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Abstract
The set of ST-valid inferences is neither the intersection, nor the union of the sets
of K3-valid and LP-valid inferences, but despite the proximity to both systems, an
extensional characterization of ST in terms of a natural set-theoretic operation on the
sets of K3-valid and LP-valid inferences is still wanting. In this paper, we show that it
is their relational product. Similarly, we prove that the set of TS-valid inferences can
be identified using a dual notion, namely as the relational sum of the sets of LP-valid
and K3-valid inferences. We discuss links between these results and the interpolation
property of classical logic. We also use those results to revisit the duality between ST
and TS. We present a notion of duality on which ST and TS are dual in exactly the same
sense in which LP and K3 are dual to each other.

Keywords Strict-Tolerant logics · Non-transitive logic · Non-reflexive logic ·
Substructural logics · Strong Kleene Logic · Logic of Paradox · Interpolation ·
Duality

1 Introduction

This paper deals with the substructural logics ST and TS, first introduced under those
names by [8], and also known as p-consequence and q-consequence logics [15, 20].
These logics, which admit a canonical three-valued characterization [7, 9, 26], are
closely related to the well-known systems LP and K3, namely Priest’s Logic of Paradox
[2, 23] and Kleene’s Strong three-valued logic [17]. However, whereas LP-validity and
K3-validity are defined in terms of the preservation of a designated set of truth-values
(strict truth forK3, tolerant truth for LP),ST andTS are systemsof “mixed consequence”,
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in which validity means that the strict truth of the premises entails the tolerant truth
of the conclusions, and conversely for TS.

The question this paper answers is the following: is there a natural characterization
of ST-validity and TS-validity, directly in terms of the valid inferences of LP and the
valid inferences of K3? Some results exist that relate the metainferences of ST to the
inferences of LP [5, 14], or indeed the metainferences of TS to the inferences of K3
[10]. Other results show that classical logic is the least extension of Dunn-Belnap’s
four-valued logic (FDE) that contains both K3 and LP [1, 25], and so is ST in that regard,
since it coincides with classical logic when the language is classical [8]. However, in
this paper we are interested in whether ST-valid and TS-valid inferences can be defined
in terms of some more direct set-theoretic operations on the sets of valid inferences
of K3 and LP.

It is known that the set of ST-valid inferences is neither the intersection, nor the
union of the sets of K3-valid and LP-valid inferences (viz. [6]), but which operation
relates them exactly remained to be determined. The first result we establish in this
paper — originally a conjecture formulated in 2011 by the second author, but long
left sitting in a drawer — is that ST is the relational product of K3 and LP (in the sense
of [19]): this means that � ST-entails � if and only if there exists a formula φ such
that � K3-entails φ, and φ LP-entails �. Similarly, we prove that the set of TS-valid
inferences can be identified using a dual notion, namely as the relational sum of the
sets of LP-valid and K3-valid inferences: this means that � TS-entails � if and only
if every formula φ is such that either � LP-entails φ, or φ K3-entails �. These results
give us a more precise articulation of the intuition that ST and TS are hybrids of K3 and
LP (viz. [10, 32]).

To prove our results, we start by reviewing the definitions of validity in K3, LP, ST
and TS in Section 2. In Section 3, we briefly review why intersection and union fail
to adequately characterize ST and TS, and we introduce the operations of relational
product and relational sum that underlie our main result. Sections 4 and 5 give the
proofs of the main claims. Section 6 shows that order matters in these identities, that is
ST and TS differ from the logics obtained when swapping K3 and LP as the operands of
sum and product. Section 7 defines a notion of duality between logics that relates ST to
TS in exactly the sense in which LP relates to K3, this notion is then used to characterize
extensionally ST and TS in terms of either LP or K3. In Section 8, finally, we close with
some comparisons: first we examine the way in which the relational characterization
of ST can be related to a refinement of the interpolation theorem proved in [21] for
classical logic in a trivalent setting. Thenwe compare our characterization of the notion
of duality of logic with those found in [11] and [12], and show that our notion gives us
an invariant characterization that was missing. Finally, we conclude with some open
problems in order to indicate the fruitfulness of our approach.

2 LP, K3, ST and TS

This section provides some technical preliminaries needed for our results. We define
the basic propositional logics of interest in this paper, namely K3, LP, TS, and ST, and
the accompanying concepts of satisfiability and validity.
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ST and TS as Product and Sum

Definition 2.1 (Language) The propositional language L is built from a denumerably
infinite set Var = {p, p′, . . .} of propositional variables, using the logical constants
verum (�), falsum (⊥), lambda (λ), negation (¬), disjunction (∨) and conjunction
(∧).
Elements ofLwill be denoted by lower caseGreek letters. Subsets ofLwill be denoted
by upper case Greek letters.

Definition 2.2 (Inference) An inference on L is an ordered pair 〈�,�〉 (hereafter
symbolized by � ⇒ �) where �,� ⊆ L are finite sets. We denote by INF(L) the set
of all inferences on L.
Definition 2.3 (SK-valuation)AStrong-Kleene valuation v (or SK-valuation for short)
is a function from propositional variables to truth-values:

v : Var −→ {0, 1/2, 1}

that is extended to the whole language by letting

v∗(p) = v(p), if p ∈ Var,

v∗(�) = 1,

v∗(⊥) = 0,

v∗(λ) = 1/2,

v∗(¬φ) = 1 − v∗(φ),

v∗(φ ∨ ψ) = max(v∗(φ), v∗(ψ)),

v∗(φ ∧ ψ) = min(v∗(φ), v∗(ψ)).

Strong Kleene valuations permit the definition of two standards of truth for a propo-
sitional formula, namely strict truth and tolerant truth [9]: a formula φ is said to be
strictly true if v(φ) ∈ {1}, and tolerantly true if v(φ) ∈ {1/2, 1}. By extension, we will
say that a formula is strictly satisfiable (tolerantly satisfiable), if and only if there is a
valuation that makes it strictly true (tolerantly true).

We get two well-known infra-classical logics from those definitions, depending on
whether logical consequence is defined as the preservation of strict truth or of tolerant
truth, corresponding to Strong Kleene logic K3 [17], and to the Logic of Paradox LP [2,
23], respectively. Each preserves a different set of designated values from the premises
to the conclusions.While the logical consequence of K3 preserves the value in S = {1},
the one of LP preserves the values in T = {1/2, 1}.
Definition 2.4 (LP-satisfaction, LP-validity) An SK-valuation v satisfies an inference
� ⇒ � in LP (symbolized by v |�LP � ⇒ �) if and only if v(γ ) �= 0 for all γ ∈ �

only if v(δ) �= 0 for some δ ∈ �. An inference � ⇒ � is valid in LP (symbolized by
|�LP � ⇒ �) if and only if v |�LP � ⇒ � for all SK-valuations v.

Definition 2.5 (K3-satisfaction, K3-validity) An SK-valuation v satisfies an inference
� ⇒ � in K3 (symbolized by v |�K3 � ⇒ �) if and only if v(γ ) = 1 for all γ ∈ �

123



Q. Blomet and P. Égré

only if v(δ) = 1 for some δ ∈ �. An inference � ⇒ � is valid in K3 (symbolized by
|�K3 � ⇒ �) if and only if v |�K3 � ⇒ � for all SK-valuations v.

It can easily be checked that K3 is paracomplete in the sense that |=/ K3∅ ⇒ φ ∨¬φ,
and that LP is paraconsistent in the sense that |=/ LPφ ∧ ¬φ ⇒ ∅.

The two definitions of validity for K3 and LP rely on the standard definition of
logical consequence as necessary preservation of the same set of designated values
from premises to conclusions. Following [31], [8, 9] consider a more liberal definition
of validity, also known as mixed. Rather than moving from premises to conclusions
from one set of designated values to the same set, they consider the idea of moving
from one set of designated values to another set, different from the first. This idea gives
rise to two other logics: ST and TS. As indicated by the names, ST validity involves
moving from strict to tolerant truth, while TS validity involves moving from tolerant
truth to strict truth.1

Definition 2.6 (ST-satisfaction, ST-validity) An SK-valuation v satisfies an inference
� ⇒ � in ST (symbolized by v |�ST � ⇒ �) if and only if v(γ ) = 1 for all γ ∈ �

only if v(δ) �= 0 for some δ ∈ �. An inference � ⇒ � is valid in ST (symbolized by
|�ST � ⇒ �) if and only if v |�ST � ⇒ � for all SK-valuations v.

Definition 2.7 (TS-satisfaction, TS-validity) An SK-valuation v satisfies an inference
� ⇒ � in TS (symbolized by v |�TS � ⇒ �) if and only if v(γ ) �= 0 for all γ ∈ �

only if v(δ) = 1 for some δ ∈ �. An inference � ⇒ � is valid in TS (symbolized by
|�TS � ⇒ �) if and only if v |�TS � ⇒ � for all SK-valuations v.

It follows from the definition of ST-validity that the set of valid inferences of the
λ-free fragment of ST coincides exactly with the set of inferences valid in classical
propositional logic [8]: an inference is valid in the λ-free fragment of ST if and only
if it is classically valid. The λ-including fragment of ST is non-classical, however,
in particular it fails structural transitivity, because although � ⇒ λ and λ ⇒ ⊥ are
both ST-valid, � ⇒ ⊥ is not. TS on the other hand fails structural reflexivity, already
on the λ-free fragment: p ⇒ p is not valid. Moreover, TS is empty of validities in
the fragment not involving � and ⊥, and its validities in the language including both
constants are very limited (more on this below).

