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The Codac library:
a Catalog Of Domains And Contractors

Simon Rohou∗, Benoît Desrochers∗, Fabrice Le Bars∗

Abstract

Codac (Catalog Of Domains And Contractors) is a C++/Python library
providing tools for constraint programming over reals, trajectories and sets.
It has many applications in parameter estimation, guaranteed integration or
robot localization and provides reliable outputs by computing sets of feasible
solutions according to the constraints defining the problem. This paper pro-
vides a brief overview of the library and its Contractor Network approach,
illustrated on a convincing robotic application.

Keywords: constraint programming, interval analysis, state estimation, dy-
namical systems, solver, robotics, Contractor Network, SLAM

1 Introduction
This paper provides an overview of the Codac library1 (http://codac.io), that
aims at providing a catalog of tools based on interval analysis and constraint pro-
gramming. The toolbox allows to approximate feasible solutions of non-linear
and/or differential systems. Since the solution of these complex systems cannot gen-
erally be calculated exactly, Codac uses numerical analysis to compute the bounds
of sets of feasible solutions. The assets are guarantee (computations are guaranteed
to never lose solutions, due to the rigorous interval arithmetic) and exhaustiveness
(if multiple values are possible, all of them are characterized). In the same way,
obtaining an empty set allows to safely disprove properties of a system. In Codac,
the variables can be of different types, such as reals, vectors [2], trajectories [35],
uncertain sets [9], graphs [18], etc., in order to address a wide range of problems.

Intervals are used to reliably propagate uncertainties (from sensors, models, dis-
cretizations), even in the case of non-linearities, provided that they are bounded.
Coupled with constraint programming, these methods have been shown to be effec-
tive for solving complex problems involving constraints that are generally difficult to
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handle (strong uncertainties, differential equations, temporal delays [39], indistin-
guishable data, inter-temporal measurements [36], hybrid systems, etc.). Classical
robotic applications such as Simultaneous Localization And Mapping (SLAM), the
kidnapped robot problem, or the exploration of unstructured environments, can be
formalized as such systems, and are still challenging issues. Conventional methods
such as Kalman or particle filters are commonly used for tackling these problems.
However, they have limitations related to the context of use, the propagation of
error distributions, the reliability of the outputs, or the involved equations describ-
ing the system. Besides, constraint programming coupled with interval methods
allows to handle a wider class of systems and has been shown to be comfortable
with solving several problems known to be difficult, in a very few steps with the
simplicity offered by constraint programming [7].

Recent advances in interval methods have been done by the community, and the
Codac library gathers a part of related state-of-the-art implementations with the
objective to make them easy to combine. This paper provides an overall picture of
the library and proposes an application on an academic problem of SLAM.

2 Constraint programming
Constraint programming is a paradigm in which users concentrate on the proper-
ties of a solution to be found (e.g. the pose of a robot, the location of a landmark,
the orbit of a satellite) by stating constraints on variables. Constraints usually
come from the equations of the problem, inequalities, or measurements from sen-
sors. The variables appear in the equations. Then, a solver performs constraint
propagation on the variables and reliably provides feasible solutions corresponding
to the problem. In this approach, the user concentrates on what the problem is
instead of how to solve it, thus leaving the computer to deal with the how. The
strength of this declarative paradigm lies in its simplicity, as it allows one to de-
scribe a complex problem without requiring knowledge of resolution tools and their
specific parameters to tune. The second asset is genericity: a situation is seen from
a high-level point of view and this abstraction enables the resolution of a wide range
of problems. The energy is mainly spent on the description of the problem.

Since several decades, the community of constraint programming has brought
numerous contributions for dealing with discrete problems. The Prolog language [3]
appears to be one of the most famous outcomes with free implementations available
to the community. Classical applications of these developments lie in automated
planning or interactive theorem proving. While a major effort from the community
has been undertaken around this concept, other studies appeared in order to tackle
continuous problems with this paradigm [17]. For both discrete and continuous
problems, constraint programming can be applied by defining a Constraint Network
involving variables Vi, domains Di, and constraints Lj [25].

