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Abstract
Preservation of mitochondrial quality is paramount for cellular homeostasis. The integrity of mitochondria is guarded by the 
balanced interplay between anabolic and catabolic mechanisms. The removal of bio-energetically flawed mitochondria is 
mediated by the process of mitophagy; the impairment of which leads to the accumulation of defective mitochondria which 
signal the activation of compensatory mechanisms to the nucleus. This process is known as the mitochondrial retrograde 
response (MRR) and is enacted by Reactive Oxygen Species (ROS), Calcium  (Ca2+), ATP, as well as imbalanced lipid and 
proteostasis. Central to this mitochondria-to-nucleus signalling are the transcription factors (e.g. the nuclear factor kappa-
light-chain-enhancer of activated B cells, NF-κB) which drive the expression of genes to adapt the cell to the compromised 
homeostasis. An increased degree of cellular proliferation is among the consequences of the MRR and as such, engagement 
of mitochondrial-nuclear communication is frequently observed in cancer. Mitophagy and the MRR are therefore interlinked 
processes framed to, respectively, prevent or compensate for mitochondrial defects.
In this review, we discuss the available knowledge on the interdependency of these processes and their contribution to cell 
signalling in cancer.
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Introduction

Mitochondria are organelles surrounded by double mem-
branes that are present in every eukaryotic cell. Pivotal for 
the maintenance of cellular energy metabolism, signalling 
and death [1], they benefit from a two-way route of interac-
tion with the nucleus: the anterograde, directed from the 
nucleus to mitochondria, and the retrograde, which goes 
from mitochondria to the nucleus also known as the mito-
chondrial retrograde response (MRR) (Fig. 1). The antero-
grade response is indispensable to build the mitochondria 

and the retrograde response to signal deficiencies in their 
quality control (Fig. 1). Mitochondrial quality control is the 
synthesis between (i) biogenesis of mitochondria and (ii) 
removal of the defective mitochondria by targeted autophagy 
(hereafter referred to as mitophagy) [2, 3].

The biogenesis of mitochondria is the result of efficient 
anterograde communication from the nucleus to mitochon-
dria, in which a specific subset of proteins is produced and 
transferred.

The nuclear DNA (nDNA)-encoded polypeptides are the 
subunits of mitochondrial enzyme complexes necessary to 
exert the oxidative phosphorylation (OXPHOS) from where 
the greater portion of adenosine triphosphate (ATP) origi-
nates [4, 5]. The most important regulator of mitochondrial 
biogenesis is PGC-1α, a member of the peroxisome prolif-
erator-activated receptor γ (PGC) family of transcriptional 
co-activators [6]. PGC-1α co-activates nuclear respiratory 
factors 1 and 2 (NRF1/2) that in turn, regulates the expres-
sion of many nuclear-encoded mitochondrial genes, such as 
mitochondrial transcription factor A (TFAM) [7]. TFAM 
is responsible for transcribing mitochondrially encoded 
proteins that are involved in mitochondrial DNA (mtDNA) 
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transcription, translation and repair [7]. Therefore, bioge-
netic mechanisms are essential for the development of mito-
chondria but insufficient to assure their quality.

Mitophagy removes additional or defective mitochon-
dria thereby regulating the content of the mitochondrial 
network [8, 9] (Fig. 2). This event is indispensable for cel-
lular health, as it prevents the accumulation of dysfunctional 

mitochondria [8, 9]. However, when it fails, though, the lost 
quality of mitochondria triggers a route of communication 
with the nucleus to produce genes aimed at protecting the 
cell from demise driven by faulty mitochondria [10, 11].

