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Abstract
Rockll dams with stone pitching are specic hydraulic structures generally built
in the early XXth century where stones used to be hand-placed without mortar to
constitute the upward and downward dam faces. Few studies have been carried out
to quantify the specic and critical role of the pitching in the dam stability against
both static and seismic forces.
Herein, a numerical model is proposed to model pseudo-static tests performed on
four dierent scaled-down rockll dams with a stone pitching. A mixed FEM-DEM
approach is used, and two dierent constitutive models were considered for the back-
ll. A validation of the numerical model is rstly proposed based on the scaled-down
tests. Then, the stone pitching displacement proles and the dams safety factors
against failure are analyzed and compared for the four studied cases. This study
allows qualitative conclusions to be drawn and pave the way to upcoming investiga-
tions on actual structures of the same kind.
KEYWORDS:
stone, DEM, FEM, retaining structure, seismic

1 INTRODUCTION

Dry-stone structures are one of the rst known and executed projects by human beings in civil engineering history1. They can
be found worldwide as soon as the resource was available. Most famous and known examples of this heritage are "Stonehenge"
in England, the “Iron Age Brochs” in Scotland (Thew et al. 2013)2, the “Great Zimbabwe” in Zimbabwe, and more recently
“Machu Picchu” in Peru. In France, "Pont du Gard" is considered the most symbolic dry-stone structure.
Particularly, rockll dams with dry-stone pitching on downstream and upstream faces are specic and remarkable structures

among this heritage (Figure 1). They hold an inner backll generally made of decametric blocks and faces on both the upstream
and downstream faces made of carefully hand-placed rubble or cut stones. This type of structure seemed to have appeared at
the beginning of the pyramid age (around 2600 BC) in Egypt3. EL-Kafara dam in Egypt is the oldest known water-retaining
structure of such a size in the world. The design of those dams may dier from country to country in which, sometimes, dumped
rockll zones for the backll were mixed with hand-placed rockll zones4. In the panel of more recent rockll dams built in
the XX century, two dierent designs co-exist for the backll: one typical of Italy and other mainly developed in the USA. For
example, in Italy, the rockll of the backll could be totally hand-placed due to the availability of an abundant and inexpensive
qualied workforce. In the USA, the rockll was generally hand-placed only under the upstream face due to the scarcity of
skilled masons. This minimum structured and dense layer was required to facilitate the construction of the dry-stone pitching
while providing a better stability for it.
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TABLE 1 Rockll dams built in France from 1940 to 1960

Date Dam Height Date Dam Height
1942 Araing 25 m 1951 Chammet 19.3 m
1943 Laurenti 15 m 1951 Greziolles 30 m
1949 Grandes Pâtures 20 m 1952 Saint-Nicolas 6 m
1950 Auchaize 6 m 1953 Escoubous 20 m
1950 Portillon 22.5 m 1953 Les Laquets 13 m
1950 Vieilles Forges 10 m 1959 La Sassière 30 m

FIGURE 1 Example of a typical rockll dam built with hand-placed rockll: photography of the construction and cross-section
(courtesy of EDF)

In France, between 1940 and 1960, during and after World War II, a period when workforce was at low cost, twelve rockll
dams were built (Table 1). They were mainly based on the USA design but with some Italian peculiarities such as the steep
downstream fruit and faces protected by a dry stone pitching. Most of those dams are still operated by the French stakeholder
"Electricity of France" ’(EDF). A snapshot of the construction site just before the installation of the stones at crest and a typ-
ical cross-section of such rockll dam are given in Figure 1a and Figure 1b respectively. The mechanical behaviour and the
justication of the stability of such dams against the seismic motion are not denitively established.
In the past, several experimental campaigns on dry-stone structures were carried out to provide a better understanding of

their mechanical behavior. The rst reported studies dated back to the XIXth century when Anon5 in 1845 and Burgoyne6 in
1853 studied dierent features concerning dry stone retaining walls (DSRWs). More recently, new full scale experiments were
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carried out in France to get new recommendations for the design of DSRWs such as Colas et al. (2010-2013)7 8 and Villemus et
al. (2006)9. On the other hand, Mundel et al. (2009,2010)10, 11 conducted full scale experiments in Great Britain to understand
the origin of the bulging phenomenon observed on site that leads most of old DSRWs to failure. In addition, Savalle (2020)12
carried out scaled-down experiments to study the seismic behaviour of DSRWs. Finally, EDF funded an experimental campaign
(denoted herein PEDRA experimental campaign) involving scaled-down physical models of rockll damwith dry stone pitching
to study the role of the pitching properties in the stability of the dam. A detailed description of this latter campaign is given in
Section 2.
All those experiments on dry-stone structures allowed to constitute an extensive database for the validation of analytical

design tools including the homogenized yield theory (Colas et al. 13 14) and other analytical tools (Alejano et al. 201215 16, Kim
et al. 201117, Terrade et al. 201818). It also allowed to validate numerical models19 20 21. In 2004, Deluzarche22 21 modeled
a full scale dam using a fully discrete element method (DEM)23 24 and proved the key role of the dry-stone pitching on the
stability of the rockll dam. This study was very innovative at the time but limited as they did not provide any validation of the
approach. Moreover, this study was based on a 2-dimensional computation with a gross modeling of the pitching. Another study
was carried out by Chen in 201225. He used a 3-dimensional continuum approach to model a concrete faced rockll dam using
two dierent constitutive models (Mohr-Coulomb and LK-Enroch which is a complex constitutive law developed by EDF to
model the mechanical behavior of rockll). He proved the importance of the use of sophisticated constitutive models to correctly
retrieve pathologies observed on such structures.
A fully DEM approach allows large relative displacements between individual bodies to be taken into account precisely which

may be the case for actual dry stone structures but is generally computation time consuming. In the case of DSRWs, Oetomo
in 2013-201619 26 20 showed that such approach can advantageously be substituted by a mixed discrete-continuum (FEM-DEM)
approach where the backll is modeled by a continuum approach while the dry-stone wall by a DEM approach. Bothmodels were
able to retrieve results found with full-scale experiments on DSRWs with a very good precision but gain of much computational
time was obtained with the mixed FEM-DEM approach.
In this paper, a mixed FEM-DEM approach is used to model the experimental campaign funded by EDF and involving scaled-

down rockll dam with dry-stone pitching. The dam body (rockll) is modeled as a continuum body and the stone pitching as a
discrete system. The main objective of the study is to validate the numerical approach to study the mechanical behavior of such
structure. A second objective is to study the eect of stone pitching characteristics (kind of material, density, assemblage) on
their resistance. The modeling of full scale rockll dams with dry stone pitching is out of the scope of this work.

