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Linear Realisability over nets: multiplicatives

Adrien Ragot* † , Thomas Seiller‡§ , Lorenzo Tortora de Falco¶

November 26, 2024

Abstract

We provide a new realisability model based on orthogonality for the multiplicative fragment of linear logic,
both in presence of generalised axioms (MLL✠) and in the standard case (MLL). The novelty is the definition of
cut elimination for generalised axioms. We prove that our model is adequate and complete both for MLL✠ and
MLL.

Introduction
Since the inception of Linear Logic (LL), proofs are represented as graphs that naturally live in a wider space
of agents called proof structures (nets in this paper) that can freely interact. These nets were introduced by J.Y.
Girard in [7], together with the desequentialisation: a simple process transforming proof trees from the sequent
calculus of LL into nets. However, not every net is the desequentialisation of a proof: it is impossible to extract
a proof tree from a net that “contains” cycles or disconnections [5]. Nets can therefore present forms of (what
we call) geometrical incorrectness, and geometrically correct nets are (representants of) proof trees of LL. More
recently, J.Y. Girard proposed Ludics, an interpretation of LL given in terms of “desseins”: proof trees of the LL
sequent calculus with the addition of the daimon (✠) rule, a generalised axiom allowing to prove any sequent.
Ludics introduces a new kind of incorrectness that we call provability incorrectness: dessein are geometrically
correct (they are proof trees) but can be provably incorrect. In the standard theory of proof nets geometrical
and provability correctness coincide; it is the presence of daimons that allows to distinguish between provability
correctness and geometrical correctness.

Understanding the relationship between correctness and computational behavior is (one of) the goal(s) of
realisability, which, restricted to LL, will be our focus in this paper. We briefly sum up the existing works on linear
realisability1 by positioning them with respect to Table 1. We also recall if these models enjoy completeness or
not. Two lines of research on realisability of LL can be identified.

One was initiated by V. De Paiva Dialectica Interpretation [6] and led to P. Oliva’s adequate and complete
realisability model of first order LL [14] where realisers are proof trees (with standard axioms) from a decorated
sequent calculus of LL. As a consequence realisers are typed and are “by construction” geometrically and provably
correct (placing this model in the top left corner of Table 1).

The other originates in the work of J.Y. Girard: Ludics [10], whose “desseins” are geometrically correct but
can be provably incorrect (top right corner of Table 1), which enjoys completeness. E. Beffara proposed adequate
models in a concurrent π-calculus [2] and conjunctive structure [3]. T. Seiller’s interaction graphs (inspired by
Girard’s Geometry of Interaction [8]) model various LL fragments adequately [15–19]. Beffara’s and Seiller’s
approaches exhibit both geometrical and provability incorrectness (bottom-right corner of Table 1), but contain no
completeness result.

We give the first complete realisability model of the multiplicative fragment of linear logic in terms of nets,
essentially the well–known untyped proof–structures of LL [9] with daimons, as in the work of P.L. Curien [4]:
this places us in the bottom–right corner of Table 1. The main tool we use in our approach to realisability is LL
cut elimination: we interpret formulas as types, sets of nets closed under bi–orthogonality, where the notion of
orthogonality is defined via the rewriting rules of nets induced by cut elimination. We prove completeness for
MLL✠, multiplicative LL with generalised axioms, meaning our model can capture geometrical correctness. As a
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1We use the expression linear realisability in the sense of [20] i.e. realisability models for LL.
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MLL MLL✠

Proof Nets no incorrectness provability incorrectness
Nets geometrical incorrectness geometrical and provability incorrectness

Table 1: Presence of incorrectness, restricted to multiplicative linear logic, for realisability models.

byproduct we obtain completeness for the standard multiplicative fragment of linear logic (MLL), thus capturing
provability correctness.