Thus, MRR promotes the stabilization of transcrip-
tional factors such as the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κβ) [11], the G-Protein 

Fig. 1  The interplay between 
anabolic and catabolic mecha-
nisms. The diagram depicts 
the interplay between antero-
grade and retrograde signal-
ling. The former is required 
to build mitochondria and the 
latter to signalling aberration 
to their homeostasis. The loss 
of mitophagy efficiency and 
hence the impaired control of 
mitochondrial quality (depicted 
by the dashed outer mito-
chondrial membrane, OMM) 
activates signalling mechanisms 
that communicate the ongoing 
dysfunction to the nucleus. This 
process goes under the name 
of the mitochondrial retrograde 
response (MRR) and results in 
the expression of target genes

Fig. 2  Schematic diagram of 
the mitochondrial autophagy 
(mitophagy) mechanisms. a 
depicts the Parkin-dependent 
mitophagy in which the accu-
mulation of PINK1 on the mito-
chondrial surface recruits Parkin 
to ubiquitylate proteins of the 
outer mitochondrial membrane 
(OMM). Consequently, the 
autophagosome, via the adapter 
proteins (p62, OPTN and 
NBR1) is fused on the dispos-
able mitochondria (represented 
by dashed OMM). In the 
Parkin-independent pathway 
of mitophagy (b) autophagy 
receptor proteins (e.g. FUNDC1 
and NIX) or ubiquitin-protein 
ligases other than Parkin (e.g. 
SMURF1) accumulate on the 
bio-energetically impaired mito-
chondria to drive their recycling 
via the autophagosomes
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Pathway Suppressor 2 (GPS2) [12] and the forkhead box 
proteins (FOXOs)] [13]) responsible for driving the meta-
bolic rewiring and resistance to cellular demise driven by 
faulty mitochondria [11, 14–16] (Fig. 3).

MRR is engaged by the presence of defective mito-
chondria spared by mitophagy [8, 17] which stands as the 
limiting step in this signalling route [18]. Even though 
a convergence between mitophagy, remodelling of the 
mitochondrial network and the MRR has been postu-
lated [19], this mechanism is not clear, leaving several 
unanswered questions. One of these is the localization of 
mitochondria driving the retrograde communication and 
whether this establishes microdomains of signalling.

Cancer cells are known to exploit both mitophagy 
and the MRR representing therefore the ideal model to 

comprehend hierarchy and cross-regulation between 
the remodelling of mitochondria (due to the block of 
mitophagy) and their retrograde signalling to the nucleus 
[5].

This review will debate this with the ambition to picture 
a link between the failed clearance of mitochondria and 
pathogenic cell signalling [5].

The role of mitophagy in the quality control 
of mitochondria

Mitophagy is mediated by many different molecules 
[8–11], but is principally subdivided into Parkin-depend-
ent and Parkin-independent [20]. In the Parkin-dependent 

Fig. 3  Schematic representation 
of the mitochondrial retrograde 
response (MRR) in yeast and 
mammals. a In yeast, mito-
chondrial dysfunction (read by 
reduction of ATP production 
and drop in ΔΨm) activates 
the transcription factors Rtg1p 
and Rtg3p which translocate to 
the nucleus following dephos-
phorylation. Mammals do not 
recapitulate the same pathway 
of signalling (b); the MRR is 
instead triggered by alterations 
in the second messengers [e.g. 
 Ca2+ and Reactive Oxygen 
Species (ROS)] in response to 
defective mitochondria and exe-
cuted by the nuclear relocation 
of a subset of transcriptional 
factors (e.g. NF-κB, CREB, 
NFAT, CHOP and GPS2). As 
above the dashed OMM is used 
to flag unhealthy mitochondria 
which initiates the retrograde 
route of signalling
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pathway (Fig. 2a), the depolarization of the mitochondrial 
membrane potential (ΔΨm) induces the activation of E3 
ubiquitin ligase Parkin (PARK2) by phosphorylation on 
serine 65 via the PTEN-induced kinase 1 protein (PINK1) 
(Fig. 2a) [21]. Consequently, PARK2 is translocated from 
the cytosol to outer mitochondria membrane (OMM) to pro-
mote the ubiquitination and degradation of OMM proteins 
via proteasomes to allow binding for Optineurin (OPTN) 
[22], the BRCA1 gene 1 (NBR1), [23] and sequestosome-1 
(SQSTM1/p62) (Fig. 2a) [24]. In turn, they directly interact 
with microtubule-associated proteins 1A/1B light chain 3B 
(LC3) protein, stimulating the localization of autophago-
somes on the mitochondria (Fig. 2a) [24]. Furthermore, 
PINK1, which accumulates at the OMM upon mitochon-
drial depolarization, directly recruits the autophagy recep-
tors OPTN or NDP52, proposing a model-mechanism within 
which PARK2 amplifies the PINK1-initiated mitophagy sig-
nalling [25]. The mitochondria-localized PARK2 can also 
interact with the activating molecule in Beclin-1-regulated 
autophagy (AMBRA1) to localize it at the OMM (Fig. 2a) 
and hence activate the phosphoinositide 3-kinase (P13K) 
complex to facilitate the selectivity of mitophagy [20].

