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ABSTRACT The role of clustering in unsupervised fault diagnosis is significant, but different clustering
techniques can yield varied results and cause inevitable uncertainty. Ensemble clustering methods have
been introduced to tackle this challenge. This study presents a novel integrated technique in the field of
fault diagnosis using spectral ensemble clustering. A new dimensionality reduction technique is proposed
to intelligently identify faults, even in ambiguous scenarios, by exploiting the informative segment of the
underlying bipartite graph. This is achieved by identifying and extracting the most informative sections of the
bipartite graph based on the eigenvector centrality measure of nodes within the graph. The proposed method
is applied to experimental current-voltage (I-V) curve data collected from a real photovoltaic (PV) platform.
The obtained results remarkably improved the accuracy of aging fault detection to more than 83.50%,
outperforming the existing state-of-the-art approaches. We also decided to separately analyze the ensemble
clustering part of our FDD method, which indicated surpassing performance compared to similar methods
by evaluating commonly used datasets like handwritten datasets. This proves that the proposed approach
inherently holds promise for application in various real-world scenarios that are indicated by ambiguity and
complexity.

INDEX TERMS Enhanced spectral ensemble clustering (ESEC), bipartite graph partitioning, eigenvector
centrality, neural networks, fault detection and diagnosis (FDD), photovoltaic (PV) system.

I. INTRODUCTION
In PV systems, fault detection and diagnosis (FDD) ensures
superior reliability, safety, and energy efficiency. AI-based
mechanisms are an effective solution to attain acceptable
FDD efficiencies. Robust methods for employing machine
learning in FDD exist, many based on supervised learning,
and require well-labeled datasets. However, accumulating
and accessing the history of events and faults in systems such
as PV plants can be quite costly due to inherent obstacles [61].
Unsupervised learning is valued mainly because it relies
less on well-labeled datasets. Unsupervised learning methods
often use clustering, a key data analysis technique. To apply
clustering for FDD purposes, clusters must be interpreted
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to determine the type of faults [7], [20], [22]. It must be
noted that since clustering techniques generally depend on
dissimilarity and similarity means, they can generate differ-
ent results. The outcomes may change even when using a
similar clustering method with only different parameters or
initializations [1]. In addition, finding a clustering approach
suitable for diverse cases is still an unsolved challenge [2].
Specifically in PV systems, a single clustering approach may
result in lower performance when dealing with unseen I-V
curve data from PV plants with larger sizes or different string
architectures. Ensemble clustering is a promising solution
to address these limitations. Firstly, multiple base clustering
methods are used to obtain original base clusterings. Then,
the outputs from these clustering methods are integrated
within a consensus framework. Among many ensemble clus-
tering methods, spectral ensemble clustering is particularly
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TABLE 1. Nomenclature.

effective for training nonlinear systems and managing high-
dimensional data [63], [64]. In this article, spectral ensemble
clustering is selected for FDD due to its promising function
for both base clustering and consensus clustering steps. The
main concern in spectral ensemble clustering is the complex-
ity cost [62]. The main challenge is developing methods to
minimize dimensionality while keeping essential informa-
tion. Techniques such as PCA [3], outlier detection [4], and
backward feature elimination [5] are insufficient for main-
taining valuable underlying information in clustering [6].
This issue remains open in most FDD approaches, even when
clustering techniques are used. Determining which data par-
titions carry the most valuable information is the primary
task to detect faults in large volumes of data. In this article,
a new method for FDD using spectral ensemble clustering
augmented by smart outlier detection is designed. We believe
this approach can potentially make significant advancements
in PV systems diagnosis. We list our contributions as follows.

1. Integration of Spectral Ensemble Clustering and Fault
Diagnosis: Historically, there has been limited integration
between spectral ensemble clustering and fault diagnosis in
PV systems. To bridge this gap, a novel integrated framework
that combines spectral ensemble clustering with PV FDD is
proposed.

2. Revealing Hidden Patterns: To reach an accurate
diagnosis, a profound comprehension of the underlying
meanings and patterns within the data is vitally important.
The methodology presented defines a new bipartite graph
partitioning stage in the segmentation part. As an overpow-
ering mechanism for uncovering ambiguous or concealed

defects, the new intelligent outlier detection is really advan-
tageous. Also, It can predict weaknesses or early-stage faults
profoundly.

The notations used in this article are overally displayed in
Table 1. The contents of the rest of this paper are arranged
as follows. The related works are discussed broadly in
section II, where relevant context and background are offered.
Section III delves into the enhanced spectral ensemble clus-
teringmethodology, while Section IV presents the application
and in-depth analysis of the results.

II. RELATED WORKS
A. PV FDD USING CLUSTERING-BASED METHODS
For our specific case study, we focus on PV systems. The field
of fault diagnosis for PV systems has witnessed numerous
studies that employ clustering methods directly or combined
with other techniques [19]. Among clustering-based FDD
methods, K-means is a commonly used clustering algorithm
known for its robust performance on diverse feature-rich
data. For instance, it has been applied in fault detection
analysis with thermal images and also for real-time PV diag-
nosis [23], [24], [25], [26]. However, it must be noted that
K-means can be affected by initial cluster centers and may
even converge to an unwanted local optimum [27], [56].
Another common clustering method used in PV FDD is
‘‘Fuzzy C-Means’’ (FCM). An FDD method using an inte-
grated clustering technique is developed by Lei et al. They
designed a two-stage feature selection technique, followed
by an embedded weighting inside the FCM algorithm [21].
Honglu Zhu et al. introduced an ‘‘FDDmodel based on FCM.
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TABLE 2. Different base clustering methods.

They subsequently fed the generated labeled features to a
‘‘probabilistic neural network’’ (PNN) for classification. This
hybrid method combines clustering and classification and is
referred to as the ‘‘cluster-then-label’’ (CTL) algorithm [19].
Although the FCM method is effective, it has difficulty iden-
tifying non-spherical clusters. Additionally, FCM requires
pre-defined cluster centers before the clustering process [28].
Shengyang Liu et al. developed a clustering-based algorithm
for FDD using dilation and erosion theory. Notably, their
method can detect unknown faults, as the number of clus-
ters is not predetermined [29]. Yongjie Liu et al. proposed
a fault diagnosis approach based on ‘‘Clustering by Fast
Search and Find of Density Peaks’’ (CFSFDP) clustering and
stacked auto-encoders. They achieved dimensionality reduc-
tion using t-distributed stochastic neighbor embedding [28].
Yuqiao Cai et al. presented an online fault diagnosis method
based on data stream clustering. Specifically, they utilized
the ‘‘Density-Based Spatial Clustering of Applications with
Noise’’ (DBSCAN) technique with input from PV array
data streams. This approach is explicitly for grid-connected
PV plants [30]. The critical aspects of DBSCAN involve
selecting core points based on predefined density thresh-
olds. However, it is worth noting that these types of density
thresholds, which are usually artificially set, can crucially
change the clustering performance [28]. de Guia et al. used
the mean-shift method for both outlier detection and then
classification in an ensemble routine [31]. Hierarchical clus-
tering has also been studied using similar FDDmethods [32].
ShushanWu et al. applied ‘‘Multivariate Functional Principal
Component Analysis’’ (MFPCA) clustering. Their algorithm
extracts current and voltage data from coupling nodes [33].
Pham et al. introduced an FDD approach based on dynamic
clustering, primarily focused on detecting open circuit faults
in inverters [34]. Most of the aforementioned fault diagnosis
methods rely on a single clustering technique. However, there
is a scarcity of research on PV FDD methods based on
ensemble clustering [35].

