

The ATPase Inhibitory Factor 1 (IF1) regulates the expression of the mitochondrial Ca2+ uniporter (MCU) via the AMPK/CREB pathway

Danilo Faccenda, Giulia Gorini, Adam Jones, Claire Thornton, Alessandra Baracca, Giancarlo Solaini, Michelangelo Campanella

To cite this version:

Danilo Faccenda, Giulia Gorini, Adam Jones, Claire Thornton, Alessandra Baracca, et al.. The ATPase Inhibitory Factor 1 (IF1) regulates the expression of the mitochondrial Ca2+ uniporter (MCU) via the AMPK/CREB pathway. Biochimica et Biophysica Acta - Molecular Cell Research, 2021, 1868, 10.1016 /i.bbamcr.2020.118860. hal-04805761

HAL Id: hal-04805761 <https://hal.science/hal-04805761v1>

Submitted on 26 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/01674889)

BBA - Molecular Cell Research

journal homepage: www.elsevier.com/locate/bbamcr

BBA research letter

The ATPase Inhibitory Factor 1 (IF₁) regulates the expression of the mitochondrial Ca²⁺ uniporter (MCU) via the AMPK/CREB pathway

Danilo Faccenda^a, Giulia Gorini^b, Adam Jones^{a,c}, Claire Thornton^{a,c}, Alessandra Baracca^b, Giancarlo Solaini^b, Michelangelo Campanella^{a,d,}*

^a*Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, 4 Royal College Street, NW1 0TU London, United Kingdom* ^b*Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy*

^c*Department of Perinatal Imaging and Health, St Thomas' Campus, King's College London, 163 Lambeth Palace Road, SE1 7EH London, United Kingdom*

^d*Department of Cell and Developmental Biology, Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT London, United Kingdom.*

A R T I C L E I N F O

Keywords: Mitochondria Calcium IF1 AMPK and MCU

Calcium ions (Ca^{2+}) are universal intracellular messengers that control a diverse array of cellular functions. The versatility of Ca^{2+} signalling depends on Ca^{2+} interaction with a wide range of sensors and transducers through varied spatiotemporal dynamics, and relies on the presence of intracellular stores enabling the functional organization of Ca^{2+} transients in signalling microdomains [1,2]. Along with the endoplasmic reticulum (ER), mitochondria are fundamental Ca^{2+} -sequestering organelles that act as hubs for Ca^{2+} storage and buffering, thereby tuning the local Ca²⁺ availability and shaping cellular Ca² signals [3]. The tight control of mitochondrial Ca²⁺ entry and cycling is critical to preserve intracellular Ca^{2+} homeostasis and avoid alterations underlying the development of severe pathological conditions [2]. Hence, furthering the current understanding of the mechanisms that regulate mitochondrial Ca^{2+} handling is crucial to the development of advanced, targeted treatment options.

Mitochondrial Ca²⁺ storage capacity is highly correlated with the bioenergetic state of these organelles. Mitochondrial Ca^{2+} uptake is driven by both high mitochondrial membrane potential $(\Delta \Psi_{\rm m})$ and low intramatrix Ca²⁺ concentration ([Ca²⁺]_m), while its rate is regulated by the activity of the mitochondrial Ca²⁺ uniporter complex (MCUC), a specialized channel residing on the mitochondrial inner membrane (MIM) that fully opens at high local intracellular $\lceil Ca^{2+} \rceil$ ($\lceil Ca^{2+} \rceil$ i) [4]. Concurrently, intramitochondrial Ca^{2+} is a major regulator of ATP

production, promoting oxidative phosphorylation [5]. Ca^{2+} transients are therefore crucially involved in the control of the F_1F_2 -ATP synthase activity, in combination with its endogenous regulator, the ATPase inhibitory factor 1 (IF₁) $[6]$.

