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ABSTRACT  

Alpha oscillations in the auditory cortex have been associated with attention and the 

suppression of irrelevant information. However, their anatomical organization and interaction 

with other neural processes remain unclear. Do alpha oscillations function as a local mechanism 

within most neural sources to regulate their internal excitation/inhibition balance, or do they 

belong to separated inhibitory sources gating information across the auditory network? To 

address this question, we acquired intracerebral electrophysiological recordings from epilepsy 

patients during rest and tones listening. Thanks to independent component analysis, we 

disentangled the different neural sources and labeled them as “oscillatory” if they presented 

strong alpha oscillations at rest, and/or “evoked” if they displayed a significant evoked response 

to the stimulation. Our results show that 1) sources are condition-specific and segregated in the 

auditory cortex, 2) both sources have a high-gamma response followed by an induced alpha 

suppression, 3) only oscillatory sources present a sustained alpha suppression during all the 

stimulation period. We hypothesize that there are two different alpha oscillations in the 

auditory cortex: an induced bottom-up response indicating a selective engagement of the 

primary cortex to process the stimuli, and a sustained suppression reflecting a general 

disinhibited state of the network to process sensory information. 
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SIGNIFICANCE STATEMENT  

Alpha oscillations in the auditory cortex have been associated to functional inhibition, 

but their anatomical and functional organization is unclear. Here, we compared intracerebral 

electrophysiological recordings acquired from the auditory cortex of epilepsy patients during 

rest and pure tones listening, identifying distinct oscillatory and evoked neural sources. Evoked 

responses are located in the primary cortex, while oscillatory sources are more dispersed. Both 

exhibit a canonical time-frequency response to auditory stimuli, with a high-gamma increase 

followed by alpha suppression. Notably, oscillatory sources also present a strong sustain alpha 

suppression throughout stimulation. These findings underscore the complex interplay of 

inhibition and information processing in the human auditory cortex, revealing two alpha 

suppression mechanisms in auditory perception. 
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INTRODUCTION  

The brain is always active, with brain oscillations present even in the absence of any 

particular stimulus (Buzsaki, 2011; Capilla et al., 2022). Alpha (~10 Hz) oscillations are widely 

distributed across the cortex and are believed to play a key role in attention, controlling the 

excitation/inhibition balance and inhibiting the regions nonrelated to the task to gate the 

information flow between relevant distributed networks (ElShafei et al., 2020; Jensen and 

Mazaheri, 2010; Klimesch, 2012; Thut et al., 2012). An alpha-like rhythm has been described in 

the auditory cortex (Lehtelä et al., 1997; Neymotin et al., 2022; Tiihonen et al., 1991), It has a 

lower frequency than the visual or sensorimotor alpha (6-10 Hz; Armonaite et al., 2022; 

Frauscher et al., 2018; Groppe et al., 2013), but has been suggested to play an equivalent role, 

controlling the balance between excitation and inhibition in the auditory cortex (Weisz et al., 

2011). However, the anatomical and functional organization of these oscillations is unclear. 

During speech processing, alpha activity is suppressed in regions responding to the 

stimulus, suggesting a local bottom-up disinhibition to favor information processing (Müller and 

Weisz, 2012; Strauß et al., 2014). On the other hand, alpha activity has also been associated to 

top-down anticipatory processes (Müller and Weisz, 2012), which may require sources located 

in higher level areas and to control the excitation/inhibition balance in other regions. In this 

work, we want to explore the nature and function of alpha sources in the auditory cortex. What 

are the neural sources of alpha activity, its response profile during auditory stimulation and its 

relationship with the evoked neural sources processing the sensory input. 

Most previous studies were based on non-invasive recordings, which lack the spatial 

resolution to identify and localize the neural generators of different oscillatory dynamics. 

Intracerebral recordings in the form of stereotaxic electroencephalography (SEEG) are an 

excellent approach to characterize the dynamics of the auditory cortex at a millisecond time 

scale and fine spatial specificity (Liégeois-Chauvel et al., 1994). However, although SEEG 

electrodes are located directly in the region of interest, each contact may still record the activity 

from multiple brain sources due to volume conduction. Independent component analysis (ICA) 

is a methodology that aims to separate the time-courses of the different current generators 
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contributing to the recorded field potentials (Herreras et al., 2022, 2015; Makarov et al., 2010). 

It has been extensively used in non-invasive recordings, both to remove artifacts such as cardiac 

activity or blinks (Jung et al., 2000) and to retrieve neural sources (Chaumon and Busch, 2014; 

López-Madrona et al., 2022; Velmurugan et al., 2022).  

In intracerebral recordings, ICA has the potential to outperform traditional montages 

(Herreras et al., 2022, 2015). In referential montages, each contact records the activity of both 

local and remote sources that may be located far away (López-Madrona et al., 2023). One 

approach is to identify and remove the distant sources, whether it represents the electrical 

reference (Hu et al., 2007; Whitmore and Lin, 2016), or other neural sources (Michelmann et al., 

2018). Moreover, rather than discarding this activity, it is possible to localize and analyze it, 

similar to the inverse problem in non-invasive recordings (López-Madrona et al., 2023; Medina 

Villalon et al., 2024). Bipolar montages are commonly used to measure local currents in a given 

location, but they may not recover the correct time-courses of local sources (Fernández-Ruiz 

and Herreras, 2013; Martín-Vázquez et al., 2013; Michelmann et al., 2018). For example, if two 

sources are located close to the same SEEG contact, the bipolar montage would not be able to 

separate them (López-Madrona et al., 2024). Therefore, ICA can be used to separate the 

multiple sources of alpha activity in the auditory cortex.  

In this work we performed SEEG recordings from the human auditory cortex to track the 

activity of the neural sources during two conditions: rest and pure tone stimulation. With ICA, 

we identified the main sources of alpha oscillations at rest (“oscillatory sources”) and those with 

a significant auditory evoked potential (AEP, “evoked sources”). First, we compared whether the 

sources responding to the stimulus were also those with highest alpha at rest (i.e., whether they 

were the same neural source or not). Second, we compared the power spectrum across both 

conditions to characterize sustained changes of alpha power. Finally, we analyzed the time-

frequency response of the sources during pure-tone stimulation for a fine-grained exploration 

of stimulus induced alpha modulations. 
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METHODS 

Participants 

A total of 18 patients (10 females) with pharmacoresistant epilepsy were recorded with 

SEEG during their period of presurgical evaluation at the Hôpital de laTimone (Marseille, 

France). Neuropsychological assessment carried out before SEEG recordings indicated that all 

patients had intact language functions and met the criteria for normal hearing. None of them 

had their epileptogenic zone within the auditory areas as identified by experienced 

epileptologists. The study was approved in accordance with the Declaration of Helsinki by the 

Institutional Review board of the French Institute of Health (IRB00003888). Patients provided 

written informed consent prior to the experimental session. Participation was voluntary, and 

none of these patients participated in a clinical trial. 

