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Asymptotic probability for connectedness

Thierry Monteil∗ Khaydar Nurligareev†

Abstract

We study the structure of the asymptotic expansion of the probability that
a combinatorial object is connected. We show that the coefficients appearing in
those asymptotics are integers and can be interpreted as the counting sequences
of other derivative combinatorial classes. The general result applies to rapidly
growing combinatorial structures, which we call gargantuan, that also admit a se-
quence decomposition. The result is then applied to several models of graphs, of
surfaces (square-tiled surfaces, combinatorial maps), and to geometric models of
higher dimension (constellations, graph encoded manifolds). The corresponding
derivative combinatorial classes are irreducible (multi)tournaments, indecompos-
able (multi)permutations and indecomposable perfect (multi)matchings.

1 Introduction

Many combinatorial structures with a topological flavour admit a decomposition into
connected components. We are interested in the probability that an object of such a
class is connected, when its size goes to infinity. More precisely, for a given size n ≥ 0,
we endow the subset of objects of size n in the class with the uniform probability, and
then study the behavior of the probability that an object is connected, when n goes to
infinity.

For example, the probability that a labeled graph with n vertices is connected tends
to 1 as n goes to infinity [26]. The probability that a permutation of size n consists
of a single cycle is equal to 1/n, which goes to 0 as n goes to infinity (the expression
of a permutation into the commutative product of cycles with disjoint support can be
understood as a decomposition of the underlying graph into its connected components).
In between, the probability that a labeled forest of size n is connected goes to 1/

√
e as n

goes to infinity [43].
The question of how to distinguish between these three cases was raised by Wright [48].

The main tool to deal with that question is the use of generating functions. To the
counting sequence (an) of a labeled combinatorial classA, one can associate the generating
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function

A(z) =
∑

n≥0

an
zn

n!
. (1)

The fact that any element of A can be uniquely decomposed into the disjoint union
of its connected components translates into the following exponential formula (see e.g.
[45], chapter 5):

A(z) = exp (C(z)) , (2)

where C(z) =
∞
∑

n=0

cn
zn

n!
is the generating function associated with the class C of elements

of A that are connected. Equivalently,

C(z) = log (A(z)) , (3)

so that the number cn of connected objects of size n only depends on the numbers ak of
all objects of sizes k ≤ n. Hence, case-by-case topological considerations can be avoided
in estimating the probability cn/an.

Wright showed [48, 49] the following equivalence:

lim
n→∞

(cn/an) = 1 ⇔
n−1
∑

k=1

(

n

k

)

akan−k = o(an) ⇔
n−1
∑

k=1

(

n

k

)

ckcn−k = o(cn)

Wright’s approach was developed further [14, 10, 4, 1] and culminated in the paper of Bell,
Bender, Cameron and Richmond [2] who proved the following characterization. Assuming
that the limit ρ = lim

n→∞
(cn/an) exists, its value is in the following correspondence with

the radius of convergence R of the generating function C(z):

ρ = 1 ⇔ R = 0

ρ = 0 ⇔ R > 0 and C(R) diverges

0 < ρ < 1 ⇔ R > 0 and C(R) converges

Moreover, they studied the case when the limit does not exist, and described the behavior
of lim sup(cn/an) and lim inf(cn/an) depending on the parameter R.

The present paper focuses on the first case: the sequences (an) and (cn) grow rapidly
and the generating functions A(z) and C(z) have a radius of convergence R = 0. Our
interest is not restricted to the limiting probability. One of our aims is to establish the
full asymptotic expansion for the probability that a random object is irreducible. In other
words, we wish to have an expression of the type

cn

an
= ρ
(

1 + f1(n) + f2(n) + . . .+ fr(n) + o
(

fr(n)
)

)

, (4)

where fk+1(n) = o
(

fk(n)
)

for every k ∈ N, as n → ∞.
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If we look for example at labeled graphs, in 1959, Gilbert [26] provided the first
nontrivial term of the asymptotic expansion:

pn = 1− 2n

2n
+O

(

n2

23n/2

)

.

Eleven years later, Wright [50] provided the first three nontrivial terms:

pn = 1−
(

n

1

)

1

2n−1
− 2

(

n

3

)

1

23n−6
− 24

(

n

4

)

1

24n−10
+O

(

n5

25n

)

.

While Wright’s method allows to compute more terms recursively, it does not provide a
way to grasp the structure of the whole asymptotic expansion, if only because there is no
interpretation to the coefficients 1, 2, 24, . . . .

The goal of this paper is to provide the structure of the whole asymptotic expansion.
As we shall see, when the sequence (an) grows fast enough (see Definition 2.2 of a gar-
gantuan class), the above-mentioned coefficients are integers that can be interpreted as
the counting sequence (dn) of a derivative class D that depends on the decomposition of
the elements of A into a sequence of elements of a class D.

Our main result is:

Theorem 4.1 (SET asymptotics). Let A be a gargantuan labeled combinatorial class
with positive counting sequence, such that A = SET(C) = SEQ(D) for some labeled
combinatorial classes C and D. Suppose that a ∈ A is a random object of size n. Then

P(a is SET-irreducible) ≈ 1−
∑

k≥1

dk ·
(

n

k

)

· an−k

an
.

As an example of application, we get the following asymptotic for connected labeled
graphs:

Corollary 5.3. The asymptotic probability that a random labeled simple graph g with
n vertices is connected satisfies

P
(

g is connected
)

≈ 1−
∑

k≥1

itk ·
(

n

k

)

· 2
k(k+1)/2

2kn
,

where itk denotes the number of irreducible tournaments of size k.