2 PEDRA EXPERIMENTAL CAMPAIGN

2.1 Objective
This campaign was motivated by the lack of robust database to validate numerical models for rockll damwith dry stone pitching
such as the one developed by Deluzarche22 21. Considering dierent materials and techniques for building the pitching in existing
EDF rockll dams, scaled-down dams were designed then tilted to evaluate their pseudo-static resistance. The pseudo-static
approach is a simplied approach to qualify the seismic resistance of structures where the inertial induced forces by the seismic
motion to the structures are modeled by constant forces (e.g. european standard EUROCODE 8).

2.2 Studied cases
The shape and dimensions of the physical models are inspired by a specic dam operated by EDF, with a down-scale of 1/10.
It is a structure of 2m in height, 4.2m in length and 2.25m in width with a slope of 45° on both faces (Figure 2). These models
were built inside a bucket of a crane tuck. The pseudo-static experiments were carried out by the rotation of the bucket using
the crane truck until dam failure. This rotation will lead to forces acting horizontally on the dam which will eventually break
the dam and the pitching which is the state of failure. Higher tilting failure angle means the structure can bear higher horizontal
destabilizing forces which leads to the fact that it is more resistant.. An example of the physical model is shown in Figure 2.
Steel plates were welded on the 2 internal sides of the bucket and then covered with a polyane sheet to limit friction between the
dam structure and the side walls. Two steel rods were welded to the base of the truck to maintain the rst row of stone pitching
at both face toe (upstream and downstream faces).
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FIGURE 2 Example of the PEDRA scaled-down physical model and its dimensions

FIGURE 3 Dry-stone pitching of the four physical models in PEDRA experimental campaign

Four dierent dam models with dry-stone pitching were built and tilted. All four models had identical dimensions and a
dam body consisting of a rockll with a uniformity coecient of 2 and a porosity of approximately 0.45. The rockll grading
ranges from 10mm to 80mm with a 50 of 40mm. The dierence between the four cases lied in the dry-stone pitching: the
four cases diered according to the pitching surface density (pitching with one or two stone layers), material (granite or schist),
assemblage (ordered or disordered, anchorage of stones in the backll) and stone dimensions (Figure 3) although some of them
may have shared common features (Table 2). In addition, to justify the role played by the dry-stone pitching in the dam stability,
an experiment involving a scaled-down rockll dam without pitching (1m in height) was carried out.
Six sensors were xed on the downstream dry stone pitching to track the dam displacements. They were distributed on the

top, middle and upper part of it (Figure 2). In addition, photogrammetry using four cameras and a 3D laser scanner were used to
localize deformations of all the stones during the rotation process. A high speed camera was also used to better track the pitching
kinematics at failure. The failure tilting angles for the four cases are given in Table 3. Herein, the sensors’ displacements and
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TABLE 2 Four cases studied in PEDRA experiments

Case 1 Case 2 Case 3 Case 4
Stone pitching type Granite (1 layer) Ordered Schist Disordered Schist with anchorage Granite (2 layers)
Surface density 115 kg/m2 114 kg/m2 177 kg/m2 230 kg/m2

Stone thickness 5.6 cm 5 cm 5 to 12 cm 11.2 cm
Stone height 5.6 cm 5 cm 3 to 25 cm 5.6 cm
Stone width 5 and 10 cm 3 to 40 cm 3 to 40 cm 5 and 10 cm
Stone friction angle (Slip tests) 29° 26.5° 26.5° 29°

pitching deformations are just given for case 4 (Figure 4) but the results are typical of those found for the other cases. One can
note that failure was not according to a perfect plane strain mode due to restrictions of movement at lateral end sides in spite of
care in the design of the system. Similar features were observed in the case of experiments on DSRWs but repeatability tests
showed that they do not play a signicant role in the quantitative aspects of the problem (Savalle, 2020)12.

2.3 Main results
By comparing the results of the four studied cases, several conclusions can be drawn:

• The comparison between case 1 and case 2 (similar pitching weight) shows that a higher friction angle (29° for granite
against 26.5° for the schist) leads to a higher dam resistance;

• The comparison between case 1 and case 4 (the pitching is formed of a layer of granite for case 1 and two layers for case
4) shows that the pitching weight is a signicant parameter explaining the dam resistance;

• Case 3 shows that pitching anchorage in the backll increases the dam resistance.

FIGURE 4 Dry stone pitching deformations of case 4 at bucket rotation angle of 27° (just before failure) and sensor time
displacements as a function of the bucket rotation angle
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TABLE 3 Failure tilting angle for the four studied experimental cases

Case 1 Case 2 Case 3 Case 4
Failure angle 24° 21° 29.5° 28°
Bucket rotation angle (Failure angle + dam slope (45°)) 69° 66° 74.5° 73°

3 NUMERICAL MODEL

3.1 System
All the cases involved in PEDRA experimental campaign were modeled numerically. The dam body (rockll) was modeled
as a continuum medium using FLAC3D whereas the dry-stone pitching was modeled as a discrete system using PFC3D. Both
commercial software are developed by ITASCA24 and can be easily coupled one to each other to share information. Herein,
information is shared and transferred at pitching-backll interface. The four numerical models associated to the four PEDRA
cases are given in Figure 5. Their dimensions are the same as in the experiments (2m in height, 4.2m in length and 2.25m in
width). The dry stone pitching is modeled by regular perfect parallelepipedic blocks whose dimensions correspond to the average
stone dimensions in each case (Figure 6).
To simulate the two lateral sides of the bucket, namely two smooth plates covered with a polyane sheet (to limit friction), the

normal displacement (y-direction in Figure 7) of the backll vertical planes was xed and a no-friction condition was applied.
The dam foundation was xed in all directions and a frictional interface was used between the dam base and its foundation.
Concerning the stone pitching, the rst row of stones at dam toe on both upstream and downstream faces was totally xed to
simulate the presence of the steel rods. Moreover, the normal displacement (y-direction in Figure 7) of stones at both lateral
ends of the pitching was also xed as done for the backll (Figure 7).
The computation was divided into several successive steps. The rst step consisted of the creation of the dam body with its

geometry within FLAC3D and then the mesh for the backll was generated. Gravity was applied until equilibrium is reached:
equilibrium is supposed to be obtained when the ratio between the unbalanced forces and the total forces is smaller than 1.10−5.
Then, the dry-stone pitching was generated within PFC3D on the upstream and downstream faces of the dam. At this stage, the

