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From Microscopic Driver Models to Macroscopic PDEs in Ring Road
Traffic Dynamics

S. Fueyo and C. Canudas-de-Wit

Abstract— In this paper, using a continuation method [22],
we provide a simple procedure to derive macroscopic models
from second order ordinary differential equations modeling
individual vehicles moving on a ring. In particular, the result is
applied to classical traffic models such as the optimal velocity
follow the leader (OV-FTL) models, the intelligent driver model
(IDM) or delayed driver models and we are able to modelize
the macroscopic behavior of the drivers through a 2×2 partial
differential equations whose variables are the density of the
traffic and the speed of the vehicles. The paper concludes
with open questions regarding stability and microscopic control
design.
Keywords: Continuation method, Microscopic and macroscopic
driver models, Partial differential equations (PDEs)

I. INTRODUCTION

Road traffic consists of a large number of interconnected
vehicles, making the direct analysis of such complex systems
nearly impossible. Typically, the dynamics of vehicles on a
traffic road are described using microscopic models, which
are often expressed through high-dimensional first or second-
order ordinary differential equations (ODEs). Examples of
such models include the optimal velocity follow-the-leader
(OV-FTL) model [4], the intelligent driver model (IDM)
[25] and delayed driver model [7]. To simplify the analysis
of complex networks, it is common in the literature to
employ a continuous representation, typically in the form
of hyperbolic partial differential equations (PDEs); vari-
ous macroscopic models have been proposed, such as the
Lighthill-Whitham-Richards (LWR) model [17] and the Aw-
Rascle-Zhang (ARZ) model [3].

The dynamics of vehicular traffic represent a system
where large-scale patterns arise from the combined actions
of individual drivers. One notable example is the phantom
traffic jam, a phenomenon in which, under specific density
conditions, steady traffic flow becomes unstable. Minor dis-
ruptions grow into significant nonlinear oscillations, leading
to stop-and-go phenomenon, often referred to as jamitons,
see [11] for further references.

With the advancement of computing, the discretization
of PDEs into ODEs has seen significant development. In
opposition, the reverse problem—transforming ODEs into
PDEs—has received less attention. This process is known
as the continuation method. As with discretization, different
continuation methods are possible, depending on the specific
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Fig. 1. Continuation and discretization methods for a ring.

ODEs and the objectives we aim to achieve by considering
the models.

Several studies [1], [14], [24], [16], [6], [18], [19] and [21]
employ continuation methods to derive PDEs from first-order
differential equations. Specifically, references [6], [18], [16]
utilized a convolution operator for representation, while [1],
[14], [24], [19], [21] applied Taylor expansion to formulate
continuous models. Notably, in the context of modeling the
dynamics of an infinite number of vehicles on a real line,
several studies in focus on deriving LWR models, [1], [14]
deriving from the OV-FTL microscopic model, and and [21]
from a different first-order ODE.

In traffic flow analysis, it is crucial to consider the more
complex behaviors produced by second-order microscopic
models, as first-order models often oversimplify the dynam-
ics of congested traffic. Second-order models are particu-
larly effective in capturing phenomena such as stop-and-go
waves and phantom traffic jams, which are common under
congested conditions. While [21], [22] explored specific
second-order ODEs, the application of continuation methods,
particularly regarding Taylor expansions, to second-order
ODEs remains an open question.

On one hand, [15] proposes a general method known as
coarse-graining, which enables the derivation of macroscopic
models from general second-order OV-FTL models. How-
ever, this method is intricate and significantly more complex
than the approach based on Taylor expansions [8]. On the
other hand, the studies [2], [8] converted a specific second-
order OV-FTL model defined on a real line into an ARZ
macroscopic model using Taylor expansion. Nonetheless,
they did not address the continuation of general models, nor
did they consider vehicles moving on a ring instead of a
straight road.

This paper marks an initial attempt to apply the continu-



Fig. 2. N vehicles moving on a ring.

ation method framework introduced in [21] to second-order
models that characterize the behavior of vehicles on a ring.
By utilizing a straightforward continuation method based
on Taylor expansion, we describe the evolution of vehicle
density and speed through a 2×2 partial differential equation.
Specifically, we derive hyperbolic balanced law systems from
both the OV-FTL models and delayed driver models, some
of which align with ARZ models.

This approach allows for a reciprocal analysis between
microscopic and macroscopic models. In opposition, the
IDM model [25], when approached through our method,
results in a PDE that does not conform to a balanced law
framework, thereby limiting the insights that can be drawn
about these systems.