In this example, the number of irreducible tournaments plays the role of the derivative
sequence. Irreducible tournaments come from the decomposition of a tournament into
a sequence of irreducible ones. While the class of tournaments and the class of graphs
are not isomorphic (e.g. when we swap the labels, the two tournaments of size 2 are
exchanged, while the two graphs of size two are fixed), they share the same counting
sequence, hence they can be identified from an enumerative combinatorics perspective.
We could summarize the double decomposition as follows:
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class A
counted by

A(z)

decomposed

as SET of
class C

counted by

C(z) = log(A(z))

decomposed

as SEQ of
class D

counted by

D(z) = 1− 1

A(z)
derivative

We will also list several other applications that include the connectedness for other
models of graphs (Propositions 5.2, 5.6, 5.7), square-tiled surfaces (Proposition 5.10),
combinatorial maps (5.15), as well as higher dimensional models of graph encoded man-
ifolds (Proposition 5.17) and constellations (Proposition 5.21).

2 Tools

2.1 Asymptotic expansion

Notation 2.1. For a sequence (an) of numbers and an integer m, we write

an ≈
∑

k≥m

fk(n) (5)

if

∀r ≥ m, an =

r
∑

k=m

fk(n) +O
(

fr+1(n)
)

and
∀k ≥ m, fk+1(n) = o

(

fk(n)
)

.

The expression (5) is called an asymptotic expansion of the sequence (an).

2.2 Combinatorial classes and decompositions

We use the standard notion of labeled combinatorial structure (or class), as used in the
textbooks [45, 23, 6]. Briefly, and to fix the notations, a combinatorial structure A is
a collection of objects of finite size such that for each integer n ≥ 0, the number an of
objects of size n is finite. The class A is labeled if the objects of size n are defined on a set
of labels of cardinality n, whose elements are distinguishable (hence, the elements of A
have only trivial automorphisms). It is common to fix the ground set to [n] = {1, . . . , n},
but we should keep in mind that the nature of the ground set is irrelevant. The notion of
combinatorial species [31, 5] makes this point precise. In this paper, every combinatorial
structure is assumed labeled. To such a structure A, we associate its generating function

A(z) =
∑

n≥0

an
zn

n!
.
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Combinatorial classes can be combined to create new classes: for example, we can
construct the disjoint union or the labeled product of finitely many combinatorial classes.
The corresponding generating functions are the sum and the product of the original ones,
respectively. A combinatorial class can be combined with itself in various ways. We
can form the sequence of a single class A by considering the labeled products of A by
itself, involving arbitrary many terms. We denote SEQ(A) the corresponding class. Its
generating function, denoted by SEQ(A)(z), satisfies:

SEQ(A)(z) =
∑

k≥0

A(z)k =
1

1− A(z)
.

The set of a single class A is obtained from the sequence SEQ(A) by forgetting the
order of the components. We denote SET(A) the corresponding class. Its generating
function, denoted by SET(A)(z), satisfies:

SET(A)(z) =
∑

k≥0

A(z)k

k!
= exp(A(z)).

The SET and SEQ constructions are only possible when A(0) = a0 = 0, in which
case we have SET(A)(0) = 1.

To a combinatorial class A and an integer n such that an > 0, we endow the nonempty
finite set An of objects of size n with the uniform probability Pn: each object of size n
has probability 1/an. If Q is some property about objects of A, we denote by

P(a satisfies Q)

the sequence of probabilities
(

Pn{a ∈ An | a satisfies Q}
)

an>0
.

When the objects of a class A have a topological flavour so that connectedness makes
sense, we can consider the subclass C of connected objects from A. In such a case, when
the connected components of objects from A belong to C and when the knowledge of
the connected components of an object from A is sufficient to reconstruct it, we have
A = SET(C). In this case, we have C(z) = log(A(z)), so that the probability

Pn(a is connected) = cn/an

only depends on the counting sequence (an). Hence, we will identify labeled combinatorial
classes if they share the same counting sequence (such classes are called “combinatorially
isomorphic” in [23]). This identification is adapted to our objective and offers a lot of
flexibility.

Note that the fact that objects of a combinatorial structure admit a topological model
is not sufficient to state that it is the SET of its connected objects. For example, chord
diagrams [46] and meandric systems [32] have a topological representation, but the knowl-
edge of their connected components is not enough to reconstruct the original objects, since
connected objects can be intertwined in several ways.
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2.3 Gargantuan classes and Bender theorem

Definition 2.2. A sequence (an) is gargantuan if, for any integer r, as n → ∞, the
following two conditions hold:

(i)
an−1

an
→ 0; (ii)

n−r
∑

k=r

|akan−k| = O
(

an−r

)

.

A labeled combinatorial class A is gargantuan if its counting sequence (an) is such
that (an/n!) is gargantuan.

Theorem 2.3 (Bender [3], in the simplified form of [37]). Consider the formal power
series

U(z) =
∞
∑

n=1

unz
n

and a function F (x) analytic in a neighborhood of the origin. Define

V (z) =

∞
∑

n=0

vnz
n = F

(

U(z)
)

and W (z) =

∞
∑

n=0

wnz
n =

[

∂

∂x
F (x)

]

x=U(z)

.

Assume that un 6= 0 for any n > 0 and the sequence (un) is gargantuan. Then

vn ≈
∑

k≥0

wkun−k

and the sequence (vn) is gargantuan.

In order to verify the gargantuan property in some applications, we will rely on the
following sufficient condition.

Lemma 2.4. If a sequence (an) satisfies the following two conditions

(i)’ nan−1 = O(an), as n → ∞;

(ii)’ xk = |akan−k| is decreasing for k < n/2 and for all but finitely many n,

then (an) is gargantuan.

Proof. The first condition of Definition 2.2 immediately follows from (i)’. To check the
second condition, note that the value of xk is symmetric with respect to k = n/2 and it
is increasing for k < n/2. Hence, conditions (i)’ and (ii)’ imply that

n−r
∑

k=r

|akan−k| =
n−r
∑

k=r

xk = 2xr +

n−r−1
∑

k=r+1

xk ≤ 2xr + (n− 2r − 1)xr+1 = O(an−r).

Lemma 2.5. If (an) and (bn) are two non-negative gargantuan sequences, then the se-
quence (anbn) is non-negative gargantuan as well.

