι, τ) be a k-flip of G and let I be an independent
set of G. Then, there exists a partition I1, . . . , Ip of I into at most 2k parts
and an F (k)-flip F ′ on V (G) such that

G ⊕ F ′ ∗ Ip ∗ · · · ∗ I1 = G ∗ I ⊕ F.

Proof of the claim. Note that I is an independent set of G ∗ I as well.
Applying Lemma 3.6 to G ∗ I, we obtain a partition I1, . . . , Ip of I into at
most 2k parts and an F (k)-flip F ′ on V (G) such that

(G ∗ I) ∗ I ⊕ F ′ = (G ∗ I) ⊕ F ∗ I1 ∗ · · · ∗ Ip.

As local complementations are involutive, we deduce G ⊕ F ′ ∗ Ip ∗ · · · ∗ I1 =
G ∗ I ⊕ F . ◁

□
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4. Dependence and Stability

The notions of dependence (or NIP) and stability are central to the
classification theory in Model Theory. Let C be a class of graphs and let
φ(x̄; ȳ) be a first-order partitioned formula, that is a first-order formula
whose free variables are partitioned into two tuples (here x̄ and ȳ).

The formula φ is unstable on C if, for every integer n there exists a
graph G ∈ C and tuples ā1, . . . , ān, b̄1, . . . , b̄n of vertices of G such that
G |= φ(āi, b̄j) if and only if i ⩽ j. A class C is stable if no formula is
unstable on C .

The formula φ is independent on C if, for every integer n there exists a
graph G ∈ C and tuples ā1, . . . , ān, b̄∅, . . . , b̄[n] of vertices of G such that
G |= φ(āi, b̄J) if and only if i ∈ J . A class C is dependent (or NIP) if no
formula is independent on C .

We illustrate this notion by an example:

Example 4.1. — The class of split interval graphs is independent.

Proof. — Consider the following formulas.

ν(x) := ∃y
(
¬(x = y) ∧ ∀z (E(x, z) ↔ E(y, z)

)
η(x) := ¬ν(x) ∧ ∀y (ν(y) → ¬E(x, y))

µν(x, y) := E(x, y) ∧ ∀z
(
((ν(z) ∧ E(z, y)) → (∀t E(x, t) → E(z, t))

)
µη(x, y) := E(x, y) ∧ ∀z

(
((η(z) ∧ E(z, y)) → (∀t E(x, t) → E(z, t))

)
φ(x, y) := ∃z (µν(x, z) ∧ µη(y, z))

These formulas will be used on the following construction of a split interval
graph G (See Figure 4.1). Let n > 1 be an integer. We consider 2n + 2n

non-intersecting intervals a1, a′
1, . . . , an, a′

n, b[n], . . . , b{1}, b∅ in this order
(the subsets of [n] being ordered in reverse lexicographic order). We add
an interval from a1 to a′

n then, for each i ∈ [n] and each J ⊆ [n] containing
i, we add an interval from ai to bJ . The formula ν(x) expresses that x has
a false twin. Hence, ν(G) = {a1, . . . , an, a′

1, . . . , a′
n}. The formula η allows

defining the remaining of the stable part of G: η(G) = {b∅, . . . , b{1,...,n}}.
The formula µν(x, y) expresses that x is the leftmost interval in ν(G) that
is adjacent to y, while µη(x, y) expresses that x is the rightmost interval
in η(G) that is adjacent to y. Finally, we easily check that G |= ϕ(ai, bJ)
if and only if i ∈ J . Hence, ϕ is independent on the class of split interval
graphs. □

We can also consider monadic expansions of graphs, that is, relational
structures with a single binary relation and finitely many unary predicates,
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b{1,2,3} b{2,3} b{1,3} b{1,2} b{3} b{2} b{1} b∅a3a2a1

Figure 4.1. Encoding a power graph in a split interval graph. We have
φ(ai, bJ) ↔ i ∈ J .

which can be seen as vertex-colored graphs. A class C ′ is a monadic expan-
sion of a class of graphs C if the class C is obtained from C ′ by “forgetting”
the unary predicates. A class C is monadically stable (resp. monadically de-
pendent) if every monadic expansion of C is stable (resp. dependent). For
hereditary classes of graphs, the monadic and non-monadic version collapse:

Theorem 4.2 ([5]). — Let C be a hereditary class of graphs. Then C

is dependent if and only if it is monadically dependent, and it is stable if
and only if it is monadically stable.

