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A B S T R A C T

Plants modulate their rhizochemistry, which affects soil bacterial communities and, ultimately, plant perfor-
mance. Although our understanding of rhizochemistry is growing, knowledge of its responses to abiotic con-
straints is limited, especially in realistic ecological contexts. Here, we combined predictive metabolomics with
soil metagenomics to investigate how rhizochemistry responded to environmental constraints and how it in turn
shaped soil bacterial communities across stress gradients in the Atacama Desert. We found that rhizochemical
adjustments predicted the environment (i.e. elevation, R2 between 96% and 74%) of two plant species, identi-
fying rhizochemical markers for plant resilience to harsh edaphic conditions. These metabolites (e.g. glutamic
and succinic acid, catechins) were consistent across years and could predict the elevation of two independent
plant species, suggesting biochemical convergence. Next, convergent patterns in the dynamics of bacterial
communities were also observed across the elevation gradient. Finally, rhizosphere predictors were associated
with variation in composition and abundance of bacterial species. Biochemical markers and convergences as well
as potential roles of associated predictive bacterial families reflected the requirements for plant life under
extreme conditions. This included biological processes such as nitrogen and water starvation (e.g. glutamic and
organic acids, Bradyrhizobiaceae), metal pollution (e.g. Caulobacteraceae) and plant development and defence
(e.g. flavonoids, lipids, Chitinophagaceae). Overall, findings highlighted convergent patterns belowground,
which represent exciting insights in the context of evolutionary biology, and may indicate unique metabolic sets
also relevant for crop engineering and soil quality diagnostics. Besides, the results emphasise the need to inte-
grate ecology with omics approaches to explore plant-soil interactions and better predict their responses to
climate change.
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E-mail addresses: thomas.dussarrat@uni-bielefeld.de (T. Dussarrat), rgutierrez@uc.cl (R.A. Gutiérrez), pierre.petriacq@inrae.fr (P. Pétriacq).
1 Equal contribution.

Contents lists available at ScienceDirect

Soil Biology and Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

https://doi.org/10.1016/j.soilbio.2024.109662
Received 15 May 2024; Received in revised form 22 November 2024; Accepted 24 November 2024

Soil Biology and Biochemistry 202 (2025) 109662 

Available online 26 November 2024 
0038-0717/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:thomas.dussarrat@uni-bielefeld.de
mailto:rgutierrez@uc.cl
mailto:pierre.petriacq@inrae.fr
www.sciencedirect.com/science/journal/00380717
https://www.elsevier.com/locate/soilbio
https://doi.org/10.1016/j.soilbio.2024.109662
https://doi.org/10.1016/j.soilbio.2024.109662
https://doi.org/10.1016/j.soilbio.2024.109662
http://creativecommons.org/licenses/by/4.0/


1. Introduction

The ability of a plant to thrive in an ecosystem is closely dependent
on autonomous (e.g. genetic make-up) and non-autonomous capacities
(e.g. interactions with soil bacterial communities and other species)
(Kraiser et al., 2011; Trivedi et al., 2020; van Dam, 2009). Plants alter
soil properties and drive soil microbiome and rhizosphere interactions
via root exudates (Bennett and Klironomos, 2019; Berendsen et al.,
2012; Oburger and Schmidt, 2016; Vismans et al., 2022; Yu et al., 2021).
In turn, the soil bacteria influence the soil structure and can also posi-
tively or negatively influence plant performance (Gibert et al., 2019;
Hartmann and Six, 2022; Jones and Smith, 2004). Besides, interactions
between plants and soil microorganisms were recently shown to act as a
key driver of plant adaptation (Cosme, 2023). The rhizosphere, which
refers to the area around a plant root (Cotton et al., 2019; Hartmann
et al., 2008; McLaughlin et al., 2023), is the nerve centre of intense
chemical dialogue between the plant and the soil bacterial communities
(Badri and Vivanco, 2009; Bennett and Klironomos, 2019; Cotton et al.,
2019; Fitzpatrick et al., 2020). Analysing rhizochemistry is complex
since it includes plant exudates, their breakdown products as well as
bacterial compounds (Pétriacq et al., 2017). For instance, plants release
organic acids to improve resource uptake or tolerance to soil toxicity
(Carvalhais et al., 2011; Frémont et al., 2022). Plants exudate a wide
diversity of compounds from different classes, such as flavonoids, cou-
marins and lipids to condition bacterial communities, and some me-
tabolites, such as benzoxazinoids, can be metabolised by
microorganisms into antimicrobial compounds (Cotton et al., 2019;
Luginbuehl et al., 2017; Macías et al., 2005; Sasse et al., 2018; Vismans
et al., 2022; Yu et al., 2021). Thus, analyses of non-sterile rhizosphere
should be used as a holistic approach to capture a more complete frac-
tion of rhizosphere signals, instead of plants isolated from their natural
environment (Pétriacq et al., 2017; Schandry and Becker, 2020; Stei-
nauer et al., 2023). Overall, recent efforts improved our understanding
of some biochemical mechanisms used by plants to interact with the
microbial community (Hawkins et al., 2023). Nevertheless, it is
reasonable to say that a significant portion of rhizochemicals remains to
be discovered and that little is known about how these signals shape the
surrounding microbe community (Delory et al., 2016; McLaughlin et al.,
2023; Pétriacq et al., 2017). Moreover, most studies were performed on
single species. Hence, rhizosphere chemicals should be explored in wild
ecosystems and across multiple plant species to gain a more realistic
image of soil chemistry in natura.