In contrast, in the Parkin-independent pathway (Fig. 2b), 
dysfunctional mitochondria have high levels of LC3-inter-
acting region (LIR)-containing receptors including FUN14 
Domain Containing 1(FUNDC1) (i) [26], BCL2/adenovirus 
E1B 19 kDa interacting protein 3 (Bnip3) (ii) [27], its homo-
logue Bnip3L/Nix (iii) [28] and BCL2-like 13 (Bcl2L13) 
(iv) [29] which leads to the recruitment of the autophago-
somal membranes by direct interaction with LC3 (Fig. 2b).

Following dissipation of the ΔΨm, the SMAD-specific 
E3 ubiquitin-protein ligase (SMURF1) can also promote 
mitophagy through the ubiquitination of mitochondrial 
proteins (Fig. 2b) [30]. Furthermore, the heat shock pro-
tein 90 (Hsp90) and Hsp90 co-chaperone (Cdc37) complex 
(Hsp90-Cdc37) stabilize and activate the serine/threonine 
protein kinase ULK1. Consequently, ULK1 phosphorylates 
the Autophagy-related protein 13 (Atg13) (Fig. 2b) forming 
a complex [consisting of ULK1 itself, Atg13, focal adhe-
sion kinase family interacting protein of 200 kDa (FIP200), 
and Atg101] for the formation of the autophagosome [31]. 
This pathway of mitophagy is negatively regulated by the 
mammalian target of rapamycin (mTOR) [32]. The latter 
is repressed by the activation of the AMP-activated protein 
kinase (AMPK) following the reduction of intracellular ATP 
thus allowing formation of the ULK complex [33] and dea-
cetylation of ATG proteins by sirtuins [34].

Mitophagy is a fundamental process to retain the quality 
of mitochondria which is conserved across eukaryotic sys-
tems; once lost, the growing population of damaged mito-
chondria drives pathogenic signalling [12, 19, 35].

In cancer, the crosstalk between anabolism and catabo-
lism of mitochondria is impaired and with the abundance of 

dysfunctional mitochondria, the consumption of ATP rises 
as well as the accumulation of ROS [36, 37]. The intracellu-
lar accumulation of defective mitochondria is capitalized by 
cancer cells to enable oncogenic development [19, 38]. As 
forcing mitophagy is not a suitable strategy to arrest such a 
pattern, it is crucial to comprehend where the dysfunctional 
mitochondria accumulate when mitophagy is impaired. This 
could determine where the MRR begins and therefore offer 
a discrete target to revert the process. Recently, we showed 
that remodelling of the mitochondrial network, following 
evasion of mitophagy, is a determinant in the interaction 
with the nucleus by expediting the cross-organelles com-
munication via specific contact sites. The aggressiveness of 
cancer could be therefore favoured not only by the accumu-
lation of unhealthy mitochondria but also by their reposition-
ing within the cell.