As a direct consequence, we have

Corollary 4.3. — Let C be a class of graphs. Then C is monadically
dependent if and only if the hereditary closure of C is dependent, and it is
monadically stable if and only if the hereditary closure of C is stable.

Recently, several characterization theorems have been given for stable
and dependent hereditary classes. We shall make use of two types of char-
acterizations.

The first type of characterizations is based on the possibility to push
vertices far away by means of a flip.

Theorem 4.4 ([8]). — A class C is monadically stable if and only if for
every radius r, there exists an integer k and an unbounded non-decreasing
function U : N → N such that for every G ∈ C and every A ⊆ V (G) there
exists a k-flip F and a subset S ⊆ A with |S| ⩾ U(|A|) and any two vertices
in S are pairwise at distance at least r in G ⊕ F .

Theorem 4.5 ([9, Theorem 1.3]). — A class C is monadically depen-
dent if and only if for every radius r, there exists an integer k and an
unbounded non-decreasing function U : N → N such that for every G ∈ C

and every A ⊆ V (G) there exists a k-flip F and subsets A1, A2 ⊆ A with
|A1|, |A2| ⩾ U(|A|) and any vertex in A1 is at distance at least r in G ⊕ F

to vertices in A2.
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The second type of characterization is structural.

Theorem 4.6 ([9, Theorem 1.6]). — Let C be a graph class. Then C

is monadically dependent if and only if for every r ⩾ 1 there exists n ∈ N
such that C excludes as induced subgraphs

• all flipped star r-crossings of order n, and
• all flipped clique r-crossings of order n, and
• all flipped half-graph r-crossings of order n, and
• the comparability grid of order n.

We take time to define the families of graphs used in Theorem 4.6. Let
r be a positive integer.

• A star r-crossings of order n (Figure 4.2b) is the r-subdivision of
Kn,n. It consists of principle vertices a1, . . . , an and b1, . . . , bn and
internally vertex-disjoint paths Pi,j (i, j ∈ [n]) with vertices pi,j,k

(with 0 ⩽ k ⩽ r + 1 monotone on the path), where pi,j,0 = ai and
pi,j,r+1 = bj .

• A clique r-crossings of order n (Figure 4.2c) is the graph obtained
from a star r-crossings of order n by making the neighborhood of
each principal vertex complete.

• A half-graph r-crossings of order n (Figure 4.2d) is the graph ob-
tained from a star r-crossings of order n by making adjacent the
vertices ai and pi′,j,1 whenever i′ ⩾ i and the vertices bj and pi,j′,r

whenever j′ ⩾ j.

A flipped star r-crossings (resp. clique r-crossing, half-graph r-crossings)
of order n is the graph obtained from a star r-crossings (resp. a clique r-
crossing, a half-graph r-crossings) of order n by applying a flip based on
the partitions with parts {pi,j,k : i, j ∈ [n]}, for 0 ⩽ k ⩽ r + 1, which we
call the flip-parts.

• Finally, the comparability grid of order n (Figure 4.2a) has vertex
set {ai,j : i, j ∈ [n]}, with ai,j adjacent to ai′,j′ whenever i = i′,
j = j′, or (i < j) ↔ (i′ < j′).
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(a) The compara-
bility grid

(b) A (flipped) star r-
crossing

(c) A (flipped) clique r-
crossing

(d) A (flipped) half-
graph r-crossing

Figure 4.2. The forbidden induced configurations. Figures 4.2b–4.2d:
the flipped versions are obtained by applying an r + 2-flip whose parts
are materialized as horizontal lines of vertices.

The next easy lemma will be useful.

Lemma 4.7. — Let G be a graph, let F = (ι, τ) be a k-flip on V (G),
and let I be an independent set of G containing exactly one element of
each F -class.