Soil bacterial communities and plant rhizochemistry are influenced
by abiotic constraints (Baldrian et al., 2023; Bennett and Klironomos,
2019; Mandakovic et al., 2023). Previous studies detailed the effects of
abiotic stress such as drought on mycorrhizal fungi, plant exudates and
plant-microbe interactions (Branco et al., 2022; Del Valle et al., 2020;
Gargallo-Garriga et al., 2018; Ruiz-Lozano et al., 2016; Trivedi et al.,
2022). Interestingly, the response of soil chemistry to environmental
pressures such as drought seems highly variable between plant species
and environments (Trivedi et al., 2020). However, the plant species- or
environment-specific character of most studies may explain this high
specificity. Besides, most experiments were conducted under controlled
conditions, which only enabled the analysis of short-term responses. In
contrast, studies in wild ecosystems offer a unique opportunity to
explore the responses of rhizochemistry to abiotic stress that result from
long-term adaptation processes.

The Atacama Desert is the driest non-polar desert on Earth (Eshel
et al., 2021). In this desert, the Talabre-Lejía transect (TLT) is an
elevation gradient (≈2500–4500 m.a.s.l) characterised by extreme
scarcity of water (20–160 mm.yr− 1), nutrient deprivation, and high
solar irradiance (600 W m− 2.d− 1) (Eshel et al., 2021). Tens of plant
species thrive in this transect and define three plant communities: the
Prepuna (2500–3300 m.a.s.l), the Puna (3300–4000 m.a.s.l) and the
Steppe (4000–4500 m.a.s.l) (Díaz et al., 2019). Thus, the Atacama
Desert represents an ideal system to study responses of the

rhizochemistry to this gradient of extreme abiotic constraints. Besides, a
high variation in nature and abundance of soil microorganisms has
previously been reported for this area (Eshel et al., 2021; Mandakovic
et al., 2023; Bartholomäus et al., 2024). Here, we addressed whether and
how rhizochemicals and associated bacterial communities responded to
a linear variation in abiotic constraints across the elevation gradient. In
addition, we investigated the specificity level of this response across
plant species. As a previous study highlighted convergent responses in
multiple chemical families aboveground (Dussarrat et al., 2022), we
hypothesized that inter-species similarities might also occur below-
ground at the chemical and bacterial community level. To answer these
questions, we collected four plant species and the associated rhizosphere
and bulk soil fractions at various elevations across the entire gradient to
explore the rhizochemistry responses to the different abiotic factors. In
addition, we used previous sequencing data in operational taxonomic
unit (OTU) abundances across the transect (Mandakovic et al., 2023) to
investigate whether convergence was also observed in the response of
bacterial communities. Finally, subsequent bioinformatic analyses were
applied to link rhizosphere metabolic predictors to the composition of
the associated bacterial communities across the gradient.

2. Materials and methods

2.1. Sampling

Non-sterile rhizosphere samples were collected in the Talabre-Lejía
transect (lat 22◦-24◦S) in April (7 and 8) 2021 at 5 cm depth under four
distinct plant species, whose aerial parts were also sampled (Table S1).
The sampling period (after the rainy season) and sites were selected
based on previous studies that have proved effective in capturing plant
biodiversity and biochemical diversity aboveground, while a 5 cm depth
was selected as important processes occur at this depth such as organic
matter degradation and soil oxygenation, among others (Díaz et al.,
2024; Dussarrat et al., 2022). For each rhizosphere sample, the soil was
dug to a 5 cm depth under the plant and the surrounding rhizosphere
was homogenised using a small shovel. Then, 5 mL of soil were collected
in an Eppendorf tube and directly snap-frozen in liquid nitrogen. Any
visible root fragments in rhizosphere samples were removed. Species
included Atriplex imbricata (Moq.) D.Dietr. (Amaranthaceae), Hoff-
mannseggia doellii Phil. (Fabaceae), Adesmia spinosissimaMeyen ex Vogel
(Fabaceae) and the Poaceae Jarava frigida (Phil.) F. Rojas (synonym of
Pappostipa frigida (Phil.) Romasch). Each pair of samples (i.e. rhizo-
sphere and associated plant), was collected in 1–4 elevation sites
(Fig. 1), depending on species availability, with a minimum of three
biological replicates for both rhizosphere and plant samples. In addition,
two soil samples were taken from open areas (i.e. without plants
aboveground) within a ≈30 cm radius around the target species at each
elevation. When two species were collected at a given altitude,
open-area samples were collected between the target species. Rhizo-
sphere samples under J. frigida and plant samples from A. imbricata and
J. frigida were also collected in April (6 and 7) 2019 (Table S1).
Rhizosphere samples of J. frigida collected in 2019 included sites
collected in 2021 (4,270, 4,072, 3870 m.a.s.l), as well as sites that were
not sampled in 2021 (4480 and 3970 m.a.s.l). Frozen samples were
transported to the laboratory in dry ice, freeze-dried and ground. Dried
sample powders were stored at − 80 ◦C until extraction.

2.2. Environmental data

The environmental conditions along the elevation transect, charac-
terised in a previous study, were represented by chilling to freezing
temperatures during the night, as well as extremely low annual rainfall
and high daytime solar radiation levels compared to the global average
(Eshel et al., 2021). Over the years, climatic data were assessed every
hour using two meteorological stations (3060 and 4090 m.a.s.l). Soil
composition was previously obtained and described for over 3 years
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without major changes (Eshel et al., 2021). Measured climatic and
edaphic parameters included: temperature, humidity, solar irradiance,
precipitation, soil water content (here preferred over precipitation as it
accounts for snow level at high elevations), pH, as well as nitrate,
ammonium, Olsen phosphorous, zinc, potassium, manganese, copper,
iron, boron, molybdenum, sulphur, calcium, manganese, sodium, chlo-
rine, bicarbonate salt and silt contents. Values of these parameters are
indicated in Dussarrat et al. (2022) and in Table S1 of this manuscript.