FIGURE 5 Numerical models of the four PEDRA cases

FIGURE 6 Dimensions of the dry-stone pitching used in the numerical model
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FIGURE 7 Boundary conditions of the numerical model

coupling between the two softwares is processed by creating an interface wall between the stone pitching and the dam body. The
full dam model is run again under gravity to reach a new mechanical equilibrium. All mechanical properties of the dam as well
as of the pitching-backll interface are discussed hereafter in section 4.
After building the whole model, the pseudo static test (tilting test) was modeled by rotating the dam: rotation is simulated

by rotating the gravity vector in the vertical (X,Z) plane (Figure 7). The dam is rotated with an increment of 1° until failure is
obtained (the designed failure criteria developed for this study are described in the next subsection). During the rotation process,
the displacements at points corresponding to the location of the six PEDRA sensors were recorded. The whole computation
process is shown in details in Figure 8.
The dam body mesh (backll) was dened by studying the eect of the mesh size on the failure angle and on the maximum

displacement of the pitching at a given rotation angle of 20°. The main goal was to nd the minimum needed mesh size (grid-
point number) from which the mesh size had negligible eect on the results. Figure 9 shows the evolution of the failure angle
and the maximum displacement as a function of the gridpoint number on the backll face in contact with the stone pitching.
Both curves reach a "plateau" after a certain enough high gridpoint number represented by the red dotted line. The mesh cor-
responding to this threshold number was chosen as an optimized mesh size that guaranteed both mesh independency of results
and limited computation time. For example, in case 1, each stone is in contact with at least 1 gridpoint on the backll surface.
More specically, each stone information is transmitted to at least one surface gridpoint forming the backll faces. So, the total
number of gridpoints on the backll surface in contact with the pitching is higher than the total number of the stones forming
the pitching.

3.2 Equilibrium and failure criteria
FLAC3D and PFC3D solve the equation of the dynamics using an explicit time scheme. A criterion was designed to dene when
static equilibrium was obtained throughout the simulation of the pseudo static tests. Another criterion was designed to state
when failure was obtained before a total collapse of the whole system and thus to save computation time. Failure and possible
equilibrium were tested for each rotation angle increment.
The developed criteria were similar to the one used by Oetomo and Savalle19 26 20 27 in their respective works. For a given

rotation angle, the model is run (gridpoint locations and stone positions are updated) throughout a few thousands cycles. During
these cycles, if the model reaches the threshold unbalanced force ratio, the model is considered at equilibrium and another
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FIGURE 8Example of the modeling procedure and steps (The displacement elds shown are just examples with only qualitative
meaning and not quantitative)

FIGURE 9Mesh study of the FLAC3D model

increment of rotation angle can be processed. Otherwise, a 2nd criterion, based on the pitching kinetic energy, is checked to test
if the dam has reached failure. If the kinetic energy is higher than 1.10−3J for 10 consecutive measurements with 500 cycles
between each, failure is supposed to have been reached. If not, it means that the model may tend to a stable state and further
chance for obtaining equilibrium (few thousands more cycles) is given to the whole system. The kinetic energy threshold value
was chosen during a preliminary study where the pitching kinetic energy was monitored which implies that the derived threshold
value is only valid for the study system. The full scheme is given in Figure 10.
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FIGURE 10 Computation scheme involving equilibrium and failure criteria

4 MODEL CALIBRATION

Due to its simplicity, Mohr-Coulomb (MC) constitutive model was used to model the dam body as a rst computation. Then,
a more sophisticated constitutive model denoted LK-Enroch (LKE) developed for rockll at EDF is used for comparison. The
model parameters were calibrated using data available from PEDRA experimental campaign.When informationwasmissing, the
calibration was performed using data from the literature. The calibration process for each part of the system including backll,
stone pitching and the backll-pitching interfaces is described in details in the following subsections.

4.1 Backll
The dam body is composed of a backll made of angular granite rockll with a grading ranging from 10mm to 80mm with a
uniformity coecient of 2 and a 50 of 40mm. Porosity is equal to 0.45.

4.1.1 Mohr-Coulomb
MCmodel has 5 parameters to be calibrated including Young’s modulus E, Poisson’s ratio , cohesion  , internal friction angle
, and dilatancy angle  (Appendix 1). The calibration process of the model parameters was based on experimental triaxial tests
at 100kPa and 200kPa carried out during PEDRA campaign. A 1m diameter cell was used in order to achieve a Representative
Elementary Volume for the considererd granular material. However, due to the small size of the scaled-down system to be
modeled, the associated conning pressures are very low (between 1 to 10 kPa) and out of the range of usual conning pressures
involved in triaxial tests which induced some adaptations.
LEP’s chart28 valid for rocklls was used to deduced properties at low conning pressure. The internal friction angles at

100kPa (14.5psi) and 200kPa (29psi) throughout the triaxial tests using a large cell were found equal to 42° and 39.5° respectively.
These values are consistent with a rockll at low density according to LEP’s chart (Figure 11). Then, considering a low density
for a poorly graded material and an average pressure ranging from 1 to 10kPa (0.15-1.5psi), the internal friction angle of the
rockll was estimated at 52°. (Table 4)
The dilatancy angle was estimated using Bolton’s approach29. This author states that for plane strain conditions and relative

density 0<<0.4, the dilatancy angle  can be estimated using Equation 1 which corresponds to the characteristics of the
rockll studied herein. =52° is the peak backll friction angle and =38° is the critical backll friction angle.Finally,
the dilatancy angle was found close to 18°.