Hereinafter, wewill distinguish between a logic L, its set of valid inferencesL
+, and

its set of antivalid inferences L
−. The reason for this distinction is twofold. Firstly, as

exemplified by the difference between classical logic and ST regarding transitivity, two
logics can share the same set of valid inferences but still differ at the metainferential
level.2 Secondly, as shown by [27], two logics can have the same valid inferences and

1 Both notions of validity made earlier appearances, for TS in [20] (under the name of q-consequence,
and restricted to single conclusions), and for ST in [16] (on the cut-free sequent calculus for LK) and in
[15] (under the name p-consequence, also restricted to single conclusions). Even earlier incarnations of
ST-consequence can be found in Strawson and in Belnap (see [3] for a historical overview).
2 At least on the local definition of metainferential validity, though not on the global one. For the distinction
between these two notions, which lies beyond the scope of this paper, see [14] and [4].
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ST and TS as Product and Sum

Fig. 1 Relations between TS
+, K

+
3 , LP

+ and ST
+

metainferences while having different antivalidities.3 Hence, we will reserve the nota-
tion L— for what we call a logic— to refer to what fixes the satisfaction (respectively
antisatisfaction) and validity (respectively antivalidity) conditions of an argument over
a language, and we will use the notations L

+ and L
− to denote a set of ordered pairs

of sentences of the language, determined by either the validity or the antivalidity con-
ditions of L, respectively. Informally, however, we will allow ourselves to say that the
logic ST is the product of K3 and LP, to mean the more accurate claim that ST

+ is the
product of K

+
3 and LP

+.
Wewon’t need to introduce the notion of antivalidity until Section 7. First, however,

we will need the notion of a set of valid inferences:

Definition 2.8 (Set of valid inferences)

L
+ = {� ⇒ � : |�L � ⇒ �}.

Inclusion relations between the set of validities of the above four logics are well-
known and depicted in Figure 1 [6, 8]: TS

+ is properly included in LP
+ and in K

+
3 ,

and both of those sets are incomparable with each other but are included in ST
+. What

is yet to be found concerns the way in which ST
+ and TS

+ can be characterized in
terms of K

+
3 and LP

+.

3 Relational sum and product

In order to introduce the operations that allow us to define ST
+ and TS

+ in terms of
K

+
3 and LP

+, we start by first reviewing why neither of those systems coincides with

3 Several notions of antivalidities have been put forward in the literature on ST. [27] and [12] say that
an inference � ⇒ � is antivalid when for all v, v|=/ � ⇒ �, while [11] say that an inference � ⇒ �

is antivalid when for all v, if v(γ ) is not designated for all γ ∈ �, then v(δ) is not designated for some
δ ∈ �. It can easily be checked that given any of these notions, classical logic and ST fail to have the same
antivalidities. In Section 7, we will make use of the second notion.
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the intersection or the union of both logics. While it is well-known that ST
+ is not

the intersection of K
+
3 and LP

+, it is tempting to think that ST
+ might be the union

of K
+
3 and LP

+, but in fact it is not (see the references given in [30] regarding the
misidentification of classical logic with K

+
3 ∪ LP

+). It is useful, therefore, to review
counterexamples to both identities.

Fact 3.1

TS
+ �= K

+
3 ∩ LP

+ �= ST
+.

TS
+ �= K

+
3 ∪ LP

+ �= ST
+.

Proof For the intersection: p ⇒ p is not in TS
+, but it is both in LP

+ and in K
+
3 .

Conversely, ∅ ⇒ ¬p ∨ p is in ST
+, but is is not in K

+
3 , so it is not in K

+
3 ∩ LP

+
either. Hence, K

+
3 ∩ LP

+ is equal neither to TS
+ nor to ST

+.
Regarding the union: since both K

+
3 and LP

+ are reflexive, it follows that TS
+,

which is not reflexive, cannot be the union. For ST
+, the following inference — first

brought to our notice in 2011 by David Ripley, and featuring in e.g. [30, p. 511] —,
gives a counterexample:

p ∨ (q ∧ ¬q) ⇒ p ∧ (q ∨ ¬q).

This inference is valid in ST, but it is neither valid in K3 nor valid in LP. Let v and
v′ be two SK-valuations such that v(p) = 1, v′(p) = 0 and v(q) = v′(q) = 1/2.
Then v(p ∨ (q ∧ ¬q)) = 1, v(p ∧ (q ∨ ¬q)) = 1/2, v′(p ∨ (q ∧ ¬q)) = 1/2 and
v′(p∧(q∨¬q)) = 0. So, v|=/ K3 p∨(q∧¬q) ⇒ p∧(q∨¬q) and v′|=/ LP p∨(q∧¬q) ⇒
p ∧ (q ∨ ¬q). ��

One may nonetheless observe that |�K3 p∨ (q ∧¬q) ⇒ p and |�LP p ⇒ p∧ (q ∨
¬q). This suggests that p acts as a connecting formula. More generally, therefore, let
the relational composition of K

+
3 and LP

+ be defined as follows:

Definition 3.1 (Relational composition of K
+
3 and LP

+)

K
+
3 ◦ LP

+ = {〈�,�〉 : 〈�,	〉 ∈ K
+
3 and 〈	,�〉 ∈ LP

+ for some 	}.

Relational composition is strictly more inclusive than the union:

Fact 3.2 K
+
3 ∪ LP

+
� K

+
3 ◦ LP

+.

Proof Assume first that �,� �= ∅. If � ⇒ � ∈ K
+
3 , given that � ⇒ � ∈ LP

+,
then � ⇒ � ∈ K

+
3 ◦ LP

+. If � ⇒ � ∈ LP
+, given that � ⇒ � ∈ K

+
3 , then

� ⇒ � ∈ K
+
3 ◦ LP

+. Assume now that � = ∅. If ∅ ⇒ � ∈ K
+
3 , then � �= ∅,

so � ⇒ � ∈ LP
+, and hence ∅ ⇒ � ∈ K

+
3 ◦ LP

+. Now, if ∅ ⇒ � ∈ LP
+,

� ⇒ � ∈ LP
+, and given that ∅ ⇒ � ∈ K

+
3 , we obtain ∅ ⇒ � ∈ K

+
3 ◦LP

+. Finally,
assume � = ∅. If � ⇒ ∅ ∈ K

+
3 , � ⇒ ⊥ ∈ K

+
3 , and given that ⊥ ⇒ ∅ ∈ LP

+, we
obtain � ⇒ ∅ ∈ K

+
3 ◦ LP

+. If � ⇒ ∅ ∈ LP
+, then � �= ∅, so � ⇒ � ∈ K

+
3 , and

hence � ⇒ ∅ ∈ K
+
3 ◦ LP

+.
To prove proper inclusion, note that the previous inference p ∨ (q ∧ ¬q) ⇒ p ∧

(q ∨ ¬q) belongs to K
+
3 ◦ LP

+. ��
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However, as defined, relational composition is still inadequate to exactly match
ST

+, an observation originally due to Pablo Cobreros:

Fact 3.3 ST
+ �= K

+
3 ◦ LP

+.

Proof |�K3 p∨¬p ⇒ p,¬p and |�LP p,¬p ⇒ p∧¬p. Hence, p∨¬p ⇒ p∧¬p ∈
K

+
3 ◦ LP

+ but p ∨ ¬p ⇒ p ∧ ¬p /∈ ST
+.

The problematic case arises because composition is defined over sets of formulae,
and on our definitions of validity, the meaning of a comma on the left-hand side of
the sequent is different from its meaning on its right-hand side. While on the left-
hand side it must be read as a conjunction, on the right-hand side it must be read
as a disjunction. In order to rule out this problematic case, we need to restrict the
middle-term to a singleton set, that is to a single formula.

To that end, we introduce the following enhanced definition of relative product and
relative sum (see [19] for an exposition, and [22] for the original definitions):

Definition 3.2 (Relative product) Let R and S be two arbitrary binary relations on a
set U and V ⊆ U , then

R |
V
S = {〈x, z〉 : 〈x, y〉 ∈ R and 〈y, z〉 ∈ S for some y ∈ V }.

Definition 3.3 (Relative sum) Let R and S be two arbitrary binary relations on a set
U and V ⊆ U , then

R †
V
S = {〈x, z〉 : 〈x, y〉 ∈ R or 〈y, z〉 ∈ S for all y ∈ V }.

The duality between these two notions is expressed by the following identities:

Fact 3.4 (Duality of product and sum)

R |
V
S = R †

V
S.

R †
V
S = R |

V
S.

Proof
〈x, z〉 ∈ R |

V
S 〈x, z〉 ∈ R †

V
S

iff there is y ∈ V s.t.〈x, y〉 ∈ R iff for all y ∈ V , 〈x, y〉 ∈ R
and 〈y, z〉 ∈ S or 〈y, z〉 ∈ S

iff there is y ∈ V s.t.〈x, y〉 /∈ R iff for all y ∈ V , 〈x, y〉 /∈ R
and 〈y, z〉 /∈ S or 〈y, z〉 /∈ S

iff not for all y ∈ V , 〈x, y〉 ∈ R iff for no y ∈ V , 〈x, y〉 ∈ R
or 〈y, z〉 ∈ S and 〈y, z〉 ∈ S

iff 〈x, z〉 /∈ R †
V
S iff 〈x, z〉 /∈ R |

V
S

iff 〈x, z〉 ∈ R †
V
S iff 〈x, z〉 ∈ R |

V
S

��
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With these definitions at our disposal, we can provide an exact characterization of
ST

+ and TS
+ as product and sum. We will use P(L) as U and {{φ} : φ ∈ L} as V

(omitting from now on its mention under the symbols for relative multiplication and
relative sum). The main theorems we shall prove are:

Theorem 4.1 ST
+ = K

+
3 | LP

+.
Theorem 5.1 TS

+ = LP
+ † K

+
3 .