B. SPECTRAL ENSEMBLE CLUSTERING
There are different ways of ensemble clustering [8], [9].
In this article, spectral ensemble clustering is selected, which
has emerged as a key technique explored by various research
approaches. For instance, Liang et al. formulated a spectral
ensemble clustering technique that constructs a represen-
tative co-association matrix within a unified constrained
framework for optimization [10]. Li et al. defined spectral
ensemble clustering for large-scale data by generating basic
clusterings and combining them using a bipartite graph [11].
Dong Huang et al. proposed a two-stage spectral ensem-
ble clustering approach. A bipartite graph is designed to
relate objects and base clusters in their generation stage,
and the consensus clustering results from partitioning this
bipartite graph [12]. WenguangWang et al. addressed ensem-
ble clustering by utilizing correlation links to select proper
hyperspectral bands. Their method involves an agglomerative
clustering approach to shape the consensus function [13].
Fei et al. introduced a selective spectral ensemble cluster-
ing method [14]. The authors used stochastic initialization
and ‘‘normalized mutual information’’ (NMI) to shape basic
clusterings in their method. The consensus function is based
on the density peaks phenomenon. In this paper, spectral
ensemble clustering plays a key role, but it incurs sig-
nificant computational costs. To tackle this issue, diverse
approaches have been examined. Above all, techniques such
as weighted cluster ensemble [17], sparsification [16], and
landmarking [15] have been verified. For instance, a divide-
and-conquer method is introduced by Hongmin Li et al. They
accelerated the base clustering generation process by apply-
ing K-nearest neighbors [18]. Comparably, Dong Huang et al.
used an approximation technique for K-nearest selection to
build a sub-matrix of sparse affinity. This affinity sub-matrix
efficaciously relates objects and cluster representatives with
lower computational overhead [12]. In spectral ensemble
clustering, it is vitally important to consider how the proposed
method can reduce the drawbacks of dimensionality.
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III. NOVELTY IN SPECTRAL ENSEMBLE CLUSTERING
A. BASE CLUSTERING GENERATION
Different clustering techniques are gathered to evaluate the
true efficiency of the proposed ensemble clustering method,
each with its distinct philosophy. A non-exhaustive list of
these clustering methods is displayed in Table 2. Since
this paper focuses mainly on the design of the consensus
core [11], [12], the base clustering methods are not deeply
studied. The base clustering data in our proposed method is
built by results from ten base techniques shaping the required
‘‘cross-affinity matrix.’’

B. NOVELTY IN CONSENSUS CLUSTERING
Although the reasons mentioned above underscore the capa-
bility of spectral ensemble clustering, one question still needs
to be addressed, particularly for PV FDD using I-V curve
data: How can we improve the consensus function for cluster
aggregation? The spectral ensemble clustering inputs are the
matrix of labels generated by all base clustering routines.
The main steps in our proposed spectral ensemble cluster-
ing involve computing the cross-affinity matrix, shaping the
bipartite graph, performing dimensionality reduction, and
solving the new eigenproblem. In this paper, we offer new
outlier detection and outlier removal after constructing the
bipartite graph based on the centralities of vertices in the
graph. Adding this outlier removal has several advantages,
including higher robustness and suitability for systems with
ambiguities in their inherent distribution or fault behavior.
Consequently, the proposal is named ‘‘Enhanced Spectral
Ensemble Clustering (ESEC),’’ which has no constraints for
cluster shapes like other graph-based clusteringmethods [27].
We explain the novel spectral ensemble clustering step by
step, As shown in the flowchart in Figure 2.

1) CONSTRUCTING BIPARTITE GRAPH
In the following, we assume that there are N base clusterings.
Each generates a partition denoted ψ i, where i = 1, . . . , N .
The union of all N partitions forms, 9 defined as

9 =

{
ψ1, ψ2, . . . , ψN

}
(1)

The collection of all cluster subsets generated by different
base clusterings is denoted as 2.

2 =

N⋃
i=1

 Pi⋃
j=1

θij


where θij represents the jth cluster within partition ψ iand Pi
(for i = 1, . . . ,N ) denotes the number of clusters within each
base clustering. Note that the value Pi, may differ for each
clustering. The total number of clusters in the ensemble is
denoted as M.

M =

N∑
i=1

Pi (2)

After creating the ensemble set of clusters, the membership of
each cluster to its base clustering is not considered. Instead,
the membership of a cluster to the ensemble set is studied.
Let’s rewrite ‘‘θ =

{
θf

}
1×M ’’ as the set of collected clusters

from different base clustering methods.

θ = {θ1, θ2, . . . , θM }

The bipartite graph G is defined as:

G = {Z, θ,R} (3)

Here, Zrepresents the featured dataset of m objects denoted
as zl (for l = 1,. . . , m). The bipartite graph vertices consist of
the m objects zl and related clusters θf , and the total number
of clusters is M. Total vertices of both partition sides of the
bipartite graph form |Z ∪ O|(m+M)is (m + M). The variable
R represents the cross-affinity matrix in the bipartite graph.
Each element rlf of the matrix R determines the membership
of object node zl,in the cluster θf . If an edge connects two
vertices from opposite sides of the bipartite graph, the mem-
bership equals one.

R =
{
rlf

}
m×M (4)

where rlf equals 1 if related data belongs to cluster θf
and rlf changes to zero if the above-mentioned condition is
invalid. ‘‘A’’ represents the total affinity matrix, defined as:

A =

(
0 R
RT 0

)
(5)

2) EIGENVECTOR CENTRALITY
Eigenvector centrality is a key parameter for assessing the
importance and impact of a vertex within a graph (or a node in
a network). Noticeably, Google’s PageRank algorithm shares
similarities with eigenvector centrality [46]. Denoted as EC i
for node i, this centrality measure initially assumes a value of
one and is calculated based on the following formula [47].