SEEG recordings 

SEEG recordings were performed using depth electrodes, implanted stereotactically 

(Talairach et al., 1992;  Alcis, Besançon, France, and Dixi Medical, Chaudefontaine, France). All 

the patients presented, at least, one electrode in the auditory cortex, implanted orthogonally to 

the cortical surface, recording the tip of Heschl’s gyrus, the planum temporale (Figure 1a). From 

the 18 patients, 5 had bilateral implantations, resulting in a total of 23 analyzed electrodes 

(N=23). The electrodes had between 8 and 18 contacts per electrode, a diameter of 0.8 mm, 2 

mm contact length and separated from each other by 1.5 mm. A scalp electrode placed at Fz 

was used as reference for the recordings. SEEG signal was recorded on a digital system (Natus 

Medical Incorporated) with sampling at 1024 Hz with 16-bit resolution, a hardware high-pass 

filter (cutoff = 0.16 Hz), and an antialiasing low-pass filter (cutoff = 340 Hz). To determine the 

exact location of each electrode and contact, a co-registration of the postimplantation CT-scan 

with the preoperative MRI was performed for each patient using GARDEL (Medina Villalon et al., 

2018) in-house software (https://meg.univ-amu.fr/wiki/GARDEL:presentation). To compare the 

contact location across subjects in a common space, the patient specific anatomy was warped 

using the MNI template (Collins et al., 1994). From the MNI coordinates, we determined in 

which region was located each SEEG contact using the Brainnetome atlas (Fan et al., 2016). 
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Implantation and impact of medication 

There is no "standard" approach for the electrode implantation, as it is entirely guided 

by the hypotheses regarding the anatomical location of the epileptogenic zone (EZ). The goal is 

to identify the specific area for subsequent cortectomy. These hypotheses about the potential 

location of the EZ are formed based on non-invasive pre-surgical assessments (Phase I), which 

include a detailed clinical history, surface video-electroencephalographic (EEG) recordings, MRI, 

and 18FDG-PET scans. Consequently, electrode placement is tailored to each patient’s unique 

clinical profile rather than being standardized. 

One of the most commonly explored areas is the perisylvian region, particularly when 

there is a need to determine whether the patient's epilepsy is temporal, temporo-perisylvian, or 

purely perisylvian. Misdiagnosing perisylvian epilepsy is a leading cause of surgical failure in 

temporal epilepsy. Perisylvian epilepsy can be located in various regions, including the insular 

cortex, frontal operculum, parietal operculum, temporal operculum, and the superior temporal 

and supramarginal gyri. In this region, electrodes are typically implanted orthogonally to the 

cortical surface to capture recordings along the electrode from areas like the posterior insula, 

the tip of Heschl's gyrus, and the planum temporale. Another approach involves implanting 

electrodes more anteriorly to target the superior temporal gyrus and ventral insula. The 

perisylvian region is also explored under the hypothesis of epilepsy originating from the inferior 

parietal lobule, pericentral area, or ventral prefrontal/premotor cortex. 

The transverse gyrus (Heschl's gyrus), which includes the auditory cortex, plays a crucial 

role due to its connections with lower central regions and the inferior frontal gyrus. This region 

serves as a pathway through which seizures from the temporal pole and the anterior superior 

temporal gyrus can spread. 

Neural recordings were conducted between 4 to 9 days following the implantation 

procedure, without the use of sedation or analgesic drugs. Typically, antiepileptic drugs are 

partially or completely withdrawn before the exploration. However, medication levels are 

adjusted individually based on the type of seizures. Recordings are consistently taken at least 4 

hours after the last seizure. 
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Experimental paradigm 

We recorded SEEG activity during rest and a pure-tone stimulation task. The resting 

condition consisted in three intervals of three minutes each, with the patients sitting awake 

with eyes closed. The auditory stimuli were composed of 100 pure tone trials, 30 ms long, 

presented binaurally at 1 kHz. The interval between stimuli was 1.030 (±200) ms. We selected 

this type of stimulus due to its efficiency to activate the auditory cortex without containing 

linguistic information (Liégeois-Chauvel et al., 1994). Patients were in a sound-attenuated room 

while passively listening to the pure tones from loudspeakers. Stimuli were presented using E-

prime 1.1 (Psychology Software Tools Inc., Pittsburgh, PA, USA). To facilitate the comparison 

between conditions, we selected only the first 100 seconds without artifacts during rest, 

matching with the duration of the auditory task.  

 

Independent Component Analysis 

ICA aims to solve the ‘cocktail party’ problem by separating N statistically independent 

sources that have been mixed on M recording contacts. While the ‘cocktail party’ problem is 

often attributed to the identification of one specific acoustic source among many others, in our 

case we aim to disentangle the different neural sources generating field potentials (i.e., it is not 

related to the auditory stimuli). It assumes immobility of the neural sources in space, i.e., that 

the contribution of one source to the recording contacts is the same throughout the recording 

session. Each recorded signal       is thus modeled as the sum of   independent sources 

(     ) multiplied by a constant factor (   ): 

where       is the SEEG data,     the ICA weights or spatial profile of each source,   the 

number of contacts,   the number of sources and       the obtained independent components 

(“SEEG-ICs”).  

               

 

   

           (1) 
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We concatenated the time courses of the selected resting condition window and the 

whole pure tone recording and ran ICA on each electrode (total: 23 electrodes). Thus, each 

source had a unique spatial profile, allowing a traceability of the activity of the same neural 

source across conditions. We obtained as many components as available contacts per electrode 

(N=M), without any prior dimension reduction (Artoni et al., 2018). We used FieldTrip 

(Oostenveld et al., 2011) to compute ICA based on the infomax algorithm, which aims to 

minimize the mutual information between components (Bell and Sejnowski, 1995), as 

implemented in EEGLAB (Delorme and Makeig, 2004). Although not all the SEEG-ICs represented 

neuronal sources, we did not discard any of them at this point. All the SEEG-ICs were z-scored. 

 

Analysis of auditory evoked potentials (AEPs) 

For each SEEG-IC, we checked whether they had a significant AEP during pure tone 

stimulation. To do so, we tested if each time point across trials was significantly different from 

zero with a t-test, obtaining a t- and p values for each time-point. Then, we corrected these 

tests for multiple comparisons using a local false discovery rate (LFDR; Benjamini and Heller, 

2007) on the t-values with a threshold of 0.2 (Pizzo et al., 2019). LFDR assumes that the 

distribution of t-values is Gaussian, considering as significant those values that stand out from 

the distribution. To have a better estimation of the distribution, we grouped all the t-values 

across SEEG-ICs of the same electrode, obtaining a single threshold per electrode. To remove 

artefactual single points, i.e., single data points that were significant but the anterior and 

posterior samples were not, we selected only those points during the first second after the 

stimulus and we imposed a minimum number of consecutive significant time samples (10 ms in 

this work). No baseline correction was applied during the AEP analysis, as the data was already 

high-pass filtered (0.16 Hz) and z-scored to remove very low frequency trends. 

 For each SEEG-IC with a significant response, we selected its activation time as the 

earliest peak in the AEP (see Figure 4a). This initial peak is generally followed by a much higher 

response in amplitude. The later response tends to drive the result of most automatic methods, 

although early activations can be visually detected. Therefore, we used a semi-automatic 

approach, identifying the local peaks of the AEP using the MATLAB (Mathworks, Natick, MA) 
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function findpeaks.m, imposing a minimum prominence of twice the standard deviation of the 

AEP during baseline (between -100 ms and 0 ms) and considering both positive and negative 

peaks. We considered as activation time the first peak identified. 

