
HAL Id: hal-04806883
https://hal.science/hal-04806883v1

Submitted on 27 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory-processor co-scheduling of AECR-DAG
real-time tasks on partitioned multicore platforms with

scratchpads
Ikram Senoussaoui, Giuseppe Lipari, Houssam-Eddine Zahaf, Mohammed

Kamal Benhaoua

To cite this version:
Ikram Senoussaoui, Giuseppe Lipari, Houssam-Eddine Zahaf, Mohammed Kamal Benhaoua. Memory-
processor co-scheduling of AECR-DAG real-time tasks on partitioned multicore platforms with scratch-
pads. Journal of Systems Architecture, 2024, 150, pp.103117. �10.1016/j.sysarc.2024.103117�. �hal-
04806883�

https://hal.science/hal-04806883v1
https://hal.archives-ouvertes.fr

ScienceDirect
 www.sciencedirect.com

PLANTILLA 21X28.indd 1 10/09/2013 11:31:24

Journal of Systems Architecture 00 (2024) 1–18 www.elsevier.es/RIAI

Memory-processor co-scheduling of AECR-DAG real-time tasks on partitioned multicore
platforms with scratchpads

Ikram Senoussaouia,b,∗, Giuseppe Liparib, Houssam-Eddine Zahafc, Mohammed Kamal Benhaouaa,d

aOran1 University, LAPECI, Oran, Algeria
bUniv. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

cNantes Université, École Centrale Nantes, IMT Atlantique, CNRS, INRIA, LS2N, UMR 6004, F-44000 Nantes, France
dUniversity Of Mustapha Stambouli Mascara-Algeria

Abstract

Multicore systems with core-level scratchpad memories offer appealing architectures for constructing efficient and predictable
real-time systems. In this work, we aim to improve the usability of scratchpad memories and exploit their predictability to hide
access latency to shared resources. We use a genetic algorithm to derive scheduling parameters for a set of directed acyclic task-
graphs (DAGs). DAGs consist of dependent subtasks and their respective communications, following the Acquisition Execution
Restitution (AER) model. Subtasks are partitioned onto the multicore platform while scheduling their memory requests and relative
communications onto the shared buses, in order to prevent interference and ensure predictability. Specifically, all subtasks and
communications are assigned appropriate intermediate offsets and deadlines to guarantee that they comply with the system’s timing
constraints. We conducted a large set of synthetic experiments to demonstrate the effectiveness of the proposed technique.

Keywords: Real-time systems, genetic-algorithm, scratchpad, multicore architecture, contention-free scheduling, DAG task

1. Introduction

Modern real-time applications, particularly those in the au-
tomotive domain, are becoming increasingly complex. They
face the challenge of meeting strict real-time constraints while
satisfying high performance requirements. Recent hardware
platforms incorporate multiple cores, making them appealing
candidates for meeting the requirements of these applications.
As a result, modern real-time applications are typically struc-
tured as a collection of parallel and concurrent tasks, repre-
sented using the Directed Acyclic Graph (DAG) task model.
This task model enables efficient utilization of the different
cores and maximizes the platform utilization.

In a typical multicore platform, different cores share a com-
plex memory hierarchy. Multiple tasks may have concurrent
access to different memory subsystem components, leading to
potential interference and contention. It is crucial to address
the concurrent access to the memory to ensure the respect of
timing constraints. Two approaches are explored in the litera-
ture on real-time systems to address these memory-related con-
cerns. The first approach involves incorporating the potential
delays caused by memory concurrency and contention into the
worst-case execution time of tasks. This step is performed prior

∗Corresponding Author

to the schedulability analysis, therefore, multiple combinations
of execution patterns are considered, including those that might
be impossible, increasing the pessimism. The second approach
aims to avoid interference at the system design level by enforc-
ing time isolation with time partitioning schemes like the Time-
Division Multiple Access scheme (TDMA).

The in-between approach, which is the focus of this paper,
aims to mitigate interference by regulating access to concur-
rent parts of the memory subsystem. Our approach seeks to
avoid conflicts and contention by enabling memory-processor
co-scheduling to meet the system’s timing constraints using
suitable application models such as the PRedictable Execution
Model (PREM) Pellizzoni et al. (2011) or the Acquisition Ex-
ecution Restitution Model (AER) Durrieu et al. (2014). In the
latter, a task is modeled by three phases: acquisition (A), com-
putation (E), and restitution (R). During the acquisition phase,
task’s data/instructions are loaded from the main memory into
the core’s local scratchpad memory. During the computation
phase, the task achieves computations without any access to the
main memory, therefore, it can be interleaved with the acqui-
sition or restitution phases of the other tasks or with the com-
putation phase of other tasks executing on different cores; in
the restitution phase, the processed data are written back to
the main memory. This execution model allows to improve the
worst-case execution time estimates. This requires to use high-

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 2

speed, explicitly managed memories like scratchpads rather
than cache memories.

Scratchpad memories are becoming more and more popu-
lar in real-time embedded systems. A scratchpad is a small
software-managed on-chip static RAM that has been widely ac-
cepted as an alternative to cache memory, as it offers better tim-
ing predictability compared to caches. The scratchpad memory
is mapped into the address space of the processor, and is ac-
cessed whenever the address of a memory access falls within a
predefined range. As mentioned, contrary to caches, the com-
piler and/or the programmer explicitly controls the allocation of
instructions and data to the scratchpad memory. This operating
principle makes the latency of each memory access, and thus
program execution time, completely predictable. Significant ef-
fort has been invested in developing efficient static and dynamic
allocation techniques for scratchpad memories Udayakumaran
and Barua (2003); Suhendra et al. (2010); Yang et al. (2010);
Kandemir et al. (2001). Many of the modern multicore plat-
forms offer scratchpad memories, for example: NXP S32, Re-
nesas R-car, STM Stellar, and Aurix Infineon platform series.

Although this execution model is increasingly popular, it is
designed for non-dependent tasks, where each task is indepen-
dent of the others. It can be complex to benefit from the parallel
execution that multicore platforms offer at the task level be-
cause the granularity of these tasks can be excessively coarse.
This coarse granularity can degrade system performance, espe-
cially for real-time tasks with high-performance requirements.

In this paper, we introduce a new task-graph model based
on the AER model, which we call Acquisition-Execution-
Communication-Restitution-DAG (AECR-DAG) model (see
Figure 2). An AECR-DAG application is a Directed Acyclic
Graph of communicating subtasks that must be executed on a
multicore system within specified timing constraints (periods
and deadlines). The subtasks represent computation phases (to
be executed on cores) or memory phases (with local scratchpad
memories or with the main shared memory). The graph edges
represent precedence constraints between them. The AECR-
DAG model is used along with scratchpad memories in order to
eliminate contention on the bus.

The main goal of our work is to optimize the system’s
schedulability, and therefore we need to assign subtasks to
cores, assign the scheduling parameters, and compute the
worst-case latency of every task graph. This problem is a gener-
alization of the task-to-core allocation problem, which itself is a
variant of multiple knapsack Martello and Toth (1990); Chekuri
and Khanna (2005), a well-known NP-complete problem.

In particular, the cost of communication between subtasks
can increase the worst-case end-to-end latency of the DAGs,
potentially jeopardizing schedulability. Therefore, it is crucial
to minimize costly communications by assigning communicat-
ing subtasks to the same core. However, assessing schedula-
bility for various allocations can be a highly time-consuming
process, due to the exponential number of allocation possibili-
ties. Therefore, the solution space for this problem is very large,
comprising both the allocation search space and the scheduling
search space.

In our approach, we decouple the problem of task-to-core

allocation (inter-task communications) from the task schedu-
lability. When we decouple these two problems, we observe
that the design space for allocation is smaller than that for the
intermediate deadline assignment problem and schedulability
analysis.

In a first phase, we allocate sub-tasks to cores with the goal
of minimizing the communication cost on the shared bus, but
without checking the overall schedulability. We aim to identify
a promising allocation candidate in an initial phase by the mean
of Integer Linear Programming (ILP), which might likely allow
to have schedulable system.

In a second phase, we tackle the problem of assessing the
schedulability of the DAGs. For this, we need to assign in-
termediate deadlines and offsets to subtasks and conducting
schedulability tests. Given that the second problem (interme-
diate deadline assignment) is more complex, we consider the
use of a heuristic, specifically a genetic algorithm.

Contributions. We summarize our contributions as follow:

1. We extend the DAG task model to include main mem-
ory accesses and inter-core communications so to decou-
ple the problem of scheduling on the buses from the core
scheduling.

2. We partition subtasks on the different cores so to avoid
the maximum of communication subtasks and to simplify
the tasks. We propose an ILP formulation to solve the
mapping problem.

3. We compute and assign intermediate offset and deadlines
to subtasks of each DAG using a genetic algorithm.

4. We provide a large set of experimental evaluations show-
ing the effectiveness of our algorithms.

Organization of the paper. The remainder of this paper is orga-
nized as follows. In the following section we review the state of
the art. We present the hardware and task models in Section 3.
Section 4 describes how computation subtasks are mapped to
cores, the corresponding reduced DAG model and how our ILP
model is built. In Section 5, we describe how the intermediate
offsets and deadlines are assigned to subtasks. Results and sim-
ulations are described in Section 6. We draw the conclusions in
Section 7.

2. Related work

Contention on memory resources was the subject of many
research works Yao et al. (2012); Alhammad and Pellizzoni
(2014); Maia et al. (2017); Rosen et al. (2007); Tabish et al.
(2019). Some of them propose new execution models mak-
ing use of pre-fetching techniques Rosen et al. (2007). It has
been shown in Hoogeveen et al. (1996) that these techniques
improve the cache/scratchpad locality and reduce in average
worst-case execution times.

Another possibility to minimize contention in the shared
memory resources is to decouple the memory requests from
the actual application execution, so to guarantee that these re-
quests are performed exclusively in isolation. This can easily

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 3

be ensured by using a Time Division Multiple Access (TDMA)
based protocol to enforce timing isolation among all the tasks in
the system. The AER model proposed in Durrieu et al. (2014)
follows the same approach, with the aim of increasing the pre-
dictability of applications executing on COTS-based platforms.

The AER model is a generalization of the PREM model
from Pellizzoni et al. (2011). It introduces two main advan-
tages: (i) contention on memory resources is avoided by requir-
ing memory phases to execute exclusively, by having only one
memory phase (A or R) running at any time instance. (ii) the
task’s parallel execution in each core is allowed since the mem-
ory phases are decoupled from the computation phase.