ECi =
1

λmax (G)

q∑
j=1

âij.ECj (6)

where λmax (G) represents the maximum eigenvalue of the
graph G. Â is the adjacency matrix and âij are adjacency
matrix elements connected to the ith node. It is determined
by summing EC jdenoted as the eigenvector centrality of
all nodes that are directly connected to node ‘‘i’’via edges
within its neighborhood q. Eigenvector centrality considers
two informative indicators: the number of nodes connected
to node i and the importance of the given node in terms
of the information stream by looking at other nodes [48].
In this section, we will examine eigenvector centrality in
the context of spectral ensemble clustering. In a bipartite
graph, high eigenvector centrality has different implications.
High eigenvector centrality in object nodes suggests member-
ship in multiple clusters, showing overlap between clusters.
On the other hand, in cluster nodes, high eigenvector cen-
trality reveals large clusters covering many object nodes.

VOLUME 12, 2024 170421
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FIGURE 1. Illustrative examples of outliers. The green vertices represent data nodes, while the red and yellow vertices represent base clustering nodes.
The left graph shows three outlier nodes with low eigenvector centrality. The right graph demonstrates incorrect high eigenvector centrality on a single
cluster (w6).

Notably, major differences in eigenvector centrality among
cluster nodes reflect unbalanced clustering. Very high and
very low eigenvector centralities in object and cluster nodes,
as shown in Figure 1, identify outliers. In summary, the use
of eigenvector centrality provides three key indicators.

• Clustering overlap indication
• Unbalanced clustering detection
• Outlier detection
Low eigenvector centrality (EC) values often indicate out-

liers, while high EC values, as formulated in equation (7),
may suggest overlapping or unbalanced clusters and, in some
cases, outliers. This work primarily focuses on outlier detec-
tion, but it also briefly addresses the detection of overlapping
and unbalanced clusters.

max (ECi) ≫
1
nv

nv∑
i=1

ECi (7)

In equation (7), the variable ‘‘nv’’ represents the number of
vertices in the bipartite graph. It is important to note that base
clustering methods have no overlapping occurrences inside,
as each data point is assigned to a unique cluster within
a specific base clustering. Obviously, a data object cannot
belong to two clusters within the same base clusteringmethod
at the same time. In spectral ensemble clustering, overlapping
occurs only between clusters from different base clusterings.
It is possible to have scenarios where all basic clustering
methods produce the same clustering, resulting in completely
overlapped clusters. Conversely, there are scenarios where all
of the clusters, from different base clustering methods, have
only partial overlapping. However, these scenarios are empir-
ically infrequent. Clusters with high eigenvector centrality
in their vertices often indicate the presence of clusters with

many members. Although it is common for certain clusters to
encompass larger partitions, the crucial consideration is deter-
mining whether these larger clusters are disproportionately
sized or not. The unbalanced cluster characteristics depend on
the underlying data distribution. In datasets marked by high
standard deviation, distinguishing between normal clusters
and oversized unbalanced ones causes a challenge, while for
datasets with lower standard deviation, the identification of
misclassified enormous clusters is more straightforward. The
main task is to interpret the unbalanced clustering and the
reasons behind it. Some systems have an asymmetric nature
and naturally cause unbalanced clusters, while in others,
unbalanced clustering may imply misguided clustering. Such
erroneous imbalance is studied more in the outlier section.
The pure unbalanced clustering analysis is out of the scope of
this research, and this paper touches on some parts relevant
to the outlier detection.

3) OUTLIERS
This section analyzes the bipartite graph generated by spec-
tral ensemble clustering. The main focus is on consensus
clustering, which comes after the generation of clusters from
the ‘‘N’’ base clustering partitions. This article tries to intro-
duce a novel approach for dimensionality reduction based on
the eigenvector centrality of the bipartite graph. In current
state-of-the-art methods, reducing data to a smaller size by
removing members associated with small clusters may lead
to misinterpretation. For instance, a member of a small clus-
ter in one base clustering technique could be part of larger
clusters in others. Due to this reason and many other benefits,
which we will explain in upcoming sections, this article uses
eigenvector centrality (EC) to identify and remove outliers
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FIGURE 2. Flowchart of the proposed ESEC method.

and reduce dimensions in the bipartite graph. This helps
extract a more informative subset of data, thereby improving
subsequent consensus clustering. This enhancement is based
on the recognition that very low EC values not only indicate
a lack of connectivity to large clusters but also to nodes with
high centrality. Conversely, very high EC values may result
from erroneous clusters that indiscriminately cover most of
the data.

a: THRESHOLD
We use the z-score method on EC values to detect outliers.
First, we use logarithmic transformation to reduce the skew-
ness and compress the wide range of values into a more
manageable scale. After applying the logarithmic transfor-
mation, we use the z-score method to detect outliers in the
transformed data. The z-score identifies outliers based on the
number of standard deviations from the mean. This paper sets
the z-score threshold at ‘‘three’’ based on empirical reasons.
Once we have the indices of the outliers in the transformed
data, we canmap them back to the original data to identify the
actual outliers. In general, both very low and very high eigen-
vector centrality values that their z-score are substantially low
or high (here if the absolute value of the z-score is greater than
three) are listed as outliers. For each vertex, vi in graph G
where vi ∈V(G), the mean value of eigenvector centralities
ECm, which is equivalent to the right side of (7), and the
criteria for identifying outliers are determined as follows:

ECm =
1

(m+M) .λmax (G)

m+M∑
i=1

q∑
j=1

âij.ECj (8)

∣∣∣∣ECi − ECm

σ

∣∣∣∣ > 3.0 (9)

The standard deviation (σ ) of EC values is needed to calculate
the z-score as formulated on the left side of the inequality (9).
In Figure 1, there are two typical small examples of bipar-
tite graphs from different base clusterings. Green vertices
represent data nodes, while red and yellow represent two
base clustering nodes. The edges indicate which data nodes
belong to which base clustering nodes. In the left graph, three
nodes are separated from the rest, which can be categorized as
outliers due to their low eigenvector centrality. On the right
graph, there is a scenario where a base clustering wrongly
assigns almost all data nodes to a single cluster (w6). This
results in a lack of distinction between the data nodes. The
yellow cluster node (w6) shows high eigenvector centrality.
However, this high centrality is misleading as it fails to dif-
ferentiate between the data nodes.