2.3. Soil bacterial communities

Previously, the relative abundance of OTUs had been assessed in
both bulk soil (BS) and rhizosphere surrounding samples (RSS) under
multiple plant species, each at a given altitude, through the Atacama
transect (Mandakovic et al., 2023). In this previous study, the
bacteria-specific primer set 28F (5′ GA GTT TGA TCM TGG CTC AG 3′)
and 519R (5′ GWA TTA CCG CGG CKG CTG 3’) with a barcode in the
forward primer were used to amplify the bacterial 16S rRNA gene.
Samples were sequenced by Molecular Research LP (MR DNA) on an
Illumina MiSeq platform. Sequence data processing included the
removal of barcodes and sequences <150 bp, a grouping of valid se-
quences with 4% divergence using Usearch (v6.1.544) and a filtration
step of sequences with a minimum quality of q30 (Mandakovic et al.,
2023). For this present study, OTU data from each dataset (BS and RSS)
were rarefied to 8000 reads and only OTUs identified at the family level
were used (10,515 OTUs) to test for changes in the composition of the
soil bacterial community in response to elevation.

2.4. Metabolomics

To maximise the extraction of semi-polar compounds, we performed
robotised ethanolic fractionation using 450 mg or 20 mg of dried soil
and plant material, respectively (Luna et al., 2020). Ethanol extracts
were subjected to ultra-high-pressure liquid chromatography (UHPLC) -
Orbitrap mass spectrometry analysis using an Ultimate 3000 UHPLC
combined with an LTQ-Orbitrap Elite MS (ThermoScientific, Bremen,
Germany). The separation was realised on a C18 column (C18-Gemini,

150 × 2 mm, 3 μm, 110 Å, Phenomenex, France) coupled to a C18
SecurityGuard Gemini pre-column (4 × 2 mm, 3 μm, Phenomenex,
France) at 30 ◦C with an injection volume of 5 μL, a flow rate of 350
μL/min and a previously established gradient (Luna et al., 2020). The
LTQ-Orbitrap was operated in negative electrospray ionisation (ESI− )
mode (Dussarrat et al., 2022; Luna et al., 2020). MS spectra were ac-
quired using data-dependent analysis at a resolution of 30,000 in a m/z
range of 50-1500. Quality controls (QC) were injected every 10 samples.

Raw LC-MS data were processed via MS-DIAL (v. 4.90) using opti-
mised parameters (Tsugawa et al., 2015) detailed in Table S2. Putative
annotation was performed using the MS/MS-Public-Neg database (v.
17). Feature filtering was performed using blanks and QC samples,
where features exceeding a coefficient of variation of 30% were
excluded. The resulting dataset (4629 features) was first normalised by
sample weight, followed by median normalisation, cube-root trans-
formation and Pareto scaling using MetaboAnalyst (v. 6.0) (Xia et al.,
2015) before statistical analyses. The non-normalised dataset obtained
after preprocessing is available in Table S3 and was deposited online
(see Data availability).

2.5. Annotation and classification

The automatic annotation (see above) was complemented by a
manual putative annotation for the best predictive features as previously
described (Dussarrat et al., 2022). Putative chemical formulas were
defined by screening accurate m/z on MetFrag (Ruttkies et al., 2016),
and the putative annotation was performed using ChEBI (Hastings et al.,
2016) and KNApSAcK (http://www.knapsackfamily.com/KNApSAcK/)
databases. MS/MS spectra were compared to experimental spectra on
Massbank (Horai et al., 2010). The metabolomics standards initiative
levels (MSI levels) were used to define the confidence level in the pu-
tative annotations (Sumner et al., 2014), as previously performed
(Dussarrat et al., 2022, 2023). All annotations should be considered
putative, even when confirmed with an MS/MS match (MSI 2 level).
Biochemical classes and pathways were defined using ChEBI and
ClassyFire taxonomy (Djoumbou Feunang et al., 2016).

Fig. 1. | Sampling and analytical workflow. a. Sampling of plant and rhizosphere material. b. Simplified workflow of the analysis. A.imb: Atriplex imbricata, A.spi:
Adesmia spinosissima, H.doe: Hoffmannseggia doellii, J.fri: Jarava frigida.
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2.6. Statistical analyses

The normalised metabolic dataset was processed through multivar-
iate analysis using MetaboAnalyst (v. 6.0) and R software (v. 4.2.1) (R
Core Team, 2022; Xia et al., 2015). Principal component analysis (PCA)
was performed using FactoMineR package (Lê et al., 2008). Variation in
chemical diversity was explored using the chemodiv package to calculate
richness and Shannon’s indices (Petrén et al., 2023). To extract rhizo-
sphere or plant features responding significantly to elevation, we per-
formed ANOVA tests in MetaboAnalyst and tested Pearson’s correlation
using the Hmisc package (Harrel, 2020). Features responding signifi-
cantly to elevation and significantly correlated with elevation (Pearson’s
correlation, P < 0.05, FDR correction) were extracted for subsequent
analyses. However, for A. imbricata, the 54 features showing a signifi-
cant trend (i.e. P < 0.05 without FDR correction) were also kept as only 8
features were significant with FDR correction. This threshold of P <

0.05, FDR correction is universal and well-suited for metabolomics an-
alyses (Dussarrat et al., 2022), although we recognise that some features
of interest might be excluded despite great correlation with elevation.
To test the capacity of rhizochemistry to predict plant elevation, we
performed partial least squares regression analyses (PLSr) via the pls
package, which was used to select the optimal number of components
(“onesigma” function, one component was selected) and to perform the
predictions (Liland et al., 2022). Sample sets were divided into a
“training” (80%) and a “testing” set (20%) using stratified sampling.
This optimised 80/20 ratio is widely accepted (Dussarrat et al., 2022),
but is not indicative of the robustness and generalisability of the model,
which are ensured by permutation tests and an independent validation
set, as described below. Models were performed 50 times to cope with
random partitioning and prediction quality was assessed by fitting
predicted elevations to measured values. To test the likelihood of
spurious predictions, 50 permutation sets were created for each model
by randomly swapping elevation levels between samples using the
transform function in R (v. 4.2.1) as previously described (Dussarrat
et al., 2022). Next, the predictive capacity of the predictive features
(hereafter referred to as markers) was confirmed by performing real
predictions on independent datasets (i.e. independent data not included
in either the training or the testing set). Model equations were developed
on plants (A. imbricata or J. frigida) collected in 2021 and directly
applied to either (i) the other two species (H. doellii, A. spinosissima) and
(ii) plants of the same species collected in 2019. Tukey’s tests were
performed to compare the accuracy of the models using the agricolae
package (Mendiburu, 2020). Figures were designed using ggplot2, ggpubr
and Hmisc packages (Harrel, 2020; Kassambara, 2020; Wickham, 2016).

