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Test case : the NASA rotor 37, a representative transonic axial-flow
compressor

Industrial Problem
How to design the blades to have optimum performances ?
Under some uncertainties (manufacturing + external conditions)
And constraints (manufacturing and design practices)
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Test case : the NASA rotor 37, a representative transonic axial-flow
compressor

Inputs
20 design variables, i.e. 5 shape parameters at 4 control points : the
chord, the maximum thickness, the location of this maximum, the pitch
angle, the sweep (sketched as α)
7 uncertain variables : 2 manufacturing uncertainties (tip gap, rugosity on
the blade), 3 Inflow uncertainties (pressure, temperature, azimuthal
momentum), 2 operational uncertainties (flow rate, rotation speed)

Scalar

outputs
Objective function : polytropic efficiency (to be maximized)
Constraints : inlet and outlet flow angles, deceleration, etc.
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Problem formulation taking into account uncertainty

min
x∈SX ⊂Rd

E[f (x, U)] s.t. P(g1(x, U) ≤ 0, . . . , gl(x, U) ≤ 0) ≥ 1− α

with α = 5% and U ∼ ρU with support SU ⊂ Rm

Equivalent formulation

min
x∈SX

z(x) s.t. c(x) ≤ 0

where z(x) = E[f (x, U)] and c(x) = 1− α− E[1{gi (x,U)≤0, i=1,...,l}].

Objective
Solve this problem through Bayesian Optimization
Choose a convenient Gaussian process modeling and a relevant acquisition
function
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Outline

1. Introduction

2. Gaussian Process regression framework

3. Sequential sampling scheme

4. Numerical Experiments

5. Safran test case
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Recall of the problem formulation
min

x∈SX
z(x) s.t. c(x) ≤ 0

where z(x) = E[f (x, U)] and c(x) = 1− α− E[1{gi (x,U)≤0, i=1,...,l}].

Remark
Building surrogate models for z (espectation over U) and c (probability
over U) would need too many computer code evaluations (Monte Carlo).
We build surrogate models for f and g1, ..., gl directly in the joint space
SX × SU . Surrogate models for z and c are then deduced.
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Recall of the problem formulation

min
x∈SX

z(x) s.t. c(x) ≤ 0

where z(x) = E[f (x, U)] and c(x) = 1− α− E[1{gi (x,U)≤0, i=1,...,l}].

Remark
Building surrogate models for z (espectation over U) and c (probability
over U) would need too many computer code evaluations (Monte Carlo).
We build surrogate models for f and g1, ..., gl directly in the joint space
SX × SU . Surrogate models for z and c are then deduced.

Assume: f and g1, ..., gl are realization of independent Gaussian processes F
and Gi such that

F (x, u) ∼ GP(mF (x, u), kF (x, u, x′, u′)),
∀i = {1, . . . , l} , Gi(x, u) ∼ GP(mGi (x, u), kGi (x, u, x′, u′)),

Let F (t) and G (t)
i denote the Gaussian processes conditioned on the t

observations obtained at points D(t) = {(xk , uk) , k = 1, .., t}.
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Surrogate model for z :

Z (t)(x) =
∫
Rm

F (t)(x, u)ρU(u)du

remark : Z is still a Gaussian process with known mean and known covariance
function given by :

m(t)
Z (x) =

∫
Rm

m(t)
F (x, u)ρU(u)du,

k(t)
Z (x, x′) =

∫∫
R2m

k(t)
F (x, u, x′, u′)ρU(u, u′)dudu′.