The work we proposed in Senoussaoui et al. (2022) aimed
to avoid contention for a set of tasks modeled using the PREM
model. We proposed three novel approaches to avoid con-
tention memory phases: (i) a task-level time-triggered ap-
proach, (ii) job-level time-triggered approach, and (iii) on-line
scheduling approach. We compared the proposed approaches
against the state of the art using a set of synthetic experiments
in terms of schedulability and analysis time. Furthermore, we
implemented the different approaches on an Infineon AURIX
TC397 multicore microcontroller, and we validated the pro-
posed approaches using sets of tasks extracted from bench-
marks from the literature.

Several task models have been proposed to express data
dependency within real-time task, most of them are based on
DAGs, e.g.,Baruah et al. (2012); Melani et al. (2016); Zahaf
et al. (2016, 2019). Nodes represent subtasks, and edges define
communications and precedence constraints between nodes. In
this manner, a subtask becomes ready for execution as soon as
all its communications and precedence constraints are satisfied.
In such model, memory transfers can take place on two different
levels: (i) between cores and main memory and/or (ii) between
cores. However, existing scheduling schemes for parallel real-
time tasks assume data sharing or synchronization costs are in-
cluded in the WCET of the subtasks. In our work, we propose
a DAG task model that explicitly models all memory transfers
in order to capture and manage contention at different levels.

Partitioned scheduling is generally more adapted to this
type of application than global scheduling. In fact, in global
scheduling tasks may migrate from one core to another at
any time, and this implies large migration overheads, which
are much greater in architectures with scratchpads since both
needed data and code of the subtask have to migrate.

In partitioned scheduling, all subtasks of all DAGs are first
allocated on cores, and then a separate scheduler is used for
each core. Therefore, the problem is transformed into an al-
location problem plus a number of separate and independent
scheduling problems.

A number of partitioning algorithms that map dependent
tasks to cores have been presented in the literature. Most of
them are heuristics and operate on a single DAG task. They
allocate each node of a DAG to a processor or a core. In Ben-
Amor and Cucu-Grosjean (2022), a partitioning heuristic and
graph reduction techniques are proposed for DAG tasks. They
consider identical cores and fixed-priority preemptive sched-
ulers. In this paper, we propose a ILP formulation to calculate

an allocation that minimizes communication delay and allows
us to eliminate costly communications.

The authors of Slim et al. (2020) have studied the proba-
bilistic response time analysis of DAG tasks on multicore plat-
forms using partitioned fixed-priority scheduling. They pro-
posed a priority assignment algorithm at the subtask level to
define the execution order between different nodes from the
same graph in order to reduce the response time of the entire
DAG task while considering communication times for the sub-
tasks scheduled on different cores. Although this work tries to
minimize the inter-subtask communications costs, they do not
consider scratchpads nor their scheduling.

Another effective technique to schedule DAG tasks on mul-
ticore platforms is to assign intermediate deadlines and offsets
to subtasks in order to enforce the precedence constraints. By
completing the deadline and offset assignments, a DAG task is
transformed into a set of independent subtasks. Two heuristic
algorithms are popular: Fair distribution and Proportional dis-
tribution. These techniques were used in Zahaf et al. (2019);
Houssam-Eddine et al. (2020); Zahaf et al. (2020); Qamhieh
et al. (2013). Authors of Marinca et al. (2004) proposed Fair
Laxity Distribution and Unfair Laxity Distribution heuristics for
deadline assignment in distributed real-time systems and stud-
ied their impact on schedulability. An ILP formulation for the
offsets and deadlines assignment problem is proposed in Wu
et al. (2014).

Metaheuristic design space exploration techniques have
gained popularity in the real-time systems scheduling. Au-
thors in McLean et al. (2020) use a Simulated Annealing-based
algorithm (SA) to generate static schedule tables by simulat-
ing Earliest Deadline First (EDF) scheduling parameterized
by task offsets and local deadlines decided by SA. In Druetto
et al. (2023), another algorithm based on Simulated Anneal-
ing was presented to partition tasks over a multicore architec-
ture and assign them a priority value. Authors in Druetto et al.
(2023) proposed a task and memory mapping approach based
on Simulated Annealing of large size embedded applications
over NUMA architecture. Mitra and Ramanathan (1993) pro-
posed a genetic algorithm to non-preemptively schedule tasks
with precedence constraints on multiprocessor platforms and
compared the proposed algorithm with the Minimum-Laxity-
First heuristic Ramamritham (1990). This approach considers
the communication time between two tasks, but does not con-
sider bus contention. Unlike Mitra and Ramanathan (1993),
Monnier et al. (1998) presented a genetic algorithm implemen-
tation to solve a real-time non-preemptive scheduling problem
for periodic tasks on a distributed hardware system and consider
contentions for network access. The paper proposed by Oh and
Wu (2004) presents and evaluates a new method for real-time
task scheduling in multiprocessor systems. The authors aimed
to minimize the number of processors required and the total tar-
diness of the tasks. The minimization is performed by a multi-
objective genetic algorithm. Authors in Madureira et al. (2002)
applied the genetic algorithm for assigning priorities and offsets
to periodic tasks running on standard preemptive RTOS (Real-
Time Operating System).

To the best of our knowledge, no work in the literature uses

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 4

Core 1 Core 2 Core 3 Core 4

SPM1 SPM2 SPM3 SPM4

S2SB

M2SB

Main memory

Figure 1: Multicore architecture featuring 4 cores, and its interconnection
buses.

a genetic algorithm to compute DAG tasks scheduling parame-
ters. The principle of this algorithm and how it works will be
explained in Section 5.

3. System model

3.1. Architecture model

We consider a multicore platform A composed of m cores,
i.e., A = {p1, · · · , pm}. Each core pi has its own local scratch-
pad memory, onto which data and instructions are stored. All
cores share a single main memory. Two types of memory copy
operations are possible: (i) between scratchpad memories of
different cores and (ii) between the main memory and a core’s
scratchpad memory. The two types of memory operations are
performed by different buses: one bus, denoted as S2SB, inter-
connects all the scratchpad memories; a second separate bus,
denoted as M2SB, interconnects the main memory and the
scratchpads. The topology of our architectural model is illus-
trated in Figure 1. From a software point of view, we assume
that all memories (main memory and local scratchpad mem-
ories) are directly accessible to all cores via different address
spaces. The Infineon Aurix TC397 IT (2020) is an example of
a real architecture that can be modeled as described above.

Memory copy operations are explicitly triggered by the
software, therefore it is easier to schedule them. The proposed
model allows us to reduce the complexity of the schedulabil-
ity analysis by separating the memory operations between local
and global memories.

3.2. Task model

We consider a task set T = {τ1, . . . , τn} consisting of n
sporadic tasks. Each task τi ∈ T is represented by a tuple
(Gi,Di,Ti), where Gi is a Directed Acyclic Graph (DAG) that
describes the internal structure of τi, Di is its end-to-end rela-
tive deadline, and Ti is its period. We consider a constrained
deadline task set, that is Di ≤ Ti for all tasks.

Each task-graph Gi is defined by (Vi, ξi), where Vi is a set
of ni subtasks, and ξi is the set of precedence constraints be-
tween them. A subtask vi, j ∈ Vi can be one of four types (see
Figure 2):

• an acquisition subtask, denoted as vA
i, j;

vA
i,0

ve
i,1 ve

i,2

vm
i,3 vm

i,4

vm
i,7

ve
i,12

ve
i,5 ve

i,6

vm
i,8 vm

i,9

ve
i,10 ve

i,11

vR
i,13

Figure 2: DAG task example, computation subtasks are mapped on a dual-core
platform.

• a restitution subtask denoted as vR
i, j;

• a communication subtask denoted as vm
i, j;

• a computation subtask denoted as ve
i, j.

The upper index is omitted when referring to a subtask without
any consideration of its type.

Edge e(vi, j, vi,k) ∈ ξi represents the precedence constraint
between subtasks vi, j and vi,k, i.e., vi,k can not released before
vi, j has completed its execution. Thus, vi,k is an immediate suc-
cessor of vi, j, and vi, j is an immediate predecessor of vi,k.

We denote by i succ(vi, j) the set of all immediate successors
of vi, j (i.e., i succ(vi, j) = vi,k | (vi, j, vi,k) ∈ ξi). In the same way,
we denote by i pred(vi, j) the set of all immediate predecessors
of vi, j (i.e., i pred(vi, j) = vi,k | (vi,k, vi, j) ∈ ξi).

A communication subtask is a memory copy operation that
takes place between the scratchpad memories of the cores
where its immediate predecessor and its immediate successor
are allocated. Therefore, it has only one immediate successor
and one immediate predecessor.

An acquisition subtask represents a memory copy operation
from the main memory to one or more of the local scratchpads.
Without loss of generality, in this paper we consider that a task-
graph has only one acquisition subtask with no predecessors,
and it is therefore the source node of the graph.

A restitution subtask represents a memory copy operation
from one or more of the local scratchpads to the main memory.
Without loss of generality, in this paper we consider that a task-
graph has only one restitution subtask with no successors, and
it is therefore the sink node of the graph.

A computation subtask represents code executing on one
of the cores. While executing, the computation subtask can
only access data and code on the corresponding local scratch-
pad memory. The immediate successors and immediate prede-
cessors of a computation subtask are memory operations (either
communication subtasks or acquisition or restitution subtasks).
More generally, we consider that two subtasks of the same type
cannot be immediate successors to each other.

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 5

Later on, after we allocate computation subtasks to cores,
we will simplify the graph and allow two computation subtasks
allocated on the same core to be directly linked by an edge with-
out any communication needed between them.

A sequence of vertexes consisting of one computation sub-
task followed by a communication subtask followed by another
computation subtask is called a triplet. We denote the triplet of
subtasks vi, j, vi,k, vi,h as ’i : jkh.

Each subtask is characterized by its worst-case execution
time, denoted by Cve

i, j
for computation subtasks. When a sub-

task is an acquisition CvA
i

(resp. restitution CvR
i
), its worst-case

execution time represents an upper bound on the time required
for the task to perform data transfers from (resp. to) the main
memory and the scratchpad memories of the cores where its
immediate successors (resp. predecessors) are allocated. If
an acquisition (resp. restitution) has multiple successors (resp.
predecessors), multiple memory copy operations may be per-
formed by the subtask.

If a subtask is of the communication type, its worst-case
execution time Cvm

i, j
represents an upper bound on the time re-

quired to perform data transfers between the scratchpad memo-
ries of the cores where its immediate predecessor and immedi-
ate successor are allocated.

Once a memory copy subtask starts its execution, it cannot
be preempted. In contrast to memory copy subtasks, computa-
tion subtasks can be preempted, and they are partitioned among
the platform cores.