Weproceed to prove Theorem 4.1 in Section 4 and Theorem 5.1 in Section 5. Before
doing so, however, we pause with an important caveat, regarding the fact that these
results concern the connection between the validities of K3 and LP each understood
globally. In the case of ST, for example, Theorem 4.1 implies that if every valuation
ST-satisfies an argument� ⇒ �, then there is a formulaφ such that every valuationK3-
satisfies � ⇒ φ and every valuation LP-satisfies φ ⇒ �. This is stronger than saying
that if every valuation ST-satisfies an argument � ⇒ �, then for every valuation v,
there is a formula φ such that v K3-satisfies � ⇒ φ and v LP-satisfies φ ⇒ �. The
latter formulation is weaker than the former, in that it permits the connecting formula
to vary depending on the valuation considered. Instead, our approach constructs a
uniform connecting formula, one that, given the ST-validity of an argument, is meant
to hold across all valuations.

4 ST
+ = K

+
3 | LP

+

In order to prove the equality expressed by Theorem 4.1, we proceed in two steps,
proving first the left inclusion and then the right inclusion. For the left inclusion,
we show how to construct a connecting formula φ such that if |�ST � ⇒ �, then
|�K3 � ⇒ φ and |�LP φ ⇒ �. For the right inclusion, we will see that under the
assumption that |�K3 � ⇒ φ and |�LP φ ⇒ � for some φ ∈ L, the ST-validity of
� ⇒ � follows almost immediately from the definition of K3-validity and LP-validity.

We start by defining the function At that allows us to isolate the atoms and the
constants of a formula:

Definition 4.1 (Set of atoms of a formula) The function At : L −→ P(Var ∪
{�,⊥, λ}) is a recursively defined function such that:

At(p) = {p}, if p ∈ Var,

At(�) = {�},
At(⊥) = {⊥},
At(λ) = {λ},

At(¬φ) = At(φ),

At(φ ∨ ψ) = At(φ ∧ ψ) = At(φ) ∪ At(ψ).

If � ⊆ L, At(�) abbreviates
⋃{At(γ ) : γ ∈ �}.

We then introduce the notion of partial sharpening adapted from the notion of
sharpening, found in [27]. Intuitively, given an SK-valuation v, an SK-valuation v∗
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qualifies as a sharpening of v if and only if it agrees with v on all the propositional
variables that take a classical value, and possibly disagrees with v on the others. The
notion of partial sharpening of a valuation with respect to a set of atoms extends the
definition of a sharpening to any subset of the set of atoms of the language.

Definition 4.2 (Partial sharpening) Let v be an SK-valuation. An SK-valuation v∗ is
said to be a partial sharpening of v with respect to a set of atoms 
 ⊆ Var∪{�,⊥, λ}
if and only if for all α ∈ 
, if v(α) �= 1/2, then v∗(α) = v(α).

The next two corollaries describe useful properties of the notion of partial sharp-
ening.

Corollary 4.1 If v∗ is a partial sharpening of v with respect to 
, then v∗ is a partial
sharpening of v with respect to any 	 ⊆ 
.

Proof Note that if the condition holds for all α1 ∈ 
, it also holds for all α2 ∈ 	 ⊆ 
.
��
Corollary 4.2 If v∗ is a partial sharpening of v with respect to 
 and 	, then v∗ is a
partial sharpening of v with respect to 
 ∪ 	.

Proof Note that if the condition holds for all α1 ∈ 
 and for all α2 ∈ 	, it also holds
for all α ∈ 
 ∪ 	. ��

We then turn to the first lemma of importance, which illustrates the monotonicity of
the SK-scheme (see Da Ré et al. [13]).4 Given a formula φ, if φ is assigned a classical
value by a valuation v, any valuation v∗ that agrees with v on the classical values
assigned to the atoms of φ will also agree with v on the value of φ.

Lemma 4.1 For all SK-valuations v, if v(φ) �= 1/2, then for all partial sharpenings v∗
of v with respect to At(φ), it holds that v∗(φ) = v(φ).

Proof The proof is by simple induction on the complexity of φ. To prove the inductive
step we rely on Corollary 4.1 to show that if v∗ is a partial sharpening of v with respect
to At(ψ ∨ χ) or At(ψ ∧ χ), it is also a partial sharpening of v with respect to At(ψ)

and At(χ), allowing thus the use of the inductive hypothesis. ��
For any ST-valid inference � ⇒ � such that all the γ ∈ � jointly take the value 1

for some valuation v, we show how to construct a term φ such that � ⇒ φ is K3-valid
and φ ⇒ � is LP-valid. This term φ will be the K3 disjunctive normal form of

∧
�.

The next two definitions show how to construct such a term.

Definition 4.3 (�, v-conjunction) Let � ⊆ L be a finite nonempty set of formulae. If
v is such that v(γ ) = 1 for every γ ∈ �, let C�,v := ∧

v(α) �=1/2 α
∼, with α ∈ At(�)

and α∼ = α if v(α) = 1 and α∼ = ¬α if v(α) = 0.

4 Given the order ≤I defined on the set {0, 1/2, 1} so that 1/2 <I 0 and 1/2 <I 1, a scheme is said to be
monotonic if each of its n-ary operations is order-preserving with respect to the Cartesian order ≤n

I defined
by 〈x1, . . . , xn〉 ≤n

I 〈y1, . . . , yn〉 ⇐⇒ (i = 1, . . . , n) xi ≤I yi .
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In otherwords, if there is a valuation v that strictly satisfies each γ ∈ �, we construct
the conjunction of all the literals α∼ — built from the atoms of � — that take value
1 according to v. That C�,v is well-defined when v is such that v(γ ) = 1 for every
γ ∈ � follows from the fact that necessarily some atom α of the formulae in � is such
that v(α) = 1 or v(α) = 0, for otherwise we would have v(γ ) = 1/2 for every γ ∈ �.

Definition 4.4 Given a finite nonempty set of formulae �, let D� := ∨{C�,v :
v(

∧
�) = 1} when there is v such that v(

∧
�) = 1, and let D� := ⊥ otherwise.

The first clause of the definition tells us how to construct the K3 disjunctive normal
form of

∧
� from each C�,v , while the last clause enables us to deal with the case

where no such C�,v exists, namely when there is no v such that v
(∧

�
) = 1.

If the clause of Definition 4.3 is satisfied, C�,v necessarily takes the value 1. This
fact is illustrated by the following lemma:

Lemma 4.2 Let � be a nonempty set of formulae. For all v, if v
(∧

�
) = 1, then

v(C�,v) = 1.

Proof If v
(∧

�
) = 1, then v is such that v(γ ) = 1 for every γ ∈ �. So C�,v is

defined. By construction, and by the SK evaluation of a conjunction, v(C�,v) = 1. ��
The next lemma shows that for any nonempty set of formulae�, D� isK3-equivalent

to
∧

�.

Lemma 4.3 Let � be a nonempty set of formulae. Then

|�K3 � ⇒ D� and |�K3 D� ⇒
∧

�.

Proof The case for which there is no valuation making the formulae in � strictly true
together is obvious, since then D� = ⊥.

So consider the case in which the formulae in � can be made strictly true jointly.
If v

(∧
�

) = 1 then v(C�,v) = 1 by the previous lemma, and v(D�) = 1. So
|�K3 � ⇒ D� .

If there is v′ such that v′(D�) = 1, then v′(
∨{C�,v : v(

∧
�) = 1}) = 1. So for

some v such that v
(∧

�
) = 1, we have v′(C�,v) = 1. Then v′ must agree on the

atoms of � to which v gives a classical value, and possibly differs on the atoms of
� to which v gives the value 1/2. Thus, v′ is a partial sharpening of v with respect to
At

(∧
�

)
, and therefore since v

(∧
�

) = 1, we also have v′ (∧ �
) = 1 by Lemma

4.1. ��
We are now in a position to prove the main theorem of the section. Namely that

|�ST � ⇒ � if and only if there is φ ∈ L such that |�K3 � ⇒ φ and |�LP φ ⇒ �.

Theorem 4.1 ST
+ = K

+
3 | LP

+.
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Proof (⊆) Assume that � ⇒ � ∈ ST
+, then we prove that there is a connecting

formula φ such that � ⇒ φ ∈ K
+
3 and φ ⇒ � ∈ LP

+.
When � is empty, we let φ := �. Clearly, |�K3 � ⇒ �, and since |�ST ∅ ⇒ � by

assumption, for all v, v(δ) �= 0 for some δ ∈ �, and therefore |�LP � ⇒ �.
When � is nonempty, we let φ := D� . |�K3 � ⇒ D� follows from Lemma 4.3.

