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Felix M. Lev

Email: felixlev314@gmail.com

Abstract

As shown in our publications, quantum theory based on a finite ring of
characteristic p (FQT) is more general than standard quantum theory (SQT)
because the latter is a degenerate case of the former in the formal limit p→∞.
One of the main differences between SQT and FQT is the following. In SQT,
elementary objects are described by irreducible representations (IRs) of a sym-
metry algebra in which energies are either only positive or only negative and
there are no IRs where there are states with different signs of energy. In the first
case, objects are called particles, and in the second - antiparticles. As a conse-
quence, in SQT it is possible to introduce conserved quantum numbers (electric
charge, baryon number, etc.) so that particles and antiparticles differ in the
signs of these numbers. However, in FQT, all IRs necessarily contain states
with both signs of energy. The symmetry in FQT is higher than the symmetry
in SQT because one IR in FQT splits into two IRs in SQT with positive and
negative energies at p → ∞. Consequently, most fundamental quantum the-
ory will not contain the concepts of particle-antiparticle and additive quantum
numbers. These concepts are only good approximations at present since at this
stage of the universe the value p is very large but it was not so large at earlier
stages. The above properties of IRs in SQT and FQT have been discussed in
our publications with detailed technical proofs. The purpose of this paper is to
consider models where these properties can be derived in a much simpler way.
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CT: classical theory

FQT: Quantum theory based on finite mathematics

SQT: Standard quantum theory

IR: irreducible representation

QFT: Quantum Field Theory

NQT: Nonrelativistic Quantum Theory

RQT: Relativistic Quantum Theory

dS: de Sitter

AdS: Anti de Sitter

dSQT: de Sitter Quantum Theory

AdSQT: Anti de Sitter Quantum Theory

1 The main goal of this paper

One of the key problems of QFT is the problem of divergences: the theory gives di-
vergent expressions for the S-matrix. While in renormalized theories, the divergences
can be eliminated by renormalization, in non-renormalized QFTs, they cannot be
eliminated and this is a great obstacle for constructing quantum gravity based on
QFT.

The problem of divergences has been considered by many physicists, and
there has long been an idea in the air that this problem can only be solved within the
framework of a discrete and finite quantum theory. It would seem natural to think
that such a theory should proceed from discrete and finite mathematics. However,
most mathematicians and physicists believe that SM (with infinities and continuities)
is fundamental while discrete and finite mathematics is a science of a lower rank which
is only needed for applications in some models. This point of view has developed for
historical reasons (because more than 300 years ago Newton and Leibniz proposed the
calculus of infinitesimals) and due to the fact that SM has achieved many impressive
successes in describing experimental data.

The calculus of infinitesimals seemed natural when people did not know
about elementary particles and thought that any substance could be divided into any
arbitrarily large number of arbitrarily small objects. But now we know that at the
level of elementary particles there are no arbitrarily small parts and no continuity.

Also, history tells us that if a theory successfully describes many experi-
mental data, this is not yet a guarantee that this theory is the most fundamental. For
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example, NM successfully describes a lot of experimental data and before the creation
of SR it was believed that NM was a fundamental theory. SR did not refute NM, but
showed that the latter is a degenerate case of the former in formal limit c→∞ where
c is usually treated as the speed of light. As shown in our works [1, 2, 3, 4], FM is
more general (fundamental) than SM: the latter is a degenerate case of the former in
formal limit p→∞ where p is a characteristic of a ring in FM.

Several famous physicists (e.g., Gross, Nambu, Schwinger and Weyl) dis-
cussed approaches when QT involves FM (see e.g., [5]). They are called hybrid quan-
tum systems and described in [6]. The reason is that here physical quantities belong
to a finite ring but quantum states are elements of standard Hilbert spaces. On the
other hand, in [1, 2, 3], we have proposed an approach called finite quantum theory
(FQT) where not only physical quantities but also quantum states are described by
finite rings. We have shown that FQT is more general (fundamental) than SQT: SQT
is a degenerate case of FQT in formal limit p → ∞ where p is the characteristic of
the ring in FQT.

In SQT, elementary objects are described by IRs of symmetry algebras
in which energies can be either ≥ 0 or ≤ 0 and there are no IRs with both posi-
tive and negative energies. In the first case, objects are called particles and in the
second - antiparticles, and after secondary quantization, the energies of antiparticles
also become positive. In SQT, particles and antiparticles are characterized by ad-
ditive quantum number, e.g., the electric charge, the baryon number and others. If
particle A is characterized by some additive quantum numbers and antiparticle B
has the same mass and spin as A, but additive quantum numbers of B are equal to
the corresponding additive quantum numbers of A with the opposite sign, then B
is called the antiparticle for A. In SQT there are superselection rules that prohibit
the superposition of a particle and its antiparticle. For example, electron-positron or
proton-antiproton superpositions are prohibited, and this is interpreted as a conse-
quence of the conservation of electric charge and baryon quantum number.