Proof. Let us check the conditions of Definition 2.2. The first condition trivially holds.
The second condition reads
n−r
∑

k=r

(akbk)(an−kbn−r) ≤
(

n−r
∑

k=r

akan−k

)(

n−r
∑

k=r

bkbn−k

)

= O(an−r)O(bn−r) = O(an−rbn−r).

The condition anbn ≥ 0 is trivial.
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3 Double SET/SEQ decomposition

The goal of this section is to see how the existence of a SEQ-decomposition is a natural
hypothesis for the computation of an asymptotic expansion for the probability that an
object is SET-irreducible. To this end, we will try to estimate this probability by a direct
computation, under the hypothesis that the counting sequence of the studied class grows
rapidly.

Let us start with two labeled combinatorial classes A and C, such that A = SET(C).
Each object a ∈ A of size n consists of several connected components that are considered
as objects from C. The sizes of these components determine a partition λ ⊢ n, which can
be expressed as an n-tuple p of non-negative integers counting the number of components
for each size: p ∈ Pn = {(p1, . . . , pn) | p1 + 2p2 + . . . + npn = n}. The exponential
formula (2) can be expanded to obtain the following expression for an:

an =
∑

p∈Pn

n!

(1!)p1 . . . (n!)pn
· 1

p1! . . . pn!
·
(

c
p1
1 . . . cpnn

)

. (6)

If the sequence (an) grows fast enough, then the radius of convergence of A(z) is zero,
hence an ∼ cn [2]. Let us look at the asymptotic expansion of the difference (an−cn). For
gargantuan sequences, this difference is decomposed into a sum of cn−k, k = 1, 2, 3, . . .,
taken with certain coefficients that can be deduced from (6). For instance, the first three
terms of the asymptotics are

an − cn =

(

n

1

)

c1cn−1 +

(

n

2

)

(c2 + c21)cn−2 +

(

n

3

)

(c3 + 3c2c1 + c31)cn−3 + . . .

or, even simpler,

an − cn =

(

n

1

)

a1cn−1 +

(

n

2

)

a2cn−2 +

(

n

3

)

a3cn−3 +O(n4cn−4).

Thus, a finite number of terms of the asymptotic expansion are determined by objects
possessing a large connected component.

In practice, we suppose that (an) is known, while (cn) is not. That is the reason why
we would like to have an asymptotic expression in terms of an−k rather than cn−k. In
order to get one, let us apply the inclusion-exclusion principle.

The main idea is to count objects with respect to large components, replacing cn−k

by an−k that is asymptotically the same. For instance, if we are interested only in the
leading term of (an − cn), as n → ∞, then it is sufficient to replace cn−1 by an−1:

an − cn =

(

n

1

)

c1an−1 +O(n2an−2).

Combinatorially, the term
(

n
1

)

c1an−1 counts objects of size n with at least one isolated
vertex. Any object with k isolated vertices is counted k times, since we mark one of
them. However, the contribution of that object is significantly smaller, and hence, can
be ignored.
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When the second term is needed, we must accurately count objects possessing con-
nected components of size at least (n − 2). Therefore, we need to deduce objects with
connected components of sizes (n − 2), 1 and 1, which are counted twice in the first
approximation:

an − cn =

(

n

1

)

c1an−1 +

(

n

2

)

(c2 − c21)an−2 +O(n3an−3).

Again, combinatorially, objects with several components of size 1 or 2 are counted several
times within these two terms, but their contribution is O(n3an−3).

The same approach works in searching for more terms of the asymptotic expansion.
Indeed, given a positive integer n, for any partition λ = (λ1, . . . , λl(λ)) of an integer
k ≤ n, define Bλ,n to be the number of objects with marked connected components of
sizes λ1, λ2, . . . , λl(λ). For example, if n = 3, k = 2 and λ = (1, 1), then B(1,1),3 is three
times the number of objects of size 3 with 3 isolated vertices: B(1,1),3 = 3c31. In the general
case, Bλ,n satisfies

Bλ,n =

(

n

k

)

k!

(1!)p1 . . . (k!)pk
c
p1
1 . . . cpkk
p1! . . . pk!

an−k

and, for a given number r of terms of the asymptotic expansion, the inclusion-exclusion
principle provides

an − cn =
∑

λ : |λ|<r

(−1)l(λ)−1Bλ,n +O(nran−r). (7)

Let us factor out
(

n
k

)

an−k in the relation (7). The result is of the form

an − cn ≈
∑

k≥1

(

n

k

)

dkan−k,

where

dk =
∑

Pk

(−1)(p1+...+pk)−1 · k!

(1!)p1 . . . (k!)pk
· c

p1
1 . . . cpkk
p1! . . . pk!

. (8)

It turns out that these coefficients might have a combinatorial meaning on their own. In
order to make this fact clear, let us apply the inclusion-exclusion principle, so that we
obtain an exact formula for an:

an =
∑

λ : |λ|≤n

(−1)l(λ)−1Bλ,n

or

an =

n
∑

k=1

dk

(

n

k

)

an−k.

If D(z) denotes the power series D(z) =
∑

n≥1

dnz
n/n!, the last equation can be rewritten

as
A(z) = 1 + A(z)D(z).

8



Equivalently,

A(z) =
1

1−D(z)
,

so that if we could find a labeled combinatorial class D satisfying A = SEQ(D), then
(dn) would be the counting sequence of D.

This leads us to the following definition:

Definition 3.1. A combinatorial class A admits a double SET/SEQ decomposition if
there exist two classes C and D such that A = SET(C) = SEQ(D). The class D is called
the derivative class of A and the counting sequence (dn) is called the derivative sequence
of the sequence (an).

4 Main results

Theorem 4.1 (SET asymptotics). Let A be a gargantuan labeled combinatorial class
with positive counting sequence, such that A = SET(C) = SEQ(D) for some labeled
combinatorial classes C and D. Suppose that a ∈ A is a random object of size n. Then

P(a is SET-irreducible) ≈ 1−
∑

k≥1

dk ·
(

n

k

)

· an−k

an
. (9)

Proof. Let us consider the labeled combinatorial class U = A − {ǫ} with generating
function U(z), and the function

F (y) = log(1 + y).

