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Calcium ions (Ca2+) are universal intracellular messengers that 
control a diverse array of cellular functions. The versatility of Ca2+ 

signalling depends on Ca2+ interaction with a wide range of sensors 
and transducers through varied spatiotemporal dynamics, and relies on 
the presence of intracellular stores enabling the functional organization 
of Ca2+ transients in signalling microdomains [1,2]. Along with the 
endoplasmic reticulum (ER), mitochondria are fundamental Ca2+-se
questering organelles that act as hubs for Ca2+ storage and buffering, 
thereby tuning the local Ca2+ availability and shaping cellular Ca2+ 

signals [3]. The tight control of mitochondrial Ca2+ entry and cycling is 
critical to preserve intracellular Ca2+ homeostasis and avoid alterations 
underlying the development of severe pathological conditions [2]. 
Hence, furthering the current understanding of the mechanisms that 
regulate mitochondrial Ca2+ handling is crucial to the development of 
advanced, targeted treatment options. 

Mitochondrial Ca2+ storage capacity is highly correlated with the 
bioenergetic state of these organelles. Mitochondrial Ca2+ uptake is 
driven by both high mitochondrial membrane potential (ΔΨm) and low 
intramatrix Ca2+ concentration ([Ca2+]m), while its rate is regulated 
by the activity of the mitochondrial Ca2+ uniporter complex (MCUC), a 
specialized channel residing on the mitochondrial inner membrane 
(MIM) that fully opens at high local intracellular [Ca2+] ([Ca2+]i) [4]. 
Concurrently, intramitochondrial Ca2+ is a major regulator of ATP 

production, promoting oxidative phosphorylation [5]. Ca2+ transients 
are therefore crucially involved in the control of the F1Fo-ATP synthase 
activity, in combination with its endogenous regulator, the ATPase in
hibitory factor 1 (IF1) [6]. 

The primary function of IF1 is to inhibit the reversal of the F1Fo- 
ATPsynthase during conditions of impaired ΔΨm. Thus, IF1 prevents 
excessive ATP loss, energy imbalance and cell death under ischaemia/ 
hypoxia [6]. Recent studies, including work from our group, have re
vealed the existence of a large plethora of IF1 functions, and outlined 
the pathological implications of its deregulation. We recently un
covered that IF1 activates a pro-oncogenic mechanism of evasion of 
apoptosis occurring through optic atrophy 1 (OPA1)-dependent main
tenance of cristae shape and preservation of redox balance [7]. We 
demonstrated that loss of IF1 activity promotes stress-dependent OPA1 
degradation, causing abnormal mitochondrial morphology and im
pairing cell metabolism. To further explore the impact of IF1 on mi
tochondrial function, here we study its role in mitochondrial Ca2+ 

homeostasis. 
We previously showed that IF1 over-expression counteracts typical 

traits of Ca2+-mediated cell death, such as mitochondrial swelling and 
permeability transition [8]. Moreover, there is evidence suggesting that 
OPA1 oligomer destabilization, which is a feature accompanying IF1- 
depletion [7], facilitates mitochondrial Ca2+ uptake through cristae 
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enlargement [9]. Interestingly, stable IF1 knock-down HeLa cells (IF1 

KD), which were prepared for transmission electron microscopy (TEM) 
imaging as previously described [7], showed a significant increase in 
cristae width, particularly at the crista junctions (Fig. 1A, B). This 
characteristic, which is consistent with reduced OPA1 stability in IF1- 
depleted cells [7], might also underlie alteration in molecular diffusion 
across the MIM [10]. To test the hypothesis that IF1 regulates mi
tochondrial Ca2+ handling, stable control (Scrm) and IF1 KD HeLa cells 
were treated with the sarco/endoplasmic reticulum Ca2+-ATPase 
(SERCA) inhibitor thapsigargin (TPG, 100 nM), which causes the pas
sive release of Ca2+ from the ER and allows to study mitochondria-ER 
coupling. Cells were co-transfected with mitochondria-targeted 
GCaMP6m (2mtGCaMP6m), a green fluorescent ratiometric Ca2+ in
dicator, and red fluorescent protein (mtRFP), to monitor mitochondrial 
Ca2+ uptake after administration of TPG. Despite the absence of var
iations in the basal intramitochondrial Ca2+ levels (SFig. 1A), the 
amplitude of TPG-elicited mitochondrial Ca2+ entry was around 30% 
higher in IF1 KD cells (Fig. 1C, D). Moreover, IF1 loss disturbed whole- 
cell Ca2+ homeostasis, as confirmed by the lower levels of Ca2+ re
tained in the cytosol (monitored by loading cells with 5 μM Fura-2 AM, 
a ratiometric fluorescent Ca2+ sensor, and 25 nM MitoTracker™ Red 
CMXRos; Fig. 1E, F). This was recapitulated in cells treated with the 
Ca2+ mobilising agonist histamine (His, 100 μM; SFig. 1B–E). Since IF1 

KD cells are characterized by higher ΔΨm and impaired ATP synthesis 
at resting conditions [11], the increase in mitochondrial Ca2+ influx 
might represent an adaptive mechanism to maximize ATP production 
through stimulation of oxidative phosphorylation. 