4) OUTLIER REMOVAL
Let G be a bipartite graph with its vertex set V(G) and
its edge set E(G). Assume H is an outlier subgraph of
G (V (G) ,E (G)), then its vertex set is V (H), and the edge
set is E (H):

Subject to

{
V (H) ⊆ V (G)
E (H) ⊆ E (G)

The new bipartite graph after outlier elimination, which is
explained in algorithm 2, is

G′
=

{
Z ′,O′,R′

}
(10)
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FIGURE 3. An illustrative example of a connected bipartite graph is discussed in theorem 3. Overlapping clusters (left) indicate
common nodes. The common nodes in the overlapping regions make the bipartite graph connected (right).

where G′
=

(
V ′,E ′

)
is the bipartite graph after

outlier removal and vertex set V ′ is representad as
follows.

V ′
= V (G)V (H) (11)

5) IMPACT OF OUTLIER REMOVAL ON COMPUTATIONAL
COMPLEXITY
It is evident that the removal of outliers leads to a reduction
in both time and memory costs. In the context of the eigen-
problem, the cross-affinity matrix (denoted as R) transitions
from an m×M matrix to a lower-dimensional cross-affinity
matrix of dimensions (m− mout) × (M − cout), where mout
and cout represent the number of outlier elements and outlier
clusters, respectively. Given that the number of non-zero
elements in each row of the cross-affinity matrix equals N
(where N represents the number of base clustering meth-
ods), the computational complexity for shaping such a matrix
shifts from O (m.N ) to O ((m− mout) .N ) [49]. We exam-
ine the time cost before and after outlier removal in result
section.

6) OUTLIER REMOVAL ON SPECTRAL ENSEMBLE
CLUSTERING
In general, spectral clustering is sensitive to outliers, thereby
emphasizing the need for precise measures. Outliers tend
to yield eigenvalues that are proximal to ‘‘one,’’ along with
eigenvectors that substantially differ from others involved in
the eigen-decomposition and clustering process. Hence, it is
optimal to remove outliers before the eigen-decomposition
stage [50].

7) IMPACT OF OUTLIER REMOVAL ON DISCRETIZATION
STEP (K-MEANS ALGORITHM)
Applying outlier removal to the bipartite graph G induces
changes in the cross-affinity matrix R and, consequently,
the affinity matrix A by reducing the number of rows
and columns. This poses a new challenge in assessing the

influence of outlier removal on the performance of the dis-
cretizing step (K-means), which is used as a discretization
tool within the last step of spectral ensemble clustering.
To investigate the impact of outlier removal, we endeavor to
establish the following theorem, which explains the efficien-
cies before and after outlier removal:
Theorem 1: Let the objective function in the k-means

algorithm be:

F
(
θ̂
)

=

k∑
j=1

∑
x∈θ̂j

d
(
cj, x

)
(12)

where d
(
cj, x

)
is the distance between datapoints and clus-

ter centers. Applying outlier removal after base clustering
generation improves the K-means discretization efficiency
(it decreases the K-means objective function, F

(
θ̂
)
, inside

bipartite graph partitioning).
Proof: See the Appendix A.

8) UPPER AND LOWER BOUNDS OF EIGENVECTOR
CENTRALITY
Theorem 2: Let G be a bipartite graph between data points

and cluster points from different base clusterings in the spec-
tral ensemble clustering algorithm. Upper and lower bounds
for the eigenvector centrality (EC i) of any node in G is
represented as.

1
√
m.N

q∑
j=1

âij.ECj < ECi

<
1

λmax (G)

m∑
j=1

âij.ECj (13)

where m is the number of data rows, N is the number of
base clusterings, and q is the number of surrounding nodes
neighboring each vertex of G.

Proof: See Appendix B.
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9) EIGENVECTOR CENTRALITY IN BIG DATA
In this paper, the eigenvector centrality in big data is studied
only from a purely theoretical perspective. The clusters gen-
erated by base clustering overlap more in ultra-large datasets,
particularly with an increasing number of ensembles. So, it is
very important to study the large clusters with overlapping
members. Such overlapping members may make the bipartite
graph a connected graph. Graph connectivity is a key element
in the analysis of bipartite graphs within spectral ensemble
clustering. Figure 3 illustrates a typical brief example of how
the overlapping ensemble clusters impact the connectivity of
a bipartite graph. Nodes in the shared area create connecting
edges in the bipartite graph. In our proposed method for
outlier removal based on eigenvector centrality, this article
studies the influence of graph connectivity on eigenvector
centrality and its lower bound in Theorem 4. Before that,
we must describe bipartite graph connectivity in spectral
ensemble clustering.
Theorem 3: Let G = {Z ,2,A} be a bipartite graph con-

structed from N base clustering with total M clusters. 2 =

{21,22, . . . ,2M } ,and let the partition of whole 2 into two
nonempty subsets be 2v and 2u, that are constructed from
any combination of clusters inside2set while2 = 2v∪2u.
If for all possible partitions of G into 2v and 2u, it holds:

|2v ∩2u| ≥ 1 (14)

Then, G is connected.
Proof: See Appendix C.

If we take into account the overlapping behavior in ensem-
ble clustering in big data, as well as the graph connectivity
explained in theorem 3, we can now establish a new lower
bound for eigenvector centrality.
Theorem 4: Let G be a bipartite graph with conditions in

theorem 3. The lower bound of its eigenvector centrality is:

1
√
m (2N − 1)−M + 1

q∑
j=1

âij.ECj<ECi (15)

M is the number of all clusters from different base clusterings.
Proof: See Appendix D.

10) CUTTING THE EIGENVECTORS
The generalized eigenproblem for the aforementioned bipar-
tite graph G = {Z, θ,R} is represented as:

Lρ = γDρ (16)

where L denotes the Laplacian matrix (L = D − A), ‘‘ A=

RTD−1R’’ is the full affinity matrix, and D is the degree
matrix. Let the corresponding first k eigenpairs of G be
denoted as ‘‘{(γi, ρi)}ki=1’’. Li et al. [49] demonstrated the
equivalence between the eigenproblem of the bipartite graph
G and the subsequent eigenproblem of the reduced-size graph
‘‘Gd = {O,Ad}.’’ The affinity matrix of the reduced eigen-
problem is Ad = RTD

−1
z R. Where Dz is a diagonal matrix

(Dz ∈ Rm×m) whose entries along the main diagonal (i, i)
are equal to the sum of the ith rows of R. Here, Gd comprises

graph nodes solely from cluster vertices. Its eigenproblem is
expressed as:

Ldω = λDdω (17)

where Dd ∈ RM×M is the degree matrix of Gd and Ld =

Dd − Ad denotes the Laplacian matrix of the reduced
eigenproblem. The first k eigenpairs ‘‘{(λi, ωi)}ki=1’’are also
determined for the eigenproblem of Gd . Thus, instead of
computing k eigenvectors of G (denoted as ρ1, ρ2,. . . , ρk ),
k eigenvectors of Gd (denoted as ω1, ω2,. . . , ωk ) are com-
puted. Finally, the eigenvectors of G, ρi, are obtained by the
following equations:

γi = (2 − γi) λi (18)

gi =
1

1 − γi
P̂ωi (19)

ρi =

[
gi
ωi

]
(20)

where P̂ is the matrix of transition probability [49].