Section II introduces the general continuation method
for inferring macroscopic models from second-order micro-
scopic traffic models on a circular road. The approach is then
illustrated in the sections III, IV and Section V using various
vehicle models, such as the OV-FTL, IDM, and delay driver
models, allowing for the generalization of existing results in
the literature. In particular, we derive macroscopic models
from classical microscopic drivers models while, conversely
we deduce microscopic models from the macroscopic ARZ
model agreeing with our method. The paper is concluded
by Section VI, discussing how the continuation method will
eventually lead to control strategies for microscopic models.

II. CONTINUATION METHOD FOR SECOND ORDER
MODELS OF N VEHICLES MOVING ON A RING

For N an integer, consider the variable set {xi(t), i =
1, ..., N} representing the position of N vehicles at time t ≥
0, moving on a ring and defined modulo 2π, satisfying the
equations

ẍi(t) = f(xi+1(t)− xi(t), ẋi+1(t)− ẋi(t), ẋi(t)), (1)

where t ≥ 0, xi+1(t) ≥ xi(t) for i = 1, ..., N , xN+1(t) =
x1(t). Here, f is a nonlinear function mapping R3 to R.
Equation (1) represents the behavior of the vehicle i where
its acceleration depends on the spacing and the difference
of speed with the vehicle i + 1 ahead (xi+1(t) − xi(t) and
ẋi+1(t)− ẋi(t) respectively), and its own velocity ẋi.

Following [21], we can apply a continuation method, with
respect to Taylor expansions, to Equation (1). We summarize
the continuation procedure as follows

1) see the discrete set of vehicles (xi)i=1,··· ,N as a con-
tinuum of vehicles described by a function x;

2) introduce the function M(t, x) corresponding to the
number of vehicles passing through the point x at time
t. This function is called the Moscowitz function and
it translate the idea that the density of the system
of vehicles (mass in unit length), is a mass which is
transferred through the point x up to the time t, see
[20] for further details;

3) define the density ρ and flux φ of the vehicles in
function of M and write the conservation law satisfied
by the Moscowitz function;

4) define the speed variable v and do Taylor approxima-
tions in (1) to obtain PDEs.

Let us follow the procedure that we described. We consider
a continuous function x defined on R+ × [0, N ] with value
in [0, 2π) such that x(t, i) = xi(t) (modulo 2π). The
function x is a continuation of the discrete set of the vehicles
(xi(t))i=1,··· ,N . Since xi(t) is defined modulo 2π, we define
the Moscowitz function M from R+ × [0, 2π) into [0, N ].
Specifically, we have M(t, xi(t)) = i, which can be seen
as a sensor mounted on the agent xi(t). In contrast note
that M(t, x) can be interpreted as a count sensor at a the
position x, counting all vehicles passing at a fix point x.
The Moskowitz function, M(t, x), naturally allows to define
the vehicles density and flow, ρ and φ respectively, as

ρ :=
∂M

∂x
and φ = −∂M

∂t
, (2)

where density and flow are related by the conservation law

∂ρ

∂t
+

∂φ

∂x
= 0. (3)

This equally implies that M satisfies:

∂2M

∂t∂x
=

∂2M

∂x∂t
.

On the other side, the quantities xi, xi+1−xi and ẋi+1−ẋi

can be approximated by Taylor expansions as follows:

xi ≈ x,

xi+1 − xi ≈
∂x

∂M

ẋi+1 − ẋi ≈
∂

∂M

∂x

∂t
.

and we get from Equation (1) that

∂2x

∂t2
= f

(
∂x

∂M
,

∂2x

∂M∂t
,
∂x

∂t

)
. (4)

By definition, we have x(t,M(t, x)) = x for all x ∈
[0, 2π) so that if we take the derivative with respect to t and
x, we get

∂x

∂M

∂M

∂x
= 1 and

∂x

∂t
+

∂x

∂M

∂M

∂t
= 0. (5)



Thus defining the speed v as the partial derivative in time
of x, namely v := ∂x/∂t, we get from (5) that

φ = vρ,
∂x

∂M
=

1

ρ
and

∂2x

∂M∂t
=

∂v

∂x
. (6)

Putting (6) into the equations (3)-(4) yields to the follow-
ing one dimensional PDEs defined on R+ × (0, 2π){

∂ρ
∂t +

∂(vρ)
∂x = 0,

∂v
∂t = f

(
1
ρ ,

∂v
∂x , v

)
.