The primary function of IF₁ is to inhibit the reversal of the F_1F_0 -ATPsynthase during conditions of impaired $\Delta\Psi_m$. Thus, IF₁ prevents excessive ATP loss, energy imbalance and cell death under ischaemia/ hypoxia [6]. Recent studies, including work from our group, have revealed the existence of a large plethora of IF_1 functions, and outlined the pathological implications of its deregulation. We recently uncovered that IF_1 activates a pro-oncogenic mechanism of evasion of apoptosis occurring through optic atrophy 1 (OPA1)-dependent maintenance of cristae shape and preservation of redox balance [7]. We demonstrated that loss of IF_1 activity promotes stress-dependent OPA1 degradation, causing abnormal mitochondrial morphology and impairing cell metabolism. To further explore the impact of IF_1 on mitochondrial function, here we study its role in mitochondrial Ca^{2+} homeostasis.

We previously showed that IF_1 over-expression counteracts typical traits of Ca^{2+} -mediated cell death, such as mitochondrial swelling and permeability transition [8]. Moreover, there is evidence suggesting that OPA1 oligomer destabilization, which is a feature accompanying IF_1 depletion [7], facilitates mitochondrial Ca^{2+} uptake through cristae

<https://doi.org/10.1016/j.bbamcr.2020.118860>

Received 23 July 2020; Received in revised form 10 September 2020; Accepted 16 September 2020 Available online 18 September 2020

0167-4889/ © 2020 Published by Elsevier B.V.

[⁎] Corresponding author at: Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, NW1 0TU London, United Kingdom.

E-mail address: mcampanella@rvc.ac.uk (M. Campanella).

(caption on next page)

Fig. 1. IF₁ knock-down enhances mitochondrial Ca²⁺ uptake in HeLa cells via AMPK- and OMA1-dependent upregulation of MCU. (**A**) Representative micrographs of mitochondrial ultrastructure in Scrm and IF1 KD cells (scale bar: 500 nm). (**B**) Quantification of average cristae width (Scrm: 24.98 \pm 3.11 nm; IF₁ KD: 33.47 \pm 4.90 nm; $n \ge 15$, $N = 3$). (C) Representative traces of TPG-induced mitochondrial Ca²⁺ uptake in Scrm and IF₁ KD cells cotransfected with 2mtGCaMP6m and mtRFP, challenged with 100 nM TPG. (**D**) Quantification of average mitochondrial 2mtGCaMP6m fluorescence ratio at plateau (Scrm: 0.32 \pm 0.05 A.U.; IF₁ KD: 0.45 \pm 0.11 A.U.; $n \ge 15$, $N = 4$). (E) Prototypical traces of intracellular Ca²⁺ rise following administration of 100 nM TPG in Scrm and IF1 KD cells loaded with 5 μM Fura-2 AM and 25 nM MitoTracker™ Red CMXRos. (**F**) Quantification of average cytosolic Fura-2 AM plateau fluorescence ratio (Scrm: 0.23 \pm 0.02 A.U.; IF₁ KD: 0.13 \pm 0.03 A.U.; n \geq 15, N = 4). (G) Representative Western blot of MCU protein levels in Scrm and IF₁ KD cells; ysates were also tested for VDAC1, ATPB and IF1. GAPDH was used as loading control. (**H**) Bar charts reporting quantitative analysis of MCU protein levels of MCU relative to GAPDH (Scrm: 1.00 ± 0.29; IF1 KD: 2.19 ± 0.46; normalized values, *N* = 3). (**I**) Western blotting analysis of cellular protein levels of AMPKα and phospho-AMPKα (Thr172) in Scrm and IF1 KD cells; vinculin was used as loading control. (**J**) Densitometry analysis of phospho-AMPKα levels relative to vinculin (Scrm: 1.08 \pm 0.06; IF₁ KD: 2.19 \pm 0.46; *N* = 5). (**K**) Prototypical traces of changes in [Ca²⁺]_m in Scrm and IF₁ KD cells co-transfected with 2mtGCaMP and either an siRNA against OMA1 (siOMA1) or a non-silencing siRNA (siNC), loaded with 25 nM MitoTracker™ Red CMXRos and treated with TPG (100 nM). (**L**) Quantification of average mitochondrial 2mtGCaMP6m fluorescence ratio at plateau after addition of TPG in the two cell lines (Scrm siNC = 0.33 ± 0.03 A.U.; IF₁ KD siNC = 0.41 \pm 0.03 A.U.; IF₁ KD siOMA1 = 0.31 \pm 0.04 A.U.; $n \ge 20$, $N = 3$). (M) Representative traces of intracellular Ca²⁺ dynamics following TPG treatment (100 nM) in Scrm and IF₁ KD cells. (N) Column diagram of average cytosolic Fura-2 AM fluorescence ratio at plateau (Scrm siNC = 0.24 \pm 0.02 A.U.; IF₁ KD siNC = 0.18 \pm 0.04 A.U.; IF₁ KD siOMA1 = 0.26 \pm 0.03 A.U.; $n \ge 30$, $N = 3$). (O) Representative Western blot of MCU protein levels in Scrm and IF₁ KD cells transfected with either siNC or siOMA1; ATPB, GAPDH (loading control), OMA1 and VDAC1 were also detected. (**P**) Quantification of MCU expression levels relative to GAPDH (Scrm siNC = 1.00 \pm 0.04; IF₁ KD siNC = 2.10 \pm 0.29; IF₁ KD siOMA1 = 1.30 \pm 0.31; N = 3). (Q) Proposed model for IF₁-dependent control of mitochondrial Ca²⁺ uptake: in IF₁-depleted cells (i), the decline in cellular ATP levels induces the AMPK-mediated, CREB-dependent transcription of genes encoding the MCU complex, causing increased mitochondrial $Ca²⁺$ uptake following emptying of the ER stores; knocking-down OMA1 blocks reverts excessive mitochondrial Ca^{2+} entry activated by IF₁ loss (ii).