So let us prove |�LP D� ⇒ �.
Assume |=/ LPD� ⇒ � for the sake of contradiction. It follows that there is v

such that v(D�) �= 0 and v(δ) = 0 for all δ ∈ �. If v(D�) = 1/2, there is by
Definition 4.4 v′ such that v(C�,v′) = 1/2. So, for all conjuncts α∼ ofC�,v′ , v(α∼) �= 0.
Consider v∗ which is exactly like v except that for all the conjuncts α∼ of C�,v′ , if
v(α∼) = 1/2, v∗(α∼) = 1. Then v∗(C�,v′) = 1, so v∗(D�) = 1. Moreover, v∗ is
a partial sharpening of v with respect to At(C�,v′) by construction, and is exactly
like v for all β ∈ At(�) − At(C�,v′), so trivially it is also a partial sharpening of
v with respect to At(�) − At(C�,v′). Therefore, by Corollary 4.2, v∗ is a partial
sharpening of v with respect to At(C�,v′) ∪ (At(�) − At(C�,v′)), and by Corollary
4.1 to At(�) ⊆ At(C�,v′) ∪ (At(�) − At(C�,v′)). Now, given that v(δ) = 0 for all
δ ∈ �, by Lemma 4.1, v∗(δ) = 0 for all δ ∈ �. But by Lemma 4.3, |�K3 D� ⇒ ∧

�,
so v∗ (∧

�
) = 1 since v∗(D�) = 1, and thus v∗|=/ ST� ⇒ �, which is impossible. If

v(D�) = 1, then v
(∧

�
) = 1 by the same lemma, and v(δ) = 0 for all δ ∈ � by

assumption, which again contradicts |�ST � ⇒ �.
(⊇) Assume that � ⇒ � ∈ K

+
3 | LP

+. Then there is φ ∈ L such that |�K3 � ⇒ φ

and |�LP φ ⇒ �. So, for all v if v(γ ) = 1 for all γ ∈ �, then v(φ) = 1, and if
v(φ) �= 0, then v(δ) �= 0 for some δ ∈ �. Hence, for all v if v(γ ) = 1 for all γ ∈ �,
then v(δ) �= 0 for some δ ∈ �, thus |�ST � ⇒ �, and we have � ⇒ � ∈ ST

+, as
desired. ��

To illustrate the theorem, let us go back to the case of the ST-valid argument p ∨
(q ∧ ¬q) ⇒ p ∧ (q ∨ ¬q). The theorem implies that there is a formula D such
that p ∨ (q ∧ ¬q) ⇒ D ∈ K

+
3 and D ⇒ p ∧ (q ∨ ¬q) ∈ LP

+. In this case, the
method described produces D = (p ∧ q) ∨ (p ∧ ¬q) ∨ p, and one can check that
p ∨ (q ∧ ¬q) ⇒ (p ∧ q) ∨ (p ∧ ¬q) ∨ p ∈ K

+
3 and (p ∧ q) ∨ (p ∧ ¬q) ∨ p ⇒

p∧ (q ∨¬q) ∈ LP
+. This formula is more complex than the atomic formula p which

we saw above would suffice, but we note that it too may be described as an interpolant
in the sense of Craig’s interpolation theorem, since it only contains atoms common to
� and �. We return to this connection to interpolation in Section 8.

5 TS
+ = LP

+ † K
+
3

Turning now to the proof of the second theorem, we start by proving a simple but
useful lemma showing that for any formula φ, if φ is tolerantly satisfiable, then the
SK-valuation v that maps each propositional variable to 1/2 also makes φ tolerantly
satisfiable, and if φ is strictly falsifiable, then the same v makes φ strictly falsifiable
too.

Lemma 5.1 Let v′ be such that for all p ∈ Var, v′(p) = 1/2. Then for all φ ∈ L,
(i) If there is v such that v(φ) �= 0, then v′(φ) �= 0.
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(ii) If there is v such that v(φ) �= 1, then v′(φ) �= 1.

Proof (i) and (ii) are proved simultaneously by induction on the complexity of φ. ��
The next lemma shows a sense in which TS-validity requires either that one of its

premise be tolerantly unsatisfiable or that one of its conclusion be strictly unfalsifiable:

Lemma 5.2 If |�TS � ⇒ �, then

(i) For some γ ∈ �, it holds for all v that v(γ ) = 0
or

(ii) for some δ ∈ �, it holds for all v that v(δ) = 1.

Proof We prove the contrapositive. Assume that for all γ ∈ � there is v such that
v(γ ) �= 0 and for all δ ∈ �, there is v such that v(δ) �= 1. Let v′ be such that
v′(p) = 1/2 for all p ∈ Var. By Lemma 5.1, for all γ ∈ �, v′(γ ) �= 0 and for all δ ∈ �,
v′(δ) �= 1. Hence, |=/ TS� ⇒ �. ��

We then turn to the proof of the main theorem:

Theorem 5.1 TS
+ = LP

+ † K
+
3 .

Proof (⊆) Assume � ⇒ � ∈ TS
+. Then |�TS � ⇒ �, and by Lemma 5.2, for

some γ ∈ �, it holds for all v that v(γ ) = 0 or for some δ ∈ �, it holds for all
v that v(δ) = 1. So, for all φ ∈ L, |�LP � ⇒ φ or |�K3 φ ⇒ �, and therefore
� ⇒ � ∈ LP

+ † K
+
3 .

(⊇) We prove the contrapositive. Assume � ⇒ � /∈ TS
+. Then |=/ TS� ⇒ �.

So, there is a valuation v such that v(γ ) �= 0 for all γ ∈ � and v(δ) �= 1 for all
δ ∈ �. Let p ∈ Var − (At(�) ∪ At(�)). Since Var is an infinite set and both At(�)

and At(�) are finite sets, there is such a p. Let v′ be exactly like v except that if
v(p) �= 0, v′(p) = 0. Then v′(γ ) �= 0 for all γ ∈ � since p does not appear in �, and
v′(p) = 0, so v′|=/ LP� ⇒ p. Now, let v′′ be exactly like v except that if v(p) �= 1,
v′′(p) = 1. Then v′′(p) = 1 and v′′(δ) �= 1 for all δ ∈ � since p does not appear in
�, so v′′|=/ K3 p ⇒ �. Hence, there is φ := p such that |=/ LP� ⇒ φ and |=/ K3φ ⇒ �,
meaning that � ⇒ � /∈ LP

+ † K
+
3 . ��

As we shall see in the next section, this characterization shows that TS can be
conceptualized in terms of the theorems ofK3 and the antitheorems of LP. The theorems
of K3 indeed consist only of the trivial inferences involving � in the consequent (e.g.
� ⇒ ψ ∨ �) and the antitheorems of LP only of the trivial inferences involving ⊥ in
the antecedent (e.g. φ ∧ ⊥ ⇒ �).

6 The case of LP
+ | K

+
3 and K

+
3 † LP

+

How tight are the previous characterizations of ST
+ and TS

+? Could LP
+ and K

+
3

be swapped in the statement of either theorem? We show that the answer is negative.
Let us consider TS

+ first. The relative sum of K
+
3 and LP

+ is not equal to TS
+,

but to the set of antitheorems and theorems of ST. In order to prove this claim, we first
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define the antitheorems and the theorems of a logic, and then show that the operation
of relative sum extracts the antitheorems of the first operand and the theorems of the
second. After reviewing a well-known fact about K3 and LP, namely that the first has
the same antitheorems as ST and the second the same theorems as ST, we prove our
main claim.

Definition 6.1 (Theorem and antitheorem) Given a logic L, a set of formulae � is said
to be a theorem of L when |�L ∅ ⇒ �, and an antitheorem of L when |�L � ⇒ ∅.
Definition 6.2 (Trivial theorem and antitheorem) An antitheorem � is trivial if there
is γ ∈ � such that for all v, v′: v(γ ) = v′(γ ) �= 1. A theorem � is trivial if there is
δ ∈ � such that for all v, v′: v(δ) = v′(δ) �= 0.

We now focus on two well-known facts about antitheorems and theorems.5

Fact 6.1 Let L be a finitary logic with a consequence relation defined from the pair of
sets of designated values 〈D1, D2〉. The following are equivalent:
(i) � is an antitheorem of L.
(ii) |�L � ⇒ � for all � ⊆ L.
(iii) |�L � ⇒ φ for all φ ∈ L.
(iv) |�L � ⇒ p for some p /∈ At(�).

Proof That (ii) follows from (i), (iii) from (ii), and (iv) from (iii) is straightforward to
prove, so we just show that (i) follows from (iv). Assume that |=/ L� ⇒ ∅. Then there
is v such that v(γ ) ∈ D1 for all γ ∈ �. Let p /∈ At(�), since L is finitary and � finite,
such a p exists. Assume further that v′ is exactly like v except that if v(p) ∈ D2,
v′(p) /∈ D2. Then v′(γ ) ∈ D1 for all γ ∈ � since p /∈ At(�) and hence |=/ L� ⇒ p
for some p /∈ At(�). ��
Fact 6.2 Let L be a finitary logic with a consequence relation defined from the pair of
sets of designated values 〈D1, D2〉. The following are equivalent:
(i) � is a theorem of L.
(ii) |�L � ⇒ � for all � ⊆ L.
(iii) |�L φ ⇒ � for all φ ∈ L.
(iv) |�L p ⇒ � for some p /∈ At(�).

Proof The proof is symmetric to the proof of Fact 6.1. ��
Given Fact 6.1, we identify the set of antitheorems of a logic with the set of all the

valid inferences of the form � ⇒ � with � an antitheorem, and similarly for the set
of theorems given Fact 6.2.