(7)

As boundary conditions, since the vehicles move on a ring,
we assume that ρ(t, 0) = ρ(t, 2π) and v(t, 0) = v(t, 2π) for
all t ≥ 0. Thus System (1) can be construed as the following
PDE with periodic boundary conditions, where the equations
are given by:

∂

∂t

[
ρ
v

]
+

[
v ρ
0 0

]
∂

∂x

[
ρ
v

]
=

[
0

f
(

1
ρ ,

∂
∂xv, v

)]
, (8a){

ρ(t, 0) = ρ(t, 2π), ∀t ≥ 0,

v(t, 0) = v(t, 2π), ∀t ≥ 0,
(8b)

and the initial data of the system are

ρ(t, x) = ρ0(x), v(t, x) = v0(x), ∀x ∈ [0, 2π], (9)

for some scalar functions ρ0(·) and v0(·) defined on [0, 2π].
As desired, integrating the first equation of (8a) and utilizing
the periodic boundaries (8b) demonstrates that the integral of
the density remains constant as it evolves over time.

We remark that the macroscopic model (8a) has the partial
derivative of the speed depending nonlinearly on the spacial
derivative of v. However, for some particular f , it is possible
to arrive to one dimensional hyperbolic PDE with balanced
laws property. In fact, assuming that there exist two functions
f1 and f2 such that f has the particular form

f

(
1

ρ
,
∂

∂x
v, v

)
= f1

(
1

ρ
, v

)
∂

∂x
v + f2

(
1

ρ
, v

)
, (10)

it allows to rewrite (8a) as

∂

∂t

[
ρ
v

]
+

[
v ρ

0 −f1

(
1
ρ , v
)] ∂

∂x

[
ρ
v

]
=

[
0

f2

(
1
ρ , v
)]

. (11)

with boundary conditions given in (8b). System (11) is of
hyperbolic type and it allows one to use all theoretical results
in the literature such that the existence of solutions, the
stability analysis of equilibrium points and the boundary
stabilization process that we can find in the references[29],
[12], [5], [10].

We shall illustrate in the next sections the macroscopic
models that can be derived from microscopic traffic models
such as the OV-FTL model.

III. OPTIMAL VELOCITY FOLLOW THE LEADER
(OV-FTL) MODELS

In this section, we introduce one type of microscopic
traffic models called OV-FTL and its macroscopic derivation
using the continuation method outlined in Section II.

A. General optimal velocity follow the leader (OV-FTL)
models

A OV-FTL model is given by the equations

ẍi = f1(xi+1 − xi, ẋi) (ẋi+1 − ẋi)

+ f2(xi+1 − xi, ẋi) (V (xi+1 − xi)− ẋi)) ,
(12)

for i = 1, ..., N . We assume that f1 and f2 are two
strictly positive functions representing gains that depend on
whether drivers exhibit cautious or aggressive behaviors. The
map V (·) is an increasing and uniformly bounded function
translating the idea that if the vehicle is on a free road
then the vehicle goes at maximal speed and if the road
is congested then the speed is reduced. The function V (·)
is called fundamental diagram. Several forms have been
proposed in the literature, see for instance [12] for a non-
exhaustive list.

Interpreting the model given by Equation (12), the sec-
ond term in the right-hand side of Equation (12), namely
f2(xi+1 − xi, ẋi) (V (xi+1 − xi)− ẋi), indicates that when
the leading vehicle i+1 is far away, the vehicle i accelerates
without exceeding a certain threshold. Conversely, when the
distance to the leading vehicle i+1 is short, the acceleration
of the vehicle i decreases as the spacing reduces. The first
term in the right-hand side of Equation (12), i.e. f1(xi+1 −
xi, ẋi) (ẋi+1 − ẋi), demonstrates that the vehicle decelerate
(resp. accelerate) if the relative speed ẋi+1 − ẋi is negative
(resp. positive). A pair of real positive numbers (d∗, v∗)
is called an equilibrium point of Equation (12) if, for all
i = 1, · · · , N ,

xi+1 − xi := d∗, ẋi+1 − ẋi = 0 and ẋi = v∗

implies that the acceleration ẍi is zero. Thus at an equilib-
rium point, the accelerations of the vehicles are zero, and
the positions are uniformly spaced at distance d∗ and each
vehicle maintains a constant velocity v∗. System (12) has
the advantageous property of possessing equilibrium points
because, by definition of the function V , there exists a unique
pair (d∗, v∗) of strictly positive numbers such that V (d∗) =
v∗. Unfortunately equilibrium points of System (1) may be
unstable (depending on the functions f1 and f2) resulting in
a stop and go, or phantom traffic jam, phenomena, see the
papers [26], [23] for empirical proofs and the reference [9]
for a theoretical argument.