 

Spectral analysis 

 Power spectra were estimated using the multitaper method on each SEEG-IC (Thomson, 

1982) with a frequency resolution of 0.25 Hz. Then, we followed the fooof approach to 

characterize the power of each source (Donoghue et al., 2020). This methodology separates the 

periodic and the aperiodic (1/f-like) component of the spectra, allowing the analysis of the 

oscillatory power independently of the changes in the 1/f distribution (Voytek et al., 2015). The 

aperiodic component is modeled by a Lorentzian function, where the main parameters are the 

offset and the exponent (or curvature). Then, the fooof method detects each oscillatory peak 

above the aperiodic components and fits them individually with a Gaussian function, obtaining 

the power, center frequency and bandwidth of each detected oscillation. We selected the range 

from 2 to 30 Hz for the fooof fit, a minimum bandwidth for peak detection of 0.5 Hz (twice the 

frequency resolution) and a minimum amplitude of twice the standard deviation of the 

aperiodic-removed power spectrum (see Supplementary Figure 1 for a distribution of all the 

identified peaks across SEEG-ICs and conditions). The knee parameter was fixed at zero. 

 To limit the contribution of the AEPs during pure tone stimulation to the power 

spectrum, we also analyzed the time-courses after removing the averaged response from each 

trial (Pure Tone no AEP condition). First, we computed the AEP for each SEEG-IC. This averaged 

AEP was then fitted for each trial using a linear regression minimizing the difference between 

the single trial and the fitted AEP and it was subtracted for each trial. In other words, we 

subtracted to each trial the averaged AEP multiplied by a factor ‘k’ that minimized the result. 

The remaining time-course should contain all the activity that is not explained by the evoked 

response. The spectral analysis was computed on the resultant time-course. 
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Identification of sources (independent components of interest) 

 We visually inspected all the SEEG-ICs to remove the components related to the 

reference or to remote sources, i.e., with a similar activity along all the contacts of the electrode 

(Figure 1d, gray component). Then, we classified the remaining components as “oscillatory” 

sources if they presented a high alpha oscillatory activity during rest (i.e., a significant peak of 

power given by the fooof analysis), “evoked” sources if they had a significant AEP, both 

“oscillatory” and “evoked” sources, or “nonrelated” components. A total of 58 SEEG-ICs were 

labeled as evoked. To determine the oscillatory SEEG-ICs, we selected, for each source, the 

highest significant peak of the periodic component at 5-10 Hz obtained from the power 

spectrum during rest. From all the SEEG-ICs, we chose the 25% with highest power (71 SEEG-ICs; 

0.75 quantile), labeling them as oscillatory. As one of the goals of this study was to test whether 

the sources processing the input (i.e., evoked sources) were also the sources with the main 

alpha oscillatory activity in rest, we fixed this value to include SEEG-ICs from most of the 

electrodes in the analysis (21 out of 23 electrodes had an oscillatory source) while keeping a 

similar number of oscillatory and evoked source (71 versus 58, respectively). While the 

classification of a source as “evoked” is relatively independent of other SEEG-ICs, we 

determined the “oscillatory” sources given the total number of SEEG-ICs in the analysis. 

Therefore, we repeated our analysis using quantiles 0.9 and 0.5 to ensure that our selection 

criterion was not driving the results.  

To check that none of the conditions were biasing the resulting SEEG-ICs, we repeated 

the ICA on each task separately and compared the obtained components with the original 

sources. First, we performed an ICA and extracted a new set of components for each condition 

(condition-specific SEEG-ICs). Second, we split the time-courses of the original SEEG-ICs in the 

two conditions to match the duration of the condition-specific SEEG-ICs. Then, we computed 

the correlation between the original SEEG-ICs and the condition-specific SEEG-ICs, selecting the 

maximal correlation, i.e., the most similar component, as it should reflect the same source. 

Therefore, for each oscillatory and evoked source we obtained two correlation values. One 

related to the most similar condition-specific SEEG-IC during rest, and another related to pure 

tone stimulation. If both correlation values are similar and close to 1, it suggests that the same 
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source is active during both conditions. On the contrary, is the values are maximal in one 

condition but close to zero in the other, this would indicate that the source is active only during 

that condition, which would guide the joint analysis. 

 

Time-frequency analysis 

 In addition to the AEP, we tested whether each SEEG-IC had a response to the pure tone 

stimulation in the time-frequency plane. We used Morlet wavelets to obtain the time-frequency 

transformation with 7 cycles per wavelet. Then, the time-frequency responses were averaged 

across trials for each SEEG-IC and they were baseline corrected using the z-score. The baseline 

was set between 200 and 300 ms before the stimulus to avoid temporal smearing from post-

stimulus activity.  

To compute the statistical differences with baseline at the group level, either across 

oscillatory SEEG-ICs or evoked SEEG-ICs, we performed a surrogate analysis followed by a 

cluster-based correction (Cohen, 2014; Maris and Oostenveld, 2007). First, we selected the 

averaged response of each SEEG-IC and we computed a t-test across sources between each 

time-frequency point after the stimuli against the baseline at the same frequency. We defined a 

cluster of significance as a group of adjacent time-frequency points with a significant p-value 

(non-corrected p-value lower than 0.01 in this work). We assigned to each cluster the sum of 

the t-values within the cluster (either positive or negative). For each surrogate (N=1000), we 

randomly shifted the time of the stimuli in a window of ±500 ms around the original value. This 

way, the time-frequency response remained the same, but the temporal alignment was broken. 

We repeated the cluster procedure for each surrogate, keeping both the clusters with maximal 

and minimal t-value at each iteration. Any significance found in these surrogates would be by 

chance. Finally, we tested whether the t-values of our original clusters were significantly higher 

than the maximal t-values of the surrogate analysis for positive effects or lower than the 

minimum for negative effects. The threshold of significance was set at the 97.5 percentile of the 

distribution of surrogate values (p-value < 0.025), including the observed value into the 

simulated values to avoid p-values equal to zero (Phipson and Smyth, 2010).  
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The statistical comparison of the time-frequency responses of the oscillatory SEEG-ICs 

versus the evoked the SEEG-ICs was performed using a t-test. We computed the statistical test 

across sources between each time-frequency point of the oscillatory SEEG-ICs and the same 

point of the evoked SEEG-ICs. Then, we corrected all the p-values using FDR.   

As a single patient may have several SEEG-ICs and, therefore, drive the results, we 

repeated the time-frequency analysis averaging, for each subject, all the oscillatory or evoked 

sources. This way, only one averaged oscillatory source and one evoked source were considered 

in the analysis, obtaining a number of observations equal to the number of participants with, at 

least, one significant oscillatory or evoked SEEG-IC. 

 

Inter-trial phase clustering 

We analyzed how much of the time-frequency activity was related to the presence of the 

AEP using the inter-trial phase clustering (ITPC; Cohen, 2014). For each time point and 

frequency, it measures the distribution of phases across trials as: 

 

where      is the phase of the signal at trial n, time t and frequency f. If the distribution is 

centered around a specific phase, i.e., it is consistent across trials, then the ITPC value would be 

close to one. On the hand, a uniform distribution would yield an ITPC value close to zero.  