 −  = 0.8 (1)
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FIGURE 11 LEP’S diagram: Eect of the conning pressure on the friction angle

TABLE 4 Mohr-Coulomb parameters calibration at dierent conning pressures

Conning Pressure (°) (°) C E(MPa) 

200 kPa (triaxial tests) 39 2 0 52 0.2
100 kPa (triaxial tests) 42 6 0 50 0.2

1-10 kPa (extrapolated parameters) 52 18 0 10 0.2

Finally, based on Equation 230 which takes into account the typical dependency of the Young’s modulus with the mean
pressure and considering the reference pressure  of 100kPa30,0 was identied equal to 50MPa throughout the triaxial tests
with the large cell. Then, the Young’s modulus at P=5kPa (average pressure in the scaled-down numerical model) was deduced.
Finally, Poisson’s ratio  was kept independent of the mean pressure and cohesion  was set to zero. All the values for MC
model are given in Table 4.

 = 0[



]0.5 (2)

4.1.2 LK-Enroch
LKE model is an elastoplastic model with two plastic mechanisms including an associated isotropic mechanism with isotropic
hardening and a non-associated deviatoric mechanism with hardening. The isotropic mechanism is a plane perpendicular to the
hydrostatic axis while the deviatoric mechanism which was designed from Hoek-Brown model corresponds to a non-straight
cone centered on the hydrostatic axis. The main equations of LKE model are given in Appendix 1. This model has sixteen



HAIDAR ET AL. 11

parameters. As for MC model, parameters were calibrated either by using PEDRA experimental triaxial tests or using data or
approaches from the literature.
LKE model takes into account the dependency of Young’s modulus with the mean pressure and as described in subsection

4.1.1, 0 was identied equal to 50MPa. Poisson’s ratio  was identied equal to 0.2 and = 0.5 as typically considered.
The other model parameters were identied throughout a trial-and-error technique with the help of simulations of triaxial

tests. Then, considering available actual triaxial tests at 100kPa and 200kPa, both elasticity threshold parameters 0 and0 were
identied.
The peak threshold parameters which mainly control the value of the deviatoric stress peak are namely ,  and  .

First, the compressive strength  is assumed to be equal to 100MPa31, then  and  values were calibrated (Table 6) to
reach the experimental deviatoric stress peak (Table 5).
Concerning the hardening parameters, ̇ was chosen by tting the position of the deviatoric stress peak with respect to

the axial strain. ̇ and  were chosen to t the post-peak softening phase whereas  was chosen to t the curvature of the
pre-peak curve.
The volumetric deformations parameters were chosen with the help of the triaxial experimental volumetric curves. First, the

residual friction angle  equal to 38° was deduced from the actual triaxial tests. Then, the dilatancy angle 0 was chosen by
tting the volumetric curves.
Finally, the isotropic mechanism parameters 0 and  were estimated using Hicher and Rahma approach30(the main equations

of this approach are given in Appendix 2). While 0 was identied equal to 1MPa throughout the simulations of triaxial tests, it
was taken equal to 15kPa for the modeling of the scaled-down dam (average mean pressure of 5kPa). The shape form parameter
 that controls the deviatoric failure envelope dissymetry is typically taken equal to 0.87. The nal values for LKE parameters
are listed in Table 6.

TABLE 5 LKE peak threshold parameters calibration

p= 200 kPa p= 100 kPa
Experimental Numerical Experimental Numerical

Peak deviatoric stress q (kPa) 680 690 410 400

FIGURE 12 Experimental triaxial tests and simulations using MC and LKE models: deviatoric stress (right) and volumetric
strain (left) at 100kPa and 200kPa
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TABLE 6 Calibrated sixteen parameters of LKE model

General Parameters
E 50E6 Pa  0.2
 0.5  100E6 Pa

Elasticity threshold parameters
0 0.87 0 0.1

Peak parameters
 at 100/200 kPa 0.79  at 100/200 kPa 0.92

 adapted to 1-10 kPa 0.815  adapted to 1-10 kPa 0.89
Hardening parameters

̇ 0.125 ̇ 0.8
 0.005  2

Volumetric deformations parameters
 38° 0 38.5°

Isotropic mechanism parameters
0 (scaled-down dam model) 15kPa  35

0 (triaxial tests) 1MPa

The simulations of available actual triaxial tests associated to the nal set of parameters for MC model and LKE model are
given in Figure 12. While MC model only retrieves the main features of the curves, LKE ts in a good way the experimental
triaxial curves, especially the deviatoric stress curves, which was expected. MC is typically stier and generates dilatancy at
deformations smaller than 5%. LKE gave close volumetric strain curves in the same order of magnitude as the experiments
especially at a conning pressure of 100kPa. In fact, a margin of error can be found in both the constitutive model and the
experiments due to some imperfections which could lead to some small dierences in some cases as found at a conning pressure
of 200 kPa.

FIGURE 13 Failure envelopes of calibrated MC and LKE models at low pressures (5kPa) in the deviatoric plane
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Sophisticated elastoplastic models are typically valid for the range of mean pressures associated to the calibration process
(generally hundreds of kPa). Herein, the mean pressure in the scaled-down model was very dierent (1-10kPa) and some adap-
tations for the values of model parameters were considered. These adaptations allowed a better prediction of the peak strength.
Then, the peak threshold parameters  and  were changed accordingly with a targeted value for the internal friction
angle of 52° (LEP’s approach28) as considered for the calibration of MC model. The nal values of  and  and other
LKE model parameters for the modeling of the scaled-down dams of PEDRA campaign are given in Table 6. Figure 13 gives
both the failure envelopes of calibrated MC model and of LKE deviatoric mechanism in the deviatoric plane (Π plane) for a
mean pressure of 5kPa.