enlargement [9]. Interestingly, stable IF₁ knock-down HeLa cells (IF₁ KD), which were prepared for transmission electron microscopy (TEM) imaging as previously described [7], showed a significant increase in cristae width, particularly at the crista junctions (Fig. 1A, B). This characteristic, which is consistent with reduced OPA1 stability in IF_1 depleted cells [7], might also underlie alteration in molecular diffusion across the MIM $[10]$. To test the hypothesis that IF₁ regulates mitochondrial Ca^{2+} handling, stable control (Scrm) and IF₁ KD HeLa cells were treated with the sarco/endoplasmic reticulum Ca^{2+} -ATPase (SERCA) inhibitor thapsigargin (TPG, 100 nM), which causes the passive release of Ca^{2+} from the ER and allows to study mitochondria-ER coupling. Cells were co-transfected with mitochondria-targeted GCaMP6m (2mtGCaMP6m), a green fluorescent ratiometric Ca^{2+} indicator, and red fluorescent protein (mtRFP), to monitor mitochondrial $Ca²⁺$ uptake after administration of TPG. Despite the absence of variations in the basal intramitochondrial Ca^{2+} levels (SFig. 1A), the amplitude of TPG-elicited mitochondrial Ca^{2+} entry was around 30% higher in IF₁ KD cells (Fig. 1C, D). Moreover, IF₁ loss disturbed wholecell Ca^{2+} homeostasis, as confirmed by the lower levels of Ca^{2+} retained in the cytosol (monitored by loading cells with 5 μM Fura-2 AM, a ratiometric fluorescent Ca²⁺ sensor, and 25 nM MitoTracker™ Red CMXRos; Fig. 1E, F). This was recapitulated in cells treated with the Ca²⁺ mobilising agonist histamine (His, 100 µM; SFig. 1B-E). Since IF₁ KD cells are characterized by higher $\Delta\Psi_m$ and impaired ATP synthesis at resting conditions [11], the increase in mitochondrial Ca^{2+} influx might represent an adaptive mechanism to maximize ATP production through stimulation of oxidative phosphorylation.