5 When L is an infinitary logic, (i) of Fact 6.1 does not necessarily entail (iv). To see this, note that for any
p ∈ Var, p ∈ At(q ∧ ¬q ∧ ∧

Var), so (iv) is false when � = {q ∧ ¬q ∧ ∧
Var}, yet q ∧ ¬q ∧ ∧

Var
is an antitheorem of the classical infinitary logic Lω1 permitting conjunctions and disjunctions of length
< ω1 and with |Var| < ω1. To remedy this, one can restate (iv) as |�L σp(�) ⇒ p with σp a substitution
that renames the variables in such a way that p does not appear in the antecedent anymore (see e.g. [25]).
Since p /∈ σp(q ∧ ¬q ∧ ∧

Var) and σp(q ∧ ¬q ∧ ∧
Var) ⇒ p is valid in Lω1 , the preceding case does

not constitute a counterexample to the entailment of (iv) by (i) anymore.
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Definition 6.3 (Sets of theorems and antitheorems) The sets of theorems and antithe-
orems of a logic L are defined respectively as follows:

L
t := {� ⇒ � ∈ INF(L) : |�L ∅ ⇒ �},

L
a := {� ⇒ � ∈ INF(L) : |�L � ⇒ ∅}.

The next fact shows that the operation of relative sum extracts the antitheorems of
the first operand and the theorems of the second.

Fact 6.3 Given L1 and L2 two finitary logics with each a consequence relation defined
from a pair of sets of designated values:

L
+
1 † L

+
2 = L

a
1 ∪ L

t
2.

Proof (⊆) If� ⇒ � ∈ L
+
1 †L

+
2 , then for allφ ∈ L, |�L1 � ⇒ φ or |�L2 φ ⇒ �. Since

L1, L2 are finitary and �,� are finite, there is p ∈ Var such that p /∈ At(�) ∪ At(�)

and |�L1 � ⇒ p or |�L2 p ⇒ �. So |�L1 � ⇒ � or |�L2 � ⇒ � by Facts 6.1 and
6.2, and therefore � ⇒ � ∈ L

a
1 ∪ L

t
2.

(⊇) Let � ⇒ � ∈ L
a
1 ∪ L

t
2. If � ⇒ � ∈ L

a
1, then |�L1 � ⇒ φ for all φ ∈ L by

Fact 6.1. If � ⇒ � ∈ L
t
2, then |�L2 ψ ⇒ � for all ψ ∈ L by Fact 6.2. In both cases

we obtain |�L1 � ⇒ φ for all φ ∈ L or |�L2 ψ ⇒ � for all ψ ∈ L, which entails in
turn |�L1 � ⇒ φ or |�L2 φ ⇒ � for all φ ∈ L. And therefore � ⇒ � ∈ L

+
1 † L

+
2 . ��

We then go over a well-known fact about K3 and LP. Namely that K3 has the same
antitheorems as ST, and LP the same theorems.

Fact 6.4 K
a
3 = ST

a and LP
t = ST

t .

Proof Note on the one hand that |�K3 � ⇒ ∅ iff for all v, v(γ ) �= 1 for some γ ∈ �

iff |�ST � ⇒ ∅, and on the other that |�LP ∅ ⇒ � iff for all v, v(δ) �= 0 for some
δ ∈ � iff |�ST ∅ ⇒ �. ��

This fact enables us to characterize the relative sum of K
+
3 and LP

+ as the set of
antitheorems and theorems of ST.

Theorem 6.1 K
+
3 † LP

+ = K
a
3 ∪ LP

t = ST
a ∪ ST

t .

Proof From Facts 6.3 and 6.4. ��
It follows that the relative sum ofK

+
3 andLP

+ is not equal toTS
+ since for instance

∅ ⇒ p∨¬p is an element of ST
a∪ST

t but not ofTS
+, and similarly for p∧¬p ⇒ ∅.

This result provides a better understanding of the role played by the relative sum in
the characterization of TS

+. Just as K
+
3 † LP

+ is the set of antitheorems of K3 and of
theorems of LP— that is the set of antitheorems and theorems of ST, as shown by the
previous fact —, TS

+ = LP
+ † K

+
3 is the set consisting of the antitheorems of LP

+
and the theorems of K

+
3 . Since it is known that LP has no non-trivial antitheorems and

K3 no non-trivial theorems, TS
+ is therefore the set of trivial antitheorems of LP and

trivial theorems of K3.
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Turning to the case of ST, we show that in the presence of λ, the relative product of
the sets of LP-valid and K3-valid inferences is the set of valid inferences of the trivial,
universal logic, in which anything follows from anything.

Fact 6.5 ST
+ �= LP

+ | K
+
3 = P(L) × P(L).

Proof Note that for any �,� ⊆ L, |�LP � ⇒ λ and |�K3 λ ⇒ �. Hence, for any
�,�, � ⇒ � ∈ LP

+ | K
+
3 . ��

However, we can prove that LP
+ | K

+
3 = ST

+ when the constant λ is removed
from the language. The connecting formula will be constructed by taking the con-
junction of the premises with the classical tautologies built from each atom of the
conclusions. Doing so forces one of the conclusions to take a classical value whenever
the connecting formula is K3-satisfied.

Theorem 6.2 Let L− be the language defined in Definition 2.1 without the constant
λ, then

ST
+ = LP

+ | K
+
3 .

Proof (⊆) Assume � ⇒ � ∈ ST
+, that is |�ST � ⇒ �. We start with the limit cases.

When � = ∅, we let D := ∨
�. Since |�ST ∅ ⇒ �, |�LP ∅ ⇒ D by Fact 6.4, and

clearly |�K3 D ⇒ �.When� = ∅, we let D := ∧
�. Given that |�ST � ⇒ ∅, we have

|�K3 D ⇒ ∅ by Fact 6.4, and clearly |�LP � ⇒ D. In both cases� ⇒ � ∈ LP
+ | K

+
3 .

For the main case, we let

C :=
∧

{(α ∨ ¬α) : α ∈ At(�)}

and D := ∧
� ∧ C .

We first show that |�LP � ⇒ D. Assume v(γ ) ∈ {1/2, 1} for all γ ∈ �. For all
p ∈ Var, v(p ∨ ¬p) �= 0, so v(C) �= 0, and since v(γ ) �= 0 for all γ ∈ � by
assumption, v(D) �= 0. Hence, |�LP � ⇒ D.

Assume now that |=/ K3D ⇒ �. Then there is v such that v(D) = 1 and v(δ) �= 1
for all δ ∈ �. Given that v(D) = 1, v(γ ) = 1 for all γ ∈ � and v(C) = 1.
From the latter, it follows that for all α ∈ At(�), v(α ∨ ¬α) = 1, therefore for all
α ∈ At(�), v(α) �= 1/2. So, v(δ) �= 1/2 for all δ ∈ �, meaning that v(δ) = 0 for
all δ ∈ �. Hence, v|=/ ST� ⇒ �, which contradicts our first assumption. Therefore,
|�K3 D ⇒ �. Finally, since there is φ := D such that |�LP � ⇒ φ and |�K3 φ ⇒ �,
� ⇒ � ∈ LP

+ | K
+
3 .

(⊇) Assume � ⇒ � ∈ LP
+ | K

+
3 but � ⇒ � /∈ ST

+. From the latter, it follows
that |=/ ST� ⇒ �. Hence, there is v such that v(γ ) = 1 for all γ ∈ � and v(δ) = 0
for all δ ∈ �. From the former, it follows that there is φ such that |�LP � ⇒ φ and
|�K3 φ ⇒ �. If v(φ) = 0, then |=/ LP� ⇒ φ and if v(φ) = 1, then |=/ K3φ ⇒ �,
therefore v(φ) = 1/2. Now, let v′ be exactly like v except that for all p ∈ Var, if
v(p) = 1/2, then v′(p) �= 1/2. Then v′(γ ) = 1 for all γ ∈ � and v′(δ) = 0 for all
δ ∈ � by Lemma 4.1, and v′(φ) = 1 or v′(φ) = 0 since all its atoms get a classical
value. And again, |=/ LP� ⇒ φ or |=/ K3φ ⇒ �, which is inconsistent with our first
assumption. So, � ⇒ � ∈ ST

+, as desired. ��
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The upshot is that LP
+ and K

+
3 are not interchangeable in the definitions of ST

+
and TS

+ using relational product and sum. The symmetry found for ST
+ in the λ-free

fragment is special, and does not function for TS
+. This may reflect the fact that TS

+
is already non-reflexive in the λ-free fragment, whereas ST

+ is only nontransitive in
the λ-including fragment (under the notion of global notion of metainferential validity,
see fn. 2).

7 On the duality between ST and TS

The results of the previous section tell us that ST
+ and TS

+ are both definable in
terms of K

+
3 and LP

+, from the dual operations of sum and product. This suggests
that ST

+ andTS
+ are dual logics. Whether ST

+ andTS
+ can be seen as such is moot,

however, and depends on how duality between logics is defined. Cobreros, La Rosa
and Tranchini in [11] distinguish two notions of duality, which they call operational
duality and structural duality, following Gentzen’s distinction between operational
rules and structural rules for a logic, and they show that ST

+ and TS
+ are structural

duals, but not operational duals, and conversely for K
+
3 and LP

+. In this section, we
propose a revision of the notion of operational duality allowing us to establish that by
combining the two notions of operational and structural duality, ST

+ and TS
+ stand

in a relation that is exactly the same as the relation to which K
+
3 and LP

+ stand to
each other, and similarly for their counterparts defined in terms of antivalidity. We
proceed in three steps: we first introduce our modified notion of operational duality,
then Cobreros et al.’s notion of structural duality, finally we use the apparatus of
relative sum and product to provide general interdefinability results for ST

+, ST
−,

TS
+ and TS

− in terms of the validities and antivalidities of either LP or K3.