We then investigated the molecular determinants driving enhanced 
mitochondrial Ca2+ uptake in IF1-depleted cells, starting from MCUC. 
Quite unexpectedly, IF1 KD induced a significant upregulation of the 
pore forming subunit of the complex, MCU (Fig. 1G, H), without af
fecting mitochondrial mass (SFig. 1F, G). To dissect a potential MCU- 
dependent mechanism augmenting mitochondrial Ca2+ entry in IF1 KD 
cells, we looked at changes in mRNA levels of the different MCUC 
components. Likewise, IF1 KD cells showed a nearly 1.6-fold increase in 
MCU transcript levels, which was matched by a similar increase in the 
expression of all other subunits (SFig. 1H). Additional analysis of the 
expression ratio of each MCUC subunits to MCU revealed no alterations 
in the stoichiometry of the complex between Scrm and IF1 KD cells 
(SFig. 1I), which suggests that the latter have a higher content of fully 
functional, non-constitutively active MCUC. To further examine the 
mechanism leading to MCU upregulation in IF1 KD cells, we then 
monitor the expression levels and activation state of cAMP response 
element-binding protein (CREB), which is a known transcriptional 
regulator of MCU transcription [12], and its upstream regulator 5′ 

AMP-activated protein kinase (AMPK), the increased activity of which 
has recently been shown in the heart of IF1 KO mice [13]. Western 
blotting analysis revealed a remarkable increase in the degree of both 
AMPKα and CREB phosphorylation when IF1 is down-regulated (2- and 
1.5-fold increase, respectively; Fig. 1I, J + SFig. 2D, F), confirming the 
involvement of an AMPK-mediated, CREB-dependent mechanism of 
MCU expression. Of notice, while the total levels of CREB were un
changed between the two cell lines (SFig. 2E), AMPKα expression was 
significantly higher in IF1 KD cells (SFig. 2A). This indicates that IF1 

depletion promotes AMPK activity via upregulation of the protein ra
ther than by augmenting the rate of its phosphorylation, which is not 
affected by changes in IF1 expression (SFig. 2B). Collectively, our data 
suggest that IF1 controls MCU expression in resting cells by limiting 
AMPK-mediated CREB activation, which is enhanced when IF1 ex
pression is down-regulated (SFig. 2G). Considering that AMPK is ra
pidly activated when ATP production decreases, we compared the total 
cellular ATP levels between the two cell lines. As expected, IF1 KD cells 
showed a nearly 40% decrease in cellular ATP levels (SFig. 2C), 
pointing to ATP depletion as the driving mechanism for increased 
AMPK activity. 

Mitochondrial Ca2+ uptake appears to be facilitated by unfolding of 
the cristae through alteration of the membrane diffusion barrier [9,10]. 
This event is prevented by OPA1, the loss of which impairs both cristae 
structure and Ca2+ homeostasis [14]. Under stress conditions, OPA1 
degradation occurs rapidly following activation of the mitochondrial 
zinc metallopeptidase OMA1, which is prevented by IF1 [7]. Further
more, a recent study showed that OMA1 KO is protective against MCU 
upregulation in a murine model of heart failure, with concurrent pre
servation of cristae integrity and energy metabolism [15]. Considering 
the increase in cristae width that accompanies IF1 KD, we speculated 
that the lack of IF1 might also favour mitochondrial Ca2+ accumulation 
through OMA1-dependent destabilization of OPA1 oligomers. There
fore, we measured intracellular Ca2+ mobilization following TPG ad
ministration in cells down-regulated for OMA1 (SFig. 3A). Interestingly, 
OMA1 KD reduced mitochondrial Ca2+ uptake in IF1 KD cells to levels 
comparable to control cells (Fig. 1K, L), thus restoring the normal TPG- 
induced cytosolic Ca2+ response (Fig. 1M, N). Moreover, knocking 
down OMA1 inhibited the increase in MCU protein levels induced by 
IF1 loss (Fig. 1O, P) without affecting mitochondrial content 
(SFig. 3B,C). OMA1 KD also significantly reduced ATP loss in cells 
depleted of IF1 (SFig. 3D), further confirming that OMA1 activation 
critically promotes mitochondrial dysfunction in IF1 KD cells. 

With this work, we demonstrate that IF1 is required for maintaining 
mitochondrial Ca2+ homeostasis. Our data prove that IF1 down-reg
ulation triggers an AMPK-mediated mitochondrial signalling response 