Then, there exist z1, . . . , zp in I with p ⩽ 3k/2 (where each element of I

is used at most twice), such that

(4.1) G ⊕ F ∗ z1 ∗ · · · ∗ zp − NG[I] = G − NG[I],

where NG[I] denotes the closed neighborhood of I in G.

Proof. — Let X = {i ∈ [k] : ∃j ∈ [k], τ(i, j) = 1}. We prove a strength-
ening of the lemma statement by induction on |X|, where we require that
ι(zi) ∈ X for all i ∈ [p].

The base case is X = ∅, in which case G ⊕ F = G, so we can let p = 0.
Assume we have proved the induction hypothesis for |X| ⩽ ℓ (where

ℓ ⩾ 0) and let |X| = ℓ + 1.
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Assume there exists a ∈ X with τ(a, a) = 1, and let z be the element in
I with ι(z) = a. Then, for u, v /∈ NG[z],

EG⊕F ∗z(u, v) = EG(u, v) + τ(ι(u), ι(v))
+ ((EG(u, z) + τ(ι(u), a) · ((EG(v, z) + τ(ι(v), a))

= EG(u, v) + τ(ι(u), ι(v)) + τ(ι(u), a) · τ(ι(v), a)
= EG⊕F ′(u, v),

where F ′ = (ι, τ ′) and τ ′(i, j) = τ(i, j) + τ(i, a) · τ(j, a). In particular,
τ ′(a, i) = 0 for all i ∈ [k]. Thus, the result follows from the induction
hypothesis.

Otherwise, let a ∈ X. As τ(a, a) = 0, there exists b ̸= a in X with
τ(a, b) = 1. Note that τ(b, b) = 0. Let z (resp. z′) be the element of I with
ι(z) = a (resp. ι(z′) = b). Then, zz′ is an edge of G ⊕ F , and we have, for
u, v /∈ NG[{z, z′}],

EG⊕F ∗z∗z′∗z(u, v)
= EG⊕F ∧zz′(u, v)
= EG(u, v) + τ(ι(u), ι(v))

+ (EG(u, z) + τ(ι(u), ι(z)) · (EG(v, z′) + τ(ι(v), ι(z′))
+ (EG(u, z′) + τ(ι(u), ι(z′)) · (EG(v, z) + τ(ι(v), ι(z))

= EG(u, v) + τ(ι(u), ι(v))
+ τ(ι(u), a) · τ(ι(v), b) + τ(ι(u), b) · τ(ι(v), a)

= EG⊕F ′(u, v),

where F ′ = (ι, τ ′) and τ ′(i, j) = τ(i, j) + τ(i, a) · τ(j, b) + τ(i, b) · τ(j, a). In
particular, τ ′(a, i) = 0 and τ ′(b, i) = 0 for all i ∈ [k]. Thus, the statement
follows from the induction hypothesis. □

The next lemma shows how to reduce subdivisions.

Lemma 4.8. — Let G be a subdivision of a graph H, where every edge
is subdivided at most r times. Then, H is a depth-⌈log2(r + 1)⌉ vertex
minor of G.

Proof. — Let S = V (G) \ V (H) be the set of all the subdivision vertices
of G, and let I ⊆ S be an independent set of maximal possible cardinal.
Note that if an edge uv of H is subdivided k ⩽ r times in G, then I contains
⌈k/2⌉ of these subdivision vertices, and thus G ∗ I − I is a subdivision of
H, where each edge is subdivided at most ⌊r/2⌋ times. By induction, H is
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a depth-c vertex minor of G ∗ I − I, where 2c−1 + 1 ⩽ ⌊r/2⌋ + 1 ⩽ 2c, i.e.
if 2c + 1 ⩽ r + 1 ⩽ 2c+1. Hence, H is a depth-⌈log2(r + 1)⌉ vertex minor of
G. □

It will be helpful to consider the following graphs instead of split interval
graphs: the matchmaking graph associated to a matching M ⊂ [n] × [n] is
the graph with vertex set {ai : i ∈ [n]}∪{bj : j ∈ [n]}∪M , where (k, ℓ) ∈ M

is adjacent to ai if i ⩽ k and to bj if j ⩽ ℓ (See Figure 4.3).