Subsequent statistical analyses were performed to link rhizosphere
metabolic predictors with aboveground metabolism. We first extracted
metabolic features that responded significantly to elevation in above-
ground samples of A. imbricata, A. spinosissima and J. frigida collected in
2021 and 2019 (Tukey’s or Student’s test, P < 0.05, FDR correction). We
then tested whether rhizosphere metabolic predictors were also
responding significantly to elevation in aerial tissues (Fig. S1).

Next, the intensity of the rhizosphere markers was linked to changes
in the composition of the soil bacterial community (Fig. S1). We
extracted OTUs responding significantly to elevation (P < 0.05, FDR)
and detected in at least three RSS samples to exclude OTUs found under
specific plant species or genera, yielding a set of 1973 OTUs. To test for
convergent responses of bacterial communities to elevation, PLSr
models were performed as detailed above (see 2.4 Statistical analyses).
Real predictions were performed by excluding four species from the RSS
dataset (Exodeconus integrifolius, 2870 m.a.s.l; Trichocline caulescens,
3370 m.a.s.l; Lupinus subinflatus, 3870 m.a.s.l; Calamagrostis cabrerae,
4270m.a.s.l). Model equations were developed on the remaining dataset
and directly applied to these four species to predict their elevation. The
most predictive OTUs (top 1%, 105 OTUs) were defined based on their
coefficients in the models. Putative functional roles of the top 1%

predictive OTUs were assigned via the PICRUSt2 package (Douglas et al.,
2020) using 16S rRNA sequences and the KEGG database as previously
described (Mandakovic et al., 2023).

We then linked the response of plant rhizochemistry and bacterial
communities. According to our results, convergent responses of plant
rhizosphere to elevation might be observed, which could lead to simi-
larities in the response of certain bacterial species. In this context, cor-
relations between OTU abundances and metabolic intensities were
tested regardless of the plant species under which samples were
collected. For Steppe species, the average intensity of the best 216
markers was calculated for each elevation at which J. frigida or
A. spinosissima were collected in both experiments (i.e. 3,870, 4,072,
4270 m.a.s.l, Fig. S1). OTU abundances of RSS samples at the same el-
evations were extracted (30 samples, 10 plant species, 3 elevations) and
Pearson’s correlation was assessed. We defined a significant correlation
between a metabolic marker and an OTU if P < 0.05 after FDR correc-
tion. Similarly, the average intensity of the best markers from Prepuna
species (A. imbricata and H. doellii) at 2870 and 3170 m.a.s.l was linked
to OTU abundances from RSS samples collected at similar elevations (9
samples, 3 plant species, 2 elevations, Fig. S1). The most relevant bac-
terial families were defined by exploring the total number of related
OTUs correlated to at least one metabolic marker. A literature search
was carried out to develop hypotheses about the potential roles of these
bacterial families. For this literature search, names of the most relevant
bacterial families were screened on PubMed (https://pubmed.ncbi.nlm.
nih.gov/) for established functional roles (e.g. plant growth-promoting
bacteria), which were then reported to enrich the interpretation of
this data.

3. Results

3.1. Influence of plant species and environment on rhizochemistry

Untargeted eco-metabolomics to assess rhizochemicals of four plant
species and the associated rhizosphere collected at different elevations
(Fig. 1 and Table S1) yielded 9008 features after pre-processing, from
which 4629 were detected in rhizosphere samples and 4366 in both
rhizosphere and aboveground samples (Table S4). As a first step, we
focused on the metabolic features detected in both rhizosphere and plant
samples. The PCA indicated that both (i) plant species and (ii) envi-
ronmental factors influenced rhizochemicals (Fig. S2). Plant species
were grouped according to their vegetation belt (i.e. Prepuna,
A. imbricata and H. doellii, and Steppe species, J. frigida and
A. spinosissima). Metabolic fingerprints were also influenced by eleva-
tion (Fig. S2).

3.2. Chemical diversity decreases under challenging conditions

Richness and Shannon’s diversity of the rhizochemistry were
dependent on plant species and elevation (Fig. S3). Prepuna species
(A. imbricata and H. doellii) displayed fewer metabolic features as
compared to Steppe species (A. spinosissima and J. frigida). Chemical
richness decreased at the lowest sites, where hydric stress is higher for
the species inhabiting these sites (Díaz et al., 2024; Dussarrat et al.,
2022). The impact of elevation was also analysed at the species level
(Fig. S4). The lowest richness scores were detected at 3770 and 4480 m.
a.s.l in the rhizosphere of J. frigida, where richness levels were compa-
rable to those observed in lowland species (Fig. S4). Unfortunately,
A. imbricata was not sampled at its lowest and highest survival sites,
explaining the distinct pattern for this species (Díaz et al., 2019). Within
species, Shannon indices did not differ significantly (Figs. S3 and S4).
Overall, these results indicate that plants or microbes tend to have a
narrower chemical repertoire under stressful conditions (i.e. at lower
and higher survival sites for each species).
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3.3. Rhizochemistry predicts plant environment

In J. frigida, 216 features detected in both rhizosphere and plants
were linked to elevation. Similarly, 8 features responded to elevation in
A. imbricata, while 54 showed a significant trend. In comparison, 5
features detected in both rhizosphere and aerial parts of A. spinosissima
were linked to elevation (Table S5). Rhizochemistry could be used to
predict plant elevation, which was used as a proxy of the environment,
from the three species with high accuracies (Fig. 2 and S5). However, it
should be noted that the predictions for A. spinosissima refer to the
classification score (since only two sites were collected for this species),

whereas quantitative predictions were made for the other species. The
top metabolic predictors were ranked based on their coefficient in the
models (Table S6). Results from models on permuted sets excluded the
potential randomness of these predictions for each species (Fig. 2).
Subsequently, the robustness of the predictive features (hereafter
referred to as markers) was tested on J. frigida. Model equation devel-
oped on 2021 samples could efficiently predict the elevation of rhizo-
sphere samples from J. frigida collected in April 2019 (Fig. 2).
Importantly, the linear response of rhizochemicals under J. frigida was
supported by the accurate prediction of rhizosphere samples collected at
4480 m.a.s.l, an elevation that was not present in the 2019 sample set.