Surrogate model for c :

C (t)(x) = 1− α−
∫
Rm

1∩l
i=1{G(t)

i (x,u)≤0}ρU(u)du

remark : C (t) is not Gaussian anymore !
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Algorithm Data-driven optimization in the joint space

1: Create an initial Design of Experiments (DoE) of size t in the joint space
and calculate simulator responses:

2: D(t) = {(xi , ui) , i = 1, . . . , t}, and associated f (t) and g (t)
i

3: while t ≤ maximum budget do
4: Create the GPs of the objective and the constraints in the joint space:

F (t) and (G (t)
i )l

i=1
5: Calculate the processes Z (t) and C (t) in the search space SX
6: Select (xt+1, ut+1) based on Z (t) and C (t)

7: Calculate simulator responses at the next point (xt+1, ut+1)
8: Update the DoE:
9: D(t+1) = D(t) ∪ (xt+1, ut+1) , f (t+1) = f (t) ∪ f (xt+1, ut+1),

10: g (t+1)
i = g (t)

i ∪ gi(xt+1, ut+1) , i = 1, . . . , l , t ← t + 1
11: end while
12: end
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8: Update the DoE:
9: D(t+1) = D(t) ∪ (xt+1, ut+1) , f (t+1) = f (t) ∪ f (xt+1, ut+1),

10: g (t+1)
i = g (t)

i ∪ gi(xt+1, ut+1) , i = 1, . . . , l , t ← t + 1
11: Set n = n + 1
12: end while
13: end
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General principle for robust global optimization algorithms
Define a progress measure P(x) in relation with the problem formulation and
calculated from the GPs trajectories

xtarg = arg maxx∈SX E
(
P(t)(x)

)
(xt+1, ut+1) = arg min(x̃,ũ)∈SX ×SU VAR

(
P(t+1)(xtarg)

)
where P(t+1) is

evaluated with GPs updated according to D(t+1) = D(t) ∪ {(x̃, ũ)}.

What is a natural choice for P(x) ? Feasible Improvement

FI(t)(x) = I(t)(x) 1{C(t)(x)≤0} ,

where I(t)(x) =
(
z feas

min − Z (t)(x)
)+ denotes the improvement over the current

feasible minimum value defined as z feas
min = minx∈Xt m(t)

Z (x) s.t. E[C (t)(x)] ≤ 0.
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Main steps of the EFISUR algorithm - first step

xtarg = arg max
x∈SX

E
(
FI(t)(x)

)
. (1)

Because of the independence of Z and C ,

E
(
FI(t)(x)

)
= EI(t)(x)P(C (t)(x) ≤ 0)

.

EI(t)(x) = (z feas
min −m(t)

Z (x))Φ
(

z feas
min −m(t)

Z (x)

σ
(t)
Z (x)

)
+ σ

(t)
Z (x)ϕ

(
z feas
min −m(t)

Z (x)

σ
(t)
Z (x)

)
,

P(C (t)(x) ≤ 0) can be approximated with available numerical methods.
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Main steps of the EFISUR algorithm - second step

Minimize the variance of the one-step-ahead feasible improvement

(xt+1, ut+1) = arg min
(x̃,ũ)∈SX ×SU

VAR
(
I(t+1)(xtarg) 1{C(t+1)(xtarg)≤0}

)
,

As it is too difficult, this problem is replaced by the following

ut+1 = arg min
ũ∈SU

VAR(
(
z feas

min − Z (t+1)(xtarg)
)+)

∫
Rm

VAR
(
1∩l

i=1{G(t+1)
i (xtarg,u)≤0}

)
ρU(u)du

with GPs updated according to D(t+1) = D(t) ∪ {(xtarg, ũ)}.
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Our algorithm : EFISUR

Algorithm Data-driven optimization in the joint space

1: Create an initial Design of Experiments (DoE) of size t in the joint space
and calculate simulator responses:

2: D(t) = {(xi , ui) , i = 1, . . . , t}, and associated f (t) and g (t)
i

3: while t ≤ maximum budget do
4: Create the GPs of f and g1, ..., gl in the joint space: F (t) and (G (t)

i )l
i=1

5: Calculate the processes Z (t) and C (t) in the search space SX
6: Optimize E

(
FI(t)) and set xt+1 = xtarg such that

xtarg = arg max
x∈SX

EFI(t)(x)