Since U is gargantuan and F is analytic at the origin, we can apply Theorem 2.3.
We have

V (z) = log(A(z)) = C(z)

and

W (z) =

[

∂

∂x
F (x)

]

x=A(z)−1

=
1

A(z)
= 1−D(z).

Hence,

vn ≈
∑

k≥0

wkun−k.

By substituting with the original counting sequences, we have

cn

n!
≈ an

n!
−
∑

k≥1

dk

k!

an−k

(n− k)!
.

Dividing by an
n!
, we obtain

cn

an
≈ 1−

∑

k≥1

(

n

k

)

dk
an−k

an
.
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Remark 4.2. Theorem 4.1 provides, for each k, a convergence result when n goes to
infinity. If we fix n in the right-hand side of (9), the sum will be 0.

Remark 4.3. In the proof of Theorem 4.1, the relationship between the SET and the
SEQ decompositions is witnessed by the fact that

∂ log(z)

∂z
=

1

z
.

This fact also supports the name “derivative sequence”.

4.1 Asymptotics for p-periodic sequences

Counting sequences of certain combinatorial classes possess zeroes. For example, perfect
matchings only exist when the number of vertices is even. Similarly, some combinatorial
structures admit elements only when the number of vertices is a multiple of p for some
integer p > 1.

Definition 4.4. Let p ≥ 1 be an integer. A sequence (an) is p-periodic if:

an 6= 0 ⇔ ∃k ∈ N, n = pk.

This situation is quite general for a combinatorial class A that admits a SET decom-
position A = SET(C): if its counting sequence (an) vanishes for infinitely many n, then
the sequence (cn) is p-periodic for some p > 1 [48, 49]. In particular, both sequences (apn)
and (cpn) are eventually positive.

Let us adapt Theorem 4.1 for labeled combinatorial classes whose counting sequences
are p-periodic. This will be useful in Sections 5.2.2 and 5.3.1.

Proposition 4.5. Let A be a labeled combinatorial class, such that A = SET(C) =
SEQ(D) for some labeled combinatorial classes C and D. Suppose that the counting se-
quence (an) is p-periodic for some p ≥ 1, and that the sequence (apn/(pn)!) is gargantuan.
Suppose also that a ∈ A is a random object of size pn. Then

P(a is SET-irreducible) ≈ 1−
∑

k≥1

dpk ·
(

pn

pk

)

· ap(n−k)

apn
. (10)

Proof. Conditions of the proposition ensure that we can apply Theorem 2.3 to the formal
power series U(z) = A(z1/p) − 1 and the function F (y) = log(1 + y). Repeating the
reasoning of the proof of Theorem 4.1 leads to (10).

5 Applications

5.1 Graphs

Graphs are versatile objects, the asymptotic probability for the connectedness of several
variants can be approached with our methods.

10



Definition 5.1. For d ≥ 1, a (labeled) d-multigraph of size n is a graph defined on
the set of vertices [n], such that any pair of distinct vertices are joined by at most d
indistinguishable edges. A (labeled) d-multitournament of size n is a directed graph
defined on the set of vertices [n], such that any ordered pair of distinct vertices i 6= j is
joined by d directed edges (which consist of l indistinguishable directed edges from i to j
and d− l indistinguishable directed edges from j to i for some 0 ≤ l ≤ d that varies from
pair to pair). A simple graph is a 1-multigraph, a tournament is a 1-multitournament. A
d-multitournament is reducible if there exists a partition of its vertices into two nonempty
parts A and B such that any pair of vertices (a, b) ∈ A×B are joined by d oriented edges
that all go from a to b. A d-multitournament is irreducible if it is not reducible. We denote
by G(d), CG(d), T (d), and IT (d) the combinatorial classes of d-multigraphs, connected
d-multigraphs, d-multitournaments, and irreducible d-multitournaments, respectively.

Proposition 5.2. The asymptotic probability that a random labeled d-multigraph g with
n vertices is connected satisfies

P
(

g is connected
)

≈ 1−
∑

k≥1

itk(d) ·
(

n

k

)

· (d+ 1)k(k+1)/2

(d+ 1)kn
, (11)

where itk(d) denotes the number of irreducible d-multitournaments of size k.

Proof. First, we have G(d) = T (d) since both classes have (d + 1)(
n

2
) objects of size n

for any n. The decomposition G(d) = SET(CG(d)) follows from the decomposition of a
graph into its connected components. To prove that T (d) = SEQ(IT (d)), let us con-
sider a d-multitournament t. We decompose t into its irreducible components (note that
the irreducible components of t are also its strongly connected components [42, 44]). If
A and B are distinct components, we write A < B if for every pair of vertices a ∈ A
and b ∈ B, every edge between a and b is oriented from a to b. We check that < is a
linear order on the set of irreducible components of t, so that we can enumerate them as
t1 < t2 < · · · < tl and construct the sequence of irreducible d-multitournaments (t1, ..., tl)
out of t. Conversely, if (t1, ..., tl) is a (labeled) sequence of irreducible d-multitournaments,
we can construct a d-multitournament t as the disjoint union of the ti and then adding d
oriented edges from any vertex of ti to any vertex of tj if i < j.

Let us show that the sequence

an =
(d+ 1)(

n

2
)

n!

is gargantuan by applying Lemma 2.4. Condition (i)’ follows from

an−1

an
=

(d+ 1)(
n−1

2
)

(n− 1)!
· n!

(d+ 1)(
n

2
)
=

n

(d+ 1)n
→ 0.

Regarding condition (ii)’, let us check that the sequence xk = akan−k is decreasing for
k < n/2. To this end, let us consider

xk+1

xk

=
ak+1an−k−1

akan−k

=
(n− k)

(k + 1)
· (d+ 1)k+1

(d+ 1)n−k
.