We then investigated the molecular determinants driving enhanced mitochondrial Ca²⁺ uptake in IF₁-depleted cells, starting from MCUC. Quite unexpectedly, IF₁ KD induced a significant upregulation of the pore forming subunit of the complex, MCU (Fig. 1G, H), without affecting mitochondrial mass (SFig. 1F, G). To dissect a potential MCUdependent mechanism augmenting mitochondrial Ca^{2+} entry in IF₁ KD cells, we looked at changes in mRNA levels of the different MCUC components. Likewise, IF₁ KD cells showed a nearly 1.6-fold increase in MCU transcript levels, which was matched by a similar increase in the expression of all other subunits (SFig. 1H). Additional analysis of the expression ratio of each MCUC subunits to MCU revealed no alterations in the stoichiometry of the complex between Scrm and $IF₁$ KD cells (SFig. 1I), which suggests that the latter have a higher content of fully functional, non-constitutively active MCUC. To further examine the mechanism leading to MCU upregulation in $IF₁$ KD cells, we then monitor the expression levels and activation state of cAMP response element-binding protein (CREB), which is a known transcriptional regulator of MCU transcription [12], and its upstream regulator 5′

AMP-activated protein kinase (AMPK), the increased activity of which has recently been shown in the heart of IF₁ KO mice [13]. Western blotting analysis revealed a remarkable increase in the degree of both AMPK α and CREB phosphorylation when IF₁ is down-regulated (2- and 1.5-fold increase, respectively; Fig. 1I, $J + S$ Fig. 2D, F), confirming the involvement of an AMPK-mediated, CREB-dependent mechanism of MCU expression. Of notice, while the total levels of CREB were unchanged between the two cell lines (SFig. 2E), $AMPK\alpha$ expression was significantly higher in IF₁ KD cells (SFig. 2A). This indicates that IF₁ depletion promotes AMPK activity via upregulation of the protein rather than by augmenting the rate of its phosphorylation, which is not affected by changes in IF_1 expression (SFig. 2B). Collectively, our data suggest that IF_1 controls MCU expression in resting cells by limiting AMPK-mediated CREB activation, which is enhanced when IF_1 expression is down-regulated (SFig. 2G). Considering that AMPK is rapidly activated when ATP production decreases, we compared the total cellular ATP levels between the two cell lines. As expected, IF_1 KD cells showed a nearly 40% decrease in cellular ATP levels (SFig. 2C), pointing to ATP depletion as the driving mechanism for increased AMPK activity.

Mitochondrial Ca²⁺ uptake appears to be facilitated by unfolding of the cristae through alteration of the membrane diffusion barrier [9,10]. This event is prevented by OPA1, the loss of which impairs both cristae structure and Ca^{2+} homeostasis [14]. Under stress conditions, OPA1 degradation occurs rapidly following activation of the mitochondrial zinc metallopeptidase OMA1, which is prevented by IF_1 [7]. Furthermore, a recent study showed that OMA1 KO is protective against MCU upregulation in a murine model of heart failure, with concurrent preservation of cristae integrity and energy metabolism [15]. Considering the increase in cristae width that accompanies $IF₁$ KD, we speculated that the lack of IF₁ might also favour mitochondrial Ca²⁺ accumulation through OMA1-dependent destabilization of OPA1 oligomers. Therefore, we measured intracellular Ca^{2+} mobilization following TPG administration in cells down-regulated for OMA1 (SFig. 3A). Interestingly, OMA1 KD reduced mitochondrial Ca^{2+} uptake in IF₁ KD cells to levels comparable to control cells (Fig. 1K, L), thus restoring the normal TPGinduced cytosolic Ca^{2+} response (Fig. 1M, N). Moreover, knocking down OMA1 inhibited the increase in MCU protein levels induced by $IF₁$ loss (Fig. 10, P) without affecting mitochondrial content (SFig. 3B,C). OMA1 KD also significantly reduced ATP loss in cells depleted of IF1 (SFig. 3D), further confirming that OMA1 activation critically promotes mitochondrial dysfunction in $IF₁$ KD cells.