P̂ = D−1
z R (21)

Algorithm 1 : Enhanced Spectral Ensemble Clustering
(ESEC)
Input: Dataset of features (Vocn, Iscn, Vmpn, Impn)
Output:Ensemble clustering
1 Generate various base clustering.
2 Compute the cross-affinity matrix via (4)
3 Shape the bipartite graph.
4 Outlier detection using Algorithm 2
5 Solve the new eigenproblem via (17)
6 Stack the eigenvectors in a new matrix.
7 Apply K-means for final clustering.

11) MAPPING AND FAULT LABELING
Merely obtaining cluster labels, as explained in Algorithm 1,
does not suffice for FDD; it is imperative to interpret the clus-
ter centroids. Following the final clustering phase, all cluster
representatives should undergo interpretation and categoriza-
tion into distinct fault groups [51]. Clusters are categorized
into main PV fault categories, such as partial shading, open
circuit fault, and aging, based on the alignment of each cluster
center with fault electrical characteristics, as illustrated in
Figure 4. Various measurements from I-V curve character-
istics, such as Vocn, Iscn, Vmpn, and Impn, are relevant fault
signatures. Potential faults can be deduced from the abnormal
variations in electrical features. Significantly, a decline in
currents (Iscn and Impn) is a probable sign of open circuit
faults. Partial shading indicates a decrease in Vmpn and Impn.
In more serious shading cases, it manifests a more rapid
reduction in Impn.Aging faults (Rs degradation) display drops
in Vmpn and Impn, with a more notable decline in Vmpn [53].
Subsequently, a fault label is assigned to each row of the
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data according to the inferred fault or health status of cluster
representatives,

Algorithm 2: Dimensionality Reduction
Input: G = {Z,2,A} ,2 = {θ1, θ2, . . . , θM },
Z = {z1, z2, . . . , zm}, threshold,
Output: G′ (Reduced bipartite graph)
Compute EC i for i = 1 to (m+M) by equation (6)
Compute the mean value of ECm by equation (8)
for i = 1to (m+M) do

if
∣∣∣EC i−ECmσ

∣∣∣ > threshold then
Update Zout if 1 ≤ i ≤ m
Update 2out if (m+ 1) ≤ i ≤ M

end if
end for
Obtain final (2out ,Zout)
Compute 2′ by 2′

= 2−2out
Compute Z ′ by Z ′

= Z − Zout
Update R′ via (4) for its new dimension
Obtain G′, via (10),
Return G′

IV. EXPERIMENT AND RESULTS
The I-V curve data measured from PV systems are the core
data for the diagnostic model presented herein. The PV sys-
tems can be effectively and comprehensively described and
modeled by the ‘‘Single Diode Model’’ [50].

A. EXPERIMENTAL SETUP AND DATASETS
Among the various electrical features of PV systems, four
primary attributes are selected: short-circuit current (Isc),
open-circuit voltage (Voc), maximum power point current
(Impp), and maximum power point voltage (Vmpp). The range
of environmental parameters is confined to typical minimum
andmaximum summer day irradiance and temperature within
the PV test platform located south of Paris. The irradiance
spans from 200W/m2 and 16◦C in themorning to 1180W/m2

and 46◦C in the early afternoon. Various fault scenarios are
considered for fault generation, including open circuit faults,
partial shading, and aging, as these represent the most com-
mon faults.

1) FEATURES FROM I-V CURVES
To remove the environmental effects from I-Vmeasurements,
the data of the I-V curve are converted to the standard
irradiance and temperature at STC (1000 W/m2 and 25◦C).
In addition, to facilitate the comparison of clustering results,
a normalization of the I-V curve is needed. The results will
shape the per unit values in the [0, 1] range. Then, the fea-
tures change to Iscn, Vocn, Impn, and Vmpn. The preprocessing
concepts in this stage are formulated based on the correction
formula (22) and (23) proposed by Li Baojie et al. [53].

I2 = I1

(
1 + αrel (Tm2 − Tm1)

G2

G1

)
(22)

V2 = V1 + Voc1

(
βrel (Tm2 − Tm1)+ a.ln

(
G2

G1

))
− Rs (I2 − I1)

− k.I2 (Tm2 − Tm1) (23)

where αrel and βrel are the relative coefficients of temperature
correction for Isc and,Voc. The internal series resistance is
Rs. k and a are the curve and irradiance correction fac-
tors, respectively. Indices 1 and 2 represent the before and
after-correction for current I1and I2, voltageV1 andV2, irradi-
ance G1, G2and temperature Tm1 and Tm2. The PV module is
the BlueSolar Monocrystalline Panels series SPM040551200
(55W-12V Mono 545 × 668 × 25mmseries 4a), whose char-
acteristics at STC are listed in Table 3 [54].

TABLE 3. Electrical data of PV module under STC [54].

2) DATA GATHERING
Various fault scenarios are implemented in a PV system
consisting of 8 PV panels. Four PV panels are lined in
series, and then this line is connected in parallel with another
similar four PV panels. Shading faults are induced at two
distinct partial shading levels by partially covering the PV
panels. For open circuit faults, one of the parallel lines
is deliberately disconnected. Aging faults are intentionally
introduced by incorporating resistors with varying severity
levels.

Ambiguous and moderate aging fault scenarios are pur-
posely crafted to assess the diagnostic model’s efficacy.

3) DATASETS
Diverse datasets encompassing different fault scenarios are
integrated into the final dataset, comprising 860 rows
of electrical features such as Isc, Voc, Impp, and Vmp.p.
In fact, each row of these features is extracted from a
unique I-V curve, while each I-V characteristic curve is
a set of 100 data points for voltage, current, and power.
Base clustering techniques encompass K-means, Agglom-
erative clustering, Spectral clustering, FCM, Mean-shift,
OPTICS, DBSCAN, Affinity propagation, Gaussian mix-
ture model, and Birch. Each method, as listed in Table 4,
is applied, resulting in 60 base clustering outcomes in
separate datasets. Subsequently, the results from different
clustering approaches are concatenated after the initial clus-
tering step for further processing through spectral ensemble
methods. Figure 2 conveys the flowchart of the introduced
methodology.
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FIGURE 4. Following the clustering process, the faults are, mapped and
labeled according to their normalized value of electrical features (Iscn,
Vocn, Impn, Vmpn). The faults are (a) aging (Rs degradation), (b) partial
shading, and (c) open circuit faults.