We presented the OV-FTL model in its full generality in
Equation (12). However, such models might be too general
to prevent the collision between the vehicles. In the next
section, we address now the macroscopic derivation of a
specific OV-FTL model that is widely used in the literature
preventing the colliding vehicles situation.

B. Instability analysis of a particular OV-FTL model and its
continuation model

More precisely, we consider the OV-FTL model introduced
in [9], where f1 = a/(xi+1 − xi)

2 and f2 = b are equal
to, for some strictly positive constants a and b. This model



generalizes the one proposed in [4] and is described by the
following equations

ẍi = a
ẋi+1 − ẋi

(xi+1 − xi)2
+ b(V (xi+1 − xi)− ẋi), (13)

where the first term in the right-hand side of (13) implies
that the relative velocity decreases with increased spacing,
thereby preventing collisions between vehicles. Following
the procedure described in Section II, we arrive to the
following hyperbolic PDEs system

∂

∂t

[
ρ
v

]
+

[
v ρ
0 −aρ2

]
∂

∂x

[
ρ
v

]
=

[
0

b
(
V
(

1
ρ

)
− v
)] (14)

with periodic boundaries given in (8b). Of course ρ = 1/d∗

and v = v∗ are equilibrium points of (14). We denote
by (ρ∗, v∗) := (1/d∗, v∗) the equilibrium point of (14).
Since the equilibrium point of Equation (13) is known to
be unstable (see [9]). More precisely, we have the following
proposition.

Proposition III.1 ([9]). The equilibrium point of the OV-
FTL model (13) is locally unstable if the following inequality
holds

a− 2b

(d∗)2
− 2V ′(d∗) < 0. (15)

Proof. Let us define f(hj , ḣj , vj) = a (V (hj)− vj) + b
ḣj

h2
j

.
We have f(d∗, 0, v∗) = 0 so that we get

α1 :=
∂f

∂hj
(d∗, 0, v∗) = aV ′(d∗),

α2 :=
∂f

∂ḣj

(d∗, 0, v∗)− ∂f

∂vj
(d∗, 0, v∗) =

b

(d∗)2
− a,

α3 :=
∂f

∂ḣj

(d∗, 0, v∗) =
b

(d∗)2
.

(16)

From Equation (10) in [9], the equilibrium point of the OV-
FTL model (13) is locally unstable if the condition α2

2 −
α2
3−2α1 ≥ 0 is violated. Thus we deduce from the previous

inequality the result when replacing α1, α2 and α3 by the
values given in (16).

Proposition III.1 provided conditions through an inequality
for the local instability of the equilibrium point of Sys-
tem (13). Is it correct to assume that, under the same
conditions, the equilibrium point of the PDE is also locally
unstable? We give an insight by adopting the strategy of the
paper [28], we are able to provide the following result on
the local instability of equilibrium point for the macroscopic
model of the OV-FTL model.

Proposition III.2. The equilibrium point of the hyperbolic
system (18) is locally unstable if

a+ v∗(d∗)2 < (d∗)3V ′(d∗). (17)

Proof. To study the local stability of the equilibrium point
for (14), we linearize the system around the equilibrium point
and we get the following linear hyperbolic system

∂

∂t

[
ρ
v

]
+

[
v∗ ρ∗

0 −a (ρ∗)
2

]
∂

∂x

[
ρ
v

]
=

[
0 0
ba1 −bv∗

] [
ρ
v

]
,

(18)
where

a1 =
∂

∂ρ

(
V

(
1

ρ

))
|ρ=ρ∗

, (19)

with boundary conditions given in (8b). Interpreting this
system as an ARZ model so that we by defining p′(ρ∗) :=
(a (ρ∗)

2
+ v∗)/ρ∗, we get from the spectral study of [28,

Section III] that the equilibrium point is locally unstable if
the inequality

a (ρ∗)
2
+ v∗

ρ∗
< −a1. (20)

Using the fact that ρ∗ = 1/d∗ and a1 = −V ′(1/ρ∗)/(ρ∗)2,
we get from (20) that the inequality (17) holds.