We consider just one acquisition subtask (restitution sub-
task) in our model, in order to simplify the deadline assignment
phase. If there are several data transfers for acquisition or for
restitution, then we assume that these transfers are carried out
sequentially (merged into one node A or R).

We define πk
i as the kth path of task τi. πk

i is a se-
quence of vertexes, πk

i = ⟨vi, j, vi, j+1, · · · , vi,|πk
i |
⟩ such that, ∀ j ∈

[0, |πk
i |), e(vi, j, vi, j+1) ∈ ξi. The first subtask in a path represents

the acquisition phase, while the last one represents the resti-
tution phase. The set of all paths of task τi is denoted as Πi.
Figure 2 depicts a task-graph with three paths.

We define task utilization as the occupancy ratio of the task
on all the shared resources (cores and communication buses). It
is computed as follows:

u(τi) =
1
Ti
· (CvA

i
+ CvR

i
+
∑

vm
i, j∈Vi

Cvm
i, j
+
∑

ve
i, j∈Vi

Cve
i, j

) (1)

The total Umax utilization of the task set is computed as fol-
lows:

Umax =
∑
τi∈T

u(τi) (2)

We denote byVM
i the set of all communication subtasks of

task τi, and by VC
i the set of all computation subtasks of task

τi. When we describe a behavior that relates to a single task, its
index might be removed to avoid overcharging the symbols.

4. DAG tasks allocation and transformation

In this section, we consider the problem of partitioning
a set of Acquisition-Execution-Communication-Restitution-
DAG (AECR-DAG) tasks on an identical core platform. Our
approach consists of two distinct stages: the allocation stage
and the schedulability analysis stage.

Computation subtasks are allocated to the different cores;
inter-core communications are scheduled on the intercommuni-
cation bus; and acquisition and restitution phases are scheduled
on the memory bus. The subtask-to-core allocation process has
a significant impact on inter-core communications. Commu-
nicating subtasks that are allocated on the same core will not
generate traffic on the shared inter-core communication bus,
while those allocated onto different cores may generate traffic
that may jeopardize the schedulability. Rather than using clas-
sical bin packing heuristics that optimize core utilization, such
as Best-Fit (BF) that maximizes utilization per core or Worst-
Fit (WF) that favors load balancing, we use Integer Linear Pro-
gramming (ILP) for the subtask-to-core allocation. The goal of
the ILP is to reduce the workload on the inter-core communica-
tion bus by favoring the allocation of communicating subtasks
to the same core when possible or desirable.

Definition 1 (null communication). A communication subtask
vm

i, j is called a null-communication subtask when its only im-
mediate predecessor subtask and its only immediate successor
subtask are allocated to the same core p.

A null-communication subtask does not generate traffic on
the shared inter-core bus, therefore, its worst-case execution
time can be set to 0, and hence it can be eliminated from the
graph.

Definition 2. A reduced task, denoted as τi of task τi is a DAG
where all the null-communication subtasks are removed.

Let vm
i,k be a null-communication subtask, and let ’i : jkh be

the triplet of subtasks consisting of the immediate predecessor
of vm

i,k namely vm
i, j and its immediate successor, namely vm

i,h. Then

in the reduced task τi, vm
i,k < Vi, edges e(vi, j, vi,k) < ξi and

e(vi,k, vi,h) < ξi, and there exist an edge e(vi, j, vi,h) ∈ ξi, where
Vi and ξi are respectively the nodes set and edges set of τi.

Therefore, in the reduced task we allow a computational
subtask to be an immediate successor of another.

To produce a reduced task, we need only to replace all
triplets containing a null-communication subtask with a simple
edge between the two computation subtasks of the triplet.

We denote by cost(τ) the ratio of the communication work-
load that the reduced task τ will require on the share inter-core
bus. It can be computed as follows:

cost(τ) =
∑

v∈VM(τ)

Cv

T(τ)
(3)

Example 1. In this example, subtasks are colored according
to core where they are allocated (Figure 3). Therefore, we have
four null-communication triplets: V1

τ(p1) = {ve
5, v

e
10},V

2
τ(p1) =

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 6

{ve
11},V

3
τ(p1) = {ve

2, v
e
12} andV4

τ(p2) = {ve
1, v

e
6}, as indicated by

the red boxes in the left-hand side graph.
In the right-hand side graph, the memory subtasks of the dif-
ferent null-communication triplets have been dropped as their
execution time is set to 0, resulting in a reduced task denoted
as τ. In this example, the execution time of vm

8 is set to 0 for
V1

τ(p1), and the execution time of vm
7 is set to 0 forV3

τ(p1) and
also the execution time of vm

4 is set to 0 forV4
τ(p2).

vA
i,0

ve
i,1 ve

i,2

vm
i,3 vm

i,4

vm
i,7

ve
i,12

ve
i,5 ve

i,6

vm
i,8 vm

i,9

ve
i,10 ve

i,11

vR
i,13

V1
τ(p1) V2

τ (p1) V3
τ(p1)

V4
τ(p2)

vA
i,0

ve
i,1 ve

i,2

vm
i,3

ve
i,12

=⇒
ve

i,5 ve
i,6

vm
i,9

ve
i,10 ve

i,11

vR
i,13

Figure 3: DAG task transformation.

Our ILP formulation has the objective to reduce the total
communication cost over all tasks. In the remainder of this sec-
tion, we detail the ILP formulation to optimally reduce the DAG
tasks.

4.1. Decision variables and objective function
Let ap

j be a binary decision variable 1 to express that com-
putation subtask vi, j is allocated to core p, i.e:

ap
j =

®
1, if vi, j is mapped to core p
0, otherwise

(4)

Let us consider the triplet ’i : jkh. If vi j and vih are allo-
cated to the same core, the execution time of subtask vik is set
to zero as it does not generate traffic on the communication bus.
Therefore, for each triplet ’i : jkh, we define the decision vari-
able cost(’i : jkh) as follows:

cost(’i : jkh) =

®
0, if ∀p, ap

j = ap
h

C(vik), otherwise
(5)

The objective function consists in minimizing the total commu-
nication cost of all tasks by summing over all triplets ’i : jkh

Minimize
∑
τi∈T

∑‘i: jkh∈∆i

cost(’i : jkh) (6)

We will illustrate further in this section the different techniques
to linearise these constraints.
Constraints.

1Please notice that this decision variable is generated only for the computa-
tion subtasks

1. Communication cost constraint. First, we describe the
evaluation of the cost variables. The conditional con-
struct and the different inequalities involved in comput-
ing the variable cost require linearisation.
For every triplet ’i : jkh and for every core p, we introduce
two artificial binary decision variables: x(’i : jkh, p) and
y(’i : jkh, p). These variables indicate whether subtasks
vi j and vih are allocated to the same core, and are defined
as follows:

x(’i : jkh, p) =

®
1 if ap

j > ap
h

0, otherwise
(7)

y(’i : jkh, p) =

®
1 if ap

j < ap
h

0, otherwise
(8)

If x or y are equal to 1, then the subtasks are not allocated
to the same core. If both x and y are equal to 0, then the
subtasks are allocated to the same core. x and y cannot
both be equal to 1 at the same time, therefore we compute
the cost as follows:

cost(’i : jkh) = C(vk)·
∑
p∈A

(x(’i : jkh, p)+y(’i : jkh, p)) (9)

Once again, the conditional construct to compute
x(’i : jkh, p) requires linearisation. First, we express the
inequality in Equation (7) as follows:

ap
j − ap

h − 1 ≥ 0

Let M be a very large constant. We linearise Equation (7)
as follows:

ap
j − ap

h − 1 + M − M · x(’i : jkh, p) ≥ 0

ap
j − ap

h − 1 − M · x(’i : jkh, p)) < 0

Similarly, we linearise Equation (8) as follows :

ap
h − ap

j − 1 + M − M · y(’i : jkh, p) ≥ 0

ap
h − ap

j − 1 − M · y(’i : jkh, p)) < 0

2. Allocation constraint. In order to ensure that a subtask
is allocated to one and only one core, we generate the
following constraints:

∀τ ∈ T ,∀v ∈ V(τ) :
∑
p∈A

ap
v = 1 (10)

3. Core workload constraint. We can enforce the utilization
per core to not exceed a given bound Umax using the fol-
lowing constraints:

∀p ∈ A,
∑
τ

∑
v∈VC (τ)

ap
v ·

C(v)
Tτ
≤ Umax (11)

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 7

In the following listing, we report our complete ILP formu-
lation.

Minimize
∑
τi∈T

∑‘i: jkh∈∆i

cost(’i : jkh)

under the constraints:

∀τ ∈ T ,∀’i : jkh ∈ ∆i :

cost(’i : jkh) = C(vk) ·
∑
p∈A

(x(’i : jkh, p) + y(’i : jkh, p))

∀τ ∈ T ,∀’i : jkh ∈ ∆i :

ap
j − ap

h − 1 + M − M · x(’i : jkh, p) ≥ 0

ap
j − ap

h − 1 − M · x(’i : jkh, p)) < 0

ap
h − ap

j − 1 + M − M · y(’i : jkh, p) ≥ 0

ap
h − ap

j − 1 − M · y(’i : jkh, p)) < 0

∀τ ∈ T ,∀v ∈ V(τ) :
∑
p∈A

ap
i = 1

∀p ∈ A,
∑
τ

∑
v∈V(τ)

ap
v ·

C(v)
Tτ
≤ Umax

Finally, the ILP is submitted to the CPLEX ILP-solver IBM
(1987). When subtask-to-core mapping is computed, reduced
tasks are derived by removing the null-communication sub-
tasks.

5. Deadline based DAG memory-processor co-scheduling

The second stage of our approach is memory and proces-
sor co-scheduling. This work considers partitioned scheduling,
where subtasks are assigned to different cores and scheduled
using a fully preemptive EDF scheduler per core. Acquisition
and restitution subtasks are scheduled non-preemptively on the
memory-to-scratchpad bus (M2SB), while communication sub-
tasks are scheduled on the inter-core bus (S2SB). Scheduling
on the system’s buses is achieved using a non-preemptive EDF
scheduler. To simplify dealing with precedence constraints, we
impose intermediate offsets and deadlines on each subtask. In
this way, precedence constraints are automatically respected if
each subtask is activated after its offset and completes no later
than its assigned deadline.

Several techniques have been proposed in the real-time sys-
tems literature to assign intermediate deadlines, such as fair
and proportional deadline assignments. However, these tech-
niques have been designed for the scheduling of computation
tasks only and are not tuned to handle delays that may occur
due to contention on the shared communication buses. In this
section, we present our approach to assign intermediate dead-
lines to both memory and computation subtasks, in order to re-
spect the system’s timing constraints and take into account the
co-scheduling of both types of subtasks.