Variables In continuous problems, the members of a system, including the un-
known solutions, are reals x ∈ R or vectors x ∈ Rn. Recent advances have led to
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the extension of Constraint Networks in order to tackle a larger number of types of
variables, such as sets X ∈ P(Rn) [11], graphs [18], paths [23], etc. In particular,
dynamical systems can be drawn as Constraint Networks by introducing so-called
trajectories variables, denoted by x(·) : R → Rn, thus allowing to consider the
solution of a dynamical system as a single and continuous item.

Domains A variable Vi is known to be enclosed in some domain Di on which we
will apply constraints Lj via some operators. Domains define non-empty ranges
of feasible values. For instance, domains can be intervals, polytopes, ellipsoids,
subpavings, tubes, etc.

Constraints Elementary facts and rules apply on variables: so-called constraints.
There are very few restrictions on the forms of the constraints: they are understood
as the expression of any relation that binds variables, which are known to belong
to some domains. In the continuous and differential context, constraints may be
non-linear equations such as x3 = cos(x1+exp(x2)), inequalities, quantified param-
eters [13], differential systems expressed as ẋ(t) = f(x(t),u(t)), etc. For instance,
in the context of robotics, constraints will come from state equations, numeri-
cal models, or measurements. Uncertainties from sensors are specified either by
other constraints (e.g. x > 0) or by restricting the domains of the variables (e.g.
[x] = [0,∞], where [x] is the interval domain known to enclose the variable x).

Constraint propagation Elementary constraints are relations that cannot be
decomposed, such as c = a + b. Then, complex constraints can be considered by
combining simpler constraints, in order to increase in complexity, while preserv-
ing simplicity. This leads to a propagation process, due to dependencies between
constraints sharing the same variables.

The aim of Codac is to easily deal with constraints in order to eventually char-
acterize sets of values compliant with the defined rules. This is done by providing
implementations of operators for elementary constraints as well as algorithms for
their combination. The related domains and operators depend on tools from inter-
val analysis.

3 Interval methods for constraint programming
In the constraint programming approach, the estimation of a variable consists in
reducing its domain. The obtained set is said to be reliable: the resolution must
guarantee that no solution will be lost during the solving process, according to
the constraints defining the problem. In practice, domains and constraints have to
be numerically computed. The use of interval methods is perfectly suited for this,
providing intervals for domains and a rigorous arithmetic to implement constraints.
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Intervals domains An interval [x] is a closed and connected subset of R. The
set of all intervals is denoted IR. An interval vector (a box) [x] of IRn is an axis-
aligned box, a closed and connected subset of Rn. These interval sets can be easily
represented in a computer. For instance, a box [x] = [x−,x+] will be defined by
its two bounds x− and x+, that are representable vectors of Rn. Intervals can be
extended to trajectories: we then define a tube [x](·) : R → IRn as an interval of two
trajectories x−(·) and x+(·) such that [x](·) = [x−(·),x+(·)]. They have also been
extended to sets with thicksets denoted by JXK = [X−,X+] where X± ∈ P(Rn).

X

CX([x]) [x]

Figure 1: A contractor CX
related to a constraint rep-
resenting a set X is applied
on several boxes. Hatched
parts correspond to vec-
tors that are removed after
the contraction.

Contractors A contractor C for a constraint L is an
operator designed to reduce a domain without losing
any solution consistent with L. A contractor is thus
an algorithm that can act on an interval domain for
narrowing its bounds in a reliable way. The following
definition applies for contractors on boxes [7], and can
be easily extended to tubes, thicksets, etc.