 We also tested whether the instantaneous phase at stimulus arrival conditioned the 

brain response (Krieg et al., 2011): either the amplitude of the AEP or the changes of power at 

high gamma (80-120 Hz) and alpha (5-10 Hz) frequencies. To do so, we used a weighted ITPC 

(wITPC): 

           
 

 
       

 

   

  (2) 

       
 

 
    

    

 

   

  (3) 
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where     was the alpha (6-10 Hz) phase at stimulus arrival for the trial n, and    were the 

different factors to test (amplitude of the AEP, gamma and alpha power). 

The amplitude of the AEP for each trial was obtained from the linear model used to 

remove the contribution of the evoked response (factor ‘k’, see Spectral analysis section). The 

gamma power was obtained as the maximal value in the time-frequency map of each trial, using 

a time from 0 to 200 ms, and a frequency bandwidth from 80 to 120 Hz. The same approach was 

followed for the alpha power, but selecting the minimum value (i.e., the highest alpha 

suppression) in the time window from 100 to 300 ms and the frequency band from 0 to 20 Hz. 

The statistical analysis of the wITPC was done using permutation testing (Cohen, 2014). 

On each iteration (n=1000) the    values were randomly distributed across trials breaking the 

relationship between phases and factors and creating a null hypothesis distribution. Then the z-

scored of the measured wITPC is computed by subtracting the mean of the null hypothesis and 

then dividing by the standard deviation. Finally, z-scored wITPC values higher than 1.96 (95% 

confidence interval) were considered significant. 

 

Onset latency of gamma activity 

 We measured the event-related gamma power by averaging, for each trial, the baseline 

corrected time-frequency map between 80 and 120 Hz, obtaining a single time course for each 

SEEG-IC. Then, we computed whether this activity was significantly different from zero following 

the same approach as for the auditory evoked potentials. Finally, the onset latency of each 

source was considered as the first time point of the event-related power significantly different 

from zero and with a minimal duration of 30 ms (Nourski et al., 2022). 

 

Statistical analysis 

 To compare whether the location of the oscillatory and evoked SEEG-ICs is different, we 

selected for each source its location on the x-axis (lateral-medial axis) using the MNI 

coordinates. This dimension was selected as it corresponds to the trajectory of the implanted 
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electrodes, allowing a good sampling from medial to lateral locations and intra-electrode 

comparisons. First, we compared with a t-test whether the absolute values of the coordinates 

were different between sources. Then, we measured whether the location of the sources was 

distributed or local by computing the variance of the location in the lateral-medial axis. A large 

variance would indicate that the sources are distributed along the axis, while a small value 

would suggest that the sources are located in a specific location. We tested whether the 

standard deviation of the location in the oscillatory SEEEG-ICs was different from the evoked 

SEEG-ICs using a permutation test. For each of n=1000 permutations, we randomly labeled each 

SEEG-IC as oscillatory or evoked, preserving the original ratio. We then computed the difference 

between the standard deviation of the location of the permuted oscillatory SEEG-IC and the 

permuted evoked SEEG-IC. Finally, we counted on how many permutations the obtained 

difference was higher than the original value. This value was divided by the total number of 

permutations plus the observed value (n=1001) to obtain the p-value (Cohen, 2014; Phipson and 

Smyth, 2010). 

To test how the dynamics of the same SEEG-IC vary across conditions (rest versus pure 

tone), we tested different features of the power spectrum (peak frequency, relative power and 

aperiodic component) using a paired t-test. To test whether the different features vary across 

the lateral-medial axis of the auditory cortex, we computed the Pearson correlation between 

the x coordinates of each sources and the value of the different features. 
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RESULTS 

Separation of resting and auditory sources with ICA 

We recorded the SEEG activity from the auditory cortex (Figure 1a) of 18 epileptic 

patients during rest and during the presentation of pure tones (Figure 1b and 1c). We selected a 

total of 23 electrodes (5 patients having a bilateral implantation), each with multiple channels 

(between 8 and 18, total channels: 305). For each electrode, the time courses of both conditions 

were concatenated, and the ICA source separation method was applied to segregate the 

recordings into the main neural sources contributing to the SEEG activity (Figure 1d). A single 

mixing matrix (i.e., a set of spatial profiles) was obtained for each electrode, allowing 

traceability of the same sources across both conditions (Figure 1e and 1f). After removing the 

components associated to remote sources (Figure 1d, gray component), a total of 284 SEEG 

independent components (SEEG-ICs) were selected across electrodes. We then classified each 

SEEG-IC as oscillatory source, evoked source, both oscillatory and evoked source or nonrelated 

component (see methods). A total of 58 SEEG-ICs presented a significant auditory evoked 

potential (AEP; N=23/23 electrodes) and were, therefore, labeled as evoked, while 71 SEEG-ICs 

were labeled as oscillatory (N=21/23 electrodes). Interestingly, from all the SEEG-ICs, only 11 

were labelled as both oscillatory and evoked, suggesting that the neural sources with the main 

oscillatory activity in rest were not the sources processing the stimulus (they did not have a 

significant AEP).  
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Figure 1: Separation of oscillatory and evoked sources with ICA:  

a) Cerebral MRI scan (3D T1-weighted) – cross section with reconstruction of the SEEG electrode for patient 9. 
The location of each contact is represented with white rectangles. 

b) Example of monopolar recordings during rest. High amplitude oscillations can be appreciated in the superior 
channels (H’9 and H’10).  

c) Averaged AEP during presentation of pure tones at each contact. The highest response in amplitude is 
observed in channel H’4. 

d) Spatial profile of three SEEG-ICs across the electrode, representing their contribution to each contact. The 
purple and blue components have clear peaks in the profile, suggesting a local origin of the sources around 
these contacts. The grey component contributed almost equally to all the contacts, and hence reflect a remote 
source. 

e) SEEG-IC traces during the same time period as panel b. The oscillations visible in the raw SEEG were captured 
by the purple component, which was labeled as oscillatory source. 

f) Averaged AEP of each SEEG-IC (solid lines) and a single trial (dashed lines). Only the blue component has a 
significant response and was labeled as evoked source. 
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The explained variance of the SEEG-ICs (i.e., contribution of the component to all the 

SEEG recordings) were different for both sources. Each oscillatory source explained between 

0.4% and 63% (mean 10.5%) of the total activity of the data, while evoked sources captured 

between 0.4% and 27.5% (mean 6.4%) of the variance, suggesting that spontaneous activity was 

predominant in our recordings.  

To further check that the obtained sources were not driven solely by one of the two 

conditions, we repeated the ICA procedure on each condition separately and computed the 

correlation between the previous SEEG-ICs (with both conditions concatenated) and the new 

time courses (computed separately for both conditions; see methods). The oscillatory 

components were quite stable across analyses, and the same components were retrieved when 

ICA was computed only on the rest condition (averaged correlation of SEEG-ICs ± standard 

deviation, s.d.: 0.84 ± 0.13) or only during the stimulation condition (0.84 ± 0.14). Results were 

similar for the evoked sources, although it was more difficult to retrieve them when analyzing 

only the rest condition (averaged correlation of SEEG-ICs: 0.76 ± 0.13), compared to the pure 

tone condition (0.81 ± 0.15). Therefore, the two types of sources were present at both rest and 

during stimulation, rather than being active only in one condition and completely silent during 

the other. 