In the following, every subtask will be additionally charac-
terized by its intermediate deadline dv and offset ϕv. The offset

Core 1

Inter-core bus

Shared bus

Core 4

task relative deadline
Activation time Absolute deadline

ve
i,1 relative deadline

ve
i,1 local deadline

ϕ(ve
i,2) ve

i,2

ve
i,1

vA
i,0 vR

i,13

vm
i,7

Figure 4: Example of offset and local deadline.

of a subtask is the distance between the activation of the task-
graph and the activation of the subtask. The intermediate dead-
line of a subtask represents its relative deadline with respect to
its offset. We define the subtask local deadline dlv as the sum of
its intermediate deadline and its offset. Figure 4 illustrates the
relationship between the activation, end-to-end deadline, inter-
mediate deadline, offset, and local deadline of a subtask.

In this context, the activation time of the acquisition subtask
corresponds to the activation of the task itself. The local dead-
line of a subtask represents the interval between the task-graph
activation and the subtask’s absolute deadline.

One strategy to solve the problem of assigning interme-
diate deadlines is to exhaustively search among all possible
intermediate deadline combinations. While this method pro-
vides an optimal solution, it suffers from a high computational
complexity. In our previous work on the scheduling of PREM
tasks Senoussaoui et al. (2022), we proposed a binary search-
based method to compute and assign intermediate deadlines to
memory phases, where each task consists only of a memory
subtask and a computation subtask. However, it is not straight-
forward to extend this approach to DAG tasks, as the approach
proposed in Senoussaoui et al. (2022) already has a high com-
plexity for a simpler problem. Therefore, in this section, we
propose to use a genetic algorithm (GA) to explore the assign-
ments of intermediate deadlines to subtasks. We will describe
our approach in the rest of this section.

5.1. Fair and proportional deadline assignment
First, we review the fair and proportional deadline assign-

ment techniques. The idea is to divide the slack time along a
path πk

i in the graph between all the subtasks of the path. We
consider paths in decreasing order of their cumulative execution
time, therefore, we start with the critical, i.e. having the largest
cumulative execution time.

We first define the slack function Sl(πk
i ,Di) along path πk

i of
τi as:

Sl(πk
i ,Di) = Di −

∑
v∈πk

i

Cv (12)

• Fair distribution: distribute slack as the ratio of the orig-
inal slack by the number of subtasks along the path:

calculate share(vi, j, π
k
i) =

Sl(πk
i ,Di)

|πk
i |

(13)

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 8

• Proportional distribution: distribute slack according to
the contribution of the subtask execution time in the path:

calcule share(vi, j, π
k
i) =

Cvi, j

C(πk
i)
· Sl(πk

i ,Di) (14)

where C(πk
i) represents the total cumulative execution

time of the subtasks in πk
i .

Once the relative deadlines of the subtasks along the crit-
ical path have been assigned, we select the next path in order
of decreasing cumulative execution time, and assign the dead-
lines to the remaining subtask by appropriately subtracting the
already assigned deadlines. The complete procedure is not re-
ported here and can be found in Wu et al. (2014).

5.2. GA-based intermediate deadline assignment
In this paper, we use a genetic algorithm to assign interme-

diate deadlines to memory and computation subtasks for a set
of reduced tasks T . In a genetic algorithm, a population of can-
didate solutions (called individuals) is evolved towards better
solutions. The goal is to move from unschedulable solutions to
at least one schedulable solution.

Each candidate solution has a set of chromosomes, which
in our case is the task set with intermediate deadlines assigned,
that can be mutated and crossed over. The evolution process
starts from multiple solutions, called the initial population, each
having intermediate deadlines generated randomly.

The iterative process then evaluates the fitness function for
every individual in the population. In each generation, a portion
of the existing population is selected to reproduce and create a
new generation through three operations: selection, crossover,
and mutation. The new generation of candidate solutions is then
used as input for the next iteration. The algorithm terminates
when a maximum number of generations has been produced
or a schedulable intermediate deadline assignment task set is
found.

In the following, we describe the general structure of the
genetic algorithm, the representation of a solution, the genera-
tion of the initial population, the fitness function, the selection,
the crossover, and the mutation operations.

Algorithm 1 presents our approach for assigning interme-
diate deadlines. The algorithm starts by generating the initial
population (Line 4). It goes through several iterations until a
schedulable task set is found, namely: (i) population evaluation
(Line 6), (ii) selection (Line 8), (iii) crossover (Line 9), and (iv)
mutation (Line 10). If the algorithm finds a feasible schedule, it
terminates with SUCCESS, otherwise, if a maximum number
of iterations is reached, it aborts with FAIL.

5.2.1. Individual representation
Each individual in the genetic algorithm consists of a set

of subtasks, each with an intermediate deadline assigned. In
this work, we represent an individual as an ordered list of pairs,
where each pair consists of a subtask and its corresponding lo-
cal deadline. In our approach, we only consider subtasks that
are part of reduced tasks while constructing the ordered list of
subtask-deadline pairs for an individual.

Algorithm 1 GA intermediate deadlines assignment
1: function DeadlinesGA(T , psize) ▷ The DAG task set, population size
2: found = f alse
3: Pl ← ∅ ▷ The initial population
4: ip generation(T , psize) ▷ The initial population generation
5: while (not (found)) do
6: found = ga evaluation(Pl,A)
7: if (not found) then
8: selection(Pl)
9: crossover(Pl, ηcr)

10: mutation(Pl, ηmu)
11: else
12: return SUCCESS ▷ If schedulable at all levels
13: end if
14: end while
15: return FAIL

16: end function

Definition 3. Individual An individual is denoted as

ind =(⟨v1,1, dl1,1⟩, ⟨v1,2, dl1,2⟩, · · · ,

⟨v1,n1 , dl1,n1⟩, ⟨v2,1, dl2,1⟩, · · · ,

⟨vm,nm , dlm,nm⟩)

where:

• Subtasks of the same task are a sub-sequence of ind

• Subtasks of the same task are ordered in a topological
order;

• dli, j represents the local deadline of subtask vi, j;

• All individuals present the same subtasks order.

vA
1,1

ve
1,3 ve

1,2

ve
1,4 vm

1,5

ve
1,6

vR
1,7

τ1

vA
2,1

ve
2,2 ve

2,3

vm
2,4

ve
2,5 ve

2,6

vR
2,7

τ2

Figure 5: Example of an individual.

Example 2. In Figure 5, we present a task set composed of two
tasks, τ1 and τ2. The former has an end-to-end deadline of 50,
while the latter has an end-to-end deadline of 80. Each task is
comprised of seven subtasks. Table 1 shows the representation
of an individual in our genetic algorithm.

The subtasks in an individual are sorted according to their
topological order. For example, subtask ve

1,3 appears earlier in

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 9

v dlv
vA

1,1 10
ve

1,3 40
ve

1,2 25
vm

1,5 35
ve

1,4 40
ve

1,6 40
vR

1,7 50
vA

2,1 20
ve

2,2 30
ve

2,3 45
vm

2,4 50
ve

2,5 70
ve

2,6 70
vR

2,7 80

Table 1: Example of Individual

the individual than ve
1,4, vm

1,5, and ve
1,6, while ve

1,6 appears earlier
than vR

1,7. It should be noted that we consider local deadlines,
and the restitution subtask’s local deadline is always equal to
the task’s end-to-end deadline.

5.2.2. Initial population generation
The first step of a genetic algorithm is the generation of an

initial population. It has been recognized that if the initial pop-
ulation provided to the genetic algorithm is of “high quality”,
the algorithm is more likely to find a sub-optimal solution Zit-
zler et al. (2000); Burke et al. (2004); Diaz-Gomez and Hougen
(2007). Algorithm 2 summarizes the different steps of our ini-
tial population generation process.

Algorithm 2 Initial population generation

1: function ip generation(T , psize)
2: Pl ← ∅ ▷ The initial population
3: assigned = true

4: while |Pl | < psize do ▷ psize is the maximum number of generations
5: S ← ∅ ▷ An individual
6: for τi ∈ T do
7: assigned = inter dline(τi) ▷ Assign τi intermediate
8: ▷ deadlines
9: if !assigned then

10: break
11: end if
12: add τi intermediate deadlines to S
13: end for
14: if assigned then ▷ If all subtasks have assigned a deadline
15: if S < Pl then
16: add S to Pl
17: end if
18: end if
19: end while
20: return Pl
21: end function

For each task τi ∈ T , the algorithm invokes the
inter dline function (Line 7) to assign intermediate dead-
lines to subtasks. Within this function, all task paths are sorted
by non-increasing cumulative execution time. For each path,

the random dlines function (Algorithm 3) is invoked in its
turn to distribute randomly the slack among all subtasks on that
path. The inter dline function aborts on FAIL if slack shar-
ing fails on at least one path, otherwise, it ends on SUCCESS.
If the intermediate deadline assignment succeeds for all tasks
in T , the under generation individual denoted as S is inserted
into the population.

The share of each subtask that has not yet been assigned a
deadline on a given path is computed in Algorithm 3. We de-
note the set of subtasks that have not yet been assigned a dead-
line by Tnd. The intermediate deadline assignment is divided
into two parts.

In Part 1, Algorithm 3 computes the intermediate deadlines
of subtasks that have an offset and where at least one of their
immediate successors has been assigned an offset (line 3). If
multiple immediate successors are found with different offsets,
the algorithm computes the non-null minimum offset. Inter-
mediate deadlines for these subtasks are assigned using Algo-
rithm 4. The intermediate deadline of each subtask is computed
as the difference between its offset and the minimum offset of
its immediate successor. Each time a deadline is assigned to a
subtask, Algorithm 4 modifies: (i) its local deadline, (ii) the off-
sets of its immediate successors, (iii) and removes it from Tnd

(lines 9-11).
Algorithm 3 computes the intermediate deadlines for the

rest of the subtasks in Tnd in Part 2. It computes the slack time
on the analyzed path, generates a set of random values whose
sum is equal to 1 (line 6) and uses each value to compute the
intermediate deadline of a subtask as the sum of Sl · U[v] and
the subtask worst-case execution time (line 9). The offset of
each subtask is computed as the maximum local deadline of
its immediate predecessors (except the offset of the acquisition
subtask, which is always equal to 0).