Fig. 2. | Prediction of elevation levels using metabolic fingerprints of rhizosphere samples. a. Partial least squares regression (PLSr) analyses using A. imbricata
significant features (8 features). b. PLSr analyses using significant features (216 features) of rhizosphere samples collected under J. frigida in 2021. c. PLSr analyses of
rhizosphere samples collected under J. frigida in 2019. Model equation was developed on samples collected in 2021 and directly applied to 2019 rhizosphere samples
(216 features). d. PLSr analyses using 50 permuted datasets. In boxplots, the diamond represents the mean while the solid dark line represents the median. PLSr
models were performed 50 times. Tukey’s tests were performed to compare predictions between elevation levels (P < 0.01).
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Model predictions were validated using 50 permutation sets (Fig. S5).
Although some rhizosphere-specific features (i.e. features detected in

soil samples exclusively) responded to elevation, predictions were not
improved when adding these features to the PLSr models (Tables S7 and
S8). Altogether, these results demonstrate that variations in environ-
mental conditions induce a significant change in rhizochemistry, which
could be used to deduce the altitude of the sample independently of the
year of sampling.

3.4. Similarities in the response of rhizochemistry between species

Similar patterns were observed with the putative annotation of the
significant metabolic markers between the different species. In the
rhizosphere of A. imbricata, secondary (or specialised) metabolism was
predominant (Fig. 3a and Table S9). Phenolics were the most widely
represented chemical metabolite class. Terpenes, coumarins and cin-
namic acids were also included among metabolic predictors, as well as
some primary compounds such as organic acids. For J. frigida rhizo-
sphere, putative annotations were balanced between primary and

secondary metabolisms (Fig. 3b). While phenolic pathways were prev-
alent again, terpenes were over-represented in this species. Within pri-
mary metabolism, a high proportion of the predictors referred to lipids
(40 compounds), together with organic acids. Overall, similarities and
differences were observed in the rhizosphere response to elevation
depending on the plant species under which rhizosphere samples were
collected.

To test the convergence degree, the elevation of rhizosphere samples
from H. doellii and A. spinosissima was predicted using the equation
developed on A. imbricata or J. frigida, respectively. The elevation of
both species was considerably predictable with accurate predictions of
H. doellii elevation (delta between real and predicted elevation of less
than a hundred metres) and a significant distinction between the two
elevation levels collected for A. spinosissima (Fig. 4). This result indicates
convergent chemical responses of the surrounding rhizosphere to the
elevation gradient between species.

Fig. 3. | Annotation of the metabolic markers. a. Annotation of elevation markers from A. imbricata. b. Annotation of elevation markers from J. frigida. Unknown
metabolic features were not displayed in this figure. See Table S9 for more details.
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3.5. Convergences are also found in the response of bacterial communities
to the elevation gradient

Next, we checked whether OTU abundances could be used to predict
elevation levels independently of the species under which rhizosphere
samples were collected (Fig. S1). Variation in OTU abundances could
predict elevation levels of all species with significant distinctions be-
tween Prepuna, Puna and Steppe levels (Fig. S6). “Real” predictions (i.e.
predicting elevation of 4 species previously excluded from the dataset)
yielded high accuracies. The top 1% predictive OTUs (i.e. 105) allowed
for similar predictive scores and models were validated using permuted
datasets (Fig. 5a, Table S10). From these 105 OTUs, the most repre-
sented taxon positively correlated to elevation levels was Gaiellaceae. In
contrast, Rubrobacteraceae and Cytophagaceae were the most nega-
tively correlated taxa. In addition, some bacterial families such as Bra-
dyrhizobiaceae were either positively or negatively correlated to
elevation (Fig. 5b). A functional analysis was then performed on the
most predictive OTUs to depict the underlying putative KEGG Orthology
(ko) pathways (Table S11). Large overlaps were observed between the
annotation of the most predictive OTUs and the predictive rhizochem-
icals. For instance, pathways linked to nitrogen metabolism, synthesis of
precursors (e.g. amino acids) and secondary metabolism (e.g. terpenoids)
were observed in both analyses, while others were overrepresented (e.g.
pentose phosphate pathway) in OTU analyses (Table S12). The 1% most
predictive OTUs represented a great proportion of the most correlated
OTUs in a previously developed network of bacterial interactions in the
Atacama transect (i.e. highest degree centrality and drivers, Mandakovic
et al., 2023), highlighting their significance in the dynamics of bacterial
communities (Table S13). Besides, the positive ratios of positive:nega-
tive connections (i.e. 1.7 and 3.8 for Steppe and Prepuna, respectively)
suggested a need for cooperation at the most extreme elevations, which
correspond to the most stressful environments (Table S13). Altogether,
these results shed light on the existence and significance of chemical and
ecological (i.e. dynamics of bacterial communities) convergences

belowground in response to the elevation gradient.