TABLE 4. Different base clustering datasets.

4) EVALUATION METRICS
The accuracy of prediction is computed as:

ACC =
TP + TN

TP + TN + FP + FN
(24)

TN (true negative) and TP (true positive) are regarded as the
correct predictions, while FP (false positive) and FN (false
negative) stand for wrong predictions [51]. In addition, NMI
is used for the evaluation of clustering performance [52]. Two

partitions ψ,ψ ′ have NMI as follows:

NMI
(
ψ,ψ ′

)
=

∑π
i=1

∑π ′

j=1 bij log
(
bij.b

/
bi.bj

)
√(∑π

i=1 bi log
(
bi
/
b
)) (∑π ′

j=1 bj log
(
bj
/
b
))

(25)

where bj refers to the number of elements in the jth cluster of
available ground truth dataset, the bi represents the number of
elements in the ith cluster of the proposed clustering method
and, bij means the common objects in bi and bj (∀i =

{1, . . . , π} ,and ∀j = {1, . . . ,π
′
). In this study, the results

of spectral ensemble clustering are also compared with the
cases when only one clustering method is used, like K-means,
agglomerative clustering, and FCM.

B. RESULTS AND DISCUSSION
1) CLUSTERING RESULTS
The K-means clustering analysis was chosen for compari-
son due to its superior performance compared to other base
clustering methods. The outcome of K-means is illustrated
in Figure 5. Despite setting the number of clusters to 8,
the algorithm only identifies three central regions. It does
not effectively differentiate between healthy areas and aging
faults, nor does it accurately discern various levels of par-
tial shading. In Figure 6, the ESEC clustering outcome is
depicted. It effectively differentiated between healthy areas
and areas with ambiguous aging faults, and it also exposed
regions with partial shading faults at both high and low levels.
It’s worth noting that there are several new preprocessing
methods for I-V curves to improve partial shading diagnosis
using step detection [72]. However, these methods were not
used or discussed in this study, as the primary focus was
applying spectral ensemble clustering with outlier removal
to PV FDD. The visualization of clusterings in Figures 5
and 6 offers only an initial conceptual representation of ESEC
performance.

However, the system’s faultiness or health can be discerned
by the subsequent pivotal mapping step.

2) PERFORMANCE
The performance of the enhanced spectral ensemble cluster-
ing method, ESEC, introduced in this study was evaluated
against two established spectral ensemble clustering meth-
ods, named U-SENC [12] and LSEC [11]. Tables 5, 6, and
Figure 10 visually compare the performance of three ensem-
ble spectral clustering methods, U-SENC, LSEC, and our
proposed method, ESEC, using a PV dataset from a real
test platform. They are all spectral ensemble clustering tech-
niques that differ primarily in their underlying algorithms.
The methods differ in their algorithms, with ESEC utilizing
eigenvector centrality to identify outliers. U-SENC and LSEC
have distinct ensemble generation algorithms but similar con-
sensus clustering processes. Each method was tested with
ensemble sizes (n) of 20, 40, and 60. Table 5 shows accu-
racy rates for detecting partial shading, open circuit, healthy
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FIGURE 5. K-means clustering results. Despite the setting of 8 clusters, it can detect only three major regions without
proper discrimination.

FIGURE 6. ESEC clustering results. It illustrates distinct fault areas and better separation ability, specifically for the aging
fault, which is intentionally designed with ambiguity.

status, and aging faults. Partial shading and open circuit
faults are easier to detect. The distinct electrical signatures
of these faults facilitated their detection, resulting in com-
parable performance across all spectral ensemble methods.
But, aging fault detection due to its ambiguous characteristics
is more challenging. ESEC showed its effectiveness in the
detection of elusive anomalies characteristic of aging, signi-
fying its higher performance for ensemble sizes of 40 and
60. For n=20, the ESEC remained competitive even though

the accuracy was a little lower. Again, the importance of
robust methods like ESEC can be underscored by the chal-
lenging nature of aging fault detection. Table 6 presents
RMSE values, reinforcing the findings from Table 5. ESEC
demonstrates superior performance in aging fault detection
at larger ensemble sizes, while all of the listed methods per-
form well in detecting partial shading and open circuit faults.
Nonetheless, distinguishing between a healthy status and an
aging fault poses a challenge due to intentionally complex and
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FIGURE 7. Computation time for bipartite graph partitioning with (red)
and without (blue) outlier removal.

FIGURE 8. Accuracy of bipartite graph partitioning with (red) and without
(blue) outlier removal.

ambiguous data distribution in that area. Most state-of-the-
art methods find it difficult to differentiate between the two
because of the weak impact of aging faults. ESEC methods
consistently achieve higher accuracy for healthy status across
all ensemble sizes, including 20, 40, and 60. Table 9 demon-
strates that ESEC exhibits superior accuracy to all four base
clustering methods in distinguishing aging faults and healthy
statuses.

3) INFLUENCE OF OUTLIER REMOVAL ON COMPUTATION
TIME
Figure 7 demonstrates the impact of outlier removal on the
computation time required for bipartite graph partitioning.
While the inclusion of an outlier removal step significantly
reduces the computation time for the graph partitioning pro-
cess itself, it is important to note that calculating eigenvector
centrality to identify outliers also requires additional time.

Consequently, the overall computation time for the entire
process is not the fastest but remains competitive compared to
other mainstream methods. This balance highlights the effi-
ciency of the proposed method in maintaining a competitive
edge while improving specific computational steps.

4) INFLUENCE OF OUTLIER REMOVAL ON ACCURACY
Figure 8 compares cases with and without outlier removal.
It illustrates the effect of outlier removal on the accuracy
of fault detection in PV systems. The x-axis represents the
different sizes of the ensemble (n=20, n=40, n=60), and
the y-axis measures accuracy in percentage. The bars show
that incorporating an outlier removal step improves accu-
racy by up to 5% on average compared to cases without
outlier removal. This enhancement in accuracy is expected,
as removing outliers helps in achieving a more precise
clustering, thereby improving the overall fault detection
performance.

5) INFLUENCE OF ENSEMBLE SIZE ON PERFORMANCE
Figure 9 shows the Normalized Mutual Information (NMI)
scores for U-SENC, LSEC, and ESEC across different num-
bers of base clusters (n=10 to 60). Our proposed method
(ESEC) consistently achieves higher NMI scores compared
to U-SENC and LSEC, indicating superior performance in
detecting PV faults. In addition, ESEC’s NMI scores remain
relatively stable and high across the range of base clusters,
while U-SENC and LSEC show more fluctuation. This com-
parison highlights the robustness and superior performance
of ESEC, while U-SENC and LSEC exhibit lower and more
fluctuating NMI scores, suggesting they are more sensitive to
the number of base clusters.