The conditions for the local instability coming from
Proposition III.1 and Proposition III.2 are complicated to
compare because they are different in their essence. One
depends on the constant b or v∗ while it is not the case
of the other. However, if we assume that d∗V ′(d∗) > v∗

the two inequality holds for a small enough, meaning that
if the drivers do not adopt a careful driving, i.e. if the
constant a is small, then the systems tends to be unstable
around the equilibrium point in both the microscopic and
the macroscopic models.

IV. OTHER INTERESTING MACROSCOPIC MODELS
DERIVED FROM MICROSCOPIC VEHICULAR TRAFFIC

MODELS

The OV-FTL models are a bit unrealistic because the
accelerations and decelerations are symmetric with respect
to the deviation of the actual velocity from the equilibrium
velocity. To overcome this issue, two classes of systems has
been developed, namely the IMD driver models and a OV-
FTL model including delays. We infer in this section new
macroscopic models which can be useful to describe traffic
road from the macroscopic model perspective.

A. Intelligent driver model (IDM)

The following model has been proposed in [25] to intro-
duce acceleration asymmetries:

ẍi = a

(
1−

(
ẋi

v0

)δ

−
(
s∗(ẋi, ẋi+1 − ẋi)

xi+1 − xi

)2
)
, (21)

with
s∗(y, z) = s0 + τy − yz

2
√
ab

,

for y, z ∈ R.
In this context, v0 signifies the target speed, typically

aligned with the speed limit. The variable τ stands for the
time headway, while a and b correspond to the maximum
acceleration and deceleration capacities. The parameter δ



accounts for the acceleration exponent, and s0 defines the
minimum spacing between vehicles in congested traffic, also
known as the jam distance.

Equation (21) can be interpreted as follows. The vehicle

i accelerate according with 1−
(

v
v0

)δ
on free-flow whereas

it tends to decelerate by
(

s∗(v,ẋi+1−ẋi)
xi+1−xi

)2
when the traffic

is jammed. The deceleration coefficient depends on the ratio
between the “desired minimum gap” s∗ and the actual gap
xi+1 − xi. Applying the continuation method, we get the
following PDE


∂ρ
∂t +

∂(ρv)
∂x = 0,

∂v
∂t = a

(
1−

(
v
v0

)δ
−
(
ρs∗(v, ∂v

∂x )
)2)

,
(22)

with the boundary conditions given by (8b). In the limit
of our knowledge, the 2 × 2 PDE (22) given by the IMD
driver model through the continuation method is not known
in the literature. The analysis of this new model might lead
to some interesting insight in futur works.

B. Second order traffic flow models with time delays

In addition to the IDM models, which were introduced
to address the unrealistic assumption of the OV-FTL models
that neglect the latency in drivers’ behaviors, other models
have been developed to directly account for delays, see
[7], [27]. The continuation method presented in Section II
can also be adapted for simple second-order traffic models
that include time delays. For instance, consider the simple
system (13), where the response delay denoted by T > 0,
implies that the acceleration of the vehicles depends on the
delayed speed and position by T > 0:

ẍi(t) = a
ẋi+1(t− T )− ẋi(t− T )

(xi+1(t− T )− xi(t− T ))2

+ b(V (xi+1(t− T )− xi(t− T ))− ẋi(t− T )).

(23)

An immediate adaptation of Section II allows us to con-
strue the second order delay systems (23) as the following
PDE


∂ρ(t,x)

∂t + ∂(v(t,x)ρ(t,x))
∂x = 0,

∂
∂tv(t, x) = aρ(t− T, x)2 ∂

∂xv(t− T, x)

+b
(
V
(

1
ρ(t−T,x)

)
− v(t− T, x)

) , (24)

with periodic boundaries given in (8b). System (24) is a
hyperbolic delay partial differential equations.

Let us examine the right-hand side of Equation (24) more
closely. Unlike the classical model, the temporal variation
in speed now depends on both the density and the spatial
derivative of speed from a previous time step. The derivation
of (24) from (23) is a generalization of the results obtained in
[8, Section 2.2]. In fact, [8] performed a similar continuation
with b = 0. They remarked that the introduction of delays
can change drastically the behavior of the systems so that it
is a thing we might expect when comparing the difference of

behavior between (13) and (24) from the study they perform
for PDE’s systems.