Although not expressed in the terms of realisability, a completeness result for MLL✠ (in the atomic case) using
a notion of orthogonality is already apparent in the work of P.L. Curien [4], where the partitions involved in the
Danos Regnier criterion [5] are encoded using daimons. More precisely, one can test the geometrical correctness
of a net by confronting it against carefully chosen opponents (which as in the work of Béchet [1] are geometrically
correct nets). However the method in [4] does not allow to derive a completeness result for MLL. By contrast, we
use geometrically incorrect opponents to prove completeness for MLL (Remark 87).

The novelty is the cut elimination of non-homogenous cuts (a generalised axiom against a connective – say a
tensor): unlike in Ludics 2 [10] our daimon is the “perfect” opponent/evaluation context; it never stops responding
during computation and never prevents proof search to go on (Figure 4 and Remark 24). These new cut elimination
steps are key to interactively identify provability correctness and so to obtain our completeness result for MLL
(Remark 86). The computational behavior of the daimon also differs from Krivine’s continuations involved in
classical realisability [12]: they restore a previously stored context while our daimon rather behaves like an
adaptive evaluation context.

The general aim is to understand the computational content of proofs and of (incorrect) nets, following a
“purely interactive approach to logic” (to quote [10]). We follow the approach initiated with Ludics, we present a
framework in which proofs and refutations are objects of the same nature that can freely interact: a proof–object
proves a formula A whenever it “defeats” all the refutations of A. The correctness of an object is evaluated using
a dynamic criterion (we make an object interact with each of its refutations) rather than a static one (such as a
typing discipline).

Outline. In section 1, we give a detailed introduction of nets that we define as ordered hypergraphs. In section 2,
we recall the elementary notions of multiplicative linear logic, we introduce the ✠-links and we formulate the
criterion of Danos Regnier [5] in our setting. In section 3, we define orthogonality between two nets as “suc-
cessful interaction” through cut elimination (Definition 42); this leads to the notion of type: a set of nets closed
under bi–orthogonality. We then show how to perform the usual multiplicative constructions in the framework of
types. In section 4, we define our realisability model interpreting formulas as types and we prove its adequacy:
a net representing a proof of A is a realiser of A (Theorem 64). In section 5, we relate correctness criteria with
orthogonality. The Danos-Regnier criterion applied to a cut-free net with conclusion A yields a set of nets called
tests (Definition 74). We prove that the tests of A are proofs of A⊥ (Theorem 77) and that the interaction between
a net π with conclusion A and its tests allows to determine whether or not π is indeed a proof: we thus extend to
our framework a result of Béchet [1]. In section 6, we prove the completeness of our realisability model: if a net
S realises A (in every basis), then S is a proof of A in MLL✠ (Theorem 85). Finally we show that completeness of
MLL✠ implies that of MLL (Theorem 88).

1 Untyped nets
We introduce the framework of nets in which our construction takes place. Nets are a special kind of directed
hypergraphs together with an order of some of their vertices which will come in play later on to define the notion
of orthogonality. These hypergraphs enjoy a natural notion of sum (Definition 6). In subsection 1.2, we define
our “realisers” that we call nets and their computational rules, the cut elimination procedure as known for multi-
plicative proof structures [9] but with a novelty: the generalised axiom or daimon–link (✠) which behave like an
adaptative evaluation context.

1.1 Directed hypergraphs
Given a set X we will let P≤(X) denote the set of totally ordered finite subsets of X . An element of P≤(X) is
equivalently a finite sequence of elements of X but, without repetitions.

2In Ludics, the daimon means the end of the game, or the end of the proof search.
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Definition 1. Suppose given a set L of labels. A directed (L-labelled) hypergraph is a tuple (V,E,s, t, ℓ) where V
is a finite set of positions and E is a finite set of links, s : E →P≤(V ) is the source map, t : E →P≤(V ) is the
target map and ℓ : E→ L is the labelling map.