6) COMPARATIVE ANALYSIS FOR NEW CASE STUDIES
The primary dataset utilized in this study is derived from a PV
test platform, resulting in a somewhat limited diversity in data
distribution due to the inherent limited ranges in I-V curve
values. In addition, spectral ensemble clustering has a key
role in the success of our proposed FDD approach. It is delib-
erately chosen to analyze the clustering aspect of our overall
FDD method separately. To effectively demonstrate the effi-
ciency of the proposed method, three well-known datasets
were employed, ‘‘PenDigit’’ [68], [71],‘‘Letters’’ [68], [70],
and ‘‘USPS’’ [69]. The number of used base clusterings is
fixed at n=20 for better comparison.

As mentioned previously, this study introduced the ESEC
method and compared it with two well-established spectral
ensemble clustering methods: U-SENC [12] and LSEC [11].
Specifically, as presented in Table 7, the proposed method in
this article (ESEC) attained the highest NMI scores of 85.81%
and 48.83% on the PenDigits and Letters datasets, respec-
tively. For the USPS dataset, the ESEC method achieved
an NMI score of 73.88%, which is remarkably close to
the highest NMI score of 73.92% obtained by the U-SENC
method. It should be noted that base clustering methods such
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TABLE 5. Accuracy (%) comparison of spectral ensemble clustering methods (PV datasets).

TABLE 6. RMSE comparison of spectral ensemble clustering methods (PV datasets).

TABLE 7. NMI comparison (handwritten datasets).

TABLE 8. TIME(s) comparison (handwritten datasets).

as k-means, agglomerative clustering, and FCM are included
solely as benchmarks for NMI score comparison. It is evident
that the clustering part of our overall method also outper-
formed similar spectral ensemble clustering approaches when

assessed on commonly used datasets. This strongly indicates
that our approach inherently holds the potential for diverse
real-world scenarios characterized by complexity and ambi-
guity. Table 8 provides an overview of the computation time
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TABLE 9. Accuracy (%) comparison with base clustering methods (PV datasets).

FIGURE 9. Influence of ensemble size on clustering performance.

costs associated with the three spectral ensemble clustering
methods. Given that base clustering methods generally incur
lower computation costs than ensemble clustering meth-
ods, they are deliberately excluded from the computation
time comparison. For the proposed ESEC method, the table
includes a column detailing the time required for the con-
sensus clustering, as well as a column for the total time
encompassing both the ESEC and base clustering generation
steps. Although the primary focus of this paper is on the con-
sensus clustering step, the base clustering generation step is
included for reference purposes only. In terms of computation
time, while the ESEC method does not exhibit the lowest
costs, its time efficiency is competitive and comparable to
other methods within the field. Except for the Letters dataset,
the EESC method demonstrates competitive performance on
both the PenDigits and USPS datasets. The ESEC algorithm
has proven its effectiveness over other spectral ensemble clus-
tering methods, even when accounting for the computational
time required to calculate eigenvector centrality.

7) PERSPECTIVE
In scenarios with reliable ground truth data, fault labels
can be directly used for prediction. However, many sys-
tems may lack proper archives of their fault events. In such
cases, the Cluster-Then-Label (CTL) technique generates
labeled datasets used as inputs to various classifiers. Thereby,

FIGURE 10. Confusion matrices of ESEC, LSEC, U-SENC (number of
ensemble is 40), and K-means for Aging fault.

integrating ESEC with neural networks is helpful. The ESEC
method can create new labeled datasets split for training and
testing as inputs to the ANN for classification.

V. CONCLUSION
This study introduces a new method called ESEC (enhanced
spectral ensemble clustering), which is used for fault detec-
tion and diagnostics (FDD) in photovoltaic (PV) systems.
The results show that this method effectively identifies
faults and performs competitively. This study is the first
to use the graph’s centralities to analyze outliers in spec-
tral ensemble clustering. Eigenvector centrality can improve
the information flow between nodes and also give deeper
insights into the key role of nodes and the characteristics of
each node’s neighbors. By efficiently integrating these tech-
niques, the underlying structure of ambiguities and pattern
complexities within the data can be captured, which leads
to more robust and insightful clustering outcomes. Addi-
tionally, by incorporating centrality-based graph techniques
into spectral ensemble clustering, new creative avenues for
upcoming research are opened. For photovoltaic (PV) sys-
tems, it would be beneficial perspective to focus on exploring
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the interpretation of different fault conditions within I-V
curves in order to validate the effectiveness of our proposed
FDD approach.

APPENDIX A
PROOF OF THEOREM 1
Let X be a set with at least two members; the K-means
clustering partitions X into k subsets that are disjoint and
nonempty. θ̂ is the set of all clusters after K-means clustering.

θ̂ =

{
θ̂1, . . . , θ̂k

} k⋃
j=1

θ̂j = X∣∣∣θ̂j∣∣∣ ≥ 1

Let c = {c1, . . . ., ck} represents the set of cluster centers for
the partition θ̂ . In the K-means clustering algorithm, F is the
objective function [60] as:

F
(
θ̂
)

=

k∑
j=1

∑
x∈θ̂j

d
(
cj, x

)
(26)

where d is the distance between cluster centers and data
points, the K-means algorithm tries to find the optimal par-
titioning by solving related optimization function

argmin
θ̂

F
(
θ̂
)

(27)

For simplicity, let 0
(
θ̂j

)
be the dispersion inside each cluster

as:

0
(
θ̂j

)
=

∑
x∈θ̂j

d
(
cj, x

)
(28)

After applying outlier removal, Xout is removed as outliers
from the initial set X . A new partition θ̂ ′

=

{
θ̂ ′

1, . . . , θ̂
′
k

}
is

obtained. It holds
X ′

= X − Xout , |Xout | ≥ 1

X ′
=

k⋃
j=1

θ̂ ′
j =

k⋃
j=1

θ̂j − Xout (29)

The new partition θ̂ ′may find a new optimal k partition with a
lowerF value or at least repeat the previous optimal partition
without outlier elements. In the latter case, there is at least
one cluster denoted as θ̂ ′

s whose dispersion function changes
to

0
(
θ̂ ′
s

)
=

∑
xi∈θ̂ ′

s

d (cs, xi) (30)

While this cluster before outlier removal is θ̂s, and its disper-
sion function is

0
(
θ̂s

)
=

∑
xi∈θ̂s

d (cs, xi)

0
(
θ̂s

)
=

∑
xi∈θ̂ ′

s

d (cs, xi)+

∑
xoi∈Xout

d (cs, xoi) (31)