The mitochondrial retrograde response 
(MRR)

Transcription factors, stress response mechanisms and 
mitochondrial activity are all profoundly altered in the 
pathogenesis of uncontrolled cellular proliferation. Can-
cer cells exploit MRR, which is primed by upregulation 
of ROS and deregulation  Ca2+ [15, 16], for their survival 
capacity [5, 39, 40]. During conditions that could endan-
ger their biochemical and structural integrity, mitochon-
dria crosstalk with the nucleus to sustain their reprogram-
ming and adapt to the perturbed environment [10, 11]. The 
altered metabolism in cancer cells is characterized by the 
high-consumption rate of glucose that is degraded through 
glycolysis to obtain ATP. In this scenario, the mitochon-
drial tricarboxylic acid (TCA) cycle is reduced causing 
low OXPHOS activity and increased mitochondrial ROS 
(mtROS) [41]. The inefficient mitochondrial respiration 
[42] and the parallel accumulation of ROS further com-
promise organelle integrity by damaging mtDNA [43]. 
In addition, loading of mitochondrial cholesterol is also 
a factor in the mitochondrial aetiology of tumour cells 
[41]. By shielding mitochondrial membranes from pro-
apoptotic protein-mediated permeabilization, the excess 
of cholesterol may delay the commitment of the organelle 
to apoptosis resulting in pro-longed survival of cells with 
unhealthy mitochondria [41].

Even though MRR is linked with the pathogenesis of can-
cer, the most detailed information into this route of signal-
ling is available in a non-mammalian model: the yeast [11]. 
In S. cerevisiae, the MRR depends on the basic helix-loop-
helix/leucine zipper (bHLH/LeuZip) transcription factors 
which act as a nuclear sensor of mitochondrial dysfunction 
(manifested by a reduction in ATP content) for the cellular 
reprogramming to occur [44]. When activated, the retrograde 
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regulation protein (Rtg1/3p) complex translocates from the 
cytoplasm to the nucleus, where it controls the expression of 
genes that encode mitochondrial proteins (Fig. 3a) [5, 44]. 
Inhibition of retrograde signalling is mediated by a cyto-
solic phosphoprotein, Mks1p, that when activated by phos-
phorylation, binds to the Bmh-sensitive protein (Bmh1/2p) 
and prevents dephosphorylation of Rtg3p (Fig. 3a). Rtg2p, 
an activator of this pathway, binds to Mks1p—a negative 
regulator of the RTG pathway, limiting its interaction with 
Bmh1/2p and thus allowing partial dephosphorylation of 
Rtg3p and Rtg1/3p translocation to the nucleus (Fig. 3a) 
[44, 45]. The MRR, even though executed in the cytosol-
nucleus portion of the cell, is triggered by a decrease in ATP 
concentration which sees the Mks1p released from Bmh1/2p 
and then bound with Rtg2p (Fig. 3a) [46].

The lack of homology with the yeast Rtg1/2/3 system 
in mammals [4] reverted the attention towards cytosolic 
elements, capable of shuttling into the nucleus to prime 
the expression of a specific subset of genes.