Given a link e∈ E, since the finite sets t(e) and s(e) are totally ordered, to support readability we will represent
them as sequences: they are respectively called the target and the source sets of e. A source (resp. target) of e is
an element of its source (resp. target) set s(e) (resp.t(e)). The set of targets and sources of e is the domain of the
link e. We will use superscripts to denote sequences of positions (p,q,u, . . .). A link is a loop when its target set
and source set are not disjoint.
Convention. Along this work we assume all the hypergraphs to be loop–free i.e. containing only links which are
not loops.

Given an hypergraph H with E as its set of links, we denote s(H ) (resp. t(H )) the set of all positions which
are source (resp. target) of at least one link:

s(H ) =
⋃
e∈E

s(e), t(H ) =
⋃
e∈E

t(e).

A conclusion/output (resp. a premise/input) of a directed hypergraph H is a position which is the source (resp.
target) of no link in H , i.e. an element of V \ s(H ) (resp. of V \ t(H )). The set of conclusions (resp. premises)
of an hypergraph H is denoted out(H ) (resp. in(H )). A position p is isolated in an hypergraph H if p is both
an output and an input of H , i.e. p /∈ s(H )∪ t(H ). The size of a directed hypergraph is the number of its links.
There is a unique empty hypergraph H = (V,E,s, t, ℓ) with V = E = s = t = /0.

An isomorphism of hypergraphs f : (V1,E1,s1, t1, ℓ1)→ (V2,E2,s2, t2, ℓ2) is a pair of functions ( fV , fE) such
that fV : V1 → V2 and fE : E1 → E2 are bijections, fE preserve labels i.e. ℓ( fE(e)) = ℓ(e), and fE preserves the
target and source of a link, i.e. s2( fE(e)) = f ∗V (s1(e)) and t2( fE(e)) = f ∗V (t1(e)), where f ∗V is the natural extension
of fV to sequences of positions. Along this work we work with hypergraphs up to isomorphism.

Notation 2. We denote ⟨u ▷l v⟩ the hypergraph (V,E,s, t, ℓ) such that E = {e}, V = s(e)∪ t(e), s(e) = u, t(e) = v
and ℓ(e) = l (an example of such a single–link hypergraph is found in Figure 1a). In the sequel ⟨u ▷l v⟩ will
denote both the described hypergraph and its unique link.

Notation 3. We write u · v the concatenation of sequences. Given u = (u1, . . . ,un) a sequence of elements of a set
X and an integer i ∈ {1, . . . ,n}, we denote by u<i (resp. u>i) the sequence (u1, . . . ,ui−1) (resp. (ui+1, . . . ,un)).
Moreover, given two – potentially empty – sequences u and v we denote by u[i← v] the sequence u<i · v ·u>i.

A link is initial (resp. final) when it has no input (resp. no output). A position is initial (resp. final) when it is
an output (resp. input) of an initial (resp. final) link. In an hypergraph H , a link e is terminal when every target
of e is a conclusion of H – thus a final link is a terminal link.

Example 4. For instance a link ⟨▷ℓ a,b,c⟩ is an initial link and the positions a,b and c are initial, on the other
hand a link ⟨a,b ▷ℓ c⟩ is not initial and neither are the positions a,b or c.

Hypergraphs enjoy a natural notion of sum based on the disjoint union of the set of links.

Notation 5. Given two sets X0 and X1 we denote X0⊎X1 the set X0∪X1 whenever X0 and X1 are disjoint. Given
two functions f : X0 → E and g : X1 → E with disjoint domains we denote f ⊎ g the function which takes an
element x of X0⊎X1, and returns f (x) if x ∈ X0 and g(x) if x ∈ X1.

Definition 6. Given two hypergraphs H1 = (V1,E1, t1,s1, ℓ1) and H2 = (V2,E2, t2,s2, ℓ2) such that E1 ∩E2 = /0.
The sum of H1 and H2 is defined as:

H1 +H2 = (V1∪V2,E1⊎E2, t1⊎ t2,s1⊎ s2, ℓ1⊎ ℓ2).