The location of the SEEG-ICs differed for both types of sources (average of absolute 

lateral-medial axis locations in MNI space ± s.d.: 50.39 ± 11.65 and 43.49 ± 8.89 for oscillatory 

and evoked SEEG-ICs; p=0.0024, t-test, t=3.09, df=125; Figure 2a), with evoked sources located 

in medial areas while oscillatory sources were more lateral. The contacts with maximal 

contribution of the oscillatory SEEG-ICs were distributed along the lateral-medial axis, in 

contrast to the evoked sources, which were clustered in more medial areas (Figure 2b). The 

oscillatory sources occupied a larger area (i.e., they were more distributed) than the evoked 

sources, with their location presenting a higher standard deviation across SEEC-ICs (s.d. of the 

absolute lateral-medial axis locations in MNI space: 11.65 and 8.89 for oscillatory and evoked 

SEEG-ICs, p=0.03, permutation test). 
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Regarding the anatomical region of each SEEG-IC (table 1), the oscillatory sources were 

predominately located in the Superior Temporal Sulcus (STS) and the areas 22 and 41/42 of the 

Superior Temporal Gyrus. The evoked sources were mainly in the STG (areas TE1.0 and TE1.2; 

primary auditory cortex (Morosan et al., 2001)) and the insular gyrus. None of the evoked SEEG-

ICs were identified in the STS. 

  

Figure 2: Location of oscillatory and evoked SEEG-ICs:  

a) Comparison of the location of oscillatory and evoked SEEG-ICs along the lateral-medial axis, grouping both 
hemispheres (i.e., absolute value of the x-axis in MNI space; ** p<0.01, t-test). The central mark of the box 
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles. The 
whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted 
individually with black crosses. 

b) Position of the SEEG-ICs on a 3D surface of the temporal lobe. The location of each SEEG-IC in a common MNI 
space is measured as the contact with maximal contribution in the spatial profile.  

 

Region # Oscillatory SEEG-ICs # Evoked SEEG-ICs 

STG (A41/A42) 13 8 

STG (A22c) 7 3 

STG (A22r) 4 3 

STG (TE1.0 and TE1.2) 5 11 

STS (cpSTS) 6 0 

STS (rpSTS) 6 0 

Insular gyrus 3 13 

Other 16 9 

Total: 60 47 



 20 

 
Table 1: Anatomical location of each SEEG-IC. STG: Superior Temporal Gyrus; A22c: caudal area 22; A22r: rostral 
area 22; STS: Superior Temporal Sulcus; cpSTS: caudoposterior STS; rp: rostroposterior STS.  

Resting oscillations are attenuated during pure tone stimulation 

To further characterize the dynamics of the oscillatory SEEG-ICs, we analyzed their 

relative power spectrum, by removing the aperiodic activity following the fooof approach 

(Donoghue et al., 2020; Figure 3a; see methods). All the SEEG-ICs labeled as both oscillatory and 

evoked were removed from the analysis (resulting in N=60 purely oscillatory ICs). For each 

purely oscillatory SEEG-IC, we measured the frequency and relative power of its main oscillatory 

activity and the exponent and offset of the aperiodic component of its power spectrum (Figure 

3b). The frequencies of the oscillations were relatively narrow, ranging between 5 and 10 Hz 

(frequency peak: 7.9 ± 1.04 Hz and 8.1 ± 1.4 Hz, mean ± s.d. for rest and pure tone conditions), 

with no differences between rest and pure tone stimulation (paired t-test, p>0.15, t=-1.48, 

df=59, CI=-0.58, 0.09, effect size=-0.25; Figure 3c). Since frequency resolution can impact the 

quality of the fit in the FOOOF algorithm, we repeated the analysis with a higher resolution 

(0.05 Hz; original resolution = 0.25 Hz; see Methods) with equivalent results (frequency peak: 

7.9 ± 1.06 Hz and 7.9 ± 1.09 Hz, mean ± s.d. for rest and pure tone conditions; paired t-test, 

p>0.7, t=-0.38, df=59, CI=-0.08, 0.06, effect size=-0.01). However, the relative power of the 

oscillatory activity strongly decreased during the pure tone condition (1.04 ± 0.23 arbitrary 

units, a.u., and 0.67 ± 0.32 a.u. for oscillatory SEEG-ICs during rest and stimulation; paired t-test, 

p<0.001, t=8.23, df=59, CI=0.28, 0.46, effect size=0.37; Figure 3d), suggesting an interruption of 

the cortical rhythmicity during listening. The aperiodic features also presented slight 

differences, with higher values during rest (exponent: 1.73 ± 0.48 a.u. and 1.65 ± 0.41 a.u. for 

oscillatory SEEG-ICs during rest and stimulation; paired t-test, p=0.0095, t=2.68, df=59, CI=0.02, 

0.14, effect size=0.08; offset: -0.27 ± 0.40 a.u. and -0.43 ± 0.45 a.u.; paired t-test, p<0.001, 

t=3.54, df=59, CI=0.07, 0.25, effect size=0.16), indicating a steeper slope during the resting 

condition.  

Then, we tested whether the dynamics of the oscillatory SEEG-ICs were dependent of 

their location within the auditory cortex, computing the correlation between the spectral 

features of the sources and their anatomical location in MNI coordinates along the lateral-
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medial axis (same direction as the electrode). Although the oscillatory sources covered a 

relatively broad section in this axis, we could not identify any gradient between the analyzed 

features and the location (Supplementary Figure 2), suggesting that oscillatory dynamics are 

independent of the depth of the neural source. 

Although the oscillatory SEEG-ICs did not have a significant AEP during pure tone 

stimulation, they presented significant responses in the time-frequency domain (Figure 3e). An 

initial response was elicited at low gamma frequencies (20-40 Hz; 25-100 ms), followed by a 

high-gamma activation (80-120 Hz) that lasted from 50 to 150 ms after stimulus onset (p<0.05, 

corrected with FDR). This increase of activity was followed by a suppression at low frequencies 

between 5 and 30 Hz that started at 200 ms. To test that a single patient with several SEEG-ICs 

was not driving the results, we repeated the analysis by averaging all the oscillatory sources per 

subject (number of observations equal to the number of patients with an oscillatory source), 

obtaining the same time-frequency pattern (Supplementary figure 3). 

To ensure that the results were not driven by our selection criteria of oscillatory sources 

(25% of SEEG-ICs with highest oscillatory power), we repeated the analysis selecting the 10% 

and 50% of SEEG-ICs with highest power. We found similar significant differences in relative 

power across conditions and similar time-frequency responses to pure tones in both cases 

(results not shown). 



 22 

 Xº

 

Figure 3: Dynamics of oscillatory SEEG-ICs during rest and pure tone stimulation: 

a) Scheme of the fooof approach. The power spectrum of a SEEG-ICs is modeled by the combination of the 
oscillatory sources and an aperiodic activity. The relative power of an oscillatory rhythm is then measured as 
the difference between both sources (red line). 

b) On the left, averaged power spectrum across oscillatory SEEG-ICs during rest and pure tone stimulation (N=60, 
mean ± s.e.m.). On the right, relative power of the oscillatory SEEG-ICs during both conditions, measured as 
the difference between the oscillatory and the aperiodic fit.  

c) Histogram of main frequency peaks of the oscillatory sources during rest and pure tone stimulation. 
d) Comparison of the relative maximal power of the oscillatory SEEG-ICs obtained with the fooof approach 

between conditions (*** p<0.001). 
e) Time-frequency response of the average oscillatory SEEG-ICs during pure tone stimulation. Framed areas 

represent clusters of significant modulation of activity compared to baseline (-300 -200 ms; p<0.01, surrogate 
analysis). 

