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Motivations
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• Fibres in turbulent flows:

Allen et al. (2019)

Verhille et al. (2017)

- environmental applications:

* natural fibre balls

* plastic pollution transport ? 
deposition ? 

fragmentation ?

aggregation ?

Chubarenko et al. (2018)



Lundell et al. (2011)

Motivations
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• Fibres in turbulent flows:

* water intakes

* paper making & 
material fabrication

- industrial applications:

Redlinger-Pohn et al. (2020)
Credits: EDF

orientation ? 
aggregation ?

deposition ? 
clogging ?
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• Fibres in turbulent flows:

- homogeneous & isotropic turbulence: “idealised case” 
 
* rigid fibres (mainly)  
 
* flexible fibres



Motivations

3

• Fibres in turbulent flows:

- homogeneous & isotropic turbulence: “idealised case” 
 
* rigid fibres (mainly)  
 
* flexible fibres

- wall-bounded turbulent flows: inhomogeneous & anisotropic  
 
* rigid & short fibres (only)

long flexible fibres in wall-bounded turbulence

=> experiments & simulations



Numerical simulations
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• Fluid flow:

- open-source spectral solver Channelflow 2.0  
*  
* periodic boundary conditions in x and z  
* constant bulk velocity imposed

L
x

⇥ L
y

⇥ L
z

= 4⇡h⇥ 2h⇥ 4⇡h/3

ECPS team, EPFL (2018)

performed by Jérémie Bec
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Numerical simulations

• Fluid flow: performed by Jérémie Bec
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- open-source spectral solver Channelflow 2.0  
*  
* periodic boundary conditions in x and z  
* constant bulk velocity imposed

L
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= 4⇡h⇥ 2h⇥ 4⇡h/3
Re = 5600
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Pope (2000)

Numerical simulations

• Fluid flow: performed by Jérémie Bec

- open-source spectral solver Channelflow 2.0  
*  
* periodic boundary conditions in x and z  
* constant bulk velocity imposed

- mean velocity profile:
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Numerical simulations

• Fluid flow: performed by Jérémie Bec

Re = 5600

- open-source spectral solver Channelflow 2.0  
*  
* periodic boundary conditions in x and z  
* constant bulk velocity imposed

- mean velocity profile:  
 
* wall shear stress:

L
x

⇥ L
y

⇥ L
z

= 4⇡h⇥ 2h⇥ 4⇡h/3

⌧w = ⇢f⌫

✓
dhUi
dy

◆

y=0



- open-source spectral solver Channelflow 2.0  
*  
* periodic boundary conditions in x and z  
* constant bulk velocity imposed

- mean velocity profile:  
 
* wall shear stress:  
 
* wall units rescaling:

L
x

⇥ L
y

⇥ L
z

= 4⇡h⇥ 2h⇥ 4⇡h/3
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Re⌧ = 180

Pope (2000)

Numerical simulations

• Fluid flow: performed by Jérémie Bec
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⌧w = ⇢f⌫

✓
dhUi
dy

◆

y=0

Re = 5600
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Viscous layer:

Log layer:

Pope (2000)

Numerical simulations

• Fluid flow: performed by Jérémie Bec

hU+i = y+

hU+i = 1


ln y+ +B

- open-source spectral solver Channelflow 2.0  
*  
* periodic boundary conditions in x and z  
* constant bulk velocity imposed

- mean velocity profile:  
 
* wall shear stress:  
 
* wall units rescaling:  
 
* the law of the wall

L
x

⇥ L
y

⇥ L
z

= 4⇡h⇥ 2h⇥ 4⇡h/3

Re⌧ = 180

⌧w = ⇢f⌫

✓
dhUi
dy

◆

y=0

Re = 5600



- inextensible and inertialess

- one-way coupling
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• Fibres:

Numerical simulations

performed by Jérémie Bec



- inextensible and inertialess

- one-way coupling

- over-damped slender-body theory: Cosserat equation for 

5

@tX = u(X, t) +
c

8⇡⌘
[I+ @sX@sX

>][@s(T@sX)� EI@4
sX]

|@sX|2 = 1with

X(s, t)

• Fibres:

Numerical simulations

performed by Jérémie Bec

Allende et al. (2018, 2020)



- inextensible and inertialess

- one-way coupling

- over-damped slender-body theory: Cosserat equation for 

- elastic length:

5

@tX = u(X, t) +
c
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• Fibres:

Numerical simulations

performed by Jérémie Bec

Allende et al. (2018, 2020)

`E ⌘ (cEI⌧⌫/(8⇡⌘))
1/4 ⇡ 7.1�⌫



- inextensible and inertialess

- one-way coupling

- over-damped slender-body theory: Cosserat equation for 

- elastic length:  

- wall contact: soft boundary approach
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@tX = u(X, t) +
c
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• Fibres:

Numerical simulations

performed by Jérémie Bec

Allende et al. (2018, 2020)

`E ⌘ (cEI⌧⌫/(8⇡⌘))
1/4 ⇡ 7.1�⌫



`/h = 0.16, `+ ⇡ 30

`/h = 1.5, `+ ⇡ 270

Numerical simulations
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• Fibres: performed by Jérémie Bec

`/h 2 [0.08� 1.5], `+ 2 [15� 270] +   rods

- parameter space:  
 

* fixed elastic length:  
 

* 6 different lengths:

`+E ⇡ 7.1
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Results: fibre dynamics

• Fibre orientation:

i = x

i = y

- in the centre: relatively isotropic

- close to the wall: aligned with 
the flow direction

- small variations with length

7
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- in the centre:  
* mainly independent of length  
* consistent with HIT

- close to the wall:  
* strong variations with length  
* the longer, the higher the rate

• Fibre tumbling rate:

Results: fibre dynamics
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- in the centre:  
* mainly independent of length  
* consistent with HIT

- close to the wall:  
* strong variations with length  
* the longer, the higher the rate

collisions ?
effects of the wall ?