11



Since the function

f(x) =
(d+ 1)x

x

is increasing for large x, we have the following equivalences for n large enough:

xk+1

xk

≤ 1 ⇔ (d+ 1)k+1

(k + 1)
≤ (d+ 1)n−k

(n− k)
⇔ k + 1 ≤ n− k.

Hence, (xk) is decreasing for k < n/2. According to Lemma 2.4, (an) is gargantuan.

Therefore, we can apply Theorem 4.1:

P
(

g is SET-irreducible
)

≈ 1−
∑

k≥1

itk(d) ·
(

n

k

)

· gn−k(d)

gn(d)

≈ 1−
∑

k≥1

itk(d) ·
(

n

k

)

· (d+ 1)k(k+1)/2

(d+ 1)kn
.

Corollary 5.3. The asymptotic probability that a random labeled simple graph g with
n vertices is connected satisfies

P
(

g is connected
)

≈ 1−
∑

k≥1

itk ·
(

n

k

)

· 2
k(k+1)/2

2kn
, (12)

where itk denotes the number of irreducible tournaments of size k.

Proof. Apply Proposition 5.2 with d = 1.

Remark 5.4. The counting sequence of irreducible tournaments (A054946 in the OEIS [38])
is

(itk) = 1, 0, 2, 24, 544, 22 320, 1 677 488, 236 522 496, 64 026 088 576, . . .

Hence, Corollary 5.3 is consistent with the result of Wright [50]:

P
(

g is connected
)

= 1−
(

n

1

)

· 21−n − 2 ·
(

n

3

)

· 26−3n − 24 ·
(

n

4

)

· 210−4n +O
(

n5 · 2−5n
)

.

The fact that there are no irreducible tournaments of size 2 is witnessed by the fact that
the second nontrivial term (in 2−2n) is hidden.

Remark 5.5. Theorem 4.1 can be applied to several other models of graphs. For ex-
ample [36, Statement 10.1.18] deals with multigraphs with distinguished edges (which
is essentially Proposition 5.2 with d = 2k − 1). We can also apply it to estimate the
probability that a directed graph is weakly connected. Let us recall that a digraph of
size n is a directed graph defined on the set of vertices [n], such that any ordered pair
of distinct vertices i 6= j is joined by at most one directed edge in each direction. An
oriented graph is a digraph with at most one oriented edge between two distinct vertices.
We have:

12
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Corollary 5.6. The asymptotic probability that a random labeled oriented graph g with
n vertices is weakly connected satisfies

P
(

g is weakly connected
)

≈ 1−
∑

k≥1

itk(2) ·
(

n

k

)

· 3
k(k+1)/2

3kn
, (13)

where itk(2) denotes the number of irreducible 2-multitournaments of size k.

Proof. Apply Proposition 5.2 with d = 2. The class of oriented graphs can be identified
with the class of 2-multigraphs, since in both cases, there are 3 ways to link two distinct
vertices.

Corollary 5.7. The asymptotic probability that a random digraph g with n vertices is
weakly connected satisfies

P
(

g is weakly connected
)

≈ 1−
∑

k≥1

itk(3) ·
(

n

k

)

· 4
k(k+1)/2

4kn
, (14)

where itk(3) denotes the number of irreducible 3-multitournaments of size k.

Proof. Apply Proposition 5.2 with d = 3.

Note however that Theorem 4.1 is not adapted to estimating the probability that
a directed graph is strongly connected. Indeed, a digraph can be decomposed as a di-
rected acyclic graph (DAG) of its strongly connected components, not a SET. The ideas
presented here can however be adapted in such a more complex context [19].

5.2 Surfaces

5.2.1 Square-tiled surfaces

Square-tiled surfaces play a key role in the study of abelian and quadratic differentials on
Riemann surfaces. They first appeared in disguise in the proof by Douady and Hubbard
that among quadratic differentials, the ones that can be decomposed into a disjoint union
of vertical cylinders (Jenkins–Strebel forms) is dense [18]. The dense subset they used
is the set of quadratic differentials whose (relative) periods have rational coordinates,
which turn out to be square-tiled surfaces. Beyond density, Eskin and Okounkov used the
uniform distribution of such surfaces to estimate the volume of the strata of abelian [20]
and quadratic [21] differentials (the computation of explicit values was implemented by
Goujard [27]). Square-tiled surfaces also provide examples of differentials with exceptional
behavior, such as the “Eierlegende Wollmilchsau” [30] or the “Ornithorynque” [24].

Definition 5.8. A quadratic square-tiled surface is obtained from finitely many squares
by identifying pairs of sides of the squares by isometries in such way that horizontal
sides are glued to horizontal sides and vertical sides to vertical. An abelian square tiled
surface (also known as origami) is obtained by gluing finitely many squares such that
left edges are glued to right edges and top edges are glued to bottom edges. Equivalently,
an origami of size n is a pair of permutations (σ, τ) on the ground set [n], where σ(i) = j
if the right side of the square labeled i is glued to the left side of the square labeled j,
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and τ(i) = k if the top side of the square labeled i is glued to the bottom side of the
side labeled k [51]. We denote by O and CO the combinatorial classes of origamis and
connected origamis, respectively.

In particular, there are ((2n − 1)!!)2 labeled quadratic square-tiled surface of size n,
and (n!)2 origamis of size n.

Note that, in contrast with the historical references that focus on a fixed stratum, we
consider a model with unconstrained genus: every origami involving n labeled squares
appears with the same probability (generically, the genus grows in Θ(n)).

Definition 5.9. A permutation σ on [n] is indecomposable if there is no k < n such that
σ
(

[k]
)

= [k]. The class of indecomposable permutations is denoted by IP . For an integer
d ≥ 1, a d-multiple linear order of size n is a d-tuple of linear orders of the set [n]. A
d-multiple linear order L = (<1, . . . , <d) is reducible, if there is a non-trivial partition
A ⊔B of the ground set [n] such that a <k b for every pair (a, b) ∈ A×B and any order
<k. Otherwise, we call L irreducible. We denote by L(d) and IL(d) the combinatorial
classes of d-multiple linear orders and irreducible d-multiple linear order, respectively.