However, in FQT, one IR necessarily contains states with both positive
and negative energies. Since such states belong to the same IR, their superpositions
are allowed and there are no superselection rules. One can formally call states with
positive energies particles and assign some additive quantum numbers to them, and
call states with negative energies antiparticles and assign opposite quantum numbers
to them. Then it turns out that there are no conservation laws for such quantum
numbers, and, for example, electron-positron or proton-antiproton superpositions are
allowed. It is clear that this completely contradicts the basic concepts of SQT. In other
words, in FQT, the standard concepts of electric charge, baryon quantum number and
other additive quantum numbers do not work.

This situation may prompt physicists to declare that FQT is not a physical
theory and should be rejected. However, symmetry in FQT is higher than symmetry
in SQT since one IR in FQT splits into two IRs in SQT with positive and negative
energies in the formal limit p→∞ when FM goes to SM. At the popular level, this
situation can be described as follows.

Suppose there are two theories, Theory 1 and Theory 2. In Theory 1,
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energies in IRs are represented by points on a circle so that the energies on the right
semicircle are called positive, and on the left semicircle negative. Since states with
positive and negative energies belong to the same IR, their superpositions are allowed.
Now let’s suppose that in Theory 2 there are two types of IRs: in IRs of the first type,
energies can only be positive, and in IRs of the second type - only negative. Then
superpositions of states with positive and negative energies are prohibited since such
states belong to different IRs. Then Theory 1 in which there is one IR describing the
entire circle has higher symmetry than Theory 2 in which there are two IRs describing
the right and left semicircles independently.

In such a scenario, the fact that at the present stage of the evolution of the
universe, SQT describes experiments with very high accuracy follows the fact that at
this stage, the quantity p is very large. As shown in [1, 2], within the framework of
semiclassical approximation to FQT, it is possible to derive the law of universal grav-
itation where the gravitational constant G is proportional to 1/ln(p). By comparing
this result with the experimental value of G, one gets that ln(p) is of the order of 1080

or more, and therefore p is a huge number of the order of exp(1080) or more. However,
p cannot be treated as an infinite number because, since ln(p) is ”only” of the order
of 1080, gravity is observable. At the same time, in [1, 2] we have made arguments
that in early stages of the universe, the value of p was much smaller than now and so
in these stages only FQT may be reliable for describing different experimental data.
In [1, 2] we considered several other phenomena where it is important that p is finite
and not infinitely large.

There is an analogy here with the fact that when speeds are much less than
c one can consider c infinitely large and then NM describes these phenomena with
great accuracy. However, when speeds are comparable to c, c cannot be considered
an infinitely large value and then only SR can be reliable.

These remarks indicate that the construction of a fundamental quantum
theory based on a finite p will be a problem based on fundamentally new concepts:
since the concepts of particle-antiparticle, electric charge and baryon quantum number
have a physical meaning only for very large values of p, then in such a theory, in the
most general case, there should be no such concepts. However, from the point of view
of the development of science, the fundamental quantum theory at finite p must be
constructed.

When we compare two theories A and B, a question arises what criteria
should be used to prove that, for example, theory A is more general than theory B
and B is a degenerate case of A. In [1, 2, 3] we have proposed the following criteria

Definition: Let theory A contain a finite nonzero parameter and theory
B be obtained from theory A in the formal limit when the parameter goes to zero or
infinity. Suppose that, with any desired accuracy, A can reproduce any result of B by
choosing a value of the parameter. On the contrary, when, the limit is already taken,
one cannot return to A and reproduce all results of A. Then A is more general than
B and B is a degenerate case of A.

The proofs in [1, 2] of fundamental facts that FM is more general (funda-
mental) than SM and FQT is more general (fundamental) than SQT contain a lot
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of technical details and, as a result, these works are quite long (291 and 293 pages,
respectively). In this paper, we present two simple examples that require a mini-
mum of prior knowledge and which we hope will stimulate readers to explore these
fundamental facts in more depth.

The paper is organized as follows. In Secs. 2 and 4 we describe basic facts
about finite rings and quantum theory based on finite mathematics. In Secs. 5 and
6 we describe supersymmetry in AdS theory and consider a simple model example
demonstrating the difference between SQT and FQT. In Secs. 7 and 8 this difference
is demonstrated on the example of Dirac supersingletons.

2 Basic facts about finite rings

In contrast to SM which starts from the infinite ring Z = (−∞, ...−2,−1, 0, 1, 2, ...∞),
FM starts from the finite ring Rp = (0, 1, 2, ...p− 1) where addition, subtraction and
multiplication are defined as usual but modulo p. We believe that the notation Z/p
for Rp is not adequate because it may give a wrong impression that FM starts from
the infinite set Z and that Z is more general than Rp. However, although Z has more
elements than Rp, Z cannot be more general than Rp because Z does not contain
operations modulo a number. If p is prime then Rp becomes the Galois field Fp but
in this paper we consider only finite rings. The theory of such rings is described in
textbooks (see e.g., [7, 8, 9]). The number p is called the characteristic of the ring
Rp. For example, if p = 5 then 3+1=4 as usual but 3·2=1, 4·3=2, 4·4=1 and 3+2=0.
Therefore -2=3, -4=1 etc.