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

M (1, 5) (2, 3) (3, 6) (4, 1) (5, 4) (6, 2)

Figure 4.3. matchmaking graph associated to the (ordered) matching
M = {(1, 5), (2, 3), (3, 6), (4, 1), (5, 4), (6, 2)}.

Lemma 4.9. — Every split interval graph is a depth-1 vertex minor of
a matchmaking graph.

Proof. — Let H be a split interval graph. We construct a supergraph G

of H with additional properties. We first let G = H. As G is a split interval
graph, its vertex set is the disjoint union of a clique K and an independent
set I. It is known [10, Proposition 1] that G has an interval representation
where every interval in I is a singleton. Hence, the interval representation
defines a linear order < on I. As K is a clique,

⋂
K is not empty. Adding,

if necessary, a vertex to I, we can assume that there exists a1 ∈ I ∩
⋂

K.
Moreover, by slightly extending some intervals and adding some vertices
in I, we can assume that all the intervals have distinct leftmost incidence
in I and distinct rightmost incidence in I. By adding new intervals and
vertices in I if necessary, we can further ensure that every vertex v ∈ I is
the leftmost or the rightmost incidence in I of exactly one interval in K

(and that all the intervals in K are incident to a1). Then, the elements of I

can be labeled am < · · · < a1 < b1 < · · · < bm, and the elements in K can
be labeled as a set M of pairs (i, j), where the pair associated to v ∈ L is
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(i, j) if ai is the leftmost incidence of v in I, bj the rightmost incidence of
v in I. Note that M is a perfect matching of {a1, . . . , am} and {b1, . . . , bm}
by construction.

The graph G′ obtained by flipping K (i.e. turning K into an independent
set) is a matchmaking graph H ′. Now, H is an induced subgraph of G′ =
H ′ ∗ a1, hence a depth-1 vertex minor of a matchmaking graph. □

With Lemma 4.7 in hand, we reduce the different cases of Theorem 4.6
in terms of shallow vertex minors.

Lemma 4.10. — Let C be a class of graphs and let r be a positive
integer. Assume that for arbitrarily large integer n the class C includes
a flipped star r-crossings or a flipped clique r-crossings of order n. Then,
svmc(C ) is the class of all graphs, where c = 3r/2 + 4 + ⌈log2(2r + 1)⌉.

Proof. — Consider a flipped star r-crossings or a flipped clique
r-crossings G of order n. Let I = {p1,1,2k : 0 ⩽ 2k ⩽ r +1}∪{p2,2,2k+1 : 0 ⩽
2k+1 ⩽ r+1}. Then, I is an independent set and, according to Lemma 4.7,
a star r-crossings or a clique r-crossings of order n−2 is a depth-(3(r+2)/2)
vertex minor of G. if the obtained graph is a clique r-crossings of order n−2,
then it can be turned into a star r-crossings of order n − 2 by local com-
plementation of the (independent) set of all its principal vertices. Thus, we
get a star r-crossings of order n−2 as a depth-(3r/2+4) vertex minor of G.
This graph contains the (2r +1)-subdivision of all the (2r +1)-subdivisions
of the graphs with order at most

√
n − 2. The result follows. □

Lemma 4.11. — Let C be a class of graphs and let r be a positive
integer. Assume that for arbitrarily large integer n the class C includes
a flipped half-graph r-crossings. Then, svmc(C ) includes all matchmaking
graphs, where c = 3r/2 + 4 + ⌈log2 r⌉.