Hence, there must be at least one outlier element in Xout
denoted xo ∈ Xout as the difference between θ̂s and θ̂ ′

s and∣∣∣θ̂s∣∣∣ −

∣∣∣θ̂ ′
s

∣∣∣ ≥ 1

For such a specific cluster, we have

0
(
θ̂s

)
≥

∑
xi∈θ̂ ′

s

d (cs, xi)+ d (cs, xo) (32)

One can formulate the objective function as:

F
(
θ̂
)

=

k∑
j=1

∑
x∈θ̂j

d
(
cj, x

)

F
(
θ̂
)

=

k−1∑
j=1

0
(
θ̂j

)
+0

(
θ̂s

)
Applying (32), following inequality is obtained as:

F
(
θ̂
)

≥

k−1∑
j=1

0
(
θ̂j

)
+

∑
xi∈θ̂ ′

s

d (cs, xi)+ d (cs, xo) (33)

The right side of (33) includes F
(
θ̂ ′

)
, which is

F
(
θ̂ ′

)
=

k−1∑
j=1

0
(
θ̂j

)
+

∑
xi∈θ ′

s

d (cs, xi)

The right side of (33) can be rewritten as:

F
(
θ̂
)

≥ F
(
θ̂ ′

)
+ d (cs, xo) (34)

Considering thatd (cs, xo) > 0, therefore

F
(
θ̂
)
> F

(
θ̂ ′

)
(35)

□

APPENDIX B
PROOF OF THEOREM 2
There are two partitions in bipartite graph, here the vertices of
data side and of cluster side. On the data side, there are equal
edges connecting each vertex and this makes the variation in
data side partition limited. By emperical reasons, we expect
to find the largest EC in cluster side, specifically for the large
size clusters.
UPPER BOUND:
The highest assumed degree of cluster nodes is for the case

when all data are members of one specific cluster in a base
clustering method. In this case, we have

ECH =
1
λ

m∑
j=1

âij.ECj (36)

But since there is no isolated vertex in a bipartite graph,
each cluster should have at least one member, so the possible
largest eigenvector centrality is as follows:

ECH ′ =
1
λ

q′∑
j=1

âij.ECj (37)
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where q′
≤ (m− Pn + 1) and Pn is the number of clusters in

related base clustering.
then, it holds,(

m− q′
)

≥ (Pn − 1)

ECH =
1
λ

m∑
j=1

âij.ECj

=
1
λ

q′∑
j=1

âij.ECj

+
1
λ

(m−q′)∑
j=1

âij.ECj (38)

So, there are some vertices out of q′, and then, for the eigen-
vector centrality of this neighborhood out of q′, we have

1
λ

(m−q′)∑
j=1

âij.ECj > 0 (39)

Considering (36), (37), and (39), we have ECH ′ < ECH .
On the other side, note that

ECH′ = max ({ECi : i = 1, . . . ,m})

Thus, EC i ≤ ECH ′ . So, It holds

ECi ≤ ECH′ < ECH (40)

It proves the upper bound of this theorem.
LOWER BOUND:
For the lower bound, Let e (G) denote the edge number in

our bipartite graph G, and Vz,Vθ be two sets of vertices in
two partition sides.

Note that e (G) is equal to the sum of all vertex’s degrees
on the one side of bipartite graph G. Vz = {vz1, vz2, · · · , vzm}

is the set of vertices in data node side, and deg vzi is the degree
of vertices vzi.Note that

e (G) =

m∑
i=1

deg vzi (41)

It has been proved before [67] that

λmax (G) ≤

√
e (G) (42)

The equality holds if and only if the G is a complete bipartite
graph, which in the spectral ensemble clustering is not true.
Because there are two sets of vertices Vz and Vθ . Each vzi
can connect to only one cluster vertex in each base clustering.
So the inequality 42 changes to

λmax (G) <
√
e (G) (43)

Since each zi is a member of one cluster in each base cluster-
ing, and there is no isolated vertex in such bipartite graph G,
the number of edges connected to each vertex vzi is equal to
the number of base clusterings, here as N . Then,

m∑
i=1

deg vi = m · N (44)

applying (41) and (44) in (43), it becomes

λmax <
√
m.N (45)

Let EC lbe the eigenvector centrality based on this new λmax

ECl =
1

√
m.N

q∑
j=1

âij.ECj (46)

Then it holds the lower bound, and we have both bounds as
claimed in this theorem,

1
√
m.N

q∑
j=1

âij.ECj < ECi <
1
λ

m∑
j=1

âij.ECj

□

APPENDIX C
PROOF OF THEOREM 3
The partition of ensemble cluster set2 = {21,22, . . . ,2M }

to separated sub-clusters 2v and 2u, is equivalent to the
partition of bipartite graph G = {Z ,2,R} into subgraphs Gv
and Gu where their vertex sets are Vv and Vu. In addition, the
non-zero intersection of overlapping clusters is equivalent to
the validity of connecting edges between two vertices across
these two subgraphs. Then, we need to prove the bipartite
graph G = {Z ,2,R} is connected considering the condition
in the theorem. We assume that the partition of 2 fulfil the
condition |2v ∩2u| ≥ 1 for all possible partition of G into
2v and 2u, and Gis still disconnected. Then, let there be
Gu and Gv as components, which are subgraphs equivalent
to subsets 2u and 2v. Here, the vertices of Gu is Vu =

V (Gu) = V (G)− V (Gv) . If Guis a subgraph with maximal
connectivity; there is no edge with one endpoint in Gu and
the other endpoint outside of Gu.So, there is no connecting
edge between both partitioned components Gu and Gv, which
contradicts the condition |2v ∩2u| ≥ 1. It proves that G is a
connected bipartite graph. □

APPENDIX D
PROOF OF THEOREM 4
To prove Theorem 4, we consider this assumption that if base
clusterings of big data make many overlapping clusters, the
same as conditions in Theorem 3, then these overlappings
make the resulting bipartite graph connected, which is a key
difference from Theorem 2. Considering the bipartite graph
is connected, it has been proved by [65] and [66] that the
upper bound of the largest eigenvalue for the connected graph
changes to

λmax (G) <
√
2e− nv + 1 (47)

where e is the number of edges, nv denotes the number of
all vertices in G, and m, M, and N are the number of data
points, number of clusters, and number of base clusterings,
respectively. Here, we have

e = m.N

nv = m+M
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Substituting these variables for (47), inequality changes to

λmax (G) <
√
m (2N − 1)−M + 1 (48)

So, it holds the following lower bound of eigenvector
centrality

1
√
m (2N − 1)−M + 1

q∑
j=1

âij.ECj < ECi

□
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