Fig. 1. IF1 knock-down enhances mitochondrial Ca2+ uptake in HeLa cells via AMPK- and OMA1-dependent upregulation of MCU. 
(A) Representative micrographs of mitochondrial ultrastructure in Scrm and IF1 KD cells (scale bar: 500 nm). (B) Quantification of average cristae width (Scrm: 
24.98  ±  3.11 nm; IF1 KD: 33.47  ±  4.90 nm; n ≥ 15, N = 3). (C) Representative traces of TPG-induced mitochondrial Ca2+ uptake in Scrm and IF1 KD cells co- 
transfected with 2mtGCaMP6m and mtRFP, challenged with 100 nM TPG. (D) Quantification of average mitochondrial 2mtGCaMP6m fluorescence ratio at plateau 
(Scrm: 0.32  ±  0.05 A.U.; IF1 KD: 0.45  ±  0.11 A.U.; n ≥ 15, N = 4). (E) Prototypical traces of intracellular Ca2+ rise following administration of 100 nM TPG in 
Scrm and IF1 KD cells loaded with 5 μM Fura-2 AM and 25 nM MitoTracker™ Red CMXRos. (F) Quantification of average cytosolic Fura-2 AM plateau fluorescence 
ratio (Scrm: 0.23  ±  0.02 A.U.; IF1 KD: 0.13  ±  0.03 A.U.; n ≥ 15, N = 4). (G) Representative Western blot of MCU protein levels in Scrm and IF1 KD cells; ysates 
were also tested for VDAC1, ATPB and IF1. GAPDH was used as loading control. (H) Bar charts reporting quantitative analysis of MCU protein levels of MCU relative 
to GAPDH (Scrm: 1.00  ±  0.29; IF1 KD: 2.19  ±  0.46; normalized values, N = 3). (I) Western blotting analysis of cellular protein levels of AMPKα and phospho- 
AMPKα (Thr172) in Scrm and IF1 KD cells; vinculin was used as loading control. (J) Densitometry analysis of phospho-AMPKα levels relative to vinculin (Scrm: 
1.08  ±  0.06; IF1 KD: 2.19  ±  0.46; N = 5). (K) Prototypical traces of changes in [Ca2+]m in Scrm and IF1 KD cells co-transfected with 2mtGCaMP and either an 
siRNA against OMA1 (siOMA1) or a non-silencing siRNA (siNC), loaded with 25 nM MitoTracker™ Red CMXRos and treated with TPG (100 nM). (L) Quantification of 
average mitochondrial 2mtGCaMP6m fluorescence ratio at plateau after addition of TPG in the two cell lines (Scrm siNC = 0.33  ±  0.03 A.U.; IF1 KD 
siNC = 0.41  ±  0.03 A.U.; IF1 KD siOMA1 = 0.31  ±  0.04 A.U.; n ≥ 20, N = 3). (M) Representative traces of intracellular Ca2+ dynamics following TPG treatment 
(100 nM) in Scrm and IF1 KD cells. (N) Column diagram of average cytosolic Fura-2 AM fluorescence ratio at plateau (Scrm siNC = 0.24  ±  0.02 A.U.; IF1 KD 
siNC = 0.18  ±  0.04 A.U.; IF1 KD siOMA1 = 0.26  ±  0.03 A.U.; n ≥ 30, N = 3). (O) Representative Western blot of MCU protein levels in Scrm and IF1 KD cells 
transfected with either siNC or siOMA1; ATPB, GAPDH (loading control), OMA1 and VDAC1 were also detected. (P) Quantification of MCU expression levels relative 
to GAPDH (Scrm siNC = 1.00  ±  0.04; IF1 KD siNC = 2.10  ±  0.29; IF1 KD siOMA1 = 1.30  ±  0.31; N = 3). (Q) Proposed model for IF1-dependent control of 
mitochondrial Ca2+ uptake: in IF1-depleted cells (i), the decline in cellular ATP levels induces the AMPK-mediated, CREB-dependent transcription of genes encoding 
the MCU complex, causing increased mitochondrial Ca2+ uptake following emptying of the ER stores; knocking-down OMA1 blocks reverts excessive mitochondrial 
Ca2+ entry activated by IF1 loss (ii). 
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that results in the CREB-dependent over-expression of MCU, leading to 
increased mitochondrial Ca2+ accumulation following emptying of the 
ER stores (Fig. 1Qi). We also found that silencing of the mitochondrial 
protease OMA1 restores normal MCU levels and mitochondrial Ca2+ 

uptake (Fig. 1Qii), indicating that OMA1 is involved in the pathway 
activated by IF1 loss and suggesting that the mitochondrial ultra
structure regulates the Ca2+ buffering capacity of these organelles. In 
view of previous observations ascertaining the protective effect of 
OMA1 loss against cristae aberrations [15], OMA1 inhibition in IF1 KD 
cells might favour OPA1-mediated cristae folding and respiratory chain 
supercomplex assembly, improving both mitochondrial bioenergetics 
and function. 

Collectively, our data confirm that loss of IF1 impairs mitochondrial 
Ca2+ import with consequences in both cell physiology and pathology. 
IF1 loss may facilitate mitochondrial Ca2+ overload through alteration 
of cristae morphology and MCUC activity, contributing to cristae re
modelling and mitochondrial swelling. Conclusive evidence confirming 
that cristae enlargement has a direct effect on mitochondrial Ca2+ 

dynamics is still missing, and the relationship between mitochondrial 
Ca2+ handling and structure is poorly understood. Nevertheless, this 
work proposes IF1 as a key player in this pathway, as well as a mole
cular mediator of the retrograde response that links impaired mi
tochondrial bioenergetics and structure to alterations in intracellular 
signalling. 
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