Remark 7. Whenever H1 = (V1,E1, t1,s1, ℓ1) and H2 = (V2,E2, t2,s2, ℓ2) are such that E1 ∩E2 ̸= /0, we will
abusively write their sum as H1 +H2 = (V1∪V2,E1⊎E2, t1⊎ t2,s1⊎ s2, ℓ1⊎ ℓ2), since up to renaming the sets of
links of two hypergraphs can always be considered disjoint.

Remark 8. Vertices may overlap in a sum (as we take the union of vertex sets rather than the disjoint union).
As a consequence, a position may be input (or output) of several distinct links (Figure 1b). We can describe
hypergraphs as sums of simple hypergraphs; namely those that contain only one link. Indeed using Notation 2, an
hypergraph consisting of two links ⟨a ▷ℓ b⟩ and ⟨c ▷ℓ′ d⟩ is in fact equal to the sum of the single-link hypergraphs
⟨a ▷ℓ b⟩ and ⟨c ▷ℓ′ d⟩. By induction on the number of links, this shows that any hypergraph H without isolated
positions can be written as H = ∑e∈E⟨s(e)▷ℓ(e) t(e)⟩.
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(a) The representation of
the single–link hypergraph
⟨a,b,c ▷α d,e⟩ (Notation 2).
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(b) The sum of two single link
hypergraphs ⟨a,b,c ▷α d,e⟩ and
⟨b,u ▷β v⟩ (Definition 6).
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e

α β

u

v

b′

(c) The parallel sum of the two single
link hypergraphs ⟨a,b,c ▷α d,e⟩ and
⟨b,u ▷β v⟩ (Definition 11).

Figure 1: Hypergraphs can naturally be represented in a graphical way, we illustrate the notation of a hypergraph
containing a single link, the sum of hypergraphs and the parallel sum of hypergraphs. In Figure 1c The position
b is present in both hypergraphs therefore we rename it in one of the two hypergraphs: thus ⟨a,b,c ▷α d,e⟩ ∥
⟨b,u ▷β v⟩ equals ⟨a,b,c ▷α d,e⟩ ∥ ⟨b′,u ▷β v⟩ (that is, upto isomorphism).
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(a) The sum of two sin-
gle link hypergraphs
⟨a,b,c ▷α d,e⟩ + ⟨b,u ▷β v⟩.
The hypergraph is target–disjoint,
but because b belongs to the
source of both links it is not
source–disjoint, it is also not target
surjective.
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(b) The sum of two sin-
gle link hypergraphs
⟨a,b,c ▷α d,e⟩ + ⟨e,u ▷β v⟩.
The hypergraph is target–disjoint
and source–disjoint, however it is
not target surjective.
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δ

(c) The sum of four single link hyper-
graphs ⟨a,b,c ▷α d,e⟩+ ⟨e,u ▷β v⟩+
⟨▷γ a,b⟩+ ⟨▷δ c,u⟩. The hypergraph
is target–disjoint, source–disjoint, and
target surjective.

Figure 2: Properties of hypergraphs: source–disjoint, target–disjoint and target–surjective hypergraphs.

Example 9. In the hypergraph ⟨▷ℓ1 a,b,c⟩+⟨a ▷ℓ2 d⟩+⟨▷ℓ3 e⟩+⟨e ▷ℓ4⟩ the set of initial positions is {a,b,c,e},
while e is the only final position of the hypergraph, and it belongs to the domain of the unique final link ⟨e ▷ℓ4⟩.

Remark 10. The sum of hypergraphs enjoys the properties of an abelian monoid; associativity, commutativity,
and a neutral element which is the empty hypergraph.

We will also use extensively the notion of parallel composition or parallel sum of hypergraphs, an analogue
of the union–graph of two simple graphs.

Definition 11. Given H1 = (V1,E1, t1,s1, ℓ1) and H2 = (V2,E2, t2,s2, ℓ2) two hypergraphs such that V1 ∩V2 =
E1∩E2 = /0, we define their parallel sum as: H1 ∥H2 = (V1⊎V2,E1⊎E2, t1⊎ t2,s1⊎ s2, ℓ1⊎ ℓ2).