Definition 1. A contractor C, associated with a con-
straint L, on a box [x] ∈ IRn is a mapping from IRn

to IRn such that:

(i) ∀[x] ∈ IRn, C([x]) ⊆ [x], (contraction)

(ii)

(
L(x)
x ∈ [x]

)
=⇒ x ∈ C([x]). (consistency)

The use of contractors allows to enclose complex al-
gorithms in simple black boxes that are only used to
contract a domain according to a constraint, in a re-
liable way. The reliable property (expressed by the
consistency rule of Definition 1) is important as it allows to combine contractors,
call them in any order and as much as necessary, without running the risk of losing
solutions. This allows to deal with complex problems providing that contractors
are at hand and sufficient to address elementary constraints obtained from a de-
composition. Finally, domains and contractors can be combined in propagation
algorithms in order to implement an interval solver.

One may emphasize that interval methods have the reputation of being limited
to problems of low dimensions, due to usual bisections of the domains which leads
to an exponential complexity order. Contractors may overcome this problem: they
are usually given by polynomial-time algorithms and can be employed without
performing bisections, which allows to tackle problems of higher dimensions.

Separators A contractor Cout associated with a set X aims at removing infea-
sible solutions (i.e. vectors that are not in X) from a domain. When employed
in a branch-and-contract algorithm, it allows to compute an outer approximation
X+ ⊃ X. However, the same contractor cannot be used for inner approximations
X−, that are sets in which any vector is solution, that is X− ⊂ X. For instance,
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when no contraction happens on a given box, i.e. Cout([x]) = [x], it is not possible
to know if [x] is completely included in X (see the yellow box on Fig. 1) or if there
may exist vectors in [x] that do not belong to X (see the red dot in Fig. 1). Inner
approximations are particularly important for proving the existence of solutions.
Their computation can be done by using a contractor Cin consistent with the com-
plementary X that removes vectors of X, as depicted in Fig. 2. The pair {Cin, Cout}
defines a new operator called a separator [19], which can be employed in a branch-
and-contract algorithm in order to characterize simultaneously an inner X− and an
outer approximation X+ and therefore enclose X in a thickset JXK = [X−,X+].

X∗

X+
X−

(a) X∗ ∈ [X−,X+].

X∗

Cout([x])

(b) Illustration of Cout.

X∗

C in([x])

(c) Illustration of Cin.

Figure 2: Enclosure of a set X∗ ⊂ R2 by two approximated inner and outer sets
X− and X+, computable using a pair of contractors (a separator) involved in a
branch-and-contract algorithm. Note that any vector of X− also belongs to X+. For
computing X+, resp. X−, a Cout contractor, resp. Cin, can be employed as pictured
in Subfig. 2b–2c. The green hatched areas are part of X−while the blue ones belong
to X+. In practice, these algorithms output subpavings made of non-overlapping
boxes, not represented in Subfig. 2a.

Interval domains, contractors and separators form a set of items that one can
combine in order to describe continuous nonlinear equations, dynamical systems,
or measurements, that are usually encountered in physics or robotics. They are the
basic components of the Codac library.

4 The Codac library
4.1 A framework of domains and contractors
The API of Codac can be broken down into three layers: (i) a list of implemented
domains such as intervals, boxes, tubes, thicksets, etc.; (ii) a catalog of contractors
and separators for dealing with a wide variety of constraints; (iii) a top-level system
solver called Contractor Network. Recent efforts from the community [30, 39, 19]
have led to new domains, contractors and separators. The objective of Codac is
to gather the related implementations and form a catalog of algorithms associated
with publications from the literature.
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4.2 Other libraries
Several libraries, see for instance filib++ [27], MPFI [32] and GAOL [14], provide
low-level features related to interval arithmetic, most of them including reliable
numerical operations with outward rounding. For its interval arithmetic computa-
tions, Codac currently stands on GAOL that has shown good performances and a
large portability on operating systems. At a higher level of abstraction, the contrac-
tor programming approach [7] deployed in Codac is also a cornerstone of the IBEX
library [8]. Codac is, however, not limited to constraint processing over reals and
is inspired by robotic applications, including the capacity to deal with dynamical
systems, inter-temporal constraints and thicksets.