V. DERIVATION OF A AW-RASCLE-ZHANG (ARZ)
MODEL

From Section III, our continuation method does not lead
to a ARZ model but to a some alike model. As curiosity,
we infer in this section the microscopic model leading to the
ARZ model through the continuation procedure developed
in Section II. To do so, we start by examining a particular
fundamental diagram. Let γ > 0, and consider the Green-
shield model, which characterizes the relationship between
traffic density and speed:

V (ρ) = vm − vm

(
ρ

ρm

)γ

, (25)

where vm is the maximal speed and ρm the maximal density.
In the Greenshield model, if the speed is zero then the traffic
is jammed (ρ = ρm), and conversely, if the speed is vm
then the road is free of traffic. Let us consider the following
microscopic model defined for i = 1, ..., N

ẍi =

[
γ

(
1

xi+1 − xi

)γ

− ẋi

]
(ẋi+1 − ẋi)

+
V
(

1
xi+1−xi

)
− ẋi

τ(xi+1 − xi)
,

(26)

where τ > 0 is a relaxation term. The microscopic model
described in (26) does not seem to appear in the literature.
The second equation in the right-hand side of (26) has the
same interpretation than for the OV-FTL model (12). What
differs from (12) is the first equation in the right-hand side of
(26) where the meaning is subtle and does not have a simple
microscopic interpretation. Using the continuation method of
Section II yields

∂

∂t

[
ρ
v

]
+

[
v ρ
0 v − γργ

]
∂

∂x

[
ρ
v

]
=

[
0

ρ
τ (V (ρ)− v)

]
(27)

with the periodic boundary given in (8b). On its equilibrium
point ρ∗ and v∗, System (27) is known to be unstable for
some parameters γ, vm and ρm, see for instance [29], [28] for
ARZ models with different boundary conditions or [13] for
some numerical simulations. As with the analysis conducted
for the OV-FTL model in Section III, we may expect that
the instability conditions for model (27) have a non-empty
intersection with the instability conditions of System (26).

VI. CONCLUSION AND PERSPECTIVES

In this paper, we developed a continuation method that
is consistent with [22] for second-order microscopic driver
models on a ring. It leads to 2× 2 PDEs systems depending
on the density and the speed of the vehicles. We applied the
result to the modeling of macroscopic models from classical
microscopic driver models. The study has opened up several
non-exhaustive questions:



• Initially, we presented a preliminary analysis in Sec-
tion III on the OV-FTL model and its PDE derived
through the continuation method; however, this analysis
remains inconclusive in its current form. A definitive
outcome would involve identifying specific conditions
on the control gains that prevent the emergence of stop-
and-go waves, thereby offering an initial tuning ap-
proach to avoid them. Alternatively, a second approach
could involve a redesign of the feedback functions to en-
sure consistent damping behavior, effectively mitigating
stop-and-go waves across all potential gain values.

• The second result infers partial differential equations
(PDEs) from microscopic IMD and delayed OV-FTL
models; however, we have yet to draw any substantial
conclusions from these derivations. Despite the chal-
lenges posed by the structure of these PDEs—such as
delays or nonlinearities in the spatial derivatives—could
numerical methods help us identify stability conditions
or parameter domains that yield stability?

• Finally, we presented the microscopic driver model,
enabling our continuation method to derive the ARZ
model in Section V. In conclusion, we hope this pro-
cedure will contribute to a clearer understanding of
complex microscopic driver models by leveraging well-
known properties on PDEs systems. As for the two
points mentioned above, the analysis remains chal-
lenging, and numerical methods may prove useful in
identifying stability regions for the parameters of the
microscopic model.

REFERENCES

[1] F. Ancona, M. Bentaibi, and F. Rossi. On the continuum limit of
the follow-the-leader model and its stability. Discrete and Continuous
Dynamical Systems, 2024.

[2] A. Aw, A. Klar, M. Rascle, and T. Materne. Derivation of continuum
traffic flow models from microscopic follow-the-leader models. SIAM
Journal on applied mathematics, 63(1):259–278, 2002.

[3] A. Aw and M. Rascle. Resurrection of ”second order” models of traffic
flow. SIAM journal on applied mathematics, 60(3):916–938, 2000.

[4] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama.
Dynamical model of traffic congestion and numerical simulation. Phys.
Rev. E, 51:1035–1042, Feb 1995.

[5] G. Bastin and J.-M. Coron. Stability and boundary stabilization of
1-D hyperbolic systems, volume 88. Springer, 2016.

[6] M. Bodnar and J. J. L. Velazquez. Derivation of macroscopic equations
for individual cell-based models: a formal approach. Mathematical
Methods in the Applied Sciences, 28(15):1757–1779, 2005.

[7] M. Brackstone and M. McDonald. Car-following: a historical review.
Transportation Research Part F: Traffic Psychology and Behaviour,
2(4):181–196, 1999.
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