 

Medial sources are activated earlier than lateral sources during pure tone stimulation 

We then characterized the dynamics of the evoked SEEG-ICs by analyzing the latencies of 

their evoked potentials (Figure 4a). All the SEEG-ICs labeled as both oscillatory and evoked were 

removed from the analysis (resulting in N=47 purely evoked ICs). There were a large variety of 

responses, scaling from 15 to 80 ms after stimulus onset and including positive and negative 
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patterns. We focused on the earliest latency of each SEEG-IC as an indicator of its activation 

time (Figure 4a). This response correlated with the SEEG-IC location in the lateral-medial axis 

(Figure 4b, Pearson correlation, R=0.336, p=0.021, t=2.396, df=45). The first SEEG-ICs 

responding to the stimulus were in the deeper areas of the auditory cortex, followed by a 

sequential activation of SEEG-IC sources in the lateral direction (Figure 4c).  

As for the oscillatory SEEG-ICs, we analyzed the spectral content of the evoked SEEG-ICs 

(Figure 4d). To control for the contribution of the AEPs to the power spectrum, we measured 

the power spectrum either on the raw signal (Figure 4d, Pure Tone) or after removing the 

averaged evoked response (AEP; i.e., the phase-locked activity) from each trial. We then 

estimated their relative power with the fooof approach (Figure 4d, Pure Tone no AEP; see 

methods). First, the relative alpha power in these evoked sources was minimal compared to the 

oscillatory SEEG-ICs (evoked: 0.20 ± 0.20 a.u.; oscillatory: 1.04 ± 0.23; in the Resting condition). 

Then, the relative alpha power was apparently higher during rest than pure tone (0.20 ± 0.20 

a.u. and 0.17 ± 0.15 a.u. for evoked SEEG-ICs during rest and stimulation; paired t-test, p=0.009, 

t=2.75, df=46, CI=-0.014, 0.094, effect size=0.05; Figure 4e, left). However, this effect was 

induced by the AEP, as it was not present after removing the phase-locked activity (Resting vs. 

Pure Tone no AEP: 0.20 ± 0.20 a.u. and 0.19 ± 0.17 a.u. for evoked SEEG-ICs during rest and 

stimulation without AEP; paired t-test, p=0.69, t=0.397, df=46, CI=-0.05, 0.07, effect size=0.01). 

This indicates that in these evoked neural sources, alpha oscillatory activity does not vary 

between rest and stimulation. 

The aperiodic features were also strongly driven by the AEP (Figure 4e). Both the 

exponent and the offset were apparently higher during pure tone stimulation than rest 

(exponent: 1.24 ± 0.38 a.u. and 1.54 ± 0.42 a.u. for evoked SEEG-ICs during rest and stimulation; 

paired t-test, p<0.001, t=-5.03, df=46, CI=-0.30, -0.13, effect size=-0.21; offset: -0.59 ± 0.37 a.u. 

and -0.20 ± 0.39 a.u., paired t-test, p<0.001, t=-5.16, df=46, CI=-0.44, -0.19, effect size=-0.32). 

However, after removing the effect of the evoked response (AEP), we observed the opposite 

effect, similar to what was found for the oscillatory sources, with significantly higher values 

during rest, indicating a steeper slope in the resting condition (exponent: 1.24 ± 0.38 a.u. and 

1.05 ± 0.29 a.u. for evoked SEEG-ICs during rest and stimulation without AEP; paired t-test, 
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p<0.001, t=5.20, df=46, CI=0.11, 0.26, effect size=0.18; offset: -0.59 ± 0.37 a.u. and -0.83 ± 0.29 

a.u., paired t-test, p<0.001, t=5.18, df=46, CI=0.15, 0.34, effect size=0.24). Of note, no 

correlation was found between the location of the sources in the lateral-medial axis and the 

main features of the power spectrum during the stimuli: relative power, exponent and offset of 

the aperiodic activity (Supplementary Figure 2).  

 

 

Figure 4: Dynamics of evoked SEEG-ICs during rest and pure tone stimulation:  

a) Example of evoked SEEG-ICs in patient 4. The source with the most medial topography (i.e., peak of the spatial 

profile in deeper contacts) has a faster activation time (blue trace).  

b) Pearson correlation (black line) between the location of the evoked SEEG-ICs in the lateral-medial axis and the 
activation time (blue circles). 

c) Location of the evoked SEEG-ICs in a common MNI space. The color of each circle indicates the activation time 
of the source located in that location. 

d) On the left, averaged power spectrum across evoked SEEG-ICs during rest and pure tone stimulation, either 
including or removing the contribution of the AEP to the time-course (N=47, mean ± s.e.m.). On the right, 
relative power of the evoked SEEG-ICs for each condition.  

e) Comparison of three features extracted with the fooof approach for each condition: relative power (left panel), 
exponent of the aperiodic component (middle) and offset (right; **/***, pval < 0.01/0.001, respectively; paired 
t-test). 
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Induced alpha responses are equivalent between oscillatory and evoked sources  

The time-frequency response of the evoked SEEG-ICs was also driven by the AEP (Figure 

5). The waveform of the auditory response had a ~10 Hz pattern and most of the activity at low 

frequencies was strongly phase-locked with the stimulus (Figure 5a, right panel). The AEP also 

created a chimney effect in the time-frequency spectrum, close to stimulus onset. Therefore, 

neural activity in the entire frequency range was affected by the AEP and cannot be directly 

associated with changes in the oscillatory dynamics. To mitigate this effect, we also analyzed the 

response after removing the averaged evoked response (AEP; i.e., the phase-locked activity) 

from each trial (see Methods). Without the AEP contribution, the time-frequency map of the 

evoked sources had some similarities with the oscillatory sources (Figure 5b vs. Figure 3e). 

There was an early activation (here at very low frequencies; ~10 Hz) with a strong high-gamma 

response that started 25 ms after stimulus onset and lasted 200 ms, followed by a suppression 

at low frequencies (between 5 and 30 Hz), starting at 125 ms in these sources (p<0.05, 

corrected with FDR). We repeated the analysis by averaging all the evoked SEEG-ICs per subject 

(number of observations equal to the number of patients with an evoked source), obtaining the 

same time-frequency pattern (Supplementary figure 3). 