3.6. Rhizochemical markers are linked to the response of aboveground
metabolism and bacterial communities

We tested the relationship between the rhizosphere predictive me-
tabolites (i.e. markers) and both aboveground metabolism and soil
bacterial communities (Fig. S1). A total of 19 (32% of A. imbricata
markers) and 64 (30% of J. frigida markers) rhizosphere markers were
also linked to elevation in aboveground samples from one to three plant
species (Fig. 6a, Table S14). Without FDR correction, these numbers
reached 63% and 58% for A. imbricata and J. frigida, respectively
(Table S15). These metabolic predictors belonged to carbohydrate,
phenolic and terpene pathways (e.g. succinic and glutamic acids, cate-
chins). In addition, strong correlations were observed between OTU and
the intensity of the best metabolic markers (Fig. 6). A total of 111 OTU
relative abundances were correlated with the average intensity of at
least one J. frigida rhizosphere marker, including 34 bacterial families.
Similarly, 184 OTUs were correlated with A. imbricata rhizosphere
markers, which included 42 bacterial families (Tables S16 and S17).
Great overlaps were observed with 21 bacterial families, each contain-
ing at least one related OTU correlated with a metabolic marker
(Fig. S7). In addition, these families strongly referred to the top 1%
predictive OTUs used to predict elevation levels. A literature survey
showed that bacterial families that correlated with chemical markers in
both Prepuna and Steppe species were associated with potential effects
on nitrogen and phosphorous cycle while bacteria linked to plant
growth, metal detoxification and salinity (e.g. Geodermatophilaceae,
Caulobacteraceae, Micrococcaceae) were more overrepresented in Pre-
puna (Fig. 6b and c and Table S17 for references).

Finally, we extracted the OTU abundances from bulk soil (BS) sam-
ples to investigate correlations between chemical markers and OTU
abundances (Fig. S1). A total of 647 and 14 BS OTUs were correlated
with at least one metabolic marker from J. frigida and A. imbricata

Fig. 4. | Prediction of elevation levels from independent conditions using metabolic markers of A. imbricata or J. frigida. Partial least squares regression analyses
(PLSr) to predict elevation levels of H. doellii and A. spinosissima, respectively. Model equations were developed on A. imbricata (8 or 54 features) or J. frigida and
directly applied to the independent samples. PLSr models were performed 50 times. Student’s test was performed to compare predictions between elevation levels (P
< 0.01). In boxplots, the diamond represents the mean while the solid dark line represents the median.
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rhizosphere samples, respectively (Table S18). To test whether diffusion
of the rhizochemical response could explain such differences, we tried to
predict the elevation level of soil samples in open areas collected near
A. imbricata or J. frigida. While J. frigida rhizosphere could be used to
predict the elevation of samples collected in open areas with 64% ac-
curacy, a similar trend was not observed when using A. imbricata
rhizosphere (Fig. S8). Overall, combining metabolome and bacterial
community predictive analyses highlights that (i) rhizochemistry cap-
tures environmental variation in extreme natural ecosystems, (ii)
convergent and divergent chemical responses exist between plant spe-
cies and environments, and (iii) these responses are potentially

associated with the dynamics of soil bacterial communities.

4. Discussion

4.1. Rhizochemistry is tailored to natural stress gradients

Here, we applied predictive metabolomics on rhizosphere samples
under four plant species in the extreme Atacama Desert to uncover that
rhizochemistry was tailored to environmental constraints. First, varia-
tion in chemodiversity indices was observed, supporting the role of
abiotic parameters in shaping rhizochemistry (Jansson and Hofmockel,

Fig. 5. | Response of soil bacterial communities to the elevation gradient. a. Predictive capacity of PLSr models using significant OTUs (Fit/Pred models, 1973 OTUs)
or the top 1% most predictive OTUs (Pred 1% models, 105 OTUs) to predict the elevation of rhizosphere samples. All samples were used for “Fit” models. For
predictive models (Pred), four species were excluded from the dataset (i.e. testing set). Model equation was developed on the remaining samples and directly applied
to the testing set. Fifty permuted datasets were developed for each modelling condition. Tukey’s tests were performed to compare predictions between elevation
levels (P < 0.05). b. Venn diagram of the bacterial families involved in the top 1% predictive OTUs. Numbers in parentheses refer to the number of OTUs included in
the corresponding bacterial family. While examples are provided, more details are provided in Table S10.
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2020). Richness and Shannon’s diversity were lower at low elevations,
which coincided with the lifespan variation, with mostly annual plants
inhabiting the Prepuna (2400–3300 m.a.s.l) and perennials the Steppe
(4000–4500 m.a.s.l). These results are consistent with the effect of
abiotic constraints on chemodiversity indices (Eshel et al., 2021; Kleine
and Müller, 2014) and illustrate the stress gradient faced by Atacama
species. In addition, plants negatively modulate the richness at lower
altitude limits when environmental pressure becomes critical, poten-
tially to limit the energy-consuming synthesis of secondary metabolites.
However, while reducing their chemical repertoire, plants must main-
tain the regulation of specific compounds to thrive in these extreme

altitudes, which should allow for predictions of elevations based on
rhizochemistry. This hypothesis was supported by the ability of several
rhizosphere metabolites to predict the elevations of A. imbricata and
J. frigida with 96 or 74% accuracy, respectively. Although great accu-
racy was observed for both species, the difference in predictive capacity
(74 against 96%) might be due to (i) a lower sample size for A. imbricata
and (ii) the difference in lifespan. As J. frigida is a perennial plant, po-
tential variation in terms of age could lead to higher chemical variation
and therefore lower global prediction accuracy. However, one limitation
of our metabolomic approach to the rhizosphere is the inability to
distinguish precisely between the plant or edaphic origin of the detected

Fig. 6. | Correlations between rhizosphere metabolic predictors and plant aboveground response and soil bacterial communities. a. Numbers in brackets indicate the
number of significant features in rhizosphere or plant samples for a given condition. All reported plant features were significant using Tukey’s test (P < 0.05, FDR
correction). A. imb: A. imbricata, A. spi: A. spinosissima, J.fri: J. frigida. b-c. Correlated bacterial families to the best metabolic markers (P < 0.05, FDR correction,
Pearson’s correlation) from A. imbricata in the Prepuna (b) or J. frigida in the Steppe (c). For ease of view, bacterial families were presented only if at least three
related OTUs were significantly correlated. Additional information in Tables S16 and S17.
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metabolites. Given the universality of the metabolism, it is difficult, if
not impossible, to separate the two compartments (Allwood et al.,
2021). Although only tedious labelling experiments could provide this
precision level, most of the rhizochemicals reported also responded
significantly in the aerial parts, suggesting a plant origin.