The guaranteed simulation of dynamical systems is also the topic of several
set-based libraries, namely Vnode [26], Cosy [31], DynIBEX [1] or CAPD [41].
These libraries have applications in robotics and automatic control, by verifying
dynamical properties of non-linear systems [28] or for the computation of reachable
sets [15]. They are also used by mathematicians to prove conjectures [12]. While
they offer good performances for guaranteed integrations, they are mainly suited
for systems expressed under the form of Initial Value Problems (IVPs), that is
{ẋ = f(x), x(0) ∈ [x0]}, which does not represent the diversity of state estimation
problems. This limitation motivated new constraint-based approaches in order to
assess for instance inter-temporal relations, time uncertainties, delays, or hybrid
systems. Robotics also requires to mix various uncertainties, not only related to
dynamical systems, but also involving sets, graphs, paths, to name but a few.
Nonetheless, future work may focus on building bridges between these libraries in
order to benefit from good performances from each specific tool. The contractor
framework could ease the use of these state-of-the-art contributions by enclosing
them in contractor operators compatible with each other.

Finally, the above-mentioned libraries are mainly available in C++. The core
of Codac is also developed in C++ for performance and historical reasons, and
in order to be compliant with many robotic frameworks. In addition, a Python
wrapper of the library allows to use Codac in Python 3 while benefiting from C++
performance. The library is actively supported on Ubuntu derivatives, Windows
and macOS, with pre-built packages available.

4.3 Implemented domains
The building blocks of this library are intervals and the above-mentioned domains
(boxes, tubes, thicksets, etc.) are mainly designed as compositions of intervals.
However, for specific computation needs and in order to avoid as much as necessary
wrapping effects, that are pessimism drawbacks induced by the use of inaccurate
enclosures, some implementations in Codac rely on more specific domains, such as
cuboids [24], polytopes [40] or ellipsoids [21, 29]. For instance, it has been shown
in [33] that the integration of continuous-time linear systems could be computed
exactly without pessimism by using polytopes instead of boxes, at the expense of
longer computation times. A good trade-off has been studied in [30] with the use
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of ellipsoids for enclosing the continuous states. These are specific domains also
available in Codac, and relevant for guaranteed integration purposes.

Domains for trajectories: tubes X(·) In Codac, a tube is implemented as a
temporal sequence of sets Xi, where the Xis can be intervals, boxes, ellipsoids [30],
polytopes, subpavings, or any domain2 for which set operations can be computed.
More precisely, a tube X(·) with a sampling time δ > 0 is implemented as a set-
valued function which is constant for all t inside intervals [kδ, kδ + δ], k ∈ N. The
set [kδ, kδ+ δ]×X (tk), with tk ∈ [kδ, kδ+ δ], is called the kth slice of the tube X(·)
and is denoted by X(k). For instance, when the Xis correspond to intervals, the
implementation amounts to an interval of step functions [x−(·), x+(·)] such that
∀t, x−(t) 6 x+(t), as pictured by Fig. 3.

δ

·

[x](·)

tf

t1 t3
t0

x∗(·)

· δ

·

[x](·)

tf

t1 t3
t0

x∗(·)

·

output gate of [x](k3)

slice [x](k3)

Figure 3: An interval-tube [x](·) implemented as a list of interval-slices. In practice,
the sampling δ is not necessarily constant.

This implementation then takes rigorously into account floating point precision
when building a tube, thanks to reliable numerical libraries. Further computations
involving X(·) will be based on its slices, thus giving an outer approximation of the
actual solution set. For instance, the lower bound of the integral of a boxed-tube
[x](·) is simply computed as the signed area of the region in the tx-plane that is
bounded by the graph of x−(t) and the t-axis. The lower the slice width δ, the
higher the precision of the approximation. Note that the current implementation
allows a variable sampling, as well as input and output gates on each slice as
pictured in Fig. 3 in the case of interval slices. In the literature, these gates are
classical restrictions used when dealing with IVPs.