As the frequency of the AEP waveform overlapped with the alpha range, we could not 

dissociate whether the phase-locked activity was also contributed by a phase resetting of the 

ongoing oscillations. To better explore this scenario and knowing that the phase of ongoing 

oscillations in auditory cortex likely modulates its responsiveness to incoming stimuli 

(Ahveninen et al., 2024; Schroeder et al., 2008; Thézé et al., 2020), we measured how the 

instantaneous phase of alpha at stimulus onset influenced three different features of the 

response: amplitude of the AEP, high-gamma increase and alpha decrease (see Methods). We 

computed the weighted ITPC for each SEEG-IC, estimating their significance at the single level 

(permutation test). In only 2/60 oscillatory SEEG-ICs and 3/47 evoked SEEG-ICs, the phase of 

alpha oscillations influenced the intensity of the power response, either in the alpha or high-

gamma range (Supplementary Figure 4). This indicates a marginal influence of alpha phase on 
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the power response. For the amplitude of the AEP, 15/46 evoked sources did present a 

significant link with the instantaneous phase of alpha, although this effect was not significant at 

the group level.  

 

Figure 5: Time-frequency and phase locking responses of evoked SEEG-ICs:  

a) Averaged time-frequency response of evoked SEEG-ICs during pure tone stimulation (left panel). Framed areas 
represent clusters of significant modulation of activity compared to baseline (-300 -200 ms; p<0.01, surrogate 
test). Inter-trial phase clustering (ITPC) representing the frequencies phase-locked with the stimulus (right 
panel)  

b) Same analysis as in panel a but after removing the contribution of the averaged AEP to the evoked SEEG-IC 
time-courses. This process removes only the activity phase-locked with the stimulus. 

 

Then, we compared the differences in the time-frequency activation between oscillatory 

and evoked sources (unpaired t-tests, corrected with FDR; Figure 6a). The high-gamma (80-120 

Hz) response after stimulus onset (10-200 ms) was significantly higher in the evoked sources 

compared to the oscillatory sources (p<0.05, corrected with FDR). The short-lived low frequency 

(< 15 Hz) early response was also significantly stronger in the evoked sources. Note that this 

response does not coincide in time with the alpha suppression identified in Figures 3e and 5b 

(which is not significantly different across sources) and instead coincides in time with the 
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evoked potential. The low-gamma response (~20-40 Hz) also identified between 100 and 200 ms 

after stimulus onset was significantly higher in the oscillatory sources. 

Finally, we tested whether the activation time between oscillatory and evoked sources 

differ during pure tone stimulation. We measured the evoked-related power at high-gamma 

(80-120 Hz) frequencies (Figure 6b) and measured the onset latency of this activity. Evoked 

sources responded significantly faster than oscillatory sources (68 ± 41 ms and 33 ± 24 ms for 

oscillatory and evoked SEEG-ICs, respectively; t-test, p<0.0001, t=4.71, df=77, CI=20, 50).  

 

Figure 6: Comparison of the time-frequency dynamics between oscillatory and evoked SEEG-ICs  

a) Contrast between the time-frequency responses of oscillatory (Figure 3e) minus evoked (Figure 5b) sources. 
Delineated areas represent the clusters with significant difference (p<0.05 corrected with FDR).  

b) Averaged gamma power during pure tone stimulation of oscillatory and evoked SEEG-ICs (mean ± s.e.m.). 
c) Onset latency of gamma activity for each source type. Evoked sources had a significant early activation than 

oscillatory SEEG-ICs suggesting a processing hierarchy.  
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DISCUSSION  

 In this work, we have identified two distinct type of activity sources in the auditory 

cortex: one presenting high alpha-like oscillations (5-10 Hz) during rest that are suppressed 

during auditory stimulation (oscillatory sources); and a second one that is relatively silent at rest 

but presents a significant evoked response during pure-tone stimulation (evoked sources). 

Results show that these sources are spatially segregated: the evoked source dominates in 

medial, primary auditory areas, while the oscillatory source is more distributed including lateral 

higher-level auditory regions (Figure 2). Both sources present a canonical time-frequency 

response to auditory stimulation, with a strong increase in high-gamma activity (80-120 Hz) 

followed by a decrease in the low-frequency range (5-30 Hz). A second decrease was also 

identified in the oscillatory sources in the alpha range (8 Hz). Unlike the transient effects 

observed in the time-frequency analysis, this decrease was not stimulus-locked but sustained 

throughout the entire pure tone stimulation task, compared to the resting condition (Figure 3d). 

Finally, short-lived early responses were also observed, with a low-frequency (~10 Hz) increase 

of activity in the evoked sources, characteristic of evoked responses, and a low-gamma (20-40 

Hz) increase of activity in the oscillatory sources. 

 Evoked sources were activated progressively from medial to lateral areas (Figure 4b). 

This result, firstly reported in (Liégeois-Chauvel et al., 1994), is in line with the view of a 

hierarchical functional organization of the auditory cortex, where the information flows from 

primary to parabelt areas (Hickok and Poeppel, 2007). The onset latencies of the high-gamma 

response were also different between oscillatory and evoked sources (Figure 6c), with a faster 

response on the evoked SEEG-ICs (i.e., with a significant AEP). However, the correlation 

between activation time and location in the lateral-medial axis was relatively low, and it 

included lateral sources that were activated earlier in time (Figure 4b). Therefore, although the 

strict serial model seems the main route to process information, our results indicate the 

presence of multiple branches of communication between subcortical and (medial and lateral) 

cortical structures (Dubarry et al., 2017; Hamilton et al., 2021; Nourski et al., 2014). 

 It has been suggested that the main role of alpha oscillations is to inhibit task-irrelevant 

regions, while a reduction of this rhythm would disinhibit the system to favor information 
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processing  (Jensen and Mazaheri, 2010; Klimesch et al., 2007; Strauß et al., 2014). In time-

frequency maps, this is typically characterized as an increase of the high-gamma activity 

(information processing) followed by a suppression of the alpha activity (disinhibition) in regions 

engaged in the task (Edwards et al., 2009). In good agreement with previous studies (Billig et al., 

2019; Nourski et al., 2022), we found that the high-gamma activity was dissociated from the 

alpha response, being stronger in the evoked sources (Figure 6a), mainly located in primary 

medial areas. There were no significant differences in alpha depression between evoked and 

oscillatory sources at the main timing of this effect (200-500 ms), suggesting that the amplitude 

of early high-gamma activity is not directly related to the amount of decrease of the alpha 

rhythm. Our results support the hypothesis of the stimulus-induced alpha suppression as a local 

bottom-up response to selectively engage the source to process the stimulus (Jia et al., 2022).  

 In addition to the induced alpha, we identified a sustained suppression of alpha 

oscillations during stimuli presentation (Figure 3). This spontaneous rhythm has been described 

as an active suppression mechanism of cortical synchronization (Weisz et al., 2011). During the 

presentation of pure tones this rhythm is strongly suppressed, facilitating the processing of the 

new sensory input. Given the basic nature of the stimuli and the task (passively listening to pure 

tones), together with the huge effect on the alpha power, our results suggests that the main 

goal of this sustained alpha suppression in the auditory cortex is to facilitate the processing of 

every acoustic information, while smaller changes induced by the stimulus may represent a 

bottom-up process to attract attention (Foxe and Snyder, 2011) or to modulate the complexity 

of the stimuli (Obleser and Weisz, 2012). 

It has been described a gradient in alpha power in the auditory cortex (Billig et al., 2019). 

Compared to posteromedial structures, anterolateral areas have higher levels of alpha activity 

before auditory stimulation, followed by a stronger alpha suppression in response to sentences. 