The same pathway shown in Fig. 3a is triggered fol-
lowing depolarization of the mitochondrial membrane 
(ΔΨm) [47, 48]. Even though, compared to yeast, in mam-
mals, the molecular coordination between mitochondria 
and the nucleus remains poorly understood [5, 49], the 
recent findings on GPS2, a functional homologue of Rtg2, 
have unveiled a selective interconnection between the two 
organelles (Fig. 3b) [12]. GPS2 acts as a transcriptional 
activator of the nuclear-encoded mitochondrial genes 
in mammals. In response to the loss of the ΔΨm, GPS2 
translocates to the nucleus to activate the transcription of 
stress response genes (Fig. 3b) by activating the Histone 
H3 Lysine 9 (H3K9) demethylation and RNA polymer-
ase II (RNA POL2), through inhibition of the Ubiquitin-
conjugating enzyme E2 13 (Ubc13) [12]. In addition, the 
disruption of ΔΨm impairs mitochondrial  Ca2+ uptake, 
causing an increase in free  Ca2+ within the cytoplasm 
[45]. This activates a plethora of  Ca2+-dependent effectors 
such as protein kinase C (PKC) (i), calcium/calmodulin-
dependent protein kinase type IV (CamKIV) (ii), c-Jun 
N-terminal kinases (JNK) (iii), and mitogen-activated 
protein kinase (MAPK) (iv) (Fig.  3b). These proteins 
engage transcription factors such as activating transcrip-
tion factor 2 (ATF2), CCAAT/enhancer-binding protein 
delta (CEBP/δ), CCAAT/enhancer-binding protein delta 
(CREB), Early growth response protein 1 (Egr-1), and 
CCAAT-enhancer-binding protein homologous protein 
(CHOP) that process nuclear events for the transcription 
of genes [11]. Moreover, the increased levels of  Ca2+ acti-
vates the  Ca2+-dependent serine-threonine phosphatase 
Calcineurin which in turn induces the nuclear transloca-
tion of Nuclear factor of activated T-cells (NFAT) and 
NF-κB (Fig. 3b) [45] to promote the expression of anti-
apoptotic genes, cytokines, immunoreceptors and adhesion 

molecules. In addition, NF-κB is promptly engaged by the 
increased redox stress [43]. The production of mtROS trig-
gers the MRR too and is implicit in many pathophysiologi-
cal conditions including hypoxia, ischemia/reperfusion 
injury, chemical stress and drug treatment [50, 51]. The 
increased redox stress (standard in cancer cells) depicts a 
natural feedback loop between MRR and mitophagy. By 
studying the protein SKN-1, the nematode homologue of 
Nuclear factor erythroid 2-like 2 (NFE2L2) [2, 19], it was 
indeed possible to delineate that the accumulation of ROS, 
originated from defective mitochondria, promotes the 
expression of genes involved in mitochondrial biogenesis 
and mitophagy [12, 19, 35, 52, 53] thus suggesting that 
mitophagy is naturally engaged to control MRR. In physi-
ology, the crosstalk between mitochondrial biogenesis and 
mitophagy preserves mitochondrial quality allowing the 
cells to adjust their mitochondrial content.

In pathology, and still using cancer as an  example, 
mitophagy is unable to remove damaged mitochondria 
resulting in a negative feedback on mitochondrial biogen-
esis thus leading to a progressive accumulation of unhealthy 
mitochondria which drives the MRR further.

Beyond transcription factors, other molecules take part 
in the MRR [45, 54]. Alterations of OXPHOS function 
decrease the  NAD+/NADH ratio creating a deficit in mito-
chondria that leads to cytosolic  NAD+/NADH imbalance 
[55]. The respiratory compromised cells redirect pyruvate 
towards lactate production which triggers MRR [56]. In 
addition,  NAD+ is a co-substrate for the deacetylases sir-
tuins which are involved in the regulation of various cellular 
pathways such as histone modification and modulation of 
FOXO3, NF-κB and PGC-1α [57].

The tricarboxylic acid (TCA) cycle precursor metabolites 
including succinate [38], fumarate [58, 59] and 2-ketoglu-
tarate (2-kg) [38, 60] accumulate in both mitochondria and 
cytosol during mitochondrial dysfunctions [38] representing 
a cue for cellular re-adaptation.

The mitochondrial unfolded protein response (UPRmt) is 
also considered an MRR trigger [61]. Its activation, which 
results in a reduction of nuclear and mtDNA-encoded 
OXPHOS transcripts (thereby operating as counteractor of 
the anterograde signalling) establishes an efficient pathway 
of retro-communication with the nucleus via sequential acti-
vation of the c-Jun N-terminal kinase (a component of AP-1 
transcription factor c-Jun) and the transcription factors C/
EBPβ and C/EBP homologous protein (CHOP) [62].