Other representations of tubes are available in Codac, and provide faster eval-
uations than with a simple sequence of slices. For instance, the computer evalu-
ation

[
X([t])

]
=

[
{x(t) | x(·) ∈ X(·), t ∈ [t]}

]
, with [t] a large interval over several

slices, can be optimized with a redundant data structure such as binary trees [36,
pp. 54–55] or polynomial approximations of the bounds of the tubes. This is rele-
vant when many evaluations have to be performed on tubes that have non-updated
values, namely integral calculations or tube inversions [35].

2Generic programming is enabled for tubes thanks to their C++ implementation providing
compile-time templates.
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Domains for sets: thicksets JXK A set X ⊂ Rn can be bracketed between
two sets X− and X+, forming a so-called thickset JXK = [X−,X+], [11]. The ap-
proximation of X− and X+ is possible using subpavings [20] that are unions of
non-overlapping boxes of Rn. As for tubes, optimized implementations based on
binary trees allow to speed up evaluations of subpavings. Fig. 4 illustrates an appli-
cation of Codac involving tubes and thicksets for the computation of the guaranteed
zone explored by a robot [9]. This example typically illustrates the need to couple
various domains for robotic applications.

Figure 4: Guaranteed zone explored by a robot [9]. A robot equipped with a side-
scan-sonar (the scope of which is pictured by red lines) evolves along a trajectory
x∗(·) (white line) estimated with uncertainties (blue tube [x](·)). The problem
consists in computing the explored space X. Taking into account the increasing
uncertainty of localization, X cannot be computed exactly. However, an inner
set X− (in white) can be approximated, and corresponds to the part that has
been surely observed with the sonar. Also, the black set (i.e. X+) is computable
and related to parts of the environment for which we can reliably state that no
observation has been done, for any feasible trajectory x(·) ∈ [x](·). The gray part
corresponds to the penumbra in which observations may have been done, or not.

4.4 Contractors and separators
A list of contractors (or separators for approximating sets) is available in the li-
brary. They aim at contracting domains in a reliable way and do not need to be
configured. Most of them implement elementary constraints. Other contractors
are compositions of primitive contractors based on syntax trees, see for instance
the HC4revise contractor [2] available in IBEX and Codac. This allows one to
obtain a high-level contractor built from an analytical expression, and automati-
cally involving primitive contractors. Besides, avoiding constraint decompositions
can provide better results if one relies on a dedicated and optimized contractor.
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For instance, in the case of the polar equation (x = ρ cos(θ), y = ρ sin(θ)), the
contractor Cpolar([x], [y], [ρ], [θ]) provided by [10] allows a minimal contraction for
[x], [y], [ρ] and [θ]. Additional contractors are designed to deal with inter-temporal
and differential constraints, such as linear systems ẋ = Ax +Bu ([33]), temporal
delays x(t) = y(t−a) ([39]), time uncertainties {y = x(t), t ∈ [t]} ([35]), differential
nonlinear equations ẋ = f(x) ([5, Chap. 4]), to name but a few. Other contractors
focus on geometric constraints [16], or allow contractions robust to outliers [6].

5 Contractor Networks (CN)
5.1 Higher degree of abstraction
When several contractors are at stake, there may be interactions between them: a
contraction from one contractor may trigger another one, which reveals a constraint
propagation process [4, 7]. It becomes necessary to call some contractors several
times in order to converge to the best contraction of the domains. This number of
contracting iterations cannot be known in advance. It depends on the contractors
at stake, their efficiency and their sequencing. Classically, one can implement a loop
of contractions in order to process the contractors as long as there is a contraction
on one of the domains. The iteration stops when a fixed point has been reached:
when nothing can be contracted anymore. Note that because a computer uses
floating point numbers, the iterative fixed point will be necessarily reached in a
finite number of steps [22, p. 42]. In practice, we may stop the iteration as soon
as the contractions are not significant anymore. In any case, even if the algorithm
stops before reaching the fixed point, the actual solution will always be enclosed in
the domains.