Remark 12. The parallel sum of two hypergraphs H1 and H2 corresponds to a regular sum whenever the sets of
vertices are disjoint. Just like the sum, parallel composition can always be performed between two hypergraphs
(up to a renaming, see Figure 1c).

A hypergraph H = (V,E, t,s, ℓ) is: (1) target–surjective whenever t(H ) = V , (2) source–disjoint if the sets
s(e) for e ∈ E are pairwise disjoint, (3) target–disjoint if the sets t(e) for e ∈ E are pairwise disjoint (Figure 2).
A module is an hypergraph which is target–disjoint and source–disjoint, which means that for each position p
there exists at most one link e such that s(e) (resp. t(e)) contains p. Any single–link hypergraph is a module.
Uncarefully summing two modules does not necessarily result in a module; for instance the single link hypergraphs
e = ⟨▷ℓ a⟩ and e′ = ⟨▷ℓ′ a⟩ are both modules but their sum isn’t as a is the target of the two links e and e′.

An arrangement of a directed hypergraph H is a total order <a on its set of conclusions; equivalently the
order may be identified as a bijection a : {1, . . . ,card(out(H ))} → out(H ). An ordered hypergraph is a pair
(H ,a) of an hypergraph H together with an arrangement a of H . Given an ordered hypergraph (H ,a) with n
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conclusions for an integer 1≤ i≤ n, we denote a(i) by H (i) whenever there is no ambiguity. The arrangement a
is denoted a(H ), and we might refer to H as the unordered hypergraph underlying (H ,a).

For n,m ∈ N we denote by [n;m] the set of integers i such that n ≤ i ≤ m. Given two functions f : [1;n]→ E
and g : [1;m]→ E we denote f ⊔+ g : [1;m+ n]→ E the function such that f ⊔+ g(i) = f (i) when 1 ≤ i ≤ n and
f ⊔+ g(i) = g(i−n) when n+1 ≤ i ≤ n+m. This operation is not commutative. The parallel sum of two ordered
hypergraph (H1,a1) and (H2,a2) naturally yields an ordered hypergraph as (H1 ∥H2,a1⊔+ a2) (note that however
this is not a commutative operation).

1.2 Multiplicative nets
Up to this point we have allowed any kind of link to occur in a hypergraph. We now consider untyped multiplicative
nets in which only some specific kinds of links occur. We fix the set of labels as the set made of the daimon (✠)
the tensor (⊗) the par (`) and the cut (cut) symbol. Furthermore we fix a family of links, namely ✠-labelled
links that have no inputs (they are initial links), cut-labelled links that have exactly two inputs and no outputs
(they are final links), ⊗- and `-labelled links that have exactly two inputs and one output. As a consequence, the
hypergraphs considered will closely resemble to multiplicative linear logic proof structures, with two important
points of divergence: the absence of typing and the presence of generalised axioms, a standard MLL axiom link
can be seen as daimon link with two conclusions 3.

Formally we fix a countable set Pos of positions and a family of links L defined as:
L ≜ {⟨p1, p2 ▷⊗ p⟩, ⟨p1, p2 ▷` p⟩, ⟨p1, p2 ▷cut⟩ | p1, p2, p ∈ Pos} ∪ {⟨▷✠ p1, . . . , pn⟩ | n ∈ N, p1, . . . , pn ∈ Pos}.

Definition 13. A multiplicative module is an ordered hypergraph M = (|M| ,a(M)) where |M| is a sum of links of
L which is a module.

A multiplicative net is a multiplicative module S = (|S| ,a(S)) where |S| is target–surjective.

From now on we will omit the word multiplicative but a module (resp. net) will always be a multiplicative
module (resp. net). For a module M (resp. a net S) we refer to |M| (resp. |S|) as the unordered hypergraph
underlying M (resp. S). An unordered module (resp. net) is the unordered hypergraph underlying a module (resp.
net).