7: Sample the next uncertain point by solving
8:

ut+1 = arg min
ũ∈SU

S(xtarg, ũ)

9: Calculate simulator responses at the next point (xt+1, ut+1)
10: Update the DoE:
11: D(t+1) = D(t) ∪ (xt+1, ut+1) , f (t+1) = f (t) ∪ f (xt+1, ut+1),
12: g (t+1)

i = g (t)
i ∪ gi(xt+1, ut+1) , i = 1, . . . , l , t ← t + 1

13: end while
14: end
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A first competitive algorithm : EFIrand

Algorithm Data-driven optimization in the joint space

1: Create an initial Design of Experiments (DoE) of size t in the joint space
and calculate simulator responses:

2: D(t) = {(xi , ui) , i = 1, . . . , t}, and associated f (t) and g (t)
i

3: while t ≤ maximum budget do
4: Create the GPs of f and g1, ..., gl in the joint space: F (t) and (G (t)

i )l
i=1

5: Calculate the processes Z (t) and C (t) in the search space SX
6: Optimize E

(
FI(t)) and set xt+1 = xtarg such that

xtarg = arg max
x∈SX

EFI(t)(x)

7: Sample the next uncertain point randomly, ut+1 ∼ ρU
8: Calculate simulator responses at the next point (xt+1, ut+1)
9: Update the DoE:

10: D(t+1) = D(t) ∪ (xt+1, ut+1) , f (t+1) = f (t) ∪ f (xt+1, ut+1),
11: g (t+1)

i = g (t)
i ∪ gi(xt+1, ut+1) , i = 1, . . . , l , t ← t + 1

12: end while
13: end
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A second competitive algorithm : cEIdevNum

Algorithm Data-driven optimization in the joint space

1: Create an initial Design of Experiments (DoE) of size t in the joint space
and calculate simulator responses:

2: D(t) = {(xi , ui) , i = 1, . . . , t}, and associated f (t) and g (t)
i

3: while t ≤ maximum budget do
4: Create the GPs of f and g1, ..., gl in the joint space: F (t) and (G (t)

i )l
i=1

5: Calculate the GP of the mean objective, Z (t), in the search space SX
6: Optimize the EI under quantile constraints :

xt+1 = arg max
x∈SX

EI(t)(x) s. t. ∀i ∈ {1, . . . , l}, q1−α/l(m(t)
Gi

(x, U)) ≤ 0

7: Sample the next uncertainty by minimizing the deviation number,

ut+1 = arg min
u

min
i=1,...,l

|mG(t)
i

(xt+1, u)|

σ
(t)
Gi

(xt+1, u)

8: Calculate simulator responses at the next point (xt+1, ut+1)
9: Update the DoE:

10: end while
11: end
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The problem is the following:

f (x, u) = 5(x2
1 + x2

2 )− (u2
1 + u2

2)
+ x1(u2 − u1 + 5)
+ x2(u1 − u2 + 3)

g(x, u) = −x2
1 + 5x2 − u1 + u2

2 − 1

minimize E[f (x, U)] such that P(g(x, U) ≤ 0) ≥ 1− α

with x ∈ [−5, 5]2, U ∼ U([−5, 5]2)
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Distance to the reference solution. The mean is calculated from 30 replications
of the runs. Initial DOE are composed of 8 points.
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A posteriori probability of satisfying the constraint at the current “feasible”
point z feas

min for different iterations of the EFISUR and EFIrand strategies.
z feas

min = minx∈Xt m(t)
Z (x) s.t. E[C (t)(x)] ≤ 0.
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Enrichment in the uncertain space, SU, for the three methods.
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SAFRAN test case:

Convergence history of the average objective function of the current
feasible minimum, z feas

min . Initial DOE are composed of 100 points in
dimension 27.
Relative coordinates of the optimal design with respect to their respective
lower and upper bounds.
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Thank you for your attention
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