All this implies that the unresolved complexity of the 
MRR demands more systematic investigation to integrate the 
diverse aspects of this route of communication. Below, we 
illustrate one which regards the remodelling mitochondria 
that holds the potential to inform and better interpret the 
dynamics of this compensatory signaling pathway.
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The mitochondrial space occupancy 
in cancer cells and the increased interaction 
with the nucleus

The shape of mitochondria is tightly linked to their function 
[63] same as the interaction they endure with other intracel-
lular structures [64]. The transitions of mitochondrial mor-
phology are defined as mitochondrial dynamics (fusion and 
fission events) and it take an active part in both physiological 
and pathological responses [64].

In highly OXPHOS active cells, mitochondria appear 
elongated; while in cells relying more on glycolysis, mito-
chondria present a reduced size and a more fragmented 
phenotype [65, 66]. Tumour cells are able to modify 
the shape of their mitochondrial network according to 
their needs thereby altering space occupancy within the 
cell [63] and exploiting this to evade apoptosis [63]. The 
molecular machinery regulating mitochondrial dynamics 
is therefore indispensable for driving the adaptability of 
cancer cells within a changing environment.

Mitochondrial fusion entails both dynamic-like guano-
sine triphosphatases (GTPase), such as mitofusin 1 and 2 
(MFN1 and MFN2), and dynamin-related protein optic 
atrophy 1 (OPA1), responsible for the maintenance of a 
reticular mitochondrial network inside the cell via OMM 
and IMM, respectively [66]. In contrast, mitochondrial 
fragmentation or fission is mediated by a cytosolic GTPase 

Dynamin-related Protein 1 (Drp1) that binds to its receptor 
on the OMM [66].

To maintain migratory potential, breast, thyroid and 
glioblastoma cancer cells the mitochondrial morphology 
towards fission [67, 68] which is mirrored by the high 
degree of DRP1 expression and reduced Mfn 1/2 presence 
[63, 68]. This pattern, however, has not yet been recapitu-
lated in the conditions which drive the essential repro-
gramming of cells required for the transition to cancer and 
resistance to chemotherapeutics.

The role of mitochondrial dynamics in the activation 
and execution of MRR remains substantially unknown. 
Quite interestingly, an association between pro-fusion 
elements (e.g. OPA1, Mfn1/2) and this pathway of com-
munication has been already drawn by the characteriza-
tion of the molecular physiology of the mitochondrial 
 F1Fo-ATPase Inhibitory Factor 1  (IF1) [69].

The over-expression of the latter promotes MRR by 
mediating cyto-protective resistance to organelle disas-
sembly and facilitating the adaptive cellular reprogram-
ming required for tumour development [50].  IF1, which is 
the most characterized regulator of the  F1Fo-ATPsynthase 
[70, 71], protects cells from ATP depletion by inhibiting the 
hydrolytic activity of the enzyme [70]. Upregulated in many 
human carcinomas [72],  IF1 remodels mitochondrial cristae 
via the stabilization of pro-fusion OPA1 [73]. Mechanisti-
cally,  IF1 promotes cell survival by repressing apoptosis and 
preventing mitochondrial recruitment of Drp1, thus hinder-
ing fission and permeabilization of mitochondria [74]. The 

Fig. 4  Mito-nuclear contacts as catalysts of the mitochondrial retro-
grade response. Dysfunctional mitochondria that  escape the quality 
control by mitophagy enlarge the size of the mitochondrial network, 
increasing proximity with the nuclear envelope. Such a gain in space 
establishes contacts between dysfunctional mitochondria (represented 
by dashed OMM) and the nucleus to facilitate MRR and hence sus-

tain pathogenic signalling. The outer mitochondrial membrane pro-
tein TSPO is required for the formation of the nucleus–mitochondria 
tethering complex together with ABCD3, PKA and AKAP95. Nota-
bly, TSPO when accumulated on the mitochondria prevents Parkin-
mediated mitophagy thus emerging as a valuable tool to inform the 
link between declined mitophagy and increased MRR
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morphological transitions of mitochondria (from elongated 
to fragmented, and vice-versa) modify and regulate mito-
chondrial function and hence the retrograde signalling [64].