Codac provides a high-level propagation tool, called a Contractor Network (CN),
that aims at managing the propagation process automatically. This simplifies the
use of contractors: the user does not have to implement contracting loops and to
manage stopping conditions. Instead, he/she only has to design a CN by connecting
contractors and domains together. This approach allows to take a higher degree
of abstraction by hiding the propagation part. What remain are the domains and
contractors, which correspond to the variables and their related rules, as in a pure
declarative paradigm.

5.2 Refined propagation process
In addition, the propagation process can be enhanced: some heuristic encoded
in the CNs can allow a better sequence of the contractors calls. While the user
only states the relations between contractors and domains, the CN defines by itself
the sequence of contractions to be run, depending of the types of domains and
contractors and some empirical models encoded in the library. The result is a
global contraction that runs faster than with a random sequence of contractors.

Numerically, a contractor on a complex domain (such as a tube, a thickset)
may amount to several contractors on subdomains (such as a slice, a box). For
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instance, the C+ contractor for the constraint a = b+ c can be extended to tubes:
C+

(
[x1](·), [x2](·), [x3](·)

)
, [35]. This does not correspond to inter-temporal or dif-

ferential equations: the related constraint applies for all t. This amounts to calling
C+ for all tuples of slices

(
[x1](k), [x2](k), [x3](k)

)
. In practice, some parts of the

tube may not be updated during a propagation and it becomes relevant to avoid
further calls of contractors on the involved slices, if we can state that they will be
ineffective. While it would be cumbersome to tune a propagation algorithm at this
level of granularity, it becomes worthwhile to rely on an automatic tool that will
call the contractors only on relevant parts of the complex domains. Hence, CNs are
also used to break tubes down into graphs of slices, each of them being connected to
the former contractors related to the tube itself. The propagation algorithm then
naturally calls the contractors if necessary. It leads to faster computations. To
our knowledge, this is the first time that contractors are involved in a propagation
network with heterogeneous domains such as tubes or thicksets.

5.3 Graphs of contractors and domains
A Contractor Network is a graph of domains and contractors. Fig. 5 provides an
illustration of such graph, with domains pictured by circles and contractors drawn
by boxes. A possible propagation sequence is the following: assume that C3 is first
triggered, either manually or because the contractor has been newly added in the
graph. C3 is added in a stack of contractors L that was empty so far. Then C3 is
called as it is the first (and only) item in the stack. This results in a contraction
of [b], which induces the addition of the connected contractors C2, C4, C3 in L . C2
is then called (first item in the stack), which contracts again [b]: C2 is added again
in L . C4 is now called and contracts [a], which adds C1, C4 in the stack. This
sequence runs until L becomes empty; a fixed point has been reached. One can
note that the graph may also be made of directed arcs, depending on the involved
constraints. This enhances the propagation and so computation times.

C4[a]C1

C3C2[d]

[b] [c]

C1([a])
C2([b], [d])
C3([b], [c])
C4([a], [b])

⇔

Figure 5: A CN corresponding to four contractors and four domains.

6 Example of use: a SLAM problem

6.1 Formalism
In robotics, Simultaneous Localization And Mapping (SLAM) [37] is a topic that
ties together the problem of state estimation and that of mapping an unknown
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environment. A robot exploring its surroundings will associate localization uncer-
tainties to the observed features of the environment, assigning their location with
some error. However, a scene of the environment may be seen several times during
the exploration, thus leading to an inter-temporal measurement which could benefit
both localization and mapping procedures. Indeed, a robot that recognizes a part
of the environment will deduce to be close to a previous position. This chicken-and-
egg problem is difficult to solve with recursive algorithms such as Kalman filters,
due to inter-temporal relations between the states, corresponding to so-called loop
closures [38]. Because SLAM requires a capacity to manage equations involving
states from different times and strong uncertainties, it can be more easily dealt
with tubes and contractors.