One might say that the above examples have nothing to do with reality
since 3+2 always equals 5 and not zero. However, since operations in Rp are modulo
p, one can represent Rp as a set {0,±1,±2, ...,±(p − 1)/2)} if p is odd or as a set
{0,±1,±2, ...,±(p/2 − 1), p/2} if p is even. Let f be a function from Rp to Z such
that f(a) has the same notation in Z as a in Rp.

If elements of Z are depicted as integer points on the x axis of the xy plane
then, if p is odd, the elements of Rp can be depicted as points of the circumference
in Figure 1 and analogously if p is even.

Formally, we can call the element a ∈ Rp positive if f(a) > 0 and negative
if f(a) < 0. In other words, the element a ∈ Rp is positive if it is in the right half-
plane of Figure 1 and negative if in the left half-plane. While in SM, a sum of two
positive numbers is always positive and greater than both original numbers, in FM
(where calculations are carried out modulo p), it is even possible that a sum of two
positive numbers is negative. For example, (p− 1)/2 + 1 = (p + 1)/2 = −(p− 1)/2.
However, for numbers a such that |f(a)| is much less than p, the results of all the
operations are the same as in Z, i.e., for such numbers we do not notice the existence
of p.

When p→∞, a vicinity of zero in Rp becomes the infinite set Z. There-
fore even from pure mathematical point of view, the concept of infinity cannot be
fundamental because, as soon as we replace Rp by Z, we automatically obtain a
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Figure 1: Relation between Rp and Z

degenerate theory because in Z there are no operations modulo a number.
In FQT, states are elements of linear spaces over Rp. One might think

that SQT is more general than FQT because in SQT one can work not only with
integers but also with rational and real numbers. However, as noted in [1, 2, 3, 4]
and Sec. 4, since in SQT the states are projective, for describing wave functions with
any desired accuracy it suffices to use only integers.

3 Do we need spacetime background in quantum

theory?

Historically, the concepts of background space and fields in this space arose from
classical electrodynamics and then they were further developed in General Relativity
which is also a classical (i.e., non-quantum) theory. For example, now we know that
the electromagnetic field consists of photons but, at the classical level, the theory
does not describe the state of each photon. The classical electromagnetic fields E(r, t)
and B(r, t) describe the effective contribution of all photons at the point x = (r, t)
of Minkowski space, and in classical (non-quantum) theory it is assumed that the
parameters x = (r, t) can be measured with any desired accuracy. This is similar to
the situation in statistical physics, where systems of many particles are considered, but
the theory does not describe each particle individually, but introduces concepts that
make sense only for ensembles of a large number of particles (for example, temperature
and pressure).

In quantum theory, every physical quantity must be described by an op-
erator. For example, one can talk about coordinates of a certain particle only if the
position operator for this particle is defined. In QFT, particles are described by field
operators Ψ(x) where x is a point in the background space (e.g., in Minkowski space).
When there are many particles, it may seem that they are in some space. However,
such space is only a mathematical and not a physical object. It is not related to
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certain particles and there are no operators for the coordinates in this space. The
goal of QFT is to construct the S-matrix and when the theory is already constructed
one can forget about Minkowski space because x is only an integration parameter in
the expression for the S-matrix and no physical quantity depends on x. This is in the
spirit of the Heisenberg S-matrix program according to which in RQT it is impossi-
ble to describe the state of the system at each moment in time and it is possible to
describe only transitions of states from the infinite past when t→ −∞ to the distant
future when t→ +∞.

Note that the fact that the S-matrix is the operator in momentum space
does not exclude a possibility that in some situations it is possible to have a spacetime
description with some accuracy but not with absolute accuracy. First of all, as noted
by Pauli [10], the problem of time is one of the most important unsolved problems
of quantum theory because there is no time operator. Also, the position operator
in momentum representation usually exists not only in nonrelativistic theory but in
relativistic theory as well. In this case it is known as the Newton- Wigner position
operator [11] or its modification. However, the coordinate description of elementary
particles can be only approximate. For example, coordinates of a particle with the
mass m cannot be measured with the accuracy better than the particle Compton
wave length h̄/(mc) [12].

As noted in the extensive literature on QFT (see, e.g., [13]), the use of
field functions Ψ(x) also leads to the following mathematical problem. Quantum
interacting local fields can be treated only as operator distributions. A known fact
from the theory of distributions is that their product at the same point is not a correct
mathematical operation. Hence if Ψ1(x) and Ψ2(x) are two local operator fields then
the product Ψ1(x)Ψ2(x) is not well defined. Physicists often ignore this problem: they
think that such products are needed to preserve locality (although the operator of the
quantity x does not exist). As a consequence, representation operators of interacting
systems constructed in QFT are not well defined and the theory contains anomalies
and infinities. A detailed discussion of other problems of QFT can be found, for
example, in [14].