Among the molecules which populate the outer mito-
chondrial membrane of the mitochondria, the mitochondrial 
18kD Translocator Protein (TSPO)[75], is the one on which 
we have devoted great attention to decrypt the interplay 
between physical presence of the mitochondrial network and 
MRR (Fig. 4). TSPO stabilizes the mitochondrial network 
by preventing its mitophagy-mediated removal [76], mak-
ing this an indispensable promoter and facilitator of MRR 
during cell pathology (Fig. 4). We have demonstrated that 
in cancerous cells of the mammary gland, TSPO by impair-
ing intracellular cell signalling promotes the translocation of 
NF-κB into the nucleus onto which cholesterol accumulates 
to promote the translation of cyto-protective genes and inter-
action between the two organelles. Namely, we have demon-
strated that TSPO recruits on mitochondria the holoenzyme 
Protein Kinase A (PKA) and the A-kinase anchoring protein 
Acyl-CoA Binding Domain Containing 3 (ACBD3) which 
complexes with the nucleus via the A-kinase-anchoring 
protein AKAP9525 [18] (Fig. 4). It allows the redistribu-
tion of cholesterol which sustains the pro-survival response. 
Therefore, TSPO could be required for the formation of the 
Nucleus Associated Mitochondria (NAM) [18] thus fulfill-
ing a role beyond the manipulation of  Ca2+ and ROS cell 
signalling [76] at the basis of MRR [4] (Fig. 4).

The recent piece of evidence shows the expression of 
mitophagy genes during MRR [19]. This makes us spec-
ulate on the existence of a threshold level beyond which 
the segregation of mitochondria becomes irrelevant for the 
MRR. The repositioning of mitochondria on the nucleus [73, 
76] could be indicative of this and therefore the contacts 
between mitochondria and nucleus a mechanism to evade 
the autophagy-mediated selection of defective mitochondria 
and so a prerequisite to drive reprogramming.

Concluding remarks

Mitochondria are highly dynamic organelles undergoing 
coordinated cycles of fission and fusion indispensable for 
their shape, location and size. Their transient and rapid mor-
phological adaptation is crucial for many cellular processes. 
Mutations in the core machinery components and defects 
in mitochondrial autophagy have been therefore associated 
with numerous human diseases. In this review, we focused 
our attention on the ill-defined interplay between accumula-
tion of defective mitochondria within the cytosol and associ-
ated cell survival mechanisms in cancer cells driven by the 
retrograde response pathway. Elucidating how these events 
are regulated, from a molecular but also biological point 
of view, represents a crucial step to the understanding of 

chronic diseases. The discovery of new components that 
regulate these events is in constant development and must 
continue in the following years with the support of technolo-
gies to aid this task.

We thus feel necessary to better understand why and how 
dysfunctional mitochondria move and occupy different por-
tions of the cell. And critical is their movements towards the 
nucleus which drives reprogramming of mammalian cells to 
evade demise and promote proliferation. In vivo and in vitro 
studies on defective mitochondria have been fundamental for 
shedding light on the crucial role of these organelles in the 
cell fate decision. However, the interrelation between mito-
chondrial space occupancy and genetic redesign in cancer 
remains ill-defined limiting our capacity to disentangle the 
complexity of the disease.

This warrants a more structured investigation to insight 
the architecture of the cross-organelles communication 
to advance our current capacity to predict, mark and curb 
malignant progression.
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