Proof. — Consider a flipped half-graph r-crossings G of order 2n+3. Let
I = {p1,1,2k : 2 ⩽ 2k ⩽ r}∪{p2,2,2k+1 : 0 ⩽ 2k+1 ⩽ r+1}∪{a3}. Then, I is
an independent set and, according to Lemma 4.7, a half-graph r-crossings of
order 2n is a depth-(3(r +2)/2) vertex minor of G. If r = 1, then we get all
matchmaking graphs of order 2n as induced subgraphs of the so-obtained
graph. If r ⩾ 2, we get, as a depth-⌈log2 r⌉ vertex minor of the so-obtained
graph a graph formed by two half graphs and an arbitrary perfect matching
between their upper parts. By local complementation of one of these upper
part (and as the order 2n is even) we get all matchmaking graphs of order
2n. □
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As a consequence of Theorem 4.6, the above lemmas, and the fact that
every permutation graph is an induced subgraph of a comparability grid
(See, for instance, [11]), we get

Corollary 4.12. — Let C be a hereditary class of graphs. If C is
independent, then either C includes all permutation graphs or there exists a
non-negative integer r such that svmr(C ) includes all split interval graphs.

5. Preservation of dependence and stability by shallow
vertex minors

This section gathers the preservation theorems proved in this paper,
which will be central to the characterization theorems proved in the next
section.

Lemma 5.1. — Let C be a hereditary class of graphs. Then C is stable
if and only if svm1(C ) is stable.

Proof. — If svm1(C ) is stable, then C is stable as C ⊆ svmc(C ).
Assume C is stable. Let r be a positive integer, let G ∈ C , let I be

an independent set of G and let A ⊆ V (G). According to Theorem 4.4,
there exists a k2r-flip F2r and a subset S of A with size at least U2r(|A|),
such that the vertices of S are 2r-independent in G ⊕ F2r. According
to Lemma 3.4, there exists a 2k2r22k2r -flip F ′ such that distG∗I⊕F ′ ⩾
1
2 distG⊕F2r . The integer k′

r = 2k2r22k2r , the flip F ′
r = F ′, and the function

U ′
r = U2r witness that, according to Theorem 4.4, the class {G ∗ I : G ∈

C , I independent in G} is monadically stable. It follows that the hereditary
closure svm1(C ) of this class is stable. □

Similarly, we get.

Lemma 5.2. — Let C be a hereditary class of graphs. Then, C is de-
pendent if and only if svm1(C ) is dependent.

Proof. — If svm1(C ) is dependent, then C is dependent as C ⊆ svmc(C ).
Assume C is dependent. Let r be a positive integer, let G ∈ C , let I

be an independent set of G and let A ⊆ V (G). According to Theorem 4.5,
there exists a k2r-flip F2r and subset A1, A2 of A with size at least U2r(|A|),
such that distG⊕F2r

(A1, A2) > r. According to Lemma 3.4, there exists a
2k2r22k2r -flip F ′ such that distG∗I⊕F ′ ⩾ 1

2 distG⊕F . The integer k′
r = 4k2r,

the flip F ′
r = F ′, and the function U ′

r = U2r witness that, according to
Theorem 4.5, the class {G ∗ I : G ∈ C , I independent in G} is monadically
dependent. It follows that the hereditary closure svm1(C ) of this class is
dependent □
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6. The characterization theorems

Theorem 6.1 (Restatement of Theorem 1.2). — Let C be a hereditary
class of graphs. Then, C is dependent if and only if the class C does not
contain all permutation graphs and, for every integer r, the class C excludes
some split interval graph as a depth-r shallow vertex minor.

Proof. — Assume C is independent. Then, according to Corollary 4.12,
either C contains all permutation graphs or there exists a non-negative
integer r such that svmr(C ) includes all split interval graphs.

Conversely, assume that either C contains all permutation graphs or
there exists a non-negative integer r such that svmr(C ) includes all split
interval graphs. In the first case, C is independent, as it is well known that
the class of all permutation graphs is independent(1)

In the latter case, it follows from the fact that the class of split interval
graphs is independent (See Example 4.1) that svmr(C ) is independent.
Then, according to Lemma 5.2, the class C is independent. □

The characterization of stability will make use of the following result.

Theorem 6.2 ([14, Theorem 5.2]). — For a monadically dependent
graph class C , the following conditions are equivalent:

(1) C has a stable edge relation;
(2) C is stable;
(3) C is monadically stable

Theorem 6.3 (Restatement of Theorem 1.3). — Let C be a hereditary
class of graphs. Then, C is stable if and only if, for every integer r, the
class C excludes some half-graph as a depth-r shallow vertex minor.