Let us also note that so far the approaches to the spacetime background
come from SM in which, as is known from Gödel’s incompleteness theorems and other
results, there are foundational problems. There is an extensive literature which con-
jectures that foundational problem of quantum theory will be solved in the framework
of approaches with fundamental length (see e.g., [15] and references therein) because
here it will be possible to circumvent infinitesimals. However, since this literature is
based on SM, it involves infinitesimals implicitly.

Despite the noted mathematical problems, QFT is very popular among
physicists due to the following. In renormalizable theories, divergences can be elimi-
nated and, although from a mathematical point of view, renormalization (when oper-
ations with singularities yield non-singular expressions) is not a correct mathematical
operation, in some cases it leads to very impressive agreements between theory and
experiment. However, in non-renormalizable theories, singularities cannot be elimi-
nated, and this is the main obstacle to the construction of quantum gravity.
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4 Quantum theory based on finite mathematics

In this section, following [1, 2, 4], we briefly describe why SQT is a degenerate case
of FQT in the limit p→∞.

In SQT, physical states are described by elements of complex Hilbert
spaces, and operators of physical quantities are self-adjoint operators in such spaces.
By analogy, in FQT, physical states are elements of linear spaces over the ring Rp2

which is a quadratic generalization of Rp and contains p2 elements: any element of
Rp2 can be represented as a+ bi where a, b ∈ Rp and i is a formal element such that
i2 = −1. Then the definition of addition, subtraction and multiplication in Rp2 is
obvious and Rp2 is a ring regardless whether p is prime or not.

In both, SQT and FQT, dS symmetry is defined by the operators Mab

(a, b = 0, 1, 2, 3, 4, Mab = −M ba) satisfying the commutation relations

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (1)

where ηab is the diagonal tensor such that η00 = −η11 = −η22 = −η33 = −η44 = 1.
As discussed in detail in [1, 2, 4, 16], this definition does not involve the fact that the
dS group is the group of motions of dS space.

The definition of AdS symmetry is given by the same expressions but η44 =
1. By analogy with the dS case, this definition does not involve the fact that the AdS
group is the group of motions of AdS space. At the same time, there is an extensive
literature on AdS/CFT correspondence in which AdS symmetry essentially involves
the properties of classical AdS space (see e.g. [17, 18, 19] and references therein).
This literature yields interesting results but currently AdS/CFT correspondence is a
conjectured relationship between two kinds of physical theories. As argued in [1, 2, 4],
at the most fundamental level, quantum theory should not involve such classical
concepts as AdS space and, in this paper, following [1, 2, 3] and other our publications,
we argue that quantum theory should be based on FM.

In SQT, operators of physical quantities act in Hilbert spaces supplied
by a scalar product (...,...), and these operators are selfadjoint. In particular, the
operators in Eqs. (1) are selfadjoint. However, in spaces over Rp2 it is impossible to
introduce a scalar product that satisfies the condition that (x, x) > 0 for all non-zero
elements x in such spaces. The matter is that, as explained in Sec. 2, in FM, the
concepts > and < have their usual meaning only for those elements a ∈ Rp for which
|f(a)| is much less than p. Therefore, in spaces over Rp2 the concept of Hermitian
conjugation has limited applicability: it makes sense only for the actions of operators
on elements of spaces for which the expansion coefficients with respect to the basis
elements are much less than p.

Let us define M̃ab = Mab if a, b 6= 4 and M̃ab = iMab if a 6= 4, b = 4.
Then a direct check shows that the set of operators M̃ab satisfies Eq. (1) if η44 is
replaced by −η44. Therefore, if the set of operators Mab satisfies the conditions (1)
for the dS algebra, then the set of operators M̃ab satisfies the conditions (1) for the
AdS algebra and vice versa.

8



Therefore in FQT, the dS and AdS theories are equivalent. However,
in SQT they are not equivalent for the following reason. Here it is required that
the operators Mab should not only satisfy Eq. (1) but additionally they should be
selfadjoint (as explained above, in FQT such a requirement cannot be imposed).
However, if the operators Ma4 are Hermitian then the operators M̃a4 = iMab are
anti-Hermitian.

When in SQT the operators in Eq. (1) are selfadjoint then, as described
in a wide literature, IRs of the dS and AdS algebras are infinite-dimensional. Rep-
resentations in spaces over a ring of nonzero characteristic are called modular repre-
sentations. According to the Zassenhaus theorem (see e.g., [20, 21]), all modular IRs
are finite-dimensional. In [22, 23] we constructed modular IRs of the algebras defined
by Eq. (1).