Algorithm 3 Compute the intermediate deadlines on a path

1: function inter dlines(πk
i)

2: Tnd ← compute contributors(πk
i)

3: if !non zero offset subtasks dlines(Tnd , π
k
i) then

4: return FAIL

5: end if
6: Sl← compute slack(πk

i) ▷ Compute the slack in path πk
i

7: if Sl < 0 then
8: return FAIL

9: end if
10: U← random rates()
11: for v ∈ πk

i do
12: if v ∈ Tnd then ▷ v has no deadline
13: dline = Cv + (Sl · U[v])
14: dv ← dline

15: dlv ← ϕv + dline

16: update isucc offset(v) ▷ update v’s immediate
17: ▷ successors offset
18: remove(v,Tnd)
19: end if
20: end for
21: return SUCCESS

22: end function

Definition 4 (Valid assignment). An intermediate deadline as-
signment Ω(τi) of a task-graph τi is valid if:

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 10

1. the intermediate deadline of each subtask is greater than
or equal to its worst-case execution time:
∀v ∈ Vi, dv ≥ Cv ;

2. and the local deadline of the restitution subtask is less
than or equal to the end-to-end deadline of τi : dlvR ≤ Di.

Lemma 1. Consider an AECR-DAG task (resp. AECR-reduced
DAG task) τi. The intermediate deadline assignmentΩ(τi) com-
puted by function random dlines is valid.

Proof. The deadline of a subtask is computed either in Part 1
or in Part 2 of Algorithm 3. In the first part, the deadline of
the subtask is assigned only if it is greater than or equal to its
worst-case execution time, otherwise, it is computed in the sec-
ond part of the algorithm as Cv + (Sl · U[v]), ensuring Condition
1 of Definition 4. Moreover, the sum of the rates U generated
in part 2 of Algorithm 3 is equal to 1; rates are by definition
positive values. The slack in its turn, is positive, otherwise, the
schedulability fails. The offset of each subtask is computed as
the maximum among all predecessors offset, therefore, the lo-
cal deadline of the restitution subtask cannot be greater than
the task end-to-end deadline, confirming Condition 2 of Defini-
tion 4.

Algorithm 4 Non zero offset subtasks deadline assignment
1: function non zero offset subtask dlines(&Tnd , pi)
2: for v ∈ pi do
3: if v ∈ Tnd then ▷ The subtask deadline is not yet computed
4: min = min offset(i succ(v)) ▷ get the minimum non-null
5: ▷ offset of the immediate successors of v
6: if ϕv > 0 and min > 0 then
7: dline = min − ϕv
8: if dline ≥ Cv then
9: dv ← dline

10: dlv ← ϕv + dline

11: update isucc offset(v) ▷ update v’s immediate
12: ▷ successors offset
13: remove(v,Tnd)
14: else
15: return FAIL

16: end if
17: end if
18: end if
19: end for
20: return SUCCESS

21: end function

5.3. Evaluation Strategy

The most important step of a genetic algorithm is the eval-
uation of the population. In this section, we assume that all
computation subtasks have been allocated (partitioned) on the
platform’s cores and that subtasks have already been assigned
offsets and intermediate deadlines. We apply the processor de-
mand criterion Baruah et al. (1990) to evaluate each individual
in the population. Algorithm 5 summarizes and clarifies our
evaluation strategy.

The algorithm takes as input the generated population and
an empty setS. Each individual ψi in the input population needs
to be awarded a score to indicate how close it is to meet the

overall schedulability. This score is called the fitness score and
it is calculated by the fitness function (lines 3-4), which will be
detailed later in Section 5.3.2.

Algorithm 5 Population evaluation
1: function population evaluation(Pl,S) ▷ The population
2: for s ∈ Pl do
3: score<A,S2SB,M2SB> = dbf dag analysis(s,A)
4: if (score<A,S2SB,M2SB> == 0) then
5: return s ▷ A solution is found
6: else
7: f score = α1 · score(A) + α2 · score(S2SB) + α3 ·

score(M2SB)
8: s.set score(f score) ▷ Set the score of s
9: S ← s ▷ Add s to S

10: end if
11: end for
12: return
13: end function

5.3.1. Schedulability of task-graphs
In this paper, we consider a system of sporadic task graphs

T . When an instance of a task is activated, its subtasks are
activated with an offset relative to the activation of the task-
graph. To analyse the schedulability of the system, we proceed
by analysing the schedulability on each processor and on the
two communication buses. If all subtasks respect their dead-
lines, then the entire system is schedulable.

Definition 5. We denote by Λp (T) the subset of subtasks of T
allocated on core p. By extension, ΛS2SB(T) is the set of all
communication subtasks, and ΛM2SB(T) is the set of memory
subtasks.

To analyse the schedulabity on each processor and on each
bus, we use the Demand Bound Criterion Baruah et al. (1990).
The method consists in computing the demand bound function
(dbf) in any interval t, and checking that it never exceeds the
length of the interval. The dbf is computed as the maximum
cumulative worst-case execution time of all jobs (instances of
subtasks) having their arrival time and absolute deadline within
any interval of time of length L.

The original demand bound analysis of Baruah et al. (1990)
only considers sporadic tasks. Instead, subtasks belonging to
the same task-graph have offsets with respect to each other.
Therefore, we use the approximated method of Pellizzoni and
Lipari (2005) to compute the dbf of a task-graph on a given
core.

The dbf at L on core p ∈ A of a task-graph can be computed
as follows Pellizzoni and Lipari (2005):

dbf (τi, L, p) = max
∀vi, j∈Λp (T)

ß ∑
vi,k∈Λp (T)

Çú
L − ϕk,j − dvi,k

Ti

ü
+ 1

å
0

· Cvi,k

™
(15)

where ϕk, j = (ϕvi,k−ϕvi, j) mod Ti. To understand Equation (15),
consider that the subtasks of a task τi are activated with an offset
relative to the arrival of the first subtask. Therefore, we need to

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 11

align the offset of one subtask to the beginning of an interval
of length L and compute the workload generated in the interval.
We do this for every subtask, and then we take the maximum.
The resulting dbf is an upper bound to the actual dbf in that
interval.

Theorem 1. Given a set of subtasks allocated on core p, the
subtasks are schedulable if their cumulative utilisation is less
than 1, and

∀L ≤ L∗
∑
τi∈T

dbf (τi, L, p) ≤ L (16)

where L∗ is the first idle time on core p.

Proof. The proof descends directly from the proof of Theorem
2 in Pellizzoni and Lipari (2005): it suffices to notice that sub-
tasks belonging to different task graphs have no offset relation-
ship between each other, while subtasks belonging to the same
task-graph are subject to offsets.

Let now consider the schedulability on the buses. In our
model, a task-graph may contain memory nodes that represent
either the A/R phases or the communication phases, and these
nodes are executed non-preemptively: e.g. once a communi-
cation subtask starts, it completes the memory transfer without
being interrupted by other communication subtasks. Therefore,
we have to take into account a blocking time in the schedula-
bility analysis. This can be done by extending Theorem 6 in
Pellizzoni and Lipari (2005), which deals with blocking time
due to mutually exclusive resources.

Theorem 2. Given a set of memory subtasks to be scheduled on
bus, the subtasks are schedulable if their cumulative utilisation
is less than 1, and:

∀L < L∗
∑
τi∈T

dbf (τi, L, bus) + B (τi, L, bus) ≤ L (17)

where:

B (τi, L, bus) = max{Cvj,k
| ∀j , i, vj,k ∈ Λbus(T) ∧ dvi,j

> L }.
(18)

is the blocking time due to non-preemptive scheduling.

Proof. Since subtasks executed completely inside any interval
of length L can be blocked only once by subtasks that started
before the beginning of the interval and have deadlines after
the end of the interval, the maximum blocking time can not be
longer than the maximum worst-case execution time among all
subtasks having a deadline greater than L.
Now, by contradiction. Let v be the first subtask to miss a dead-
line at time t2 and let t1 < t2 be the last instant before t2 when
there is an idle time or a subtasks with absolute deadline at or
before t2 is executed. Then, from the properties of EDF it fol-
lows that :

• in interval [t1, t2] there is no idle time;

• at most one subtask with deadline greater than t2 can ex-
ecute (the blocking subtask)

• the rest of the interval is executed by subtasks with ar-
rivals no earlier than t1 and deadline no later than t2.

Since a subtask has missed its deadline, then the cumulative
demand in [t1, t2], including the blocking subtask, has exceeded
the length of the interval L = (t2 − t1) and this in contradiction
with the hypothesis.

Theorem 3. Given a task set T , and a platform A, where all
subtasks have been assigned to cores, and where:

• the computation subtasks are scheduled on their assigned
cores by preemptive EDF;

• the communication subtasks are scheduled by non-
preemptive EDF on the S2SB ;

• the memory subtasks are scheduled by non-preemptive
EDF on the M2SB;

the task set is schedulable (i.e. every instance of every task-
graph completes before its end-to-end deadline) if:

∀p ∈ A,∀L ≤ L∗,
∑

τi∈Λp (T)

dbf (τi, L, p) ≤ L (19)

and

∀L ≤ L∗,
∑

τi∈ΛS2SB(T)

dbf (τi, L,S2SB) + B (τi, L,S2SB) ≤ L

(20)
and

∀L ≤ L∗,
∑

τi∈ΛM2SB(T)

dbf (τi, L,M2SB) + B (τi, L,M2SB) ≤ L

(21)

Proof. 1) For each core p ∈ A, and from Theorem 1, the first
condition of the dbf ensures that each computation subtask al-
located on p is schedulable (i.e. every instance completes be-
fore its intermediate deadline); 2) For both S2SB and M2SB
buses, and according to Theorem 2, the second and the third
conditions ensure that each memory operation completes be-
fore its intermediate deadline.

Therefore: a) the precedence constraints are respected, b)
the local deadline of the restitution subtask of every task-graph
is less than or equal to its end-to-end deadline. Hence, the sys-
tem is schedulable.

5.3.2. Fitness function
The fitness score is an indicator of how “fit” a candidate

solution is to meet the overall schedulability condition. The
fitness function takes as input an individual candidate solution
to our problem and specifies how far away this individual is
from satisfying the schedulability condition.

We define score(r), with r ∈ R, as the schedulability score
of the cores, the inter-core bus (S2SB) and the memory-to-
scratchpad bus (M2SB), respectively (line 3).

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 12

Definition 6 (Fitness score). A schedulability score is com-
puted for each resource r ∈ R as follow:

∀r ∈ R, score(r) = max
0<L≤L∗

Å
db f (L, r) − L

L
, 0
ã

(22)

where R = A ∪
{

S2SB
}
∪
{

M2SB
}

, and db f (L, r) is the left-
hand side expression of equations (19), (20) and (21), respec-
tively.