4.2. Complementary metabolic strategies in below- and aboveground
tissues can help face harsh climatic and edaphic constraints

Most rhizosphere metabolic markers predicting plant environment in
the present study were linked to nitrogen and phosphorous cycles, salt
excess or water deprivation, as well as bacterial communities. For
instance, markers included allantoin, guanosine and glutamic acid,
which relate to the nitrogen cycle and purine degradation pathways
(Izaguirre-Mayoral et al., 2018; Kaur et al., 2021). Organic acids (e.g.
succinic acid), including ursolic acid, were previously linked to soil
quality and salt stress mitigation (Carvalhais et al., 2011; Long et al.,
2020). Terpenes, flavonoids, coumarins and cinnamic acids were found
in samples from both vegetation belts, in agreement with their functions
at the plant-microbe interface (Hassan and Mathesius, 2012; Vismans
et al., 2022). Additional markers, such as lipids, were mainly observed in
the rhizosphere of J. frigida. Lipids are considered key drivers of
plant-microbe interactions (Siebers et al., 2016). A consequent portion
of these rhizosphere markers also responded to elevation in above-
ground plant material. These observations suggest that many of the
rhizosphere markers were likely the result of plant responses to the
environment rather than microorganism-derived processes. Overall,
these results are complementary to previous studies. For example,
transcriptomic analysis of 32 Atacama species identified positively
selected genes closely linked to resource acquisition (Eshel et al., 2021).
In contrast to our rhizosphere analysis, a metabolomics study on leaves
of Atacama plants uncovered compounds protective against extreme
temperature, solar irradiance and drought, but very few metabolites
linked to nutrient deprivation (Dussarrat et al., 2022). Hence, the sur-
vival of Atacama plants may lie in their ability to adapt an organ-specific
metabolic strategy to cope with severe climatic and edaphic constraints,
in coordination with their bacterial communities.

4.3. Convergence in metabolic and ecological adaptation to the extreme
environmental gradient

While certain markers differed between vegetation belts (e.g. lipids),
our results suggest a certain convergence in adaptations to the envi-
ronment in Steppe or Prepuna species. In addition, the rhizosphere
markers predicting the environment of J. frigida or A. imbricatawere able
to substantially predict the elevation of A. spinosissima (74% accuracy)
and H. doellii, respectively. Our results indicated that convergences
might be found belowground. This finding is consistent with the dis-
covery of metabolic convergence in aerial plant parts in response to
abiotic threats, although previous studies have shown a strong phylo-
genetic signal in rhizochemistry (Dussarrat et al., 2022; Eshel et al.,
2021; Walker et al., 2022; Wandrag et al., 2020). These convergences
might also be explained by the fact that root and root exudate metabolic
profiles tend to present less variation between species when compared to
aerial plant parts (McLaughlin et al., 2023). The analysis of OTU
abundances also provided insights into the existence of convergent
patterns in the dynamics of bacterial communities across the elevation
gradient. In line with the fact that extreme lands are recognised as
hotspots for adaptive convergence (Xu et al., 2020), our results suggest
that these events may not be restricted to aerial tissues. While this dis-
covery represents a major advance in the field, further analyses
comparing the response of rhizochemistry under a wider range of spe-
cies would be needed to support this hypothesis.

Apart from this key finding in the context of evolutionary biology, it
should be noted that our predictive modelling approach is particularly
well-suited to revealing convergent strategies. In contrast, previous

studies on extreme lands were mostly limited to comparing one agro-
nomic species to a related extreme species, yielding the discovery of
protective compounds highly specific to the species studied (Dussarrat
et al., 2021). Using our methodology may help reveal additional con-
vergences in other extreme lands. The next thrilling question will be to
compare these convergences between extreme ecosystems and assess
their similarities and divergences.

4.4. Chemical rhizosphere markers are linked to growth-promoting
bacteria

Rhizosphere markers predicting plant elevation were correlated with
OTU abundances, highlighting the influence of rhizochemicals on soil
bacterial communities (Cotton et al., 2019; Del Valle et al., 2020; Phil-
ippot et al., 2013). These results also support the place of rhizochemistry
as a driver of ecosystem dynamics (Angulo et al., 2022; Chung, 2023;
Van Nuland et al., 2017). OTU of the Chitinophagaceae were the most
correlated bacterial family in both Prepuna and Steppe environments,
reflecting the need to facilitate litter decomposition and defence against
soil pathogens (Carrión et al., 2019; Xu et al., 2021). Hyphomicrobia-
ceae, Bradyrhizobiaceae and Acetobacteraceae, which are known to
cope with nitrogen starvation, were observed in both vegetation zones as
well as Gaiellaceae and Sphingomonadaceae, bacteria associated with
phosphorous limitations or metal pollution, respectively, and already
detected in other areas of the Atacama Desert (Sultana et al., 2023;
Wang et al., 2022; Bartholomäus et al., 2024). Thus, although a certain
level of divergence was noticed in the chemical rhizosphere markers
between plant species, similar ecological consequences on the bacterial
communities were found. However, in the Prepuna, more correlations
with growth-promoting bacteria were found, such as Geo-
dermatophilaceae (Bartholomäus et al., 2024). These growth-promoting
bacteria may be beneficial for annual species mostly found at low alti-
tudes (versus perennials in the Steppe), as they may promote faster
development to escape periods of drought (Díaz et al., 2019). In addi-
tion, some of the correlated bacterial families have been shown to relate
to plant metabolism, which is supported by our analytical approach. For
instance, coumarins and organic acids have been associated with Oxa-
lobacteraceae, Comamonadaceae and pathogen taxa, respectively (Del
Valle et al., 2020; Wen et al., 2020; Yu et al., 2021). Flavonoids were
shown to mediate interactions with nitrogen fixers such as Oxalo-
bacteraceae (Hong et al., 2022), a connection also observed in the pre-
sent study. Finally, intriguing results arose from the analysis of soil
samples collected in open areas. Richness and Shannon’s diversity were
high in soil collected in the Steppe and metabolic markers from J. frigida
rhizospheres could partially predict the elevation of samples from open
areas, while A. imbricata rhizosphere markers failed. The abundance of
rhizochemicals from J. frigida was also correlated to changes in OTU
abundances in open areas of the Steppe. Perennial Poaceae, such as
J. frigida, can develop vegetative runners belowground, which may
explain a diffusion of root chemicals. The implications of this diffusion
and its relation with soil bacterial communities on Atacama dynamics
need further investigation, especially since an influence of plant-soil
feedback on heterospecific plant successors has been shown (Wilschut
et al., 2023).