In SQT, all Hilbert spaces are separable, i.e., they contain a countable
dense subset. In such spaces it is always possible to choose a basis (e1, e2, ...en, ...)
such that the norm of each ej is an integer. The elements of such spaces can be
denoted as (c1, c2, ...cn, ...) where all the expansion coefficients cj for such a basis are
complex numbers and can be represented as cj = aj + ibj. As explained in [4], since
spaces in quantum theory are projective, it follows from the results of the textbook
[24] that:

In SQT, each element of a separable Hilbert space can be approximated
with any desired accuracy by a finite linear combination

x =
n∑

j=1

cjej (2)

where all the numbers aj and bj are integers, i.e., belong to Z.
In FQT, quantum states also can be represented in the form (2) but here

the cj = aj +ibj are elements of Rp2 . As shown in [1, 2, 3, 4], by using Definition and
the above results one can prove that FQT is more general (fundamental) than SQT
and the latter is a special degenerate case of the former in the formal limit p → ∞:
when the numbers (aj, bj) are such that ∀j, |f(aj)| and |f(bj)| are much less than
p then FQT reproduces all results of SQT but SQT cannot reproduce all results of
FQT if some of the numbers (aj, bj) are comparable to p.

5 Supersymmetry

In SQT, supersymmetry is valid in the AdS case but is not valid in the dS one. As
shown in [25], in SQT, dS symmetry is more general than AdS one, and it may be
a reason why supersymmetry has not been discovered yet. However, as shown in
[1, 2, 3, 4], SQT is a degenerate case of FQT in the formal limit p → ∞, and, as
shown in Sec. 4, in FQT, dS and AdS symmetries are equivalent.

Representations of the osp(1,4) superalgebra are described by 14 opera-
tors, as well as representations of the Poincare superalgebra. However, effectively,
representations of the osp(1,4) superalgebra can be described only by four fermionic
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operators. The matter is that ten bosonic operators of the osp(1,4) superalgebra are
the anticommutators of the four fermionic operators. This is not the case for the
Poincare superalgebra since the Poincare algebra operators are obtained from the
so(2,3) ones by contraction. One can say that the representation of the osp(1,4) su-
peralgebra is the implementation of the idea that supersymmetry is the extraction
of the square root from the usual symmetry (by analogy with the treatment of the
Dirac equation as a square root from the Klein-Gordon equation).

Let (d′1, d
′
2, d
′′
1, d
′′
2) be the fermionic operators of the osp(1,4) superalgebra.

They should satisfy the following relations. If (A,B,C) are any fermionic operators,
[...,...] is used to denote a commutator and {..., ...} to denote an anticommutator then

[A, {B,C}] = F (A,B)C + F (A,C)B (3)

where the form F (A,B) is skew symmetric, F (d′j, dj”) = 1 (j = 1, 2) and the other
independent values of F (A,B) are equal to zero.

As shown by various authors (see e.g., [1, 2, 26]), the operators Mab in
Eqs. (1) can be expressed through bilinear combinations of the fermionic operators
as follows:

h1 = {d′1, d′′1}, h2 = {d′2, d′′2}, M04 = h1 + h2, M12 = Lz = h1 − h2
L+ = {d′2, d′′1}, L− = {d′1, d′′2}, M23 = Lx = L+ + L−

M31 = Ly = −i(L+ − L−), M14 = (d′′2)2 + (d′2)
2 − (d′′1)2 − (d′1)

2

M24 = i[(d′′1)2 + (d′′2)2 − (d′1)
2 − (d′2)

2]

M34 = {d′1, d′2}+ {d′′1, d′′2}, M30 = −i[{d′′1, d′′2} − {d′1, d′2}]
M10 = i[(d′′1)2 − (d′1)

2 − (d′′2)2 + (d′2)
2]

M20 = (d′′1)2 + (d′′2)2 + (d′1)
2 + (d′2)

2 (4)

where L = (Lx, Ly, Lz) is the standard operator of three-dimensional rotations.
We require the existence of the generating vector e0 satisfying the condi-

tions :

d′je0 = d′2d
′′
1e0 = 0, d′jd

′′
j e0 = qje0 (j = 1, 2) (5)

The full representation space can be obtained by successively acting by the fermionic
operators on e0 and taking all possible linear combinations of such vectors. The theory
of self-adjoint IRs of the osp(1,4) algebra has been developed by several authors (see
e.g., [26]), and in [1, 2] this theory has been generalized to the case of FQT.

6 Model example

In this section we consider a simple model example when in Eq. (5) there are only
two fermionic operators (d′, d”) and one bosonic operator h such that

h = {d′, d′′}, [h, d′] = −d′, [h, d′′] = d′′ (6)
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Here the first expression shows that the relations (6) can be formulated only in terms
of the fermionic operators. We will consider IRs of the superalgebra (6) in SQT and
FQT.