7.1 Operational duality, revised

The notion of operational duality used by [11] originates in [8], and for the sake of
clarity we propose to call it negation duality. It has the following definition:

Definition 7.1 (Negation duality) A logic L1 is negation dual to a logic L2 when

|�L1 � ⇒ � iff |�L2 ¬(�) ⇒ ¬(�)

with ¬(�) = {¬γ : γ ∈ �} for all � ⊆ L.
The logics K3 and LP are negation duals of each other. Concomitantly, it is known

that ST and TS are negation self-dual (see e.g. [8, 12]).
Despite its intrinsic interest, such a notion does not license a straightforward

extensional interdefinability of K3 and LP. This can easily be noticed by letting
n : P(INF(L)) −→ P(INF(L)) be a mapping such that n(X) = {¬(�) ⇒ ¬(�) :
� ⇒ � ∈ X}. Clearly K

+
3 �= n(LP

+), since not all K3-valid inferences are of the
form ¬(�) ⇒ ¬(�).

Because of that, we propose a distinct notion of operational duality, which will
enable us to prove the extensional interdefinability of K3 and LP. This notion of duality
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can be found inKleene’s [17, 18] (and goes back to Schröder in [28]), where it is proven
that for any two formulae φ, ψ , if the inference φ ⇒ ψ is classically valid, then so
is the inference ψ ′ ⇒ φ′, with φ′ and ψ ′ obtained from φ and ψ by interchanging ∧
with∨. In our case, we define a mapping∼ that will substitute� and⊥ for each other
in all formulae, and similarly ∨ and ∧.
Definition 7.2 Let ∼ : L → L be a mapping such that:

∼p = p, if p ∈ Var,

∼� = ⊥,

∼⊥ = �,

∼λ = λ,

∼¬φ = ¬∼φ,

∼(φ ∧ ψ) = ∼φ ∨ ∼ψ,

∼(φ ∨ ψ) = ∼φ ∧ ∼ψ.

The function ∼ is extended to all � ⊆ L by ∼(�) := {∼γ : γ ∈ �}, and to all
X ⊆ INF(L) by ∼(X) := {∼(�) ⇒ ∼(�) : � ⇒ � ∈ X}.

For instance, this function applied to the formula p ∧ q will produce the formula
p∨q, and applied to the formula p∧ (q∨¬q)will produce the formula p∨ (q∧¬q).
We use the mapping ∼ for the following revision of the notion of operational duality
considered by Cobreros et al.:

Definition 7.3 (Operational duality for formulae, and inferences) For any two formulae
φ and ψ , ψ is called the (revised) operational dual of φ when ∼φ = ψ . For any two
inferences � ⇒ � and �′ ⇒ �′, �′ ⇒ �′ is called the operational dual of � ⇒ �

when ∼� = �′ and ∼� = �′.

The next two lemmas express useful properties of ∼, namely that it is involutive
and commutes with the relational inverse function.

Lemma 7.1 For all φ ∈ L, ∼∼φ = φ.

Proof The proof is by induction on the length of φ. ��
Lemma 7.2 For all X ⊆ INF(L), (∼X)−1 = ∼(X−1).

Proof

� ⇒ � ∈ (∼X)−1 iff � ⇒ � ∈ ∼X

iff ∼� ⇒ ∼� ∈ ∼∼X = X by Lemma 7.1

iff ∼� ⇒ ∼� ∈ X
−1

iff ∼∼� ⇒ ∼∼� ∈ ∼(X−1)

iff � ⇒ � ∈ ∼(X−1) by Lemma 7.1.

��
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To show that K3 and LP are extensionally interdefinable, we will have to prove first
that they are operationally dual. The next lemma describes the operational duality
between two formulae in terms of dual valuations. Two SK valuations v and v′ are
said to be dual when for all p ∈ Var, v′(p) = 1− v(p). The dual of a valuation v will
be noted v�.

Lemma 7.3 For all valuations v and all φ ∈ L, v(φ) = 0 if and only if v�(∼φ) = 1
and v(φ) = 1 if and only if v�(∼φ) = 0.

Proof The proof is by induction on the length of φ. ��
As highlighted earlier, K3 and LP are negation dual to each other, and ST and TS are

negation self-dual. We prove here that in a similar way K3 and LP are operationally
dual, and ST and TS operationally self-dual.

Proposition 7.1 |�K3 � ⇒ � if and only if |�LP ∼(�) ⇒ ∼(�) and |�LP � ⇒ � if
and only if |�K3 ∼(�) ⇒ ∼(�).

Proof Assume |�K3 � ⇒ � and v�(∼δ) �= 0 for all δ ∈ �. By the preceding lemma,
v(δ) �= 1 for all δ ∈ �, so v(γ ) �= 1 for some γ ∈ �. Again, by the preceding
lemma, v�(∼γ ) �= 0 for some γ ∈ �, and therefore |�LP ∼(�) ⇒ ∼(�). Assume
now |�LP ∼(�) ⇒ ∼(�) and v(γ ) = 1 for all γ ∈ �. By the preceding lemma,
v�(∼γ ) = 0 for all γ ∈ �, so v�(∼δ) = 0 for some δ ∈ �. Again, by the preceding
lemma, v(δ) = 1 for some δ ∈ �, and therefore |�K3 � ⇒ �. The second equivalence
can be proved symmetrically. ��
Proposition 7.2 |�ST � ⇒ � if and only if |�ST ∼(�) ⇒ ∼(�) and |�TS � ⇒ � if
and only if |�TS ∼(�) ⇒ ∼(�).

Proof Assume |�ST � ⇒ � and v�(∼δ) = 1 for all δ ∈ �. By Lemma 7.3, v(δ) = 0
for all δ ∈ �, so v(γ ) �= 1 for some γ ∈ �. Again, by Lemma 7.3, v�(∼γ ) �= 0 for
some γ ∈ �, and therefore |�ST ∼(�) ⇒ ∼(�). Assume now |�ST ∼(�) ⇒ ∼(�)

and v(γ ) = 1 for all γ ∈ �. By Lemma 7.3, v�(∼γ ) = 0 for all γ ∈ �, so v�(∼δ) �= 1
for some δ ∈ �. Again, by Lemma 7.3, v(δ) �= 0 for some δ ∈ �, and therefore
|�ST � ⇒ �. The case of TS can be proved similarly. ��
Definition 7.4 (Operational duality for logics) For any two logics L1 and L2 based on
the language of Definition 2.1, we will say that L1 is operationally dual to L2 when
|�L1 � ⇒ � if and only if |�L2 ∼(�) ⇒ ∼(�) for all �,� ⊆ L.

Given this terminology, K3 and LP are therefore operationally dual, while ST and
TS are both operationally self-dual.

It remains to show that this notion of duality licenses an extensional interdefinability
between a logic and its operational dual. This is proven in the next lemma.

Lemma 7.4 Given two logics L1 and L2 defined on the language of Definition 2.1, L1
is operationally dual to L2 if and only if L

+
1 = ∼(L+

2 )−1.
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Proof Assume that a logic L1 is operationally dual to a logic L2. Then � ⇒ � ∈ L
+
1

if and only if ∼(�) ⇒ ∼(�) ∈ L
+
2 . Which is equivalent to ∼(�) ⇒ ∼(�) ∈

(L+
2 )−1, and in turn to ∼∼(�) ⇒ ∼∼(�) ∈ ∼(L+

2 )−1. Given that ∼ is involutive by
Lemma 7.1, the previous statement amounts to � ⇒ � ∈ ∼(L+

2 )−1.
Assume now that L

+
1 = ∼(L+

2 )−1. We have that � ⇒ � ∈ L
+
1 if and only if

� ⇒ � ∈ ∼(L+
2 )−1. But this is equivalent to ∼∼� ⇒ ∼∼� ∈ ∼(L+

2 )−1 since ∼ is
involutive. Which is to say that ∼� ⇒ ∼� ∈ (L+

2 )−1, and in turn that ∼� ⇒ ∼� ∈
L

+
2 . ��

With this lemma at hand, we are in a position to characterize extensionally each of
the logics discussed in terms of their operational dual.

Theorem 7.1

K
+
3 = ∼(LP

+)−1
LP

+ = ∼(K+
3 )−1

ST
+ = ∼(ST

+)−1
TS

+ = ∼(TS
+)−1.

Proof This follows directly from Lemma 7.4, Proposition 7.1 and Proposition 7.2. ��

The composition ∼◦−1 is therefore a function mapping a set of valid inferences of
a logic to the set of valid inferences of its operational dual. LP

+ is mapped to K
+
3 ,

K
+
3 to LP

+, while both ST
+ and TS

+ are fixed points of the composition.

7.2 Structural duality

In the second half of this section, we combine our proposed notion of operational
duality with the notion of structural duality to show that ST and TS are each other’s dual
under this combinednotion, in the sameway inwhichK3 and LP are eachother’s dual. In
addition, the results of Sections 4 and 5will allow for an extensional characterization of
the sets of ST- and TS-valid inferences solely from the set of K3- or LP-valid inferences.
Along theway,wewill prove a similar duality result for the sets of K3- and LP- antivalid
inferences, and see that the operations of relative product and relative sum can be used
to characterize the sets of ST and TS antivalid inferences from the sets of LP and K3
antivalid inferences.

The notion of antivalidity used throughout this section was first introduced by
Cobreros, La Rosa and Tranchini in [11] to account for the notion of structural duality.
It is defined as follows:

Definition 7.5 (L-antisatisfaction, L-antivalidity) Let L be a logic based on a conse-
quence relation defined on the standard D1 for the premises and D2 for the conclusions.