We propose to solve a classical range-only SLAM problem using CNs. Let us
consider a robot measuring distances from landmarks for which the position is
unknown. This can be formalized with the following state equations:

x(0) = 0,

ẋ(t) = f(x(t),u(t)),

y(i) = g(x(ti),b
(j)),

(1a)
(1b)
(1c)

with x(t) ∈ Rn and u(t) ∈ Rm, the state and input vectors, y(i) ∈ R a distance
measurement and b(j) ∈ R2 the related landmark of the environment. f and g
are nonlinear functions depicting the evolution of the states and distance measure-
ments. Both u(t) and y(i) are measured with some bounded errors.

6.2 Building a SLAM-CN

Figure 6: Contracted tube of po-
sitions (in blue) resulting from the
SLAM-CN. The gray tube provides a
reference corresponding to the local-
ization drift without measurements.
The estimated position of the land-
marks is depicted by black boxes.

In a few steps, the problem is solved with
Codac by (i) defining the initial domains
(boxes, tubes) of our variables (vectors, tra-
jectories); (ii) taking contractors from a
catalog of already existing operators, pro-
vided in the library, or building contrac-
tors for specific constraints; (iii) binding
the contractors and domains in a CN; (iv)
letting the CN solve the problem by con-
tracting the sets of feasible values.

Eq. (1b) is a differential equation dif-
ficult to solve in the nonlinear case. We
will therefore decompose the equation into
two constraints v = f(x,u) and ẋ = v in
order to use available contractors, respec-
tively Cf [2] and C d

dt
[34]. Involved domains

are intervals [y](i), boxes [b](j) and tubes
[x](·), [u](·), [v](·). The resulting CN is pic-
tured in Fig. 7, providing an illustration of
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[x]k1
[x]k2

[x]k3
[x]k

[v]k1 [v]k2
[v]k3

[v]k

Cd
dt

Cf

[v](·)

[x](·)

Cg

[x]kj

[v]kj

[b](2)

Cg CgCg

[b](1)

�

�

� � � � �

�����

[y](1) [y](2) [y](i) [y](i)

Cf([v](·), [x](·), [u](·))
C d

dt
([x](·), [v](·))

for each y(i):

Cg([y](i), [x](ki), [b](j))

⇔
Cd
dt

Cf Cd
dt

Cf Cd
dt

CfCd
dt

Cf

Figure 7: Illustration of a SLAM-CN associated with System (1) and some mea-
surements from two landmarks b(1), b(2). The contractors and domains, formalized
in a declarative way on the right-hand side, are transformed into a CN partially
pictured on the left-hand side. For ease of reading, [u](·) is not represented on this
figure. The graph reveals how inter-temporal relations are implicitly built.

the decomposition of tubes into graphs of slices for allowing a finer propagation.
The source code of this SLAM-CN is available on http://codac.io/slam for en-
couraging future comparisons. The SLAM-CN runs contractions in less than 1s,
providing the results pictured by Fig. 6. In this example, inter-temporal relations
between the states are implicitly managed by the SLAM-CN. The landmarks are
first localized and then used to improve the localization of the robot. This scenario
is automatically managed by the CN.

7 Conclusion
The Codac library offers a catalog of domains and contractors that one can com-
bine into Contractor Networks in order to build interval solvers using a declarative
paradigm. The assets lie both in the simplicity of the approach and the reliability of
the results. It also allows to deal with a wide class of constraints that are classically
encountered in real applications. Future work will concentrate on the development
of the catalog of domains, contractors and separators, as well as improvements of
CNs for real-time implementations.

The library is released under LGPLv3. The list of contributors of Codac is
available on the website of the library, with related publications associated with the
provided tools: http://codac.io. We encourage anyone interested in contributing
to this open-source project to contact us.
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