4.2 Dam-foundation Interface
For the modeling of the dam-foundation interface, a linear frictional Coulomb model was used. A friction angle of 52° (equal to
the rockll internal friction angle) is imposed. Normal and shear stinesses  and  were dened considering recommenda-
tions in 3 manual. For convergence reasons, stinesses are recommended to be ten times the equivalent stiness 
of the most rigid zone near the interface dened by Equation 3 in which  and  are the bulk and shear modulus respectively
and Δ is the minimum dimension (height) of volume element meshes at the interface. Then, the values were identied to
=  ≈1.1010Pa/m.

 = [
( + 4

3
)

Δ
] (3)

4.3 Stone pitching
Stones are modeled as innitely rigid bodies with deformable contacts. A linear frictional law is used for the contact between
blocks with several parameters including the friction coecient, the shear stiness and the normal stiness. The shear and
normal stiness input can be replaced by the input of the eective modulus ∗ and stiness ratio ∗ with ∗ = ∕, 
denoting the normal stiness and  the shear stiness.
The chosen friction coecient  (tangent of the friction angle of the stone-stone contact) is used for the pitching whether

granite or schist. = tan( 29° )= 0.55 is used for the granite stones of cases 1 and 4, and ℎ= tan(26.5° )= 0.5 is used
for the schist stones of cases 2 and 3. The local friction angles of the granite and schist stones were obtained experimentally in
PEDRA campaign. Slide slip tests were carried out by placing two stones on top of each other and a rotation of the whole system
was operated until the top block slipped on the bottom one. An average value between several tests was determined for the granite
and for the schist stones (Figure 14). The eective modulus and stiness ratio used are respectively equal to 5.107 N/2 and
2. They were obtained based on a parametric study as a compromise between actual stiness and computation times. Indeed,
high stiness induces small time increment for the resolution of the equation of the dynamics and penalize time computation.
However, it is possible to reduce the contact stiness without changing the quality of the results provided. A global damping of
0.7 which is typically used within the context of quasi static computations23 was taken into account.

4.4 Pitching-backll interface
The pitching-backll interface is activated by the coupling 3 and 3 software. On both downstream and upstream
faces, a coupling mechanism is processed throughout a zero thickness wall generated in 3 whose facets coincides with
the facets of the dam body in 3 (Figure 15). The coupling logic works by taking the contact forces and moments from
the innitely rigid bodies in 3 (pitching stones) with wall facets and determining an equivalent force system at the facet
vertices. These forces are passed to the gridpoints along with stiness contributions to the facets of the dam body in 3.
The mechanical behavior at the interface between wall and dam body face can be reproduced by a purely frictional linear

elastic model which is the same as the one used for the contact between blocks with the same set of parameters. For cases 1, 2
and 4, the pitching-backll interface friction coecient is based on the stone-stone friction coecient32. Therefore, the interface
friction coecient of cases 1 and 4 (granite stones) was = tan( 29° )= 0.55, and of case 2 (schist) was ℎ= tan(26.5°
)= 0.5. In the peculiar Case 3, the pitching was anchored in the backll. This anchorage was not modeled physically: it was
considered that the shearing failure surface at the interface was shifted within the backll due to the existence of anchors (Figure
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FIGURE 14 Slide test involving stones to identify friction angle

FIGURE 15Wall zone coupling: a) stone pitching using innitely rigid blocks, b) coupled walls at the interface, c) dam body

16). This anchorage lead to the shifting of the interface contact surface inside the backll, a statement that is commonly taken
in the case of a rough retaining wall-backll interface. Therefore, the friction angle of the rockll is chosen for the interface
of case 3 which is = tan( 52°)= 1.28. This choice of case 3 interface friction angle was also studied and validated in a
previous study by Colas in 201632.

FIGURE 16Modeling of the anchorage in case 3
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5 RESULTS AND DISCUSSION

5.1 Validation
Figure 17 gives the failure angles of all the modeled cases using MC and LKE. Both constitutive models were able to predict
the failure angle with a high quality and consequently the resistance of the scaled-down dams throughout a pseudo-static test.
The dierence between the results provided by the two constitutive models lies in the displacement eld. The displacements

monitored in the simulation on the downstream face are compared with the ones found throughout the PEDRA experiments.
Figure 18 gives the results for case 4: the displacements of the other three cases can be found in Appendix 3 (Figures 29, 30,
31). MC model underestimates displacements in most of the sensors (and cases) which was expected. Indeed, this model is
characterized by a large elastic domain which generates a rigid behavior. On the contrary, LKE model is able to generate further
(irreversible) deformations from small deformations due to a limited initial elastic domain that expands according to a non-linear
isotropic evolution law. Moreover, LKEmodel was able to retrieve the evolution of the displacements with a very good accuracy.
The displacement eld of the backll and of the dry-stone pitching for case 4 (MC and LKE model) at rotation angle of 27°

(just before failure) are given and compared to corresponding experimental results in Figure 19. The same scale was used between
simulated and experimental results (crest is at the top of gure in Figure 19c). LKE model gave a qualitatively better prediction
with respect to experiments with a more concentrated displacement eld than MC model. It also holds true quantitatively.
A further analysis of the stone pitching relative displacements (rigid body displacement of the pitching was removed) was

carried out in order to better understand its mechanical behavior. For this purpose, the evolution of the normal displacements
along the downstream stone pitching height was traced for case 4 as a function of the rotation angle (Figure 20). The other
cases show similar trends, but with dierent peak values and positions. The evolution of the other three cases can be found in
Appendix 3 (Figures 32, 33, 34). If the zone facing the maximum displacement is located at about 0.3* ( denotes height
from bottom) for lower rotation angle, it stabilizes at about 40% of pitching height at failure which is also the zone where the
backll failure surface emerges on the pitching.
Figure 21 gives the normal relative displacement eld (normalized by the pitching thickness) at the rotation angle just before

failure along the pitching height for the four modeled cases. The normalization allows the weight of the pitching to be taken
into account. Indeed, the pitching weight is one of the main properties contributing to the dam stability. This comparison leads
to several conclusions about the behavior of a dry-stone pitching. A more deformable system does not mean less resistant:
case 1 that generated larger relative displacements failed for a rotation angle of 25° while case 2, for a rotation angle of 23°.
Accordingly, case 3 failed with a rotation angle of 30° while case 4, 28°. Moreover, as the pitching thickness increases, the peak
normalized relative displacement before failure decreases; the system is stier. It is true for cases 3 and 4 which are thicker than
cases 1 and 2.
From the same gure, it is also interesting to compare the position of the maximum relative displacement (position of the

failure surface that emerges on the pitching surface). Cases 1 and 4 have the same interface friction angles and their failure