6.1 IRs of the superalgebra (6) in SQT

Consider an IR of the algebra (6) generated by a vector e0 such that

d′e0 = 0, he0 = q0e0, (q0 > 1/2) (7)

and define en = (d′′)ne0 (n = 1, 2, ...). Then d′en = a(n)en−1 where, as follows from
Eq. (7), a(0) = 0, a(1) = q0 and

a(n) = q0 + n− 1− a(n− 1) (8)

The solution of this equation is

a(n) = n/2 + (q0 − 1/2)[1− (−1)n]/2 (9)

Therefore, a(n) > 0 ∀n and, as follows from Eq. (6), hen = (n + q0)en. So, we have
obtained an infinite-dimensional IR of the algebra (6) with the basis (e0, e1, e2...)
where all basis vectors are eigenvectors of the operator h with positive eigenvalues.

Consider now an IR of the algebra (6) generated by a vector f0 such that

d′′f0 = 0, hf0 = −q0e0, (q0 > 1/2) (10)

and define fn = (d′)nf0 (n = 1, 2, ...). Then d′′fn = b(n)fn−1 where, as follows from
Eq. (10), b(0) = 0, b(1) = −q0 and

b(n) = (−n− q0 + 1)− b(n− 1) (11)

The solution of this equation is

b(n) = −n/2− (q0 − 1/2)[1− (−1)n]/2 (12)

Therefore, b(n) < 0 ∀n and, as follows from Eq. (6), hfn = −(n + q0)fn. So, we
have obtained an infinite-dimensional IR of the algebra (6) with the basis (f0, f1, f2...)
where all basis vectors are the eigenvectors of the operator h with negative eigenvalues.

6.2 IRs of the superalgebra (6) in FQT

In FQT we can also consider an IR of the algebra (6) generated by a vector e0 such
that

d′e0 = 0, d′d′′e0 = q0e0 (13)

where now q0 ∈ Rp. As in SQT, we define en = (d′′)ne0. Then d′en = a(n)en−1 where,
as follows from Eq. (13), a(0) = 0, a(1) = q0 and for a(n) we have the same equation
as in (8):

a(n) = q0 + n− 1− a(n− 1) (14)
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We assume that p is odd and then, instead of the solution (9), the solution is

a(n) =
p+ 1

2
n+

p+ 1

2
(q0 −

p+ 1

2
)[1− (−1)n] (15)

Then, unlike the situation in SQT where a(n) > 0 at (n = 1, 2, ...∞), we have
that, since in Rp the results should be taken modulo p, a(n) = 0 if n = 2p + 1 −
2q0. Therefore, the IR under consideration is finite-dimensional, the basis of this IR
consists of vectors (e0, e1, ...eN) where N = nmax = 2p− 2q0 and the dimension of the
IR is 2p+ 1− 2q0.

Just like in SQT, we have that hen = (n+ q0)en at n = 0, 1, ...N , i.e., the
basis vectors en are eigenvectors of the operator h with the eigenvalues λn = n + q0.
Since all the λn should be different in Rp, it should be N ≤ (p− 1).

We choose q0 = (p+ 1)/2 + a where a ∈ Rp and a can be one of the values
(0, 1, ..(p− 3)/2). Then f(q0) < 0, i.e., q0 is in the left half-plane of Figure 1. Then,
unlike the situation in SQT where λn > 0 at all n = 0, 1, ...∞, we have that in FQT
f(λn) < 0 at n = (0, 1..., (p − 3)/2 − a), f(λn) = 0 at n = (p − 1)/2 − a and finally
f(λn) > 0 at n = ((p+ 1)/2)− a, ..., nmax).

Thus, the construction of the basis begins with the basis vector e0 with
the eigenvalue of h equal to λ0 = q0 and ends with the basis vector eN with the
eigenvalue λN = −q0. Thus, in contrast to SQT where there are two different
IRs with positive and negative eigenvalues of h, respectively, in FQT there
is only one IR which contains the analogs of negative and positive IRs in
SQT and contains a basis vector with the eigenvalue of h equal to zero.
In addition, if in SQT, negative and positive IRs are infinite-dimensional,
then in FQT, the only IR is finite-dimensional with dimension p− 2a.

7 Dirac supersingleton

When describing elementary particles within the framework of AdS symmetry, the
following problems arise.

If m is the mass of a particle in Poincare invariant theory then its mass µ
in AdS theory is dimensionless and the relation between µ and m is µ = mR where
R is the contraction parameter for the transition from AdS to Poincare symmetry.
As explained in [25], the data on cosmological acceleration show that, at the present
stage of the universe, R is of the order of 1026m [25]. Therefore, even for elementary
particles, the AdS masses are very large. For example, the AdS masses of the electron,
the Earth and the Sun are of the order of 1039, 1093 and 1099, respectively. The fact
that even the AdS mass of the electron is so large might be an indication that the
electron is not a true elementary particle. In addition, the present upper level for the
photon mass is 10−17ev or less. This value seems to be an extremely tiny quantity.
However, the corresponding AdS mass is of the order of 1016 and so, even the mass
which is treated as extremely small in Poincare invariant theory might be very large
in AdS invariant theory.
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As shown in [25], in SQT, dS symmetry is more general than AdS one but
in the framework of dS symmetry it is not possible to describe neutral elementary
particles, i.e., particles which are equivalent to the their antiparticles. As shown in
Sec. 4, in FQT, dS and AdS symmetries are equivalent and, as shown in [1, 2], in this
theory also there are no neutral elementary particles. In particular, even the photon
is not elementary.