The fitness score of a solution is the weighted sum of the
three schedulability scores:

f score = α1score(A) + α2score(S2SB) (23)
+ α3score(M2SB)

and

score(A) =

∑
∀p∈A
score(p)

|A|

Where α1 + α2 + α3 = 1.

When the set of subtasks allocated on a given core p ∈ A
is schedulable by using preemptive EDF, then the score on p is
equal to 0. Similarly, the score on both buses is equal to 0 if the
memory subtasks are schedulable by non-preemptive EDF. The
blocking time on the platform’s cores is set to 0.

Algorithm 5 weights the fitness score for each non-
schedulable individual. During our experimentation, it has been
noticed that setting the fitness scores to give more importance
to the schedulability on the inter-core bus (S2SB) yields bet-
ter results, as they can vary greatly between individuals. In the
experimental settings, we set α1, α2, α3 to 0.2, 0.6 and 0.2 re-
spectively. The algorithm adds non-schedulable individuals to
S and proceeds to the selection step (lines 7-10).

5.4. Creating the next generation
5.4.1. Selection

Before applying the genetic operators (crossover and muta-
tion), the selection phase must be applied. Different approaches
can be used to select the best individuals. A good compara-
tive review of selection techniques in genetic algorithms can be
found in Shukla et al. (2015). We use rank selection in this
work. One of the advantages of rank selection is its ability to
maintain genetic diversity. Therefore, we order individuals by
non-increasing order of their fitness score computed in Algo-
rithm 5. Then, we select the 50% best individuals and replace
the remaining 50% with new individuals created by applying
the genetic operators.

5.4.2. Mutation and crossover
The mutation and crossover operations are applied to the

best-selected individuals. The crossover creates new individu-
als and tries to improve the scheduling objective by exchanging
partial information contained in two randomly selected individ-
uals (parents). In our case, each child’s individual Ψi receives
local deadlines from the parents.

Several variants of the crossover are popular Starkweather
et al. (1991); Wang and Zheng (2001); Koonce and Tsai

(2000). The original approach of the crossover operator is
called one-point crossover: one crossover point on the two
parent individuals is selected, and all local deadlines beyond
that point are swapped between the two parents. This approach
can be generalized to a multi-point operator, where the number
of points is chosen randomly. It can be further generalised by
copying local deadlines from the first parent with a probability
p and from the second parent with a probability 1− p. The case
p = 0.5 is called uniform crossover.

In this work, we use the one-point crossover operator.
When two individuals are chosen for crossover, a crossover
point is randomly selected at the same position for both individ-
uals. This point divides each individual into two distinct parts:
a head and a tail. The head of the first individual is combined
with the tail of the second individual, and a similar operation is
performed for the second individual. This process results in the
creation of two new individuals (see Table 2).

The mutation operator is used to introduce genetic diver-
sity in the population. With this operator, either we randomly
change the value of a gene or we swap the positions of two
of them. For instance, Koonce and Tsai (2000) uses swap, in-
sertion, and inversion mutations. In this work, we randomly
select an individual ψ, a DAG task τi and a subtask v. The lo-
cal deadline for v is randomly modified, creating a new child
individual. The new deadline is selected randomly in the inter-
val I = [b inf, b sup] where b inf = ϕv + C(v) and b sup
is the subtask local deadline. We then derive the new interme-
diate deadline of v, and we adjust the offset of its immediate
successors.

The mutation and crossover rates, ηmu and ηcr respectively,
are used to compute the number of individuals to generate to
replace those eliminated by the selection operation.

6. Results and discussions

In this section, we will evaluate the performance of the pro-
posed approaches in comparison to related work. Our contri-
butions include allocation, deadlines assignment, and offsets
assignment. First, we will assess the performance of our al-
location strategy compared to bin-packing allocation heuristics
such as Best Fit (BF) and Worst Fit (WF). Additionally, we will
compare our deadline assignment techniques to classical dead-
line assignment heuristics, specifically fair and proportional
approaches.

To evaluate the performance of these techniques, we mea-
sured the schedulability rate and the runtime on two different
platforms. The first platform features 4 identical cores, while
the second platform features 6 identical cores.

6.1. Task generation

Experiments have been conducted on a large number of ran-
domly generated synthetic task sets. The task generation pro-
cess takes as input the number of tasks n, the target baseline
utilisation of the task set, and graph generation parameters.

First, the algorithm generates n task utilisation using the
UUnifast algorithm Emberson et al. (2010) such that their total

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 13

τi v dv

vA
1,0 2

v1,1 4
v1,2 4

τ1 v1,3 1
v1,4 1
v1,5 5
vR

1,6 2
vA

2,0 2
v2,1 1
v2,2 1

τ2 v2,3 5
v2,4 4
v2,5 4
vR

2,6 2

−→
←−

τi v dv

vA
1,0 2

v1,1 4
v1,2 2

τ1 v1,3 2
v1,4 2
v1,5 4
vR

1,6 3
vA

2,0 2
v2,1 2
v2,2 1

τ2 v2,3 4
v2,4 4
v2,5 4
vR

2,6 2

=⇒

τi v dv

vA
1,0 2

v1,1 4
v1,2 4

τ1 v1,3 1
v1,4 1
v1,5 5
vR

1,6 2
vA

2,0 2
v2,1 2
v2,2 1

τ2 v2,3 4
v2,4 4
v2,5 4
vR

2,6 2

τi v dv

vA
1,0 2

v1,1 4
v1,2 2

τ1 v1,3 2
v1,4 2
v1,5 4
vR

1,6 3
vA

2,0 2
v2,1 1
v2,2 1

τ2 v2,3 5
v2,4 4
v2,5 4
vR

2,6 2

ψ1 ψ2 ψ3 ψ4

Table 2: Swapping local deadlines after a crossover point (ψ3 and ψ4 are new individuals)

sum is equal to the target baseline utilisation. For each task,
we randomly select a period from a predefined list of periods:
{15000, 12000, 20000, 24000, 30000, 10000, 40000, 60000}.
This allows us to control the schedulability analysis complexity
and avoid intractable hyper-periods. The task deadline is set
equal to 0.8 · T.

Next, we compute the utilisation for acquisition and restitu-
tion subtasks by inflating the task utilisation by the stallA/R
parameter, which is set to 0.05 for each, that is tasks will
spend 5% of their worst-case execution time (WCET) receiv-
ing and sending data from/to the main memory. We then use
the UUnifast-discard algorithm again to distribute the remain-
ing task utilisation among the subtasks of the considered task.
We set the number of computation subtasks to 8. The execu-
tion time of each subtask is computed by multiplying the sub-
task utilisation by the task period. Furthermore, we generate
precedence constraints between the different subtasks using the
layer-by-layer method Cordeiro et al. (2010). It is known that
the behavior of the classical deadline assignment depends on
the graph structure. Therefore, we generate large-DAG or long-
DAG. For large DAGs, we randomly select the number of sub-
tasks per layer between 3 and 5. For long DAG tasks, the num-
ber of subtasks per layer is either 2 or 3. We consider a prob-
ability γ = 0.22 to create a precedence constraint between two
subtasks from different layers. Precedence between subtasks
belonging to non-consecutive layers is allowed. We guarantee
that the task is weakly connected to ensure the absence of iso-
lated subtasks.

Communication subtasks are automatically inserted be-
tween every two dependent computation subtasks. The execu-
tion time of a communication subtask stallm is set equal to 0.2
of the execution time of its immediate predecessor. This value

2We used the same value as in the literature Ben-Amor and Cucu-Grosjean
(2022).

is subtracted from the predecessor’s execution time to maintain
the baseline utilisation for the task graph unchanged.

COTS platforms with scratchpads are typically microcon-
trollers with limited computing capacity. Therefore, they are
not able to handle highly complex software composed of hun-
dreds of subtasks, compared to more powerful processors. Con-
sequently, we believe that a setting with hundreds, and thou-
sands of subtasks can not be representative to the applications
that can be supported by scratchpad-based platforms.

6.2. Simulation Results and Discussions

We conducted experiments where we varied the baseline
utilisation from 0 to the number of cores by a step of 0.4. For
each utilisation value, we generated 100 task sets, with each
task set containing 8 AECR-DAG tasks. We set the upper
bounds for core utilisation as Umax = 0.85 or Umax = 0.7.

For the genetic algorithm, we explored two types of scenar-
ios: a small population class with 50 individuals and a large
population class with 150 individuals. The genetic algorithm
stops after either 50 generations for small populations or 100
generations for the large population class.

In the experiments, connected computation subtasks of a
task-graph that are allocated onto the same core are merged
without affecting the precedence constraints and replaced by a
single subtask with an execution time equals to the sum of all
merged subtasks. This does not affect the results of the schedu-
lability analysis, but allow to reduce the number of subtasks,
thus optimizing the performance.

The experiments were conducted on a 12th Gen Intel(R)
Core(TM) i7-1255U processor with 16 GB of RAM. We used
CPLEX as the ILP solver for our experiments.

6.2.1. Comparison of allocation approaches
First, we conducted a study to analyze the impact of

subtask-to-core allocation on the elimination of unnecessary

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 14

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he

du
la

bi
lit

y
ra

tio ILP-GA-0.85
WF-GA-0.85
BF-GA-0.85
ILP-GA-0.7
WF-GA-0.7
BF-GA-0.7

Figure 6: Schedulability for large DAG on Small population: Umax = 0.7 vs
Umax = 0.85

communications. We compared our proposed approach against
two well-known allocation heuristics: Worst-Fit (WF) and
Best-Fit (BF). The experiments were conducted on a platform
with 4 identical cores, using the same settings for the genetic
algorithm (mutation probability ηmu and crossover probability
ηcr set to 0.5). The experiments were performed for both small
and large populations, as well as for long and large DAGs. Each
combination is labeled as ILP, BF, or WF, representing the ILP,
Best-Fit, or Worst-Fit allocation strategy, with GA denoting the
genetic algorithm. A number represents an upper bound of the
processor workload (0.7 and 0.85), and optionally, S or L de-
notes the small or the large population class.

In Figure 6, we present the results for the schedulability rate
of the large graph DAG as a function of the target baseline util-
isation. We are specifically interested in examining the impact
of the processor workload upper bound on the schedulability
ratio.

ILP-based allocation outperforms all other approaches with
the same parameters, as it effectively eliminates unnecessary
communications compared to the BF and WF approaches. The
WF approach itself dominates the BF approach, as the BF ap-
proach tends to allocate a maximum number of subtasks on the
same core, resulting in a highly loaded core compared to the
other approaches. This jeopardizes schedulability, making it
weaker compared to the other approaches.