Proposition 5.10. The asymptotic probability that an origami o made up of n unit
squares is connected satisfies

P
(

o is connected
)

≈ 1−
∑

k≥1

ilk(2)

k! · (n)k
(15)

≈ 1−
∑

k≥1

ipk

(n)k
, (16)

where ilk(2) is the number of irreducible pairs of linear orders of size k, and ipk is the
number of indecomposable permutations of size k.

Proof. Since an origami can be decomposed into the disjoint union of its connected com-
ponents, we have O = SET(CO). Since each origami is determined by a pair of permu-
tations, its counting sequence is on = (n!)2. Hence, O = L(2), since the number of pairs
of linear orders of size n is also (n!)2. This change of perspective, from permutations
to linear orders, allows to decompose with respect to the SEQ construction: we have
L(2) = SEQ(IL(2)).

Let us show that the sequence an = (n!)2/n! = n! is gargantuan. Indeed, the first
condition of Definition 2.2 trivially holds. To check the second condition, note that
akan−k ≥ ak+1an−k−1 as long as k ≤ (n − 1)/2. Note also, that nan−r−1 = O(an−r).
Hence, replacing akan−k by ar+1an−r−1 for all k such that r < k < n− r, we have

n−r
∑

k=r

akan−k ≤ 2aran−r + (n− 2r + 1)ar+1an−r−1 = O(an−r).

Thus, Theorem 4.1 is applicable and gives the following asymptotics:

P
(

o is SET-irreducible
)

≈ 1−
∑

k≥1

ilk(2) ·
(

n

k

)

· on−k(d)

on(d)
= 1−

∑

k≥1

ilk(2)

k! · (n)k
.
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The second asymptotics follows from (see Remark 5.11)

ipn =
iln(2)

n!
. (17)

Remark 5.11. The nature of the elements of the ground set [n] plays a role in the def-
inition of indecomposable permutations, as those labels need to be compared with each
other. The ground set both serves as a label set and as a way to compare elements: the
notion of indecomposable permutation is not stable by relabeling. In particular, it is not
possible to construct the product or the sequence of indecomposable permutations, since
this operation involves relabelling (how to define the sequence of the three irreducible
permutations 321, 21, 3142?). The class IP can therefore not be considered as a combi-
natorial class as its definition is not functorial (we can not transport its structure to any
label set). We can see the class IL(2) as a lift of the class IP that consists in decoupling
the role of the ground set [n] as a label set on the one hand, and as a linear order on
the other. The first order <1 can be interpreted as the linear order of the ground set
1 < 2 < · · · < n, and the second as the linear order of the image by the permutation
σ(1) < σ(2) < · · · < σ(n). The n! available relabelings explain the relation (17).

Remark 5.12. Proposition 5.10 can be seen as a topological version of results of Comtet,
Dixon and Cori. Indeed, the connectedness of an origami o of size n is equivalent to the
fact that the two permutations in the pair (σ, τ) determining o generate a transitive
subgroup of Sn. In 2005, Dixon [17] showed that the asymptotic probability tn that two
permutations of size n form a transitive subgroup satisfies

tn ∼ 1− 1

(n)1
− 1

(n)2
− 3

(n)3
− 13

(n)4
− 71

(n)5
− 461

(n)6
− . . . ,

where the numerators are coefficients of the multiplicative inverse of the formal power
series comprised by factorials. The latter, as it was showed by Comtet [15] in 1972,
count indecomposable permutations. Alternatively, this fact was established by Cori [16]
in 2009.

5.2.2 p-angulations and combinatorial maps

There are several models of random discrete oriented surfaces. The simplest model con-
sists of oriented triangles glued together along their edges. It was introduced in 2004
by Brooks and Makover [8] in order to study the “typical” Riemann surfaces with high
genus, and independently by Pippenger and Schleich [41] who were motivated by the
needs of quantum gravity. Pippenger and Schleich showed that a random gluing of 2n
triangles form a connected surface with probability

1− 5

36n
+O

(

1

n2

)

(18)

and studied their topological characteristics. Gamburd [25] generalized this model by
replacing triangles by p-gons for a fixed integer p ≥ 3. Then, Chmutov and Pittel [13]
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extended the model to polygons whose set of allowed perimeters is a given nonempty
subset J of N≥3, and showed that the probability to get a connected surface always
satisfies

1−O

(

1

n

)

.

Finally, in 2019, Budzinski, Curien and Petri [9] considered a model without any con-
straint on the perimeters of the polygons (1-gons and 2-gons are permitted), and found
that the probability to obtain a connected surface is

1− 1

n
+O

(

1

n2

)

. (19)

The main goal of the above authors was to study topological characteristics of the pro-
posed models, such as their Euler characteristic, genus, diameter, etc. In all the mentioned
models, glued polygons are assumed to be oriented and the identified sides are oriented
opposite-wise. Let us focus on this last model studied by Budzinski, Curien and Petri.

Definition 5.13. A perfect matching is a permutation whose orbits have length 2. We
denote by IM the class of indecomposable perfect matchings. A combinatorial map of
size n is obtained from a collection of polygons whose set of sides is labeled by integers
from 1 to n, by identifying in pairs the sides of these polygons. Equivalently, a combi-
natorial map of size n is a pair of permutations (σ, α) on [n] such that α is a perfect
matching. The orbits of σ correspond to the enumeration of the sides of the polygons in
the cyclic order. The orbits of α correspond to the identification of the edges. We denote
by CM and CCM the classes of combinatorial maps and connected combinatorial maps,
respectively.

There are n!(n − 1)!! combinatorial maps of size n when n is even. There is no
combinatorial map of odd size because the sides of the polygons they are made of are
identified in pairs. The elements of the ground set [n] are sometimes called “darts” or
“half-edges”.