• An SK-valuation v antisatisfies an inference � ⇒ � in L (symbolized by v �|L
� ⇒ �) if and only if v(γ ) /∈ D1 for all γ ∈ � only if v(δ) /∈ D2 for some δ ∈ �.

• An inference � ⇒ � is antivalid in L (symbolized by �|L � ⇒ �) if and only if
v �|L � ⇒ � for all SK-valuations v.
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For instance, �|LP p ⇒ p ∧ q, since for all v, if v(p) /∈ {1/2, 1}, then v(p ∧ q) /∈
{1/2, 1}; while ��|ST p ⇒ p∧q, because there is v such that v(p) = v(q) = v(p∧q) =
1/2, and v(p) �= 1 but v(p ∧ q) ∈ {1/2, 1}.

Cobreros et al. [11] say that a logic is structurally dual to another whenever, if an
argument is valid in the first logic, the converse (or inverse) argument is antivalid in
the second logic. Formally:

Definition 7.6 (Structural duality) A logic L1 is structurally dual to a logic L2 when

|�L1 � ⇒ � iff �|L2 � ⇒ �.

Structural duality implicitly involves a form of negation in the metalanguage, more
precisely, a form of metalinguistic contraposition. Validity is expressed through a
universally closed metalinguistic conditional statement connecting the satisfaction of
an inference’s premises to the satisfaction of its conclusions. In turn, antivalidity is
obtained by contraposing this metalinguistic conditional while keeping fixed the sets
of designated values. Structural duality between two logics L1 and L2 requires therefore
an equivalence between two universally closed conditional statements: the first one
connecting the L1-satisfaction of an inference’s premises to the L1-satisfaction of its
conclusions, and the second one connecting the non-L2-satisfaction of its conclusions
to the non-L2-satisfaction of its premises.

The following proposition is proven by Cobreros, La Rosa, and Tranchini in [11]:

Proposition 7.3 (Structural duals) Let �,� ⊆ L,

|�LP � ⇒ � if and only if �|LP � ⇒ �.

|�K3 � ⇒ � if and only if �|K3 � ⇒ �.

|�ST � ⇒ � if and only if �|TS � ⇒ �.

|�TS � ⇒ � if and only if �|ST � ⇒ �.

Proof Let XY and YX be two logics defined on the same scheme for the connectives and
XY be a logic based on a mixed consequence relation defined on the standard X for the
premises and Y for the conclusions (and conversely for YX). Then |�XY � ⇒ � if and
only if v(γ ) ∈ X for all γ ∈ � only if v(δ) ∈ Y for some δ ∈ �. Which is equivalent
to v(δ) /∈ Y for all δ ∈ � only if v(γ ) /∈ X for some γ ∈ �, that is �|YX � ⇒ �. ��

The set of antivalidities of a logic is defined in a similar way as the set of validities
of a logic:

Definition 7.7 (Set of antivalidities)

L
− = {� ⇒ � : �|L � ⇒ �}.

Proposition 7.3 can thus be rephrased in terms of inverse: the sets of K3- and
LP-antivalid inferences are respectively the inverses of the sets ofK3- and LP-valid infer-
ences; while the sets of ST- and TS-antivalid inferences are respectively the inverses
of the sets of TS- and ST-valid inferences.
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Corollary 7.1 (Inverse of K
+
3 , LP

+, ST
+ and TS

+)

LP
− = (LP

+)−1.

K
−
3 = (K+

3 )−1.

TS
− = (ST

+)−1.

ST
− = (TS

+)−1.

Proof This follows from Proposition 7.3. ��
The results of Theorem 7.1 can now be restated in light of these equalities.

Theorem 7.2

K
+
3 = ∼LP

−
LP

+ = ∼K
−
3

ST
+ = ∼TS

−
TS

+ = ∼ST
−.

Proof From Corollary 7.1 and Theorem 7.1. ��
A dual result can be given by interchanging the validities and the antivalidities:

Theorem 7.3

K
−
3 = ∼LP

+
LP

− = ∼K
+
3

ST
− = ∼TS

+
TS

− = ∼ST
+.

Proof We only prove the first equivalence, the proof of the others being simi-
lar. By Corollary 7.1, K

−
3 = (K+

3 )−1, and by the previous theorem (K+
3 )−1 =

(∼LP
−)−1 = (∼((LP

+)−1))−1. Finally, by Lemma 7.2, the last expression is equal
to ∼(((LP

+)−1)−1) = ∼(LP
+). ��

Althoughneither the revisednotionof operational duality nor the notionof structural
duality makes K3 and LP dual simultaneously with ST and TS, the combination of the
two leads to a unified extensional definition of K3 in terms of LP and of ST in terms of
TS (and conversely). In the case of K3 and LP, this combined notion of duality collapses
with operational duality, since both are structurally self-dual; in the case of ST and TS,
the notion collapses with structural duality since both are operationally self-dual.

7.3 Putting it all together

We now turn to the characterization of the sets of ST and TS antivalid inferences out of
the sets of LP and K3 antivalid inferences. It is known that the inverse of the relational
product of two relations R and S is equal to the relational product of the inverse of S
and the inverse of R, and similarly for the relational sum [19]. The next fact attests
that this remains true for the modified versions of relative product and relative sum
introduced in Definition 3.2 and Definition 3.3.
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Fact 7.1 (Inverse product and inverse sum)

(R |
V
S)−1 = S−1 |

V
R−1

(R †
V
S)−1 = S−1†

V
R−1.

Proof

〈x, z〉 ∈ (R |
V
S)−1 〈x, z〉 ∈ (R †

V
S)−1

iff 〈z, x〉 ∈ R |
V
S iff 〈z, x〉 ∈ R †

V
S

iff there is y ∈ V s.t. 〈z, y〉 ∈ R iff for all y ∈ V , 〈z, y〉 ∈ R
and 〈y, x〉 ∈ S or 〈y, x〉 ∈ S

iff there is y ∈ V s.t. 〈y, z〉 ∈ R−1 iff for all y ∈ V , 〈y, z〉 ∈ R−1

and 〈x, y〉 ∈ S−1 or 〈x, y〉 ∈ S−1

iff 〈x, z〉 ∈ S−1 |
V
R−1. iff 〈x, z〉 ∈ S−1 †

V
R−1.

��
We are now in a position to identify the set of ST-antivalid inferences with the

relative sum of the sets of K3-antivalid inferences and LP-antivalid inferences.

Theorem 7.4 ST
− = K

−
3 † LP

−.

Proof By Corollary 7.1, ST
− = (TS

+)−1, moreover TS
+ = LP

+ † K
+
3 by Theorem

5.1, so (TS
+)−1 = (LP

+ † K
+
3 )−1. Finally, by Fact 7.1 and Corollary 7.1 again,

(LP
+ † K

+
3 )−1 = (K+

3 )−1 † (LP
+)−1 = K

−
3 † LP

−. ��
The set of TS-antivalid inferences can in turn be characterized as the relative product

of the set of LP-antivalid inferences and the set of K3-antivalid inferences.

Theorem 7.5 TS
− = LP

− | K
−
3 .

Proof By Corollary 7.1, TS
− = (ST

+)−1, moreover ST
+ = K

+
3 | LP

+ by Theorem
4.1, so (ST

+)−1 = (K+
3 | LP

+)−1. Finally, by Fact 7.1 and Corollary 7.1 again,
(K+

3 | LP
+)−1 = (LP

+)−1 | (K+
3 )−1 = LP

− | K
−
3 . ��

Combining Theorem 4.1 and Theorem 5.1 with Theorem 7.2, and Theorem 7.4 and
7.5 with Theorem 7.3 leads to the following proposition, which shows that ST and TS
can be extensionally characterized by either LP or K3.

Theorem 7.6

ST
+ = K

+
3 | ∼K

−
3 = ∼LP

− | LP
+

TS
+ = ∼K

−
3 † K

+
3 = LP

+ † ∼LP
−

ST
− = K

−
3 † ∼K

+
3 = ∼LP

+ † LP
−

TS
− = ∼K

+
3 | K

−
3 = LP

− | ∼LP
+.
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Proof This follows directly from Theorem 4.1, Theorem 5.1, Theorem 7.4, Theorem
7.5, Theorem 7.2 and Theorem 7.3. ��

Those identities lend support to the view that ST isn’t more fundamentally tied to
LP than it is to K3 (see Cobreros et al. [10]): either system can be used as a primitive
in order to define either ST or TS at the inferential level.

8 Comparisons

We have shown that ST and TS can be extensionally defined from either K3 or LP. In
this section, we comment on the significance of these findings by comparing them
to two sets of results found in the literature. We start by discussing the link between
the characterization proposed of ST and a genereralization of Craig’s interpolation
theorem proven by Peter Milne in [21] for classical logic. Then, we return to the
significance of the duality results presented in the previous section, in particular in
comparison to those of [11] and [12].

8.1 Interpolation

Given an ST-valid inference � ⇒ �, Theorem 4.1 gives us a constructive method of
finding a formulaφ such that� ⇒ φ is K3-valid, andφ ⇒ � is LP-valid, namely the K3
disjunctive normal form of

∧
�. We called such a formula a connecting formula, but

in the example we produced, it has the features of an interpolant in the sense of Craig’s
theorem for propositional logic. Craig’s interpolation theorem for classical logic states
that when φ ⇒ ψ is classically valid, provided that φ is not a contradiction and ψ

not a tautology, there exists an interpolant formula χ such that every propositional
variable in χ occurs in both in φ andψ , and φ ⇒ χ and χ ⇒ ψ are classically valid.6

Hence, it is natural to wonder about the connection between our result and Craig’s
interpolation theorem.