This problem has been discussed by several authors. In Standard Model
(based on Poincare invariance) only massless particles are treated as elementary.
However, as shown in the seminal paper by Flato and Fronsdal [27] (see also [28]), in
standard AdS theory, each massless IR can be constructed from the tensor product
of two singleton IRs discovered by Dirac in his paper [29] titled ”A Remarkable
Representation of the 3 + 2 de Sitter group”, and the authors of [27] believe that this
is indeed a truly remarkable property.

The IR describing the supersingleton is constructed as follows. In Eq. (5),
we choose q1 and q2 the same and equal q0 where q0 = 1/2 in standard theory over
complex numbers and q0 = (p+ 1)/2 in FQT, where p is the characteristic of the ring
and p is odd.

The authors of [27] and other publications treat singletons as true ele-
mentary particles because their weight diagrams has only a single trajectory (that’s
why the corresponding IRs are called singletons). However, one should answer the
following questions:

• a) Why singletons have not been observed yet.

• b) Why such massless particles as photons and others are stable and their decays
into singletons have not been observed.

There exists a wide literature (see e.g., [30, 31] and references therein) where this
problem is investigated from the point of view of standard AdS QFT. For example, in
AdS QFT, singleton fields live on the boundary at infinity of the AdS bulk (boundary
which has one dimension less than the bulk). However, as noted in Sec. 4, the
explanation in the framework of quantum theory should not involve classical spaces.

On the other hand, as argued in [1, 2], in FQT, the properties of Dirac
singletons are even more remarkable than in standard theory and here the properties
a)-b) have a natural explanation.

In standard AdS theory, there exist four Dirac singletons which in the
literature are called Di singleton, Rac singleton and their antiparticles. In the case
of supersymmetry, Di and Rac singletons are combined into one superparticle - the
Dirac supersingleton, so that there are two supersingletons - the Dirac supersingleton
and its antiparticle. However, in FQT those supersingletons are combined into one
object and so there is only one supersingleton. Here, one of the remarkable properties
of supersingletons is the following. The physical meaning of division comes from
classical physics, which assumes that every object can be divided into any arbitrarily
large number of arbitrarily small parts. However, standard division loses its standard
physical meaning when we reach the level of elementary particles since, for example,

13



the electron cannot be divided into two, three, and so on parts. As shown in [1, 2], in
FQT, the theory of singletons can be built over a ring in which there is no division,
but only addition, subtraction and multiplication.

As shown in [1, 2, 4], the important property of supersingletons is that
the above results can be immediately generalized to the case of higher dimensions,
and in this case it is interesting to explore the possibility that spatial and internal
quantum numbers are on equal footing. The fact that singleton physics can be directly
generalized to the case of higher dimensions has been indicated by several authors
(see e.g., [30] and references therein).

8 Supersingleton IRs in SQT and FQT

As shown in [1, 2], [d′′1, d
′′
2] = 0 in the space of the supersingleton IR. For this reason,

the results for supersingleton IRs can be obtained by directly generalizing the results
of Subsecs. 6.1 and 6.2.

8.1 Supersingleton IRs in SQT

In this subsection it will be shown that in SQT, there is only one supersingleton IR
with positive energies and only one supersingleton IR with negative energies.

Consider first the representation generated by a vector e0 such that

d′je0 = 0, hje0 =
1

2
e0, j = 1, 2. (16)

The basis of the IR consists of the vectors ejk = (d′′1)j(d′′2)ke0. Then, as follows from
Eq. (9)

h1ejk = (j +
1

2
)ejk, h2ejk = (k +

1

2
)ejk, d

′
1ejk =

j

2
ej−1,k, d

′
2ejk =

k

2
ej,k−1 (17)

where j, k = 0, 1, 2, ...∞. As shown in [1, 2], M04 is the AdS analog of the energy
operator because M04 becomes the Poincare energy upon contraction of the AdS
algebra to the Poincare algebra. Then, as follows from Eqs. (4) and (17),

M04ejk = (1 + j + k)ejk (18)

and therefore, the positive energy IR is infinite-dimensional.
Consider now the representation generated by a vector f0 such that

d′′jf0 = 0, hjf0 = −1

2
e0, j = 1, 2. (19)

The basis of the IR consists of the vectors fjk = (d′1)
j(d′2)

kf0. Then, as follows from
Eq. (12)

h1fjk = −(
1

2
+j)fjk, h2jk = −(

1

2
+k)fjk, d

′′
1fjk = −j

2
fj−1,k, d

′′
2fjk = −k

2
fj,k−1 (20)
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where j, k = 0, 1, 2, ...∞. As follows from Eqs. (4) and (20),

M04fjk = −(1 + j + k)ejk (21)

and therefore, the negative energy IR is infinite-dimensional.