When the processor workload upper bound is set to 0.7, all
the allocation strategies outperform the same strategy with the
upper bound set to 0.85. This unloads the different cores, pro-
viding more laxity to find feasible definitions of the interme-
diate deadlines. However, the total workload to schedule de-
creases to 2.8, which is 0.7 multiplied by the number of cores.
This reduction is still reasonable since allowing more workload
(0.85) per core does not improve schedulability at high work-
loads.

Figure 7 presents the same experiments as Figure 6, but for
long DAGs. To provide an indication, we include the best re-
sults from the previous figure in gray3. All allocation strate-
gies perform similarly to those in the previous figure. However,

3It should be noted that the previous experiment was conducted on a differ-

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he

du
la

bi
lit

y
ra

tio Witness
ILP-GA-0.85
WF-GA-0.85
BF-GA-0.85
ILP-GA-0.7
WF-GA-0.7
BF-GA-0.7

Figure 7: Schedulability for long DAG on Small population: Umax = 0.7 vs
Umax = 0.85

the schedulability has slightly decreased. This reduction can
be attributed to the presence of long graphs, which offer less
flexibility in allocating intermediate deadlines. Although long
graphs leverage parallel execution, they significantly impact the
schedulability of individual tasks.

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he

du
la

bi
lit

y
ra

tio
ILP-GA-0.7-L
WF-GA-0.7-L
BF-GA-0.7-L
ILP-GA-0.7-S
WF-GA-0.7-S
BF-GA-0.7-S

Figure 8: Schedulability for large DAG at Umax = 0.7: Small vs Large popula-
tion

In Figure 8, we examine the impact of increasing the pop-
ulation size on schedulability as a function of the total work-
load. We compare different approaches with a workload thresh-
old set to 0.7 for all cases. As expected, a larger population
size (150 individuals) improves schedulability compared to an
equivalent approach with a smaller population size (50 individ-
uals). Even the WF-based allocation with a large population
outperforms the ILP-based allocation with a smaller population
(compared to the previous experimentations). This is due to the
fact that a larger population allows for more diversification, and
iterating for 150 generations instead of 50 generations allows
for more intensive search. However, the Best-Fit approach still
exhibits poor performance because it overly constrains certain
cores compared to others.

ent task set, so the comparison is made for the sake of indication rather than
direct comparability

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 15

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he

du
la

bi
lit

y
ra

tio ILP-GA-0.7-L
WF-GA-0.7-L
BF-GA-0.7-L
ILP-GA-0.7-S
WF-GA-0.7-S
BF-GA-0.7-S

Figure 9: Schedulability for long DAG: Umax = 0.7 small vs large population

In Figure 9, we present the results of the same experiments
as Figure 8, but specifically for long DAGs. The results are
comparable to the previous figure, with some notable differ-
ences. The ILP approach still outperforms the WF approach,
even with a smaller population size. This is explained by
the nature of long DAGs in our task set generation algorithm,
where we have no more than two subtasks per layer, therefore,
the slack time distributed over the different subtasks is smaller
compared to large DAGs. In such a highly constrained system,
the impact of diversified and intensive search for intermediate
deadlines is minimal compared the subtask-to-core allocation,
which has a more significant impact in determining schedula-
bility. Therefore, based on the configuration of our tasks, it may
be more important to prioritize intensive intermediate deadline
search for large DAGs or focus on employing more intensive
allocation strategies for long DAGs, to allow the deadline as-
signment techniques to be more efficient.

In Figure 10, we provide the time required to perform the
allocation and schedulability analysis for the previous experi-
ments as a function of total utilisation. We have limited the
total utilisation to 2, as having a smaller number of schedulable
task sets beyond this limit does not allow drawing statistically
significant and meaningful conclusions. Notably, the average
time required to assess schedulability for large graphs (the two
figures on the left-hand side) is generally shorter than that for
the analysis of long DAGs (please note that the scales of the
figures are different). On average, the BF heuristic takes more
time because schedulability testing fails more frequently com-
pared to the other approaches. Therefore, the analysis contin-
ues until the maximum number of iterations is reached, unlike
the other approaches, which may terminate earlier if a schedu-
lable solution is found in intermediate generations. Similarly,
the ILP approach, which exhibits the best schedulability rates,
completes its analysis faster than all the other approaches. Here,
the required time to achieve a good allocation through the ILP
is recovered by the efficiency of the corresponding deadline as-
signment process.

6.2.2. Comparison of deadline assignment approaches
In this section, we evaluate the performance of our genetic

algorithm-based deadline assignment approach (Algorithm 1)

against two deadline assignment methods: the fair deadline as-
signment heuristic denoted as FAIR and the proportional dead-
line assignment heuristic denoted as PROP. The tasks in this
experience are allocated using the proposed ILP formulation,
since it demonstrates the best performances. Each algorithm is,
therefore, labeled by a combination of these techniques. The
workload upper bound is set to Umax = 0.7. We compare
the schedulability and the required analysis time for these ap-
proaches.

In Figures (11a and 11b), we present the schedulability ra-
tios of different deadline assignment techniques, namely GA,
FAIR, and PROP, as a function of total utilisation for large and
long DAGs, respectively. Our genetic algorithm-based assign-
ment technique significantly outperforms PROP and FAIR in
both cases. The proportional approach assigns slack propor-
tionally to the subtask execution time, which means that sub-
tasks with longer execution times are more likely to receive ad-
ditional slack compared to the FAIR approaches. As a result,
these subtasks have more flexibility in terms of being sched-
uled without missing their deadlines. It is worth to notice that
our approach is sensitive to the DAG topology, meaning that the
structure and connections within the DAG can have an impact
on the algorithm’s performance, similarly to the related work.

Our approach improves the schedulability performance at
an acceptable cost on the required time to achieve the analysis,
i.e., t requires more time to complete the analysis compared to
the PROP and FAIR approaches (Figures 11c and 11d), which
have negligible execution times in comparison to ours.

In Figures (12a and 12b), we compare our genetic algo-
rithm with ILP-based allocation against the PROP and FAIR
approaches using WF for subtask-to-core allocation, as a func-
tion of total utilisation. In the left-hand side figure, we generate
10 DAGs, each consisting of 8 computational tasks, while in the
right-hand side figure, we generate 3 DAGs, each consisting of
25 subtasks. The results indicate that our proposed approach
consistently outperforms the approaches found in the literature.
Our algorithm demonstrates that its performance is not depen-
dent on the number of DAGs or the number of subtasks.

In Figures (13a, 13b and 13c), we present the schedulability
ratios of different deadline assignment techniques as a function
of total utilisation for large DAGs when varying the ratios of
deadline and period Di

Ti
. Our genetic algorithm-based assign-

ment technique significantly outperforms PROP and FAIR in
both cases (b) and (c). An improvement in the performance
of the genetic algorithm-based approach is noticeable in Fig-
ure (13c) since the tasks have larger deadlines. As in the prece-
dent experience 12, the PROP approach outperforms FAIR ap-
proaches in all cases. The schedulability rates of the different
deadline assignment techniques deteriorate sharply when the
ratio is equal to 0.5.

7. Conclusion and future work

For COTS platforms comprising multiple CPU cores, con-
tention for memory accesses can cause a significant decrease of
schedulability.

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 16

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1,000

1,500

The target baseline utilisation

R
un

tim
e

(s
ec

)

(a) Runtime for large-DAGs on small
population(Umax = 0.85, 50 generations)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1,000

2,000

3,000

The target baseline utilisation

R
un

tim
e

(s
ec

)

ILP-GA
WF-GA
BF-GA

(b) Runtime for large-DAGs on large
population (Umax = 0.7, 100 generations)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1,000

2,000

3,000

4,000

5,000

The target baseline utilisation

R
un

tim
e

(s
ec

)

(c) Runtime for long-DAGs on small
population (Umax = 0.85, 50 generations)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1,000

2,000

3,000

4,000

5,000

The target baseline utilisation

R
un

tim
e

(s
ec

)

(d) Runtime for long-DAGs on large
population(Umax = 0.7, 100 generations)

Figure 10: ILP’s performances VS (WF and BF) algorithms when using GA for deadline assignment

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he

du
la

bi
lit

y
ra

tio

GA-ILP
PROP-ILP
FAIR-ILP

(a) Schedulability for large-DAGs

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he

du
la

bi
lit

y
ra

tio

GA-ILP
PROP-ILP
FAIR-ILP

(b) Schedulability for long-DAGs

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

100

200

300

400

500

The target baseline utilisation

R
un

tim
e

(s
ec

)

GA-ILP
PROP-ILP
FAIR-ILP

(c) Runtime for large-DAGs

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1,000

1,500

2,000

The target baseline utilisation

R
un

tim
e

(s
ec

)

GA-ILP
PROP-ILP
FAIR-ILP

(d) Runtime for long-DAGs

Figure 11: GA’s performances VS (FAIR and PROP) when using ILP for task allocation on large population (Umax = 0.7)

This paper aims to avoid contention for DAG tasks. In or-
der to achieve this goal, we extended the DAG task model to
include memory transfers, and we named it AECR-DAG. This
model was used along with scratchpad memories. We proposed
an ILP-based allocation strategy for AECR-DAG task sets allo-
cation and a genetic algorithm based technique for task schedul-
ing parameters determination.

Our experiments show a significant improvement in the sys-
tem performances compared to state-of-the-art. As future work,
we plan to extend our techniques to heterogeneous architec-
tures.

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 17

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he

du
la

bi
lit

y
ra

tio

GA-ILP
PROP-WF
FAIR-WF

(a) Schedulability for large-DAGs (Scenario 1)

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he

du
la

bi
lit

y
ra

tio

GA-ILP
PROP-WF
FAIR-WF

(b) Schedulability for large-DAGs (Scenario 2)

Figure 12: Compare GA’s performances when using ILP for large-DAG tasks allocation with the literature (large population for GA, Umax = 0.7)

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he

du
la

bi
lit

y
ra

tio

GA-ILP
PROP-ILP
FAIR-ILP

(a) Schedulability for large-DAGs: Di
Ti
= 0.5

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he

du
la

bi
lit

y
ra

tio

GA-ILP
PROP-ILP
FAIR-ILP

(b) Schedulability for large-DAGs: Di
Ti
= 0.8

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

R
un

tim
e

(s
ec

)

GA-ILP
PROP-ILP
FAIR-ILP

(c) Schedulability for large-DAGs: Di
Ti
= 1

Figure 13: GA’s performances VS (FAIR and PROP) when varying the ratios of deadline and period Di
Ti

(Umax = 0.7)

Ikram Senoussaoui et al. / Journal of Systems Architecture 00 (2024) 1–18 18

References
Alhammad, A., Pellizzoni, R., 2014. Time-predictable execution of multi-

threaded applications on multicore systems, in: 2014 Design, Automation
& Test in Europe Conference & Exhibition (DATE), IEEE. pp. 1–6.

Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L., Wiese, A.,
2012. A generalized parallel task model for recurrent real-time processes,
in: 2012 IEEE 33rd Real-Time Systems Symposium, IEEE. pp. 63–72.

Baruah, S.K., Mok, A.K., Rosier, L.E., 1990. Preemptively scheduling hard-
real-time sporadic tasks on one processor, in: [1990] Proceedings 11th Real-
Time Systems Symposium, IEEE. pp. 182–190.

Ben-Amor, S., Cucu-Grosjean, L., 2022. Graph reductions and partitioning
heuristics for multicore dag scheduling. Journal of Systems Architecture
124, 102359.

Burke, E.K., Gustafson, S., Kendall, G., 2004. Diversity in genetic program-
ming: An analysis of measures and correlation with fitness. IEEE Transac-
tions on Evolutionary Computation 8, 47–62.

Chekuri, C., Khanna, S., 2005. A polynomial time approximation scheme for
the multiple knapsack problem. SIAM Journal on Computing 35, 713–728.

Cordeiro, D., Mounié, G., Perarnau, S., Trystram, D., Vincent, J.M., Wagner,
F., 2010. Random graph generation for scheduling simulations, in: 3rd Inter-
national ICST Conference on Simulation Tools and Techniques (SIMUTools
2010), ICST. p. 10.

Diaz-Gomez, P.A., Hougen, D.F., 2007. Initial population for genetic algo-
rithms: A metric approach., in: Gem, Citeseer. pp. 43–49.

Druetto, A., Bini, E., Grosso, A., Puri, S., Bacci, S., Di Natale, M., Paladino, F.,
2023. Task and memory mapping of large size embedded applications over
numa architecture, in: Proceedings of the 31st International Conference on
Real-Time Networks and Systems, pp. 166–176.

Durrieu, G., Faugère, M., Girbal, S., Pérez, D.G., Pagetti, C., Puffitsch, W.,
2014. Predictable flight management system implementation on a multicore
processor, in: Embedded Real Time Software (ERTS’14).

Emberson, P., Stafford, R., Davis, R.I., 2010. Techniques for the synthesis of
multiprocessor tasksets, in: WATERS.

Hoogeveen, J.A., Lenstra, J.K., Veltman, B., 1996. Preemptive scheduling in a
two-stage multiprocessor flow shop is np-hard. European Journal of Opera-
tional Research 89, 172–175.

Houssam-Eddine, Z., Capodieci, N., Cavicchioli, R., Lipari, G., Bertogna, M.,
2020. The hpc-dag task model for heterogeneous real-time systems. IEEE
Transactions on Computers 70, 1747–1761.

IBM, 1987. CPLEX User’s Manual. volume 12.
IT, A., 2020. Aurix 32-bit microcontrollers for automotive and industrial appli-

cations. Infineon Technologies AG 1.
Kandemir, M., Ramanujam, J., Irwin, J., Vijaykrishnan, N., Kadayif, I., Parikh,

A., 2001. Dynamic management of scratch-pad memory space, in: Proceed-
ings of the 38th annual Design Automation Conference, pp. 690–695.

Koonce, D., Tsai, S.C., 2000. Using data mining to find patterns in genetic algo-
rithm solutions to a job shop schedule. Computers & Industrial Engineering
38, 361–374.

Madureira, A., Ramos, C., do Carmo Silva, S., 2002. A coordination mecha-
nism for real world scheduling problems using genetic algorithms, in: Pro-
ceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.
No. 02TH8600), IEEE. pp. 175–180.

Maia, C., Nelissen, G., Nogueira, L., Pinho, L.M., Pérez, D.G., 2017. Schedula-
bility analysis for global fixed-priority scheduling of the 3-phase task model,
in: 2017 IEEE 23rd International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), IEEE. pp. 1–10.

Marinca, D., Minet, P., George, L., 2004. Analysis of deadline assignment
methods in distributed real-time systems. Computer Communications 27,
1412–1423.

Martello, S., Toth, P., 1990. Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc.

McLean, S.D., Craciunas, S.S., Hansen, E.A.J., Pop, P., 2020. Mapping and
scheduling automotive applications on adas platforms using metaheuristics,
in: 2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), IEEE. pp. 329–336.

Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., Buttazzo,
G., 2016. Schedulability analysis of conditional parallel task graphs in mul-
ticore systems. IEEE Transactions on Computers 66, 339–353.

Mitra, H., Ramanathan, P., 1993. A genetic approach for scheduling non-
preemptive tasks with precedence and deadline constraints, in: [1993] Pro-
ceedings of the Twenty-sixth Hawaii International Conference on System
Sciences, IEEE. pp. 556–564.

Monnier, Y., Beauvais, J.P., Deplanche, A.M., 1998. A genetic algorithm for
scheduling tasks in a real-time distributed system, in: Proceedings. 24th
EUROMICRO Conference (Cat. No. 98EX204), IEEE. pp. 708–714.

Oh, J., Wu, C., 2004. Genetic-algorithm-based real-time task scheduling with
multiple goals. Journal of systems and software 71, 245–258.

Pellizzoni, R., Betti, E., Bak, S., Yao, G., Criswell, J., Caccamo, M., Kegley,
R., 2011. A predictable execution model for cots-based embedded systems,
in: 2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium, IEEE. pp. 269–279.

Pellizzoni, R., Lipari, G., 2005. Feasibility analysis of real-time periodic tasks
with offsets. Real-Time Systems 30, 105–128.

Qamhieh, M., Fauberteau, F., George, L., Midonnet, S., 2013. Global edf
scheduling of directed acyclic graphs on multiprocessor systems, in: Pro-
ceedings of the 21st International conference on Real-Time Networks and
Systems, pp. 287–296.

Ramamritham, K., 1990. Allocation and scheduling of complex periodic tasks,
in: Proceedings., 10th International Conference on Distributed Computing
Systems, IEEE Computer Society. pp. 108–109.

Rosen, J., Andrei, A., Eles, P., Peng, Z., 2007. Bus access optimization
for predictable implementation of real-time applications on multiprocessor
systems-on-chip, in: 28th IEEE International Real-Time Systems Sympo-
sium (RTSS 2007), IEEE. pp. 49–60.

Senoussaoui, I., Zahaf, H.E., Lipari, G., Benhaoua, K.M., 2022. Contention-
free scheduling of prem tasks on partitioned multicore platforms, in: 2022
IEEE 27th International Conference on Emerging Technologies and Factory
Automation (ETFA), IEEE. pp. 1–8.

Shukla, A., Pandey, H.M., Mehrotra, D., 2015. Comparative review of selec-
tion techniques in genetic algorithm, in: 2015 International Conference on
Futuristic Trends on Computational Analysis and Knowledge Management
(ABLAZE), pp. 515–519. doi:10.1109/ABLAZE.2015.7154916.

Slim, B.A., Liliana, C.G., Mezouak, M., Sorel, Y., 2020. Probabilistic schedula-
bility analysis for real-time tasks with precedence constraints on partitioned
multi-core, in: 2020 IEEE 23rd International Symposium on Real-Time Dis-
tributed Computing (ISORC), IEEE. pp. 142–143.

Starkweather, T., McDaniel, S., Mathias, K.E., Whitley, L.D., Whitley, C.,
1991. A comparison of genetic sequencing operators., in: ICGA, pp. 69–76.

Suhendra, V., Roychoudhury, A., Mitra, T., 2010. Scratchpad allocation for
concurrent embedded software. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 32, 1–47.

Tabish, R., Mancuso, R., Wasly, S., Pellizzoni, R., Caccamo, M., 2019. A real-
time scratchpad-centric os with predictable inter/intra-core communication
for multi-core embedded systems. Real-Time Systems 55, 850–888.

Udayakumaran, S., Barua, R., 2003. Compiler-decided dynamic memory al-
location for scratch-pad based embedded systems, in: Proceedings of the
2003 international conference on Compilers, architecture and synthesis for
embedded systems, pp. 276–286.

Wang, L., Zheng, D.Z., 2001. An effective hybrid optimization strategy for job-
shop scheduling problems. Computers & Operations Research 28, 585–596.

Wu, Y., Gao, Z., Dai, G., 2014. Deadline and activation time assignment for
partitioned real-time application on multiprocessor reservations. Journal of
Systems Architecture 60, 247–257.

Yang, Y., Wang, M., Yan, H., Shao, Z., Guo, M., 2010. Dynamic scratch-pad
memory management with data pipelining for embedded systems. Concur-
rency and Computation: Practice and Experience 22, 1874–1892.

Yao, G., Pellizzoni, R., Bak, S., Betti, E., Caccamo, M., 2012. Memory-centric
scheduling for multicore hard real-time systems. Real-Time Systems 48,
681–715.

Zahaf, H.E., Benyamina, A.E.H., Lipari, G., Olejnik, R., Boulet, P., 2016. Mod-
eling parallel real-time tasks with di-graphs, in: Proceedings of the 24th In-
ternational Conference on Real-Time Networks and Systems, pp. 339–348.

Zahaf, H.E., Capodieci, N., Cavicchioli, R., Bertogna, M., Lipari, G., 2019. A
c-dag task model for scheduling complex real-time tasks on heterogeneous
platforms: preemption matters. arXiv preprint arXiv:1901.02450 .

Zahaf, H.E., Lipari, G., Niar, S., et al., 2020. Preemption-aware allocation,
deadline assignment for conditional dags on partitioned edf, in: 2020 IEEE
26th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), IEEE. pp. 1–10.

Zitzler, E., Deb, K., Thiele, L., 2000. Comparison of multiobjective evolution-
ary algorithms: Empirical results. Evolutionary computation 8, 173–195.

http://dx.doi.org/10.1109/ABLAZE.2015.7154916

	Introduction
	Related work
	System model
	Architecture model
	Task model

	DAG tasks allocation and transformation
	Decision variables and objective function

	Deadline based DAG memory-processor co-scheduling
	Fair and proportional deadline assignment
	GA-based intermediate deadline assignment
	Individual representation
	Initial population generation

	Evaluation Strategy
	Schedulability of task-graphs
	Fitness function

	Creating the next generation
	Selection
	Mutation and crossover

	Results and discussions
	Task generation
	Simulation Results and Discussions
	Comparison of allocation approaches
	Comparison of deadline assignment approaches

	Conclusion and future work