Definition 5.14. A linear matching is a pair of linear orders (<1, <2) ∈ L(2) such that
the transform

(<1, <2) 7→ (<2, <1)

coincides with some relabeling (1, . . . , n) 7→ (1, . . . , n) that is an involution without any
fixed point. We denote by LM(2) and ILM(2) the classes of linear matchings and
irreducible linear matchings, respectively.

Proposition 5.15. The asymptotic probability that a random combinatorial map m ∈
CM of size 2n is connected satisfies

P
(

m is connected
)

≈ 1−
∑

k≥1

ilm2k

(2k)!
·
(

2(n− k)− 1
)

!!

(2n− 1)!!
(20)

≈ 1−
∑

k≥1

im2k ·
(

2(n− k)− 1
)

!!

(2n− 1)!!
, (21)

where ilmk is the number of irreducible linear matchings, and imk is the number of inde-
composable perfect matchings of size k.
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Proof. We have CM = LM(2), since the 2-periodic counting sequence of both classes is
n! · (n− 1)!! · I{n is even}. As in the proof of Proposition 5.10, we have CM = SET(CCM)
and LM(2) = SEQ(ILM(2)).
Let us show that the sequence

an =
(2n)! · (2n− 1)!!

(2n)!
= (2n− 1)!!

is gargantuan. To this end, we apply Lemma 2.4. The first condition holds, since

nan−1 = n(2n− 3)!! = O
(

(2n− 1)!!
)

= O(an).

Regarding the second condition, for k ≤ (n− 1)/2 we have

xk+1

xk
=

(2k + 1)!!(2n− 2k − 3)!!

(2k − 1)!!(2n− 2k − 1)!!
=

2k + 1

2n− 2k − 1
≤ 1.

Therefore, (xk) is decreasing for k < n/2, and the sequence (an) is gargantuan.

Hence, we can apply Proposition 4.5 to obtain

P
(

s is connected
)

≈ 1−
∑

k≥1

ilm2k

(2k)!
·
(

2(n− k)− 1
)

!!

(2n− 1)!!
.

The second asymptotics follows from ilmn(2) = n! · imn, as explained in Remark 5.11
for (17).

5.3 Higher dimensions

5.3.1 Graph Encoded Manifolds

GEMs, for Graph Encoded Manifolds, were introduced in the framework of “crystal-
lization theory” as a way to encode compact PL-manifolds [40, 39, 22]. Those objects
recently attracted attention of theoretical physicists, where GEMs encode colored tensor
models, seen as quantum gravity theories [28, 7, 29, 47].

Definition 5.16. Let us fix a dimension D ≥ 2 and a size n ≥ 1. A simplex of dimension
D has its vertices colored from 1 to D+1. A GEM of dimension D of size n is a simplicial
complex obtained from n copies of the simplex glued according to the following rule: for
each 1 ≤ k ≤ D + 1, consider a perfect matching αk of [n] and glue the hyperface
opposite to the kth vertex of the ith simplex to the hyperface that opposite to the kth
vertex of the αk(i)th simplex. We denote by GEM(D) the class of GEMs of dimension
D. Equivalently, a GEM of dimension D and size n is a graph on [n] vertices, where
each vertex has a degree (D + 1) and each edge is colored into one of D + 1 colors such
that every vertex is incident to exactly one edge of each color.

A GEM has an even number of simplices. Every compact PL-manifold can be repre-
sented as a GEM. A GEM is orientable if, and only if, the associated graph is bipartite [12]:
there exists a partition of the simplices into two sets A and B of size n/2 such that the
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simplices in A the are glued to simplices of B. We denote OGEM(D) and COGEM(D)
the class of orientable GEMs and connected orientable GEMs of dimension D, respec-
tively. In the colored tensor model, orientable GEMS of dimension D are called closed
(D+1)-colored graphs. There are ((2n − 1)!!)D+1 GEMs and

(

2n
n

)

(n!)D+1 = (2n!)(n!)D−1

orientable GEMs of dimension D and size 2n.
In 2019, within the framework of the colored tensor model, Carrance [11] showed that

a random orientable GEM of dimension D and size n is connected with probability

1− 1

nD−1
+O

(

1

n2(D−1)

)

. (22)

The whole asymptotic expansion is provided by the following proposition.

Proposition 5.17. Let D ≥ 2. The asymptotic probability that a random orientable
GEM g of dimension D of size 2n is connected satisfies

P(s is connected) ≈ 1−
∑

k≥1

ilk(D)

k! ·
(

(n)k
)D−1

. (23)

Proof. The counting sequence of the class OGEM(D) is 2-periodic with

ogemn(D + 1) =

(

2n

n

)

(n!)D+1 = (2n)!(n!)D−1.

Hence, the exponential generating function of this class coincides with the one of the class
L(D) of D-multiple linear orders taken at z2:

∞
∑

n=0

(n!)D−1z2n.

We have the following decompositions: OGEM(D) = SET(OGEM(D)) and L(D) =
SEQ(IL(D)). We have seen in the proof of Proposition 5.10 that the sequence (n!) is
gargantuan. Hence, according to Lemma 2.5, the sequence

ogem2n(D)

(2n)!
= (n!)D−1

is gargantuan too.

This allows us to apply Proposition 4.5. Note that we need to formally rewrite the
exponential generating function of the class IL(D) taken at z2 as if it corresponds to a
combinatorial class with 2-periodic counting sequence:

∞
∑

n=1

(2n)! · ilk(D)

n!
· z2n

(2n)!
.

Doing so, we get the asymptotics in the form

P
(

g is SET-irreducible
)

≈ 1−
∑

k≥1

(2k)! · ilk(D)

k!
·
(

2n

2k

)

· ogemn−k(D)

ogemn(D)

≈ 1−
∑

k≥1

ilk(D)

k!
· 1
(

(n)k
)D−1

.
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Remark 5.18. We can extend the notion of indecomposable permutation in higher di-
mension. Let us define a d-multipermutation of size n as a d-tuple of permutations

(σ1, . . . , σd) ∈ Sd
n.