Proof. — Assume that for some integer r, the class svmr(C ) contains all
the half-graphs. Then, svmr(C ) is unstable and, according to Lemma 5.1,
so is C .

Conversely, assume that C is unstable. Assume that C is also indepen-
dent. Then, either C includes all permutation graphs (including all half-
graphs, as they are permutation graphs), or there exists a non-negative r

such that svmr(C ) includes all split interval graphs. As every half-graph

(1) One way to see this is to check that the class of all permutations encoded as two
linear orders (which is known to be independent [4]) is a transduction of the class of
all permutation graphs. To see this, we associate to σ ∈ Sn the permutation σ̂ ∈ S2n

defined by σ̂(2i + 1) = σ(i) and σ̂(2i) = n + i. Let A = {2i : i ∈ [n]} and B = {2i +
1: i ∈ [n]}, then σ is isomorphic to the permutation on A defined by the total orders
(x <1 y) :=

(
∀z B(z) →

(
E(x, z) → E(y, z)

))
and (x <2 y) := (x <1 y) ↮ E(x, y).
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can be obtained as a depth-1 vertex minor of a split interval graph, we
conclude that svmr+1(C ) includes all half-graphs.

Otherwise, C is dependent and unstable. Then, according to
Theorem 6.2, the graphs in C contain arbitrarily large semi-induced half-
graphs. By a standard Ramsey argument, we deduce that we can find in C

arbitrarily large flipped half graphs, where the partition used for the flip is
the bipartition of the half-graph. Let a1, . . . , an, b1, . . . , bn be the vertices
of the flipped half-graph. By considering the independent set {an, b1} and
Lemma 4.7, we deduce that svm2(C ) contains all half-graphs. □

7. Extension to binary structures

In this section, we discuss the generalization of Theorems 1.2 and 1.3
to binary structures. As an application, we show that this generalization
allows a short proof that the boundedness of twin-width is preserved by
shallow vertex minors.

A relational signature σ is a set of relation symbols with arity. A bi-
nary relational structure is a relational structure whose signature contains
relations with arity at most 2.

Let σ be a relational signature and let σ̄ = σ ∪ {∼}, where ∼ is a binary
relation symbol. The k-copy operation Ck maps a σ-structure M into the
σ̄-structure Ck(M) consisting of k copies of M where the copies of each
element of M are made adjacent by ∼. The copies of a same element are
called clones. Note that for k = 1, C1 maps each structure M to itself.

For a set U of unary relations, the coloring operation ΓU maps a structure
M to the set ΓU (M) of all its U-expansions.

Let σ+, σ′ be relational structures, where σ+ \ σ̄ = U . A simple interpre-
tation I of σ′-structures in σ+-structures is defined by a formula ν(x) and,
for each R ∈ σ′ with arity r, a formula ρR(x̄) with |x̄| = r (in the first-order
language of σ+-structures). If M+ is a σ+-structure, then N = I(M+) is
the σ′-structure with domain N = ν(M+) where, for each R ∈ σ′ with
arity r, we have R(N) = ρR(M) ∩ ν(M)r. For a set Γ of σ+-structures we
let I(Γ) =

⋃
M+∈Γ I(M+).

A transduction T is the composition I ◦ ΓU ◦ Ck of a copy operation Ck,
a coloring operation ΓU , and a simple interpretation I. In other words, for
every σ-structure M we have T(M) = {I(M+) : M+ ∈ ΓU (Ck(M))}.