As it turns out, Milne in [21] proved a refinement of Craig’s theorem, which is that
when φ classically entails ψ and neither φ is a contradiction nor ψ a tautology, then
there is an interpolant formula χ such that φ ⇒ χ is K3-valid, and χ ⇒ ψ is LP-valid
(see also [24] for a statement of other interpolation properties for three-valued logics
in the vicinity of LP and K3). An examination of Milne’s proof shows that he used
the same method we used in the first half of the proof of Theorem 4.1, except that he
restricts it to atoms common to the antecedent and succedent of an argument. In the
example we gave of p ∨ (q ∧ ¬q) ⇒ p ∧ (q ∨ ¬q), Milne’s method would produce
as interpolant formula the same as ours, namely (p ∧ q) ∨ (p ∧ ¬q) ∧ p. But in
the variant p ∨ (q ∧ ¬q) ⇒ p ∧ (r ∨ ¬r), Milne’s method would produce p as the

6 This is sometimes called the deductive interpolation theorem, since it states the existence of a deductive
interpolant. In classical logic it is equivalent to the conditional interpolation theorem, which states that
when φ → ψ is a theorem and φ and ψ have at least one propositional variable in common, there is an
interpolant formula χ such that every propositional variable in χ occurs both in φ and ψ , and φ → χ and
χ → ψ are theorems.
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interpolant given Craig’s constraint on atom-sharing. We do not have that constraint
and our method would still produce (p∧q)∨ (p∧¬q)∧ p as the connecting formula,
since it is based solely on producing a K3 DNF.

Milne’s result is not concerned with ST, it is also limited to the case of inferences
with a satisfiable single premise and a falsifiable single conclusion, and it is proven
for the language of propositional logic without constants. However, it bears a direct
connection to our characterization of ST, since it can be used to show that classical
logic is the product of K3 and LP. This raises a natural question, namely whether we
may strengthen the characterization of ST in terms of relational product by making
systematic reference to the interpolation property.

This question also holds broader interest. As discussed in [13], and as originally
proved in [29], the logic ST can also be obtained in terms of mixed consequence on the
basis of the Weak Kleene logic Kw

3 and its dual system Paraconsistent Weak Kleene
PWK: both systems rest on the Weak Kleene scheme, unlike K3 and LP. So does ST
equal the relational product of Kw

3 and PWK, and if so, is the connecting formula an
interpolant? More generally, [13] show that ST can be characterized in terms of mixed
consequence over even more schemes intermediate between the Weak Kleene and the
Strong Kleene scheme: for those logics, does the product characterization still hold,
and if so, is the connecting formula always an interpolant in the sense of Craig? We
reserve the answer to these questions for further work.

8.2 Duality

Several duality results have been offered in the literature on Strong Kleene logics.
As reviewed above, [8] have shown that K3 and LP are negation dual, and ST and TS
negation self-dual; [11] that ST and TS are structurally dual and K3 and LP structurally
self-dual; and [12] that ST and TS aremetainferentially dual.7 Yet, none of these notions
of duality makes ST the dual of TS in the same sense in which K3 is the dual of LP.

The notion of operational duality put forward in this paper differs from each of these
notions. The difference with structural duality and metainferential duality is readily
noticeable, since none of them involves connectives and are thus not operational. The
difference with negation duality is less obvious, both notions involve operators and
make K3 dual to LP and ST and TS self-dual. But as shown earlier, no function can
be straightforwardly defined from negation duality with the intent of characterizing
the set of K3-valid inferences from the set of LP-valid inferences, contrary to opera-
tional duality, where such a function was easily specified. Moreover, negation duality
only involves a single operator, negation, whereas operational duality involves all the
operators of the language. Given a formula, all the operators occurring in it are inter-
changed by the function ∼ with their dual: � with ⊥, λ with λ, ¬ with ¬, and ∧ with
∨. To see why for all the logics discussed above this duality between operators obtains,
it is enough to notice that if 1 and 0 are renamed 0 and 1, then the truth-conditions
of ⊥ and �, and ∧ and ∨ are swapped, while the truth-conditions of λ and ¬ are

7 Ametainference is an inference between inferences. [12] show,with the help of a notion of antisatisfaction
different from the one used here, that everymetainference can be dualized. They prove that for every ST-valid
metainference, its dual is TS-valid (and conversely).
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left unchanged.8 Despite these differences, the two notions are connected through the
following fact:

Fact 8.1 For any truth-functional logic L based on the language of Definition 2.1 and
equipped with an involutive negation satisfying the De Morgan laws:

|�L ∼(�) ⇒ ∼(�) if and only if |�L ¬(�) ⇒ ¬(�).

Proof Let σ be a substitution of every atom by its negation. By a simple but tedious
induction one can show that for all v, v(σ (∼φ)) = v(¬φ) and v(σ (¬φ)) = v(∼φ).
Hence, if |�L ∼(�) ⇒ ∼(�), then |�L σ(∼(�)) ⇒ σ(∼(�)), and therefore |�L
¬(�) ⇒ ¬(�). The other direction is similar. ��

This explains why both negation duality and operational duality make K3 dual to LP
and ST and TS self-dual. In the context of truth-functional logics based on the language
of Definition 2.1 and equipped with an involutive negation satisfying the De Morgan
laws, the two notions are equivalent.

Still, our notion of operational duality, like the others mentioned, does not by itself
offer an account that simultaneously makes ST and TS dual, and K3 and LP dual. It
is only when combined with structural duality, that such a unified account can be
obtained. Theorems 7.2 and 7.3 thus provide a uniform characterization of K3 in terms
of LP and of ST in terms of TS. Given one of these logics, one can obtain the set
of (antivalid) valid inferences of its dual by first taking the set of (valid) antivalid
inferences of this logic and then applying the mapping ∼ to this set. ST is dual to TS
under this combined notion inasmuch as ST is operationally self-dual but structurally
dual to TS; K3 is dual to LP under this same notion inasmuch as K3 is structurally
self-dual but operationally dual to LP.

As a concluding remark, let us note that since its inception, ST has been presented
as being of type K3 on the side of premises and of type LP on the side of conclusions
(viz. Cobreros et al. [9, 10]), based on the very definition of ST in terms of mixed
standards of truth. For example, Zardini in [32] calls ST “K3LP”, precisely on account
of this hybrid behavior. One might therefore be tempted to call TS “LPK3” on the same
grounds. The results of this paper may be used to vindicate those denominations. But
what matters is to see that the operation that connects K3 and LP extensionally is not
the same depending on the case. In particular, TS

+ is not the relational product of
LP

+ and K
+
3 , which corresponds to ST

+ in the absence of constants, and otherwise
to P(L) × P(L). Conversely, ST

+ is not the relational sum of K
+
3 and LP

+, which
corresponds to the set of theorems and antitheorems of ST

+. What is more, the results
proven in Theorem 7.6 from the duality of K3 and LPmight equally license alternative
denominations of ST and TS as “K3K3” or “LPLP”, which blurs the distinction between
the two logics. Pending a conclusive argument favoring the characterization of a logic
in terms of validity rather than antivalidity, we do not seewhy ST and TS should deserve
the denominations “K3LP” and “LPK3”, more than “K3K3” or “LPLP”.

8 See Kleene [18, p. 23-24] for an illustration of this duality between operators that can easily be adapted
to the logics discussed here.
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9 Conclusion

In this paper we have proved that ST and TS each have a natural set-theoretic char-
acterization based on the inferences of the dual logics K3 and LP: ST is the relational
product of the inferences of K3 and LP, while TS is their relational sum.

We reckon that those results are of importance philosophically and proof-
theoretically. Philosophically, because whereas ST and TS are semantically defined
using a notion of mixed consequence, the results given here provide a characterization
of each logic directly in terms of the inferences of K3 and LP, without explicitly invok-
ing shifting standards of truth between premises and conclusions. Proof-theoretically,
because ST and TS are obtained directly via some operation on the logics K3 and LP.
For ST, in particular, one can determine whether � ST-entails � by constructing the
K3 disjunctive normal form �′ of � and by checking if �′ LP-entails �.

The present characterization is of interest more generally, in particular when con-
sidering the metainferential hierarchy discussed by [4]. Barrio and associates have
shown that ST and TS are both only the first level of a more extended hierarchy of
systems of mixed consequence. The system TS/ST, for example, is defined by letting
� ⇒ � be in TS/ST provided every SK-valuation v either fails to TS-satisfy γ for
some γ in � or ST-satisfies δ for some δ in � (with γ , δ inferences). This raises the
question of whether TS/ST can also be defined as the relational product of TS and
ST, and whether dual results can be obtained for the TS-hierarchy. As it turns out, the
answer to this question is positive, but it would lie beyond the scope of this paper
to examine the ST-hierarchy, and a presentation of these results and of their proof is
postponed to another occasion.

Several questions remain open. The most pressing one for us concerns the pos-
sibility, discussed by [13], of defining the logic ST using other schemes than the
Strong-Kleene scheme. Over those more extended schemes, does the characterization
of ST in terms of relational product remain adequate? And can it be strengthened using
the interpolation property in all cases? We have obtained some preliminary results on
this matter, but more work needs to be done before we can answer these questions in
full generality.
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