In addition, our results identify predictive markers in terms of rhi-
zochemistry and soil bacterial communities that can be used as a tool for
diagnosing soil quality in the context of climate change. A previous
study highlighted that leaf metabolites used by Atacama plants to cope
with extreme climate were also detected in agronomic species
(Dussarrat et al., 2022). As rhizosphere compounds and chemical fam-
ilies responding to the extreme gradient were also shared between plant
families, they represent an additional layer of interest for crop engi-
neering and intercropping.
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5. Conclusion

Working with wild species in natural environments, particularly in
an extreme habitat such as the Atacama Desert, is challenging. More-
over, these species are not easily grown or reproduced under laboratory
conditions. However, field studies can provide key biological insights
that are not achievable under laboratory conditions. This work provides
unexpected insights into the response of rhizochemistry to environ-
mental constraints: direct (i.e. similar markers), as well as indirect (i.e.
similar consequences on bacterial communities) convergences, could be
observed between plant species. Rhizochemistry predicted plant envi-
ronment consistently across years and, within a vegetation belt, chem-
ical markers from one plant species could be used to predict the
elevation level of other species. Convergences were also observed when
analysing the variation of bacterial communities across an elevation
gradient, thus providing major insights in the context of ecological and
evolutionary biology. Results also showed that our approach offered the
possibility of unravelling generic compounds that hold great promise to
improve crop performances or diagnose soil quality under abiotic
pressure. Finally, predictive metabolomics combined with OTU abun-
dance analyses highlighted the diffusion of the rhizosphere markers of
J. frigida and its implications for bacterial communities. Rhizochemistry
and its influence on conspecific and heterospecific neighbours deserve
greater attention to better predict ecosystem dynamics in the Atacama
Desert and other extreme ecosystems.
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& editing, Writing – original draft, Visualization, Resources, Method-
ology, Investigation, Data curation. Caroline Müller: Writing – review
& editing, Visualization, Validation, Investigation, Funding acquisition.
Rodrigo A. Gutiérrez: Writing – review & editing, Writing – original
draft, Visualization, Validation, Resources, Project administration,
Methodology, Investigation, Funding acquisition, Data curation,
Conceptualization. Pierre Pétriacq:Writing – review& editing, Writing
– original draft, Visualization, Validation, Resources, Project adminis-
tration, Methodology, Funding acquisition, Formal analysis, Data cura-
tion, Conceptualization.

Data availability

Data and metadata are included in supplemental tables and were
deposited on MassIVE (MSV000093102, https://doi.org/10.25345/
C5JM23S4X), which include raw spectra, non-normalised dataset, and
feature metadata in the sections “raw”, “other” and “metadata”,
respectively. Sample metadata are available in Supplemental Table S1.
Illumina sequence data were previously deposited on the National
Center for Biotechnology Information (BioProject, accession number
PRJNA489888) (Mandakovic et al., 2023).

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

We are grateful to the “Comunidad Indígena Atacameña de Talabre”
for their authorisation to access the TLT transect. We also acknowledge
the Genotoul bioinformatics platform Toulouse Occitanie (Bioinfo
Genotoul, https://doi.org/10.15454/1.5572369328961167E12) for
providing computing resources. This work was funded by the ANID-
Millenium Scientific Initiative Program (iBio ICN17_022); CGR
ICN2021_044, and IEB (FB210006). FPD acknowledges AFOREST
(NCS2022_24). We are also grateful to the Bordeaux Metabolome Fa-
cility (https://doi.org/10.15454/1.5572412770331912E12) and the
MetaboHUB (ANR-11-INBS-0010) project for their support. CM also
acknowledges the German Research Foundation (DFG, project MU
1829/29-1) for financial support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.soilbio.2024.109662.

References

Allwood, J.W., Williams, A., Uthe, H., van Dam, N.M., Mur, L.A.J., Grant, M.R.,
Pétriacq, P., 2021. Unravelling plant responses to stress – the importance of targeted
and untargeted metabolomics. Metabolites 11, 558. https://doi.org/10.3390/
metabo11080558.

Angulo, V., Beriot, N., Garcia-Hernandez, E., Li, E., Masteling, R., Lau, J.A., 2022.
Plant–microbe eco-evolutionary dynamics in a changing world. New Phytologist
234, 1919–1928. https://doi.org/10.1111/nph.18015.

Badri, D.V., Vivanco, J.M., 2009. Regulation and function of root exudates. Plant, Cell
and Environment 32, 666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.
x.
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Gabor, H., Kraiser, T., Carrasco-Puga, G., Nilo-Poyanco, R., Zegar, C.M., Orellana, A.,
Montecino, M., Maass, A., Allende, M.L., DeSalle, R., Stevenson, D.W., González, M.,
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