FIGURE 17 Failure angles for the four cases using MC and LKE model
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position is approximately at about 0.4* . Case 2 has a slightly lower interface friction angle which leads to a slightly lower
failure position at about 0.35* . Case 3 is the only case having much higher interface friction angle due to the pitching stone’s
anchorage within the dam body: the failure position is at about 0.55* . The increase in the interface friction angle could lead
to more sliding resistance at interface between the pitching and the backll. This may cause less displacements at the bottom
part of the backll and eventually would shift the failure to a higher position of the pitching where the resistance between its
blocks is lower. In fact, the higher the position of the pitching blocks, the lower their resistance due to lower normal conning
forces between them. ????????

FIGURE 18 Displacements at the 6 sensors on the downstream face; case 4
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FIGURE 19 Displacements contour of the backll and stone pitching for case 4 at rotation angle of 27° (just before failure): a)
using MC, b) using LKE and c) experimentally

FIGURE 20 Normal relative displacements evolution of the pitching throughout the tilting tests; simulation of case 4

5.2 Safety factors
The evaluation of the safety factors is an important step in the process of justication and design of any structure including
dams. Two types of safety factors have been computed: the rotational safety factor (related to the resistance to horizontal inertial
forces such as earthquakes) and the static safety factor.
The rst safety factor  is obtained by the rotation of the dam (pseudo-static test) as related in previous sections. This factor

is dened by Equation 4 in which  is the angle of the dam slope (herein, 45°) and  is the angle of rotation at failure.
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FIGURE 21 Simulations of PEDRA tests: normal normalized relative displacements for a rotation angle just before failure;
case 1: 24°; case 2: 22°; case 3: 29°; case 4: 27°

 =
( + )

()
(4)

The second safety factor  is calculated by the reduction of one mechanical dam property. The main mechanical property
that rst explains the stability of the dam is the backll friction angle . This safety factor is calculated by reducing the backll
friction angle until failure is reached (Equation 5).
The safety factors were computed on the basis of the rockll dam using LKE model. Reduction of dam body resistance is

provided by decreasing LKE model parameter  until failure. Indeed, this parameter drives the value of the internal friction
angle in LKE model. The internal friction angle  associated to a given value of  is calculated. The safety factors
were calculated for the four studied cases. An additional computation was processed considering a case for which the pitching
was removed. This is a reference test that will indicate how much the pitching contributes to increase the dam stability. In the
case of , calculations were carried out considering the pressure due to water in the reservoir ((), with water) on the
pitching or without pressure ((), without water) using:

 =
()
()

(5)
All the calculated safety factors are shown in Table 7. Results rstly show that without pitching the rockll dam is very close

to failure according to both safety factors.
Secondly, the pitching induces a very good safety margin according to both safety factors. With respect to the reference case

(without pitching), they are increased by a minimum factor of 2. Cases 3 and 4 lead to greater safety factors than cases 1 and 2.
This is mainly due to a larger pitching weight. However, the weight of case 3 pitching is smaller than case 4 pitching while the
safety factors are greater for the former. Therefore, backll-pitching interface friction angle plays also an important role which
actually was expected. Indeed, for retaining walls, such feature also holds true.
Case 1 is slightly more resistant than case 2 because of the higher resistance (contact friction angle) of granite blocks in the

pitching compared to schist blocks in case 2 (Table 7). No conclusion can be drawn at this stage for the importance of its role
since no computation was carried out with a very dierent kind of stones having a much higher or smaller contact friction angle.
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One can refer to the study by Colas and al. 32 that studied the resistance of rockll dams with a dry stone pitching. A parametric
study was provided where failure was determined by means of the yield design method.
Finally, water of the reservoir has a little inuence in the obtained results: failure is generally triggered in the one-third upper

part of the dam where the hydrostatic pressure on the upstream face is rather low.

TABLE 7 Safety factors for the reference case with no pitching and for the four studied cases

No pitching Case 1 Case 2 Case 3 Case 4
F 1.28 2.7 2.5 3.7 3.3
F() 1.33 2.22 2.13 3.02 3.17
F() 1.33 2.13 2.05 3.02 3.02

6 CONCLUSION

This work provided a validation of the numerical modeling of rockll dams with dry-stone pitching. It was based on the sim-
ulation of actual scaled-down pseudo-static tests where dierent properties for the pitching were investigated. Four cases from
PEDRA campaign were analysed where dierences lied in the kind of stones for the pitching, weight of pitching and the exis-
tence of anchored pitching blocks within the dam body. These cases were designed according to observations on site on actual
rockll dams with dry-stone pitching. The numerical model was built by coupling a DEM code with a FEM-like code. Two
dierent constitutive models were used for the dam body, Mohr-Coulomb (MC) model and an advanced elasto-plastic model
denoted LK-Enroch (LKE).
Irrespectively of the constitutive law for the dam body, the rotation angle leading to failure throughout tests in PEDRA

campaign were retrieved with a very good precision. However, if a good prediction of the displacement eld was obtained by
means of LKE model, MC model unsuccessfully retrieved the correct displacement eld due to its inherent sti behavior. It
lies in the existence of small initial elastic domain in LKE model that allows to generate irreversible deformations for small
deviatoric stresses.
The relative displacements analysis of the pitching throughout simulations indicated the main role played by the backll-

pitching interface friction angle on the failure position. In addition, the role of the pitching weight on the dam’s rigidity was also
noticed. Increasing the dam weight tends to reduce the pitching deformations (normalized by the pitching thickness) at failure:
the behavior of the dam is stier.
Two approaches were used to evaluate the safety factors of the studied dams. Both approaches justied quantitatively the main

role played by the pitching in such dam’s stability. The dam without pitching is close to failure with a safety factory slightly
greater than 1. The safety factors increased to values higher than 2.5 for all the cases with pitching. Moreover, by comparing
the four cases with pitching, the pitching weight and the interface friction angle were justied numerically to have a signicant
eect on the dam’s resistance.
This work has shown a very small inuence of water in the dam loading forces; however, one must remind that very dierent

features and conditions can be at stake on actual structures. If the modeling of real rockll dams was out of the scope of this
study, such computations may quantitatively lead to very dierent results than obtained in this study. If the main qualitative
conclusions related to the role of the pitching may hold true for actual dams, scale eect induced by far larger mean pressures
in the dam body may greatly modify the quantities computed herein.