• Fibre tumbling rate:

Results: fibre dynamics

Baker & Coletti (2022)
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- rebound on the wall  
* high tumbling rate  
* “pole vaulting”

• Fibre-wall interactions:

Results: pole vaulting

`+ = 45
`/h = 0.25

36
y+
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- rebound on the wall  
* high tumbling rate  
* “pole vaulting”

- in the literature:  
* laminar case:  
Stover & Cohen (1990)  
Moses et al. (2001)

• Fibre-wall interactions:

Results: pole vaulting

Stover & Cohen (1990)

`+ = 45
`/h = 0.25

36
y+
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- rebound on the wall  
* high tumbling rate  
* “pole vaulting”

- in the literature:  
* laminar case:  
Stover & Cohen (1990)  
Moses et al. (2001)  
 
 
* turbulent case:  
Capone et al. (2017)  
Alipour et al. (2022)  
Baker & Coletti (2022)

• Fibre-wall interactions:

Results: pole vaulting

Stover & Cohen (1990)

Alipour et al. (2022)

`+ = 45
`/h = 0.25

36
y+
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- inhomogeneous distribution:  
* higher concentration in the center  
* depleted region close to the wall  
* increases with fibre length

Results: fibre dynamics

• Fibre density distribution:

due to wall collisions ?
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- inhomogeneous distribution:  

* higher concentration in the center  
* depleted region close to the wall  
* increases with fibre length

- high collision probability when 
tumbling if y+

CoM

< `+/2

Results: fibre dynamics

• Fibre density distribution:

due to wall collisions ?
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- inhomogeneous distribution:  

* higher concentration in the center  
* depleted region close to the wall  
* increases with fibre length

- high collision probability when 
tumbling if y+

CoM

< `+/2

Results: fibre dynamics

• Fibre density distribution:

due to wall collisions !
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- fibres net flux   :  
* velocity X concentration 
* compared to fluid flux 
* increases with fibre length

- enhancement:  
* for fibre length within the log-layer  
* log law scaling?

Results: fibre dynamics

• Fibre net flux:

effect on the flux !

�

�0
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Conclusions

• Main results:

- first study on long flexible fibres in turbulent channel flow  
* numerical simulations 
 

* 

- fibre-wall collisions: “pole vaulting” 
* high tumbling rates 

* depleted regions

- effect on the fibre net flux:  
* higher fibre concentration in the centre  
* enhancement of the flux up to 6%

increase with fibre length !

`/h 2 [0.08� 1.5], `+ 2 [15� 270]

Bec et al. (2023): arXiv 2304.11139



Gay et al. (2018)

• Experiments at INPHYNI:

L ⇡ 4.5 m

2h = 40 mm

W = 400 mm

- turbulent channel flow:  
* rectangular cross-section 
* gravity driven

- 3D reconstruction:  
* orientation / deformation 
* 4 high-speed cameras 
(20 000 fps at 1 MPixels)

To go further

13



L ⇡ 4.5 m

2h = 40 mm

W = 400 mm

- turbulent channel flow:  
* rectangular cross-section 
* gravity driven

- 3D reconstruction:  
* orientation / deformation 
* 4 high-speed cameras 
(20 000 fps at 1 MPixels)

- Fundings:  
* IDEX (Académie 2)  
* CNRS  
* INPHYNI 
* Région Sud

To go further
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• Experiments at INPHYNI:



- turbulent channel flow:  
* rectangular cross-section 
* gravity driven

- 3D reconstruction:  
* orientation / deformation 
* 4 high-speed cameras 
(20 000 fps at 1 MPixels)

- Design & manufacturing:  
* Sandra Bosio 
* Cyrille Claudet  
* Christophe Pitiot  
* Florian Zumbo 
* Magali Varlet-Dusaucy

To go further

13

• Experiments at INPHYNI:



Questions ?



- inextensible and inertialess

- one-way coupling

- over-damped slender-body theory:  
* discretisation in      points of length  
* Cosserat equation for 

- elastic length:  

- wall contact: soft boundary approach

26

@tX = u(X, t) +
c

8⇡⌘
[I+ @sX@sX
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X(s, t)

• Fibres:

�s+ = l+/Ns ⇡ 0.9Ns

Numerical simulations

performed by Jérémie Bec

Allende et al. (2018, 2020)

`E ⌘ (cEI⌧⌫/(8⇡⌘))
1/4 ⇡ 7.1�⌫



- wall contact: soft boundary approach

- fibres are:  
* allowed to penetrate the wall  
* strongly repulsed by an effective force 

- fluid velocity outside the domain

Numerical simulations

27

• Fibres:

u = (0, v, 0)

� = 0.5/�twith

v = ��(y + h)

y < �hfor{bottom

v = ��(y � h)

for y > h{top

performed by Jérémie Bec