Our work complements this result by describing two types of alpha suppression (sustained and 

induced). The evoked sources, mainly related to primary posteromedial structures, presented 

low alpha power during rest. The oscillatory sources, more distributed and covering lateral 

areas, were characterized by large alpha oscillations, corroborating the results reported before 

stimulus onset (Billig et al., 2019). While the induced alpha suppression in response to pure 
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tones was similar for both sources (Figure 6a), the strong sustained alpha suppression, only 

present in oscillatory sources, may align with the identified gradient (Billig et al., 2019). As the 

time interval between sentences in (Billig et al., 2019) was up to several seconds, it is possible 

that the auditory system had enough time to recover and reestablish the alpha power to a level 

similar to the resting condition.  

It is worthy at this point to comment on the “oscillatory” nature of alpha. It has been 

suggested that the alpha cycle imposes the “opportunity windows” or “duty-cycle” of gamma 

activity (Jensen et al., 2014). However, our results suggest that the changes in alpha oscillations, 

defined as a sustained suppression in the oscillatory sources, may not be related with the 

induced alpha activity, given that both phenomena can be dissociated. In this scenario, we 

would have two systems: a sustained oscillatory alpha rhythm whose phase and amplitude are 

determinant of the inhibitory state of the network (Osipova et al., 2008; Voytek et al., 2010), 

and an alpha activity (not necessary an oscillation), whose suppression indexes the facilitation of 

information flow after stimulus onset. Whether both systems are related or not is a question 

that needs to be answered. 

The suppression of the alpha activity found in our study cannot be accounted by changes 

in the      component of the power spectrum as our methodology separated the oscillatory 

and aperiodic components (Donoghue et al., 2020). Nevertheless, we also identified a decrease 

in the slope of the signal during pure tones in both sources (Billig et al., 2019). This difference 

could be explained by a global increase in neural activity during the task (Podvalny et al., 2015) 

and may be linked to an increase in the excitation/inhibition balance of the network (Voytek 

and Knight, 2015). 

Two additional differences were identified when comparing the time-frequency map of 

the sources (Figure 6a). A low-gamma (20-40 Hz) early response was present in the oscillatory 

sources, but not in the evoked ones. While this response may be related to the temporal 

duration of the pure tone stimulus (30 ms), its absence in the evoked sources (associated to 

primary areas and to stimulus response) is striking. One possibility is that the oscillatory sources 

have a higher sensitivity to stimuli with a low-gamma period (Giroud et al., 2020; Morillon et al., 
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2012; Teng and Poeppel, 2020), a key frequency for phonemic processing (Marchesotti et al., 

2020) that becomes left-lateralized in more associative (anterior STG; A4) regions (Giroud et al., 

2020; Morillon et al., 2010). A low-frequency short-lived early response was also specifically 

present in the evoked sources, which corresponds to the typical spectral signature of an AEP 

and would hence be caused by presence of vestiges of the AEP.  

One limitation of our work is the categorical differentiation between sources. While 

oscillatory and evoked sources can be identified and separated, the former exhibits an evoked 

response in the time-frequency plane (Figure 3e) and the latter show an alpha peak in the 

spectrum (Figure 4d), suggesting that both phenomena are not completely dissociated. 

Therefore, the anatomical segregation in Figure 2 could reflect a gradual change of alpha 

dominance. We did not observe any anatomical gradient of alpha power (Supplementary Figure 

2), supporting our hypothesis of two independent sources in the auditory cortex.  

While we focus our work on alpha oscillations, these are not the only rhythms in the 

auditory cortex (Mai et al., 2016). For instance, theta (4-8 Hz) and delta (0-4 Hz) oscillations are 

key dynamics for speech processing, with the former tracking the syllabic time scale (Luo and 

Poeppel, 2007) and the latter associated with prosody (Inbar et al., 2023), pauses (Chalas et al., 

2023) and other top-down (Fontolan et al., 2014) or linguistic processes (Chalas et al., 2024). 

Given the nature of our stimuli (short pure tones) and the short intertrial interval (~1s), these 

oscillations are beyond the scope and possibilities of this study. Further work should investigate 

the interaction between alpha and other brain oscillations, and particularly explore whether, in 

continuous stimulation contexts such as speech or music perception, the gating of information 

depends on contextual or predictive features.  

Another general limitation inherent to every intracerebral study is the diagnosis of 

epilepsy. Although it cannot be fully addressed, several precautions can be taken to mitigate its 

impact. Every trace of epileptic activity was excluded from the analysis, and a partial or 

complete withdrawal of antiepileptic drug is done prior to the beginning of SEEG exploration, 

and none of the patients had their epileptogenic zone including the auditory areas. However, 

functional changes have been detected even in regions non-involved in the epileptic network 
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(Lagarde et al., 2018). While they mainly affect the broadband connectivity between regions 

(not studied in this work), we cannot completely rule out any effect in alpha oscillations. 

Overall, based on our results we can hypothesize that primary auditory areas have a 

generally disinhibited state without resting oscillations, ready to process any new stimulus, 

while there is an inhibitory alpha oscillation who gates or not the information to high-level 

structures. Both evoked and oscillatory sources have a local bottom-up inhibitory system that 

becomes active after receiving a new input (induced alpha). Oscillatory sources would have a 

general inhibitory system that would be steadily suppressed when expecting or processing new 

information. This sustained suppression also includes the preparatory phase of the task (Müller 

and Weisz, 2012), indicating a top-down anticipatory disinhibition prior the stimulus. Finally, the 

weak high-gamma response and lack of evoked potentials in the oscillatory sources suggests 

that the sustained alpha rhythm is not restricted to a local inhibition (Weisz et al., 2011) but 

belongs to a larger network, encompassing primary and non-primary auditory areas.  
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SUPPLEMENTARY MATERIAL 

 

Supplementary Figure 1: 

Distribution of peaks identified with the fooof approach for all the SEEG-ICs. There are two clear clusters of peaks, 

centered around 8 Hz and its first harmonic 16 Hz. The most prominent oscillations (i.e., peaks with higher relative 

power) were also centered between 5 and 10 Hz.  
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Supplementary Figure 2: 

(a) Correlation between location of the oscillatory sources (position in the lateral-medial axis) and the main 

spectral features obtained from the fooof analysis: the relative power of the main oscillatory activity, the 

exponent and the offset of the aperiodic component. No significant correlations were found. 
(b) Correlation between location of the evoked sources and the main spectral features.   
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Supplementary Figure 3: Time-frequency response across patients during pure tone stimulation for oscillatory 
sources (left), evoked sources (middle) and difference between oscillatory and evoked sources. For patients with 
multiple oscillatory or evoked SEEG-ICs, we averaged them to have a single oscillatory and evoked source per 
subject. For left and middle panels, framed areas represent clusters of significant modulation of activity compared 
to baseline (-300 -200 ms, p<0.01, surrogate test, N=20). For right panel, delineated areas represent the clusters 
with significant difference (p<0.05 corrected with FDR, N=20). 
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Supplementary Figure 4: Weighted ITPC between the instantaneous phase of alpha oscillations at stimulus arrival 
and three different features of the response: alpha (5-10 Hz) power, high-gamma (80-120 Hz) power and amplitude 
of the AEP. Each point represents one SEEG-IC. Dashed lines correspond to the significant threshold, stablished at 
1.96. Values outside this rage were considered as significant. 