7 APPENDIX 1: CONSTITUTIVE MODELING

7.1 Backll
Two constitutive models associated to the dam body are used. Their descriptions are presented in the upcoming subsections.
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7.1.1 Mohr-Coulomb
Mohr-Coulomb denoted MC is an elastic perfectly plastic constitutive model which is widely used in geotechnical computations
for its simplicity. The associated failure surface is a straight cone. Its envelope in the deviatoric plane is given in Figure 22. Such
model is mainly used for purely frictional soils (sand) and cohesive soils such as the clay and silt.
This model involves ve parameters: friction angle , dilatancy angle  , cohesion  , Young’s modulus , and Poisson’s

ratio . They are usually obtained from triaxial tests by a trial-and-error method on the basis of deviatoric and volumetric curves
(Figure 23).
The yield surface  which is also the failure surface reads:

 () = (1 − 3) − (1 + 3) − 2 (6)
where 1 and 3 are the major and minor principle stresses respectively.
The plastic potential  reads:

() = (1 − 3) − (1 + 3) (7)
The ow rule is non-associated for granular soils which means friction angle  and dilatancy angle  are dierent. Cohesion is
equal to zero for purely frictional soils.
Although MC is widely used in soil modeling, it has several limits. For example, it does not take into account the eect of the

pressure on the Young’s modulus, friction angle and dilatancy angle. Moreover, the elastic domain is very large where no irre-
versible strains can be generated which do not reect phenomena at stake in actual granular soils. It leads to the underestimation
of deformations in the modeled systems. More sophisticated constitutive models may be required in that case.

FIGURE 22 MC failure envelop in the deviatoric plane

FIGURE 23 Simulation of a compression triaxial test using MC model33
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7.1.2 LK-Enroch
LKEnroch (LKE)model belongs to a class of constitutive models developed by EDF to address the short and long termmodeling
of rock formations, focusing mainly on underground structure such as tunnels.
LKE model was developed based on LK model specically for rocklls. It considers a rock mass with zero cohesion which

corresponds mechanically to the structure of rockll from a rheological point of view. It is an elastoplastic model with two plastic
deformation mechanisms, one which is isotropic and the other one is deviatoric (Equation 8). Hardening for both mechanisms
is isotropic.

̇ = ̇ + ̇̇ = ̇ + ̇ (8)
• Elastic mechanism

The elastic mechanism is governed by two parameters: volumetric deformation modulus  and shear modulus . The
increment of elastic deformation can computed by:

̇ =
1 + 


 ̇ −


 ̇  

̇
 =

1
2
 ̇ −

1
9

 ̇ (9)
 and  read:

 = 
0[
1
3

]   = 0[
1
3

] (10)
with 

0 and 0 reference values for an eective mean pressure equal to  = 100kPa. 1 is the rst invariant of the
eective stress tensor and  is a model parameter.

• Plastic isotropic mechanism
Concerning the plastic isotropic mechanism, the yield surface of the isotropic plastic mechanism is a plane orthogonal to
the hydrostatic axis in the space of principal stresses, expressed by:

 (′′; ) =
1
3

−  (11)
The hardening law is considered since the consolidation pressure  changes according to Equation 12. 0 and  are
model parameters and the volumetric plastic deformation  is the hardening variable.

 = 0

 (12)

The ow rule is associated (Equation 13) in which  is the plastic multiplier of the isotropic mechanism.

̇ = ̇
 


= ̇


3

(13)

• Plastic deviatoric mechanism
Concerning the plastic deviatoric mechanism, LKE was developed on the base of Hoek and Brown rule34, HB-CJS rule35
and LK model. The deviatoric yield surface is mainly derived from the one of the original LK model. It is represented by
Equation 14. It is adapted so that compression is at Lode angle  = 0.

() = ℎ() − ℎ0[ℎ() + 1]
 = 0 (14)

 = − √
6ℎ0

; = 
3

; = (2
3
)

1
2 ;  =

√
22 (15)
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ℎ() = (1 − 3)1∕6;ℎ0 = ℎ(0);ℎ

0 = ℎ(∕3) (16)

The hardening variable of the elastoplastic mechanism is the deviatoric plastic deformation  dened by:

 = ∫ (2
3
̇ .

̇
)

1∕2, ℎ ̇ = 
̇
 −

̇
3
  ̇ = 

̇
 (17)

For each parameter  and involved in equations 14 and 15, specic variation laws are dened according to the hardening
variable  : the elastoplastic surface thus evolves throughout dierent reference state, manely the peak state and the
residual state at large deformations. The dierent hardening phases are bounded by “threshold” values, noted  and
 .
In the pre-peak phase, the deviatoric yield surface evolves from the elasticity threshold to the peak threshold, for
0<<, according to the following laws ( is a model parameter):

() = 0 + (1 +



)(

 − 0
(1 + 1∕)

) (18)

() = 0 + (1 +



)(

 − 0

(1 + 1∕)
) (19)

Throughout the post-peak phase, the deviatoric yield surface evolves from the peak threshold to the residual threshold,
for <<, according to:

() =  + (1 +
1

 − 
 − 

)(
1 − 
(1 + 1∕)

) (20)

() =



(



)

( ) (21)

 is a model parameter while  corresponds to the abscissa of the intersection point of the peak and residual thresholds,
in the plane (; ). It is determined analytically by:

 = (


−1




)
1

−1 (22)

The deviatoric deformations are obtained from the following expression:

̇ = ̇ (23)

Where  is the hardening function of the elastoplastic mechanism dened by:

 =



− ( 




) (24)

 =
′ 


− 
√
′2 + 3

, ℎ ′ =

√
6

3 − 
  = − 2

1 − 
(25)

 represents the plastic multiplier of the deviatoric mechanism. More details associated to LKE model can be found in25
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A triaxial test representation using LKE model (stress-strain curve) is given in Figure 24. One can notice that the curve is
split into four dierent domains. The rst one is the elastic domain (0) in which reversible deformations are observed. Then,
plastic hardening domain (1) starts with plastic deformations until it reaches the peak deviatoric stress value: until this point,
the volumetric behavior is mostly contractive. At peak, the softening domain (2) starts with dilative volumetric behavior until it
reaches the residual domain (3) which corresponds to the critical state.