With this work, we demonstrate that IF_1 is required for maintaining mitochondrial Ca²⁺ homeostasis. Our data prove that IF₁ down-regulation triggers an AMPK-mediated mitochondrial signalling response

that results in the CREB-dependent over-expression of MCU, leading to increased mitochondrial Ca^{2+} accumulation following emptying of the ER stores (Fig. 1Qi). We also found that silencing of the mitochondrial protease OMA1 restores normal MCU levels and mitochondrial Ca²⁺ uptake (Fig. 1Qii), indicating that OMA1 is involved in the pathway activated by IF_1 loss and suggesting that the mitochondrial ultrastructure regulates the Ca^{2+} buffering capacity of these organelles. In view of previous observations ascertaining the protective effect of OMA1 loss against cristae aberrations [15], OMA1 inhibition in $IF₁$ KD cells might favour OPA1-mediated cristae folding and respiratory chain supercomplex assembly, improving both mitochondrial bioenergetics and function.

Collectively, our data confirm that loss of IF_1 impairs mitochondrial $Ca²⁺$ import with consequences in both cell physiology and pathology. IF₁ loss may facilitate mitochondrial Ca²⁺ overload through alteration of cristae morphology and MCUC activity, contributing to cristae remodelling and mitochondrial swelling. Conclusive evidence confirming that cristae enlargement has a direct effect on mitochondrial Ca^{2+} dynamics is still missing, and the relationship between mitochondrial $Ca²⁺$ handling and structure is poorly understood. Nevertheless, this work proposes IF₁ as a key player in this pathway, as well as a molecular mediator of the retrograde response that links impaired mitochondrial bioenergetics and structure to alterations in intracellular signalling.

CRediT authorship contribution statement

M.C. and D.F. conceived the idea for the study and designed the experiments. D.F. conducted the experiments and data analysis and wrote the manuscript. G.G. assisted with Ca^{2+} imaging and Western blotting analysis of MCU levels. A.J. and C.T. helped with Western blotting analysis of CREB and AMPK. C.T., A.B and G.S were involved in discussions and commented on the final manuscript.

Declaration of competing interest

There are no competing interests of any nature to report.

Acknowledgments

The research activities led by M.C. are supported by the following funding agencies, which are gratefully acknowledged: European Research Council Consolidator Grant [COG 2018 - 819600_FIRM]; Biotechnology and Biological Sciences Research Council [BB/ M010384/1 and BB/N007042/1]; Petplan Charitable Trust; LAM-Bighi Grant Initiative; FIRB-Research Grant Consolidator Grant 2

[RBFR13P392], Italian Ministry of Health [IFO14/01/R/52]. A.J. is supported by the UK Medical Research Council [MR/N013700/1] and King's College London, MRC Doctoral Training Partnership in Biomedical Sciences.

Appendix A. Supplementary data

Supplementary data to this article can be found online at [https://](https://doi.org/10.1016/j.bbamcr.2020.118860) doi.org/10.1016/j.bbamcr.2020.118860.