Remark 14. For two nets S1 = (V1,E1,s1, t1, ℓ1) and S2 = (V2,E2,s2, t2, ℓ2), if S1+S2 remains a net then S1+S2 =
S1 ∥ S2. Indeed, by Definition 6, E1∩E2 = /0. Then, by target–disjointness t(S1)∩ t(S2) = /0; and finally because
S1 and S2 are target surjective we have V1∩V2 = t(S1)∩ t(S2) = /0, so that Definition 11 applies.

Notation 15. Given an integer n we denote by ✠n any multiplicative net consisting of a single daimon link with n
outputs, i.e. isomorphic to ⟨▷✠ p1, . . . , pn⟩.

Definition 16. Given a multiplicative net S the type of a cut link c = ⟨p,q ▷cut⟩ occurring in S is the multiset of
the two labels of the links of output p and q; for readability we write these multisets as ordered pairs. Thus there
are six types of cuts (up to symmetry). More precisely, we distinguish: multiplicative cuts, of type (⊗/`); clash
cuts, of type (⊗/⊗) or (`/`); glueing cuts, of type (✠/✠); non–homogeneous cuts, of type (⊗/✠) or (`/✠),
which are respectively called reversible and irreversible cuts. In a net S, a cut ⟨p,q ▷cut⟩ is cyclic whenever p and
q are targets of the same link.

Remark 17. Each cut link occurring in a net S has a type since a net is target–surjective. However in a module
this isn’t true: for instance in the module ⟨p,q ▷cut⟩ consisting of a single cut link, the type of the cut link is not
defined.

Remark 18. The inputs of a cut link ⟨p,q ▷cut⟩ are ordered, making the two links ⟨p,q ▷cut⟩ and ⟨q, p ▷cut⟩
distinct. However (up to isomorphism) this plays no role during cut elimination.

Multicative nets comes with their notion of computation called cut elimination: it is a rewriting on nets and
more precisely it rewrites a redex (that is a sub–net made of a single cut link and two non–cut links) into redexes
or daimons (in the very specific case of glueing cuts). Up to isomorphism, how a redex is rewritten depends solely
on its type (Definition 16).

Definition 19. The relation of homogeneous cut elimination on unordered nets is denoted by →h and it is the
rewriting relation defined as the contextual closure (with respect to the sum) of the relation defined in Figure 3.

Remark 20. The (homogeneous) cut elimination procedure on unordered nets leave the conclusions unchanged.
As a consequence the homogeneous cut elimination can be lifted from unordered nets to nets: whenever two
unordered nets are such that S→ S′, for any arrangement a of S we have (S,a)→ (S′,a).

3To be precise one should say that an atomic standard MLL axiom link is a daimon link with two conclusions (Remark 29).
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q j

✠

q j−1· · ·q1 q j+1 · · · qk

cut

pi

✠

pi−1· · ·p1 pi+1 · · · pn

⟨▷✠ p⟩+ ⟨pi,q j ▷cut⟩+ ⟨▷✠ q⟩

→
··· · · ·q j−1q1 q j+1 qkpi−1p1 pi+1 pn· · · · · ·

✠

⟨▷✠ p[i← ε],q[ j← ε]⟩

p1 p2

p

`
q1 q2

q

⊗

cut

⟨p1,p2▷`p⟩+⟨p,q▷cut⟩+⟨q1,q2▷⊗q⟩

→
p1 q1

cut

p2 q2

cut

⟨p1,q1▷cut⟩+⟨q2,q2▷cut⟩

Figure 3: Rewriting defining the homogeneous cut elimination. We provide a representation of each hypergraph
involved above its expression. In the step of the glueing cut we assume the two daimons to be distinct i.e. the cut
is acyclic. In this figure p = p1, . . . , pn while q = q1, . . . ,qk.