FIGURE 24 Deviatoric triaxial behavior using LKE model

TABLE 8 LKE model with its sixteen parameters denition

General Parameters
E Young Modulus (Pa)  Poisson’s ratio


Exponent of the law of variation of
elastic moduli K and G  Simple compressive strength (Pa)

Elasticity threshold parameters
0 Elasticity threshold a 0 Elasticity threshold m

Peak parameters
 Peak threshold a  Peak threshold a

Hardening parameters

̇
Strain rate from

the elasticity to peak threshold ̇
Strain

from the elasticity to peak threshold


Parameter involved in the
pre-peak hardening laws  Parameter involved in the

post-peak hardening laws
Volumetric deformation parameters

 Residual friction angle (°) 0 Dilatancy angle of the Phase Transformation state
Isotropic mechanism parameters

0 Initial consolidation pressure  Parameter involved in the
isotropic hardening laws
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FIGURE 25 LKE deviatoric failure envelop in the deviatoric plane

In total, LKE model has sixteen input parameters, divided into several groups with their own eects on the behavior. They
are all given in Table 8 with their denitions. Some parameters are typical and are required for most of the soil models such as
E, ,  , , and  .
An extra parameter is also found which is the shape factor parameter (disymmetry)  . In Figure 25, the failure envelope of

LKE is shown: dierent disymmetry cases are plotted when playing with the shape factor parameter  . More detailed description
of this model can be found in the PhD thesis of Chen25.
Identifying those model parameters usually needs experimental data from triaxial and oedometric tests. The main problem

in this process is the lack of experimental data to be based on due to diculty in carrying out experiments on large samples of
rockll or due to the lack of access to this data. To overcome the lack of data, the literature and previous studies can be helpful
in identifying those parameters.

7.2 Linear frictional contact model
A linear frictional model is used to model the contacts between the blocks and at the interface. This model is composed of two
components that act in parallel with each other: the rst one is the linear component which provides the linear elastic frictional
behavior with no tension whereas the second is the dashpot component which provides viscous behavior (Equation 26).
Each component is split into normal and shear forces (Equation 27). The linear force is calculated using the linear springs with

constant normal and shear stinesses  and . The dashpot force is calculated using dashpots with normal and shear critical
damping ratios  and . The contact can be considered as active or inactive according to the gap between two dierent bodies.
The surface gap  is the dierence between the contact gaps  and the reference gap . The contact is active only if the surface
gap is less than or equal to zero. The contact interface consists of a contact plane with certain position and normal direction. It
is centered in the overlapping volume or gap and it is tangent to the two contact surfaces. Detailed diagram of the linear model
is shown in Figure 26. In the case of inactive dashpots and zero reference gap, this model corresponds to the model of Cundal23.

 =   +  (26)

  = − ̂ + 

 , 

 = − ̂ + 

 (27)

The force displacement law is used to calculate the contact forces at each active contact (Figure 27). The force is updated
according to the relative displacement increment. The linear normal force is updated based on the normal displacement (surface
gap) incrementΔ. Moreover, no tension forces exits in this linear model. The linear shear force is updated based on the relative
shear displacement increment Δ. This shear force can increase with the relative shear displacement until a threshold then
slipping behavior occurs. If the contact changes from being inactive to active during the current timestep, just the amount of this
increment that takes place while the surface gap is negative is employed to carry out the incremental update of the normal and
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FIGURE 26 Behavior and rheological components of the linear model

FIGURE 27 Force-displacement law for the linear component of the unbonded linear-based models: (a) normal force versus
surface gap, (b) shear force versus relative shear displacement, and (c) slip envelope

shear forces. The dashpot forces are also updated based on the dashpot mode and incremental equations. Detailed description
can be found in ITASCA 3 documentation36.

8 APPENDIX 2: HICHER AND RAHMA APPROACH

An analytical approach was developed and validated on triaxial experimental tests by Hicher and Rahma30 to determine several
model parameters of granular materials including the preconsolidation pressure 0 and . The analytical equations used to
calculate those two parameters are the following:

(,) = −12  − 4.7 + 9.71 + 2.2 ± 0.5  = 0.96 (28)
(,) = −4  − 7.5 + 4.75 + 7.1 ± 0.3  = 0.95 (29)

 = ((,) − (,)) (30)
 =

2.3(1 + 0)


(31)
Where:
•  = 60∕10 is the coecient of uniformity
•  =

2
30

60.10

•  and  are the maximum and minimum void ratios respectively of the studied granular material. They can be
obtained from previous studies37.

•  =  − ; relative density  = −0
−

• , and , are two specic values for  corresponding to two dierent void ratios  and  respectively
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FIGURE 28 ((), ) plane

Knowing the values of (,) and (,), a straight line can be drawn in ((), ) plane as shown in Figure 28.
Then, the value of 0 can be deduced from this line at a given relative density corresponding to a void ratio 0. More details
about this approach can be found in its dedicated article30.

9 APPENDIX 3: DISPLACEMENTS OF CASES 1, 2 AND 3
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FIGURE 29 Displacements at the 6 sensors of the downstream face of case 1
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FIGURE 30 Displacements at the 6 sensors of the downstream face of case 2
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FIGURE 31 Displacements at the 6 sensors of the downstream face of case 3
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FIGURE 32 Normal relative displacements evolution of the pitching throughout the tilting tests; simulation of case 1

FIGURE 33 Normal relative displacements evolution of the pitching throughout the tilting tests; simulation of case 2
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FIGURE 34 Normal relative displacements evolution of the pitching throughout the tilting tests; simulation of case 3
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