A d-multipermutation is said indecomposable, if there is no k < n such that σi([k]) = [k]
for all i ∈ [d]. The same way as for relation (17), the counting sequence of indecomposable
d-multipermutations satisfies

impn(d) =
il(d+ 1)

n!
(24)

This fact allows us to reformulate Proposition 5.17 in the following way.

Corollary 5.19. Let D ≥ 2. The asymptotic probability that a random orientable GEM
g of dimension D of size 2n is connected satisfies

P(s is connected) ≈ 1−
∑

k≥1

impk(D − 1)
(

(n)k
)D−1

. (25)

where impk(D − 1) denotes the number of indecomposable (D − 1)-multipermutations of
size k.

5.3.2 Constellations

Definition 5.20. Given a positive integer d, a d-constellation of size n is a d-mulipermutation
(σ1, . . . , σd) ∈ Sd

n such that:

• the group 〈σ1, . . . , σd〉 acts transitively on the set [n],

• the product of σk is the identity permutation, i.e. σ1 . . . σd = id.

We denote the class of d-constellations by CN (d).

While constellation have been introduced to study unramified covering of the punc-
tured sphere [33], they can be interpreted as a higher dimensional generalization of
origamis studied in Section 5.2.1. Indeed, the second condition is equivalent to σd =
(σ1 . . . σd−1)

−1 so that the first d− 1 permutations can be chosen independently, and the
last one is determined by those. The permutations σ1, . . . , σd−1 of [n] describe how n
(d − 1)-hypercubes are glued in each direction to form a generalized origami. In this
interpretation, the first condition is equivalent to the connectedness of the generalized
origami.

Proposition 5.21. Let d ≥ 3. The number cn(d) of d-constellations of size n satisfies:

cn(d) ≈ (n!)d−1

(

1−
∑

k≥1

impk(d− 2)
(

(n)k
)d−2

)

(26)

≈ (n!)d−1

(

1−
∑

k≥1

ilk(d− 1)

k! ·
(

(n)k
)d−2

)

. (27)
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Proof. The estimation of the number of constellations follows from the computation of the
probability that a uniformly chosen (d− 1)-multipermutation determines d-constellation
(after adding the last permutation). This result is a generalisation of Proposition 5.10. If
S(d−1) denotes the class of (d−1)-multipermutations, we have S(d−1) = SET

(

CN (d)
)

.
The corresponding counting sequence is (n!)d−1, which coincides with the one of the
class L(d − 1) = SEQ(IL(d − 1)). As we have seen in the proof of Proposition 5.17,
the sequence (n!)d−2 is gargantuan for d > 2. Therefore, we can apply Theorem 4.1
that, together with relation (24) and multiplication of both sides by (n!)d−1, gives the
asymptotic expansions (26) and (27).

6 Conclusion

We have seen how to provide the whole asymptotic expansion of the probability that
a combinatorial class admitting a double SET/SEQ decomposition is connected. The
relationship between those two decompositions corresponds, symbolically, to the relation

∂ log(z)

∂z
=

1

z
.

It is tempting to iterate this idea to get the asymptotic probability that a combina-
torial structure is SEQ-irreducible from the equation

∂

∂z

(

1

z

)

= − 1

z2
.

The derivative sequence should therefore be related to structures admitting a decompo-
sition into two SEQ-irreducible components. This will be the subject of the forthcoming
paper [34].

In the applications, we relied on the existence of a double SET/SEQ decomposition
for some combinatorial classes: graphs vs tournaments, permutations vs linear orders, and
combinatorial maps vs linear matchings. However, some models (p-angulated surfaces,
quadratic square-tiled surface, not necessarily orientable GEMs) have been described
without an explicit SEQ decomposition. First, note that it is still possible to apply (the
proof of) Theorem 4.1, by replacing the combinatorial sequence dk with the kth coefficient
of the formal power series D(z) := 1− 1/A(z). In particular, we have:

Proposition 6.1.

P(a triangulated surface is connected) ≈ 1− 5

36n
− 695

2592n2
− 216305

279936n3
− . . .

P(a quadrangulated surface is connected) ≈ 1− 3

16n
− 183

512n2
− 8313

8192n3
− . . .
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P(a quadratic square-tiled surface is connected) ≈ 1− 1

4n
− 15

32n2
− 167

128n3
− 11845

2048n4
− . . .

P(a GEM of dimension 3 is connected) ≈ 1− 1

8n2
− 3

16n3
− 49

128n4
− 145

128n5
− . . .

Proof. Apply the proof of Theorem 4.1, where dk/k! is the kth coefficient the of

1−
(

∑

n≥0

(6n− 1)!!
z2n

(2n)!

)−1

,

1−
(

∑

n≥0

(4n− 1)!!
zn

n!

)−1

1−
(

∑

n≥0

(

(2n− 1)!!
)2 zn

n!

)−1

,

and

1−
(

∑

n≥0

(

(2n− 1)!!
)4 z2n

(2n)!

)−1

,

respectively.

However, a combinatorial interpretation for the coefficients is still missing. In the
second forthcoming paper [35], we will construct an “anti-SEQ” operator, which provides
a combinatorial interpretation of such classes.
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1981.

[32] S. K. Lando and A. K. Zvonkin. Meanders. Sel. Math. Sov., 11(2):117–144, 1992.

[33] S. K. Lando and A. K. Zvonkin. Graphs on surfaces and their applications. Appendix
by Don B. Zagier, volume 141 of Encycl. Math. Sci. Berlin: Springer, 2004.

[34] T. Monteil and K. Nurligareev. Asymptotics of irreducibles II: SEQ-irreducibles. In
preparation.

[35] T. Monteil and K. Nurligareev. Asymptotics of irreducibles III: Anti-SEQ. In prepa-
ration.

[36] K. Nurligareev. Irreducibility of combinatorial objects: asymptotic probability and in-
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