8.2 Supersingleton IRs in FQT

In this subsection, it will be shown that, in contrast to the situation in SQT, in FQT
there exists only one supersingleton IR. For definiteness, we assume that p is odd.
Then the FM analog of Eq. (16) is

d′je0 = 0, hje0 =
p+ 1

2
e0, j = 1, 2. (22)

and the FQT analog of Eq. (17) is

h1ejk = (j +
p+ 1

2
)ejk, h2ejk = (k +

p+ 1

2
)ejk

d′1ejk =
j(p+ 1)

2
ej−1,k, d

′
2ejk =

k(p+ 1)

2
ej,k−1 (23)

Since now the results should be taken modulo p, it follows from these expressions that
d′1ejk = 0 at j = p and d′2ejk = 0 at k = p. Therefore ejk 6= 0 at j, k = 0, 1, ..p− 1.

We conclude that, in contrast to the situation in SQT, where
there are two infinite-dimensional IRs (one positive-energy IR and one
negative-energy IR), in FQT there is only one IR which is finite-dimensional
with the dimension p2.

As follows from Eq. (23), since now the results should be taken modulo
p, we have for the eigenvalues of the operator M04 formally the same result as in Eq.
(18) that the elements ejk are the eigenvectors of the operator M04 = h1 +h2 with the
eigenvalues (j+k+ 1). Therefore when j, k � p we have an analog of positive energy
IR. On the other hand, if j = p − 1 − j′ and k = p − 1 − k′ then, since the results
should be taken modulo p, we have that in terms of j′ and k′ the eigenvalues of M04

are equal to −(1 + j′ + k′) by analogy with Eq. (21). Therefore when j′, k′ � p we
have an analog of negative energy IR.

9 Conclusion

In this paper we note that, as shown in our previous works, fundamental quantum
theory should be based on finite mathematics in which it is not assumed that the
characteristic p of the ring used in this mathematics is anomalously large. In this
theory there are no concepts of particle-antiparticle and conserved additive quantum
numbers such as electric charge, baryon quantum number etc.

The above properties have been discussed in our publications with detailed
technical proofs. The purpose of this paper is to consider models where differences
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between SQT and FQT can be described in a much simpler way. In Sec. 6 we
consider a model where a superalgebra is defined by only two operators and in Sec.
8 we consider the model of Dirac supersingleton.

Our publications and this paper illustrate that the standard concepts of
particle-antiparticle and conserved additive quantum numbers are not fundamental.
As noted in [1, 2, 3, 4], our results on universal law of gravity indicate that at the
present state of the universe the value p is very large (of the order of exp(1080) or
more) and that is why these concepts work approximately with very high accuracy.
However, there is no reason to think that p is a fundamental quantity that had the
same value at all stages of the universe.

Each computer can carry out calculations only modulo a certain number,
which depends on the maximum number of bits with which this computer can work.
The literature discusses the possibility that the universe can be treated as a computer
(see e.g., [32]). From this point of view, the value p is not some fundamental constant
but is determined by the state of the universe at a given stage. And, since the state of
the universe is changing, it is natural to expect that the number p describing physics
at different stages of the evolution of the universe will be different at different stages.

There are several reasons to think that at early stages of the universe
the value p was much less than now. One of the reasons is the problem of the
baryon asymmetry of the universe (BAU). Modern cosmological theories state that
the numbers of baryons and antibaryons in the early stages of the universe were
the same. Then, since the baryon number is the conserved quantum number, those
numbers should be the same at the present stage. However, at this stage the number
of baryons is much greater than the number of antibaryons. However, if the value p
at early stages of the universe was much less than now then the statement that the
numbers of baryons and antibaryons were the same, does not have a physical meaning
and the BAU problem does not arise (see e.g., [1, 2, 4] for more details).

Another reason is the problem of time in quantum theory. As noted in
Sec. 3, this problem was posed by Pauli in view of the fact that in this theory there
is no time operator. In [1, 2] we discussed a conjecture that standard classical time
t manifests itself because the value p changes, i.e., t is a function of p. We do not
say that p changes over time because classical time t cannot be present in quantum
theory; we say that we feel changing time because p changes. In [33] we discussed a
model where, in semiclassical approximation, the variations of t and p at the present
stage of the universe, are related as

∆t =
R

c

∆ln(p)

ln(p)

where R is the contraction parameter from the dS to the Poincare algebra. In this
model, the quantities t and p increase during the evolution of the universe. However,
since we do not know how the states of the universe were described in its early stages,
we cannot say what the magnitudes of p were at these stages.

In summary, the concepts of particle-antiparticle and additive quantum
numbers should not be present in the ultimate quantum theory which should not
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assume that p is necessarily very large. Thus, the main problem is what principles
this theory should be based on.
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