Let σ = {R1, . . . , Rk} be a binary relational signature. We consider two
transductions. First, X = IX ◦ ΓU ◦ Ck from σ-structures to U-colored di-
graphs, where U = {P1, . . . , Pk} and IX is the simple interpretation defined
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by the formulas

ν(x) := ⊤
ρPi(x) := Pi(x)

ρE(x, y) :=
( ∨

i∈[k]

(
Pi(x) ∧ Pi(y) ∧ Ri(x, y)

))

∨
( ∨

i̸=j∈[k]

(
Pi(x) ∧ Pj(y) ∧ (x ∼ y)

))
Second, K is the simple interpretation of σ-structures in U-colored di-

graphs defined by the formulas (where 1 < i ⩽ k)

ν(x) := P1(x),
R1(x, y) := E(x, y),
Ri(x, y) := ∃x′, y′ (

Pi(x′) ∧ Pi(y′) ∧ E(x, x′) ∧ E(y, y′) ∧ E(x′, y′)
)
.

Particularly, let fX(M) ∈ X(M) be the graph obtained from the U-
expansion such that Pi marks the ith clones. It is clear that for every
σ-structure M, we have M = K(fx(M)). (Hence, M ∈ K◦X(M).) In partic-
ular, a class C of σ-structures is monadically dependent (resp. monadically
stable) if and only if fX(C ) is monadically dependent (resp. monadically
stable).

Note that if Ri is symmetric, so is the adjacency relation between the
vertices in the unary relation Pi. In such a case, we can consider that
subdigraphs induced by vertices in Pi are actually graphs. Let σ be a fi-
nite binary structure and let M be a σ-structure such that R1, . . . , Ra are
symmetric. For i ∈ [a], we define M ∗Ri v as the σ-structure obtained by
Ri-complementing the Ri-neighborhood of v. A depth-1 vertex minor of M
has the form

M ∗R1 I1 ∗ · · · ∗Ra Ia − D,

where Ii is an Ri-independent subset of M and D ⊆ M . We denote by
svm1(M) the set of all the depth-1 vertex minors of M and, for a class C

of σ-structures, we define svm1(C ) =
⋃

M∈C svm1(M).

Fact 1. — For every class C of σ-structures, we have

fX(svm1(C )) ⊆ svm1(fX(C )).

As a consequence, we have

Corollary 7.1. — Let C be a hereditary class of binary structures.
Then,
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(1) C is stable if and only if svm1(C ) is stable;
(2) C is dependent if and only if svm1(C ) is dependent.

As an application of this corollary, we have

Theorem 7.2. — Let C be a class of graphs. Then, C has bounded
twin-width if and only if svm1(C ) has bounded twin-width.

Proof. — As C ⊆ svm1(C ), the class C has bounded twin-width if
svm1(C ) has bounded twin-width.

Conversely, assume that C has bounded twin-width. According to [2],
the class C has an expansion to a dependent class C < of ordered graph.
This expansion is a binary structure with (binary) signature {E, <}. Ac-
cording to Corollary 7.1, svm1(C <) is dependent. Here, we have a single
symmetric relation, which is E. As the linear order is not modified by local
complementations on E-neighborhood, the class svm1(C <) is a class D<

of ordered graphs, which is a dependent expansion of svm1(C ). According
to [2], it follows that svm1(C ) has bounded twin-width. □

8. Discussion

It has been proved [12] that a class C has bounded shrubdepth if and
only if C excludes some path as a vertex minor. It is natural to ask whether
this result could be strengthened by restricting to shallow vertex minors.

Problem 1. — Is it true that for every class C with unbounded shrub-
depth there exists an integer r such that svmr(C ) contains all paths or all
half-graphs?

Remark that this problem can be restated as follows: Is it true that for
every stable class C with unbounded shrubdepth there exists an integer r

such that svmr(C ) contains all paths?

It is known [15] that a class C has structurally bounded expansion if and
only if there exists a class D of bipartite graphs with bounded expansion
such that C ⊆ svm1(D). An obvious question is whether such a kind of
characterizations would extend to stable hereditary classes of graphs.

Problem 2. — Is it true that a hereditary class C is stable if and only
if there exist an integer c and a nowhere dense class D , such that C ⊆
svmc(D)?
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One direction follows from Theorem 1.3: If there exist an integer c and
a nowhere dense class D such that C ⊆ svmc(D), then C is stable. On the
other hand, it might well follow from [6] that if C is stable then there exists a
stable almost nowhere dense class D of bipartite graphs with C ⊆ svm1(D).
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