References

- [1] [D.E. Clapham, Calcium signaling, Cell 131 \(2007\) 1047–1058.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0005)
- [2] [C. Giorgi, A. Danese, S. Missiroli, S. Patergnani, P. Pinton, Calcium dynamics as a](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0010) [machine for decoding signals, Trends Cell Biol. 28 \(2018\) 258–273.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0010)
- [3] [R. Rizzuto, D. De Stefani, A. Raffaello, C. Mammucari, Mitochondria as sensors and](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0015) [regulators of calcium signalling, Nat. Rev. Mol. Cell Biol. 13 \(2012\) 566–578.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0015)
- [4] [S. Marchi, P. Pinton, The mitochondrial calcium uniporter complex: molecular](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0020) [components, structure and physiopathological implications, J. Physiol. 592 \(2014\)](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0020) [829–839.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0020)
- [5] [A.I. Tarasov, E.J. Griffiths, G.A. Rutter, Regulation of ATP production by mi](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0025)[tochondrial Ca\(2+\), Cell Calcium 52 \(2012\) 28–35.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0025)
- [6] [D. Faccenda, M. Campanella, Molecular regulation of the mitochondrial F\(1\)F\(o\)-](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0030) [ATPsynthase: physiological and pathological significance of the inhibitory factor 1](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0030) [\(IF\(1\)\), Int. J. Cell Biol. 2012 \(2012\) 367934.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0030)
- [7] [D. Faccenda, J. Nakamura, G. Gorini, G.K. Dhoot, M. Piacentini, M. Yoshida,](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0035) [M. Campanella, Control of mitochondrial remodeling by the ATPase inhibitory](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0035) [factor 1 unveils a pro-survival relay via OPA1, Cell Rep. 18 \(2017\) 1869–1883.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0035)
- [8] [D. Faccenda, C.H. Tan, A. Seraphim, M.R. Duchen, M. Campanella, IF1 limits the](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0040) [apoptotic-signalling cascade by preventing mitochondrial remodelling, Cell Death](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0040) [Differ. 20 \(2013\) 686–697.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0040)
- [9] [L. Fulop, G. Szanda, B. Enyedi, P. Varnai, A. Spat, The effect of OPA1 on mi](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0045)[tochondrial Ca\(2\)\(+\) signaling, PLoS One 6 \(2011\) e25199.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0045)
- [10] [C.A. Mannella, The relevance of mitochondrial membrane topology to mitochon](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0050)[drial function, Biochim. Biophys. Acta 1762 \(2006\) 140–147.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0050)
- [11] [M. Fujikawa, H. Imamura, J. Nakamura, M. Yoshida, Assessing actual contribution](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0055) [of IF1, inhibitor of mitochondrial FoF1, to ATP homeostasis, cell growth, mi](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0055)[tochondrial morphology, and cell viability, J. Biol. Chem. 287 \(2012\)](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0055) [18781–18787.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0055)
- [12] [S. Shanmughapriya, S. Rajan, N.E. Hoffman, X. Zhang, S. Guo, J.E. Kolesar,](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0060) [K.J. Hines, J. Ragheb, N.R. Jog, R. Caricchio, Y. Baba, Y. Zhou, B.A. Kaufman,](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0060) [J.Y. Cheung, T. Kurosaki, D.L. Gill, M. Madesh, Ca2+ signals regulate mitochon](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0060)[drial metabolism by stimulating CREB-mediated expression of the mitochondrial](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0060) [Ca2+ uniporter gene MCU, Sci. Signal. 8 \(2015\) ra23.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0060)
- [13] [K. Yang, Q. Long, K. Saja, F. Huang, S.M. Pogwizd, L. Zhou, M. Yoshida, Q. Yang,](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0065) [Knockout of the ATPase inhibitory factor 1 protects the heart from pressure over](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0065)[load-induced cardiac hypertrophy, Sci. Rep. 7 \(2017\) 10501.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0065)
- [14] [Y.E. Kushnareva, A.A. Gerencser, B. Bossy, W.K. Ju, A.D. White, J. Waggoner,](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0070) [M.H. Ellisman, G. Perkins, E. Bossy-Wetzel, Loss of OPA1 disturbs cellular calcium](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0070) [homeostasis and sensitizes for excitotoxicity, Cell Death Differ. 20 \(2013\) 353–365.](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0070)
- [15] [R. Acin-Perez, A.V. Lechuga-Vieco, M. Del Mar Munoz, R. Nieto-Arellano,](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0075) [C. Torroja, F. Sanchez-Cabo, C. Jimenez, A. Gonzalez-Guerra, I. Carrascoso,](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0075) [C. Beninca, P.M. Quiros, C. Lopez-Otin, J.M. Castellano, J. Ruiz-Cabello,](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0075) [L.J. Jimenez-Borreguero, J.A. Enriquez, Ablation of the stress protease OMA1](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0075) [protects against heart failure in mice, Sci. Transl. Med. 10 \(2018\).](http://refhub.elsevier.com/S0167-4889(20)30218-4/rf0075)