q1 q2

q

`

pan· · ·a1 bm· · ·b1

✠

cut

⟨q1,q2 ▷` q⟩+ ⟨q, p ▷cut⟩+ ⟨▷✠ a, p,b⟩

→

q1 p1

✠

aσ(k)· · ·aσ(1)q2

✠

aσ ′(k′)· · ·aσ ′(1)bτ(h)· · ·bτ(1) b′
τ ′(h′)· · ·b′

τ ′(1)p2

cut

cut

⟨q1, p1 ▷cut⟩+ ⟨q2, p2 ▷cut⟩+ ⟨▷✠ σ(a), p1,τ(b)⟩+ ⟨▷✠ σ ′(a), p2,τ ′(b)⟩

p1 p2

p

⊗
qqi· · ·q1 qn· · ·qi+1

✠

cut

⟨p1, p2 ▷⊗ p⟩+ ⟨p,q ▷cut⟩+ ⟨▷✠ q<i,q,q>i⟩

→
p1 p2 q1qi· · ·q1 qn· · ·qi+1

✠

cut

cut

q2

⟨p1,q1 ▷cut⟩+ ⟨p2,q2 ▷cut⟩+ ⟨▷✠ q<i,q1,q2,q>i⟩

Figure 4: Rules defining the non–homogeneous cut elimination. In the elimination of the (`/✠) cut -
first row - a = (a1, . . . ,an) and b = (b1, . . . ,bm) while σ(a) = (aσ(1), . . . ,aσ(k)) , σ ′(a) = (aσ ′(1), . . . ,aσ ′(k′)) ,
τ(b) = (bτ(1), . . . ,bτ(h)) , τ ′(b) = (bτ ′(1), . . . ,bτ ′(h′)) (with n = k + k′ and m = h + h′) are sequences that de-
fine a partition of {a1, . . . ,an,b1, . . . ,bn} more precisely {a1, . . . ,an} = {aσ(1), . . . ,aσ(k),aσ ′(1), . . . ,aσ ′(k′)} and
{b1, . . . ,bn} = {bτ(1), . . . ,bτ(h),bτ ′(1), . . . ,bτ ′(h′)}, and σ ,σ ′,τ,τ ′ are permutations. Furthermore p1, p2,q1,q2 are
fresh positions. The figure is slightly misleading: q1 and q2 may be elements of a or b (in the first row) while p1
and p2 may be elements of q1, . . . ,qi−1,qi+1, . . . ,qn (in the second row), these cases are illustrated in Figure 13.
This has an important consequence: a cut can belong to a cycle and still be reducible (Remark 28).

The following result is easily established, in particular since the number of links strictly decreases during
homogeneous cut elimination.

Proposition 21. Homogeneous cut elimination is confluent and strongly normalizing.

Definition 22. The non homogeneous reduction is denoted→nh and it is defined on unordered nets as the contex-
tual closure of the relation given in Figure 4.

Remark 23. The non–homogeneous reduction preserves the conclusion of the nets, hence it can be lifted to
ordered nets – as in remark 20.

Remark 24. In the framework of Multiplicative Linear Logic (section 2, Figure 6c), non homogeneous cut elim-
ination simulates proof search in the sequent calculus:

✠
Γ,A`B

✠
A⊥,A

✠
B⊥,B

⊗
A⊥⊗B⊥,A,B `

A⊥⊗B⊥,A`B
cut

Γ,A`B

→∗ ✠
Γ,A,B `

Γ,A`B
✠

Γ,A⊗B

✠
A⊥,A

✠
B⊥,B

⊗
A⊥,B⊥,A⊗B `

A⊥`B⊥,A⊗B
cut

Γ,A⊗B

→∗ ✠
Γ1,A

✠
Γ2,B

⊗
Γ,A⊗B
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This also illustrates the non determinism of the (✠/`) reduction step which corresponds to proof search on a
formula of the form A⊗B: going from bottom to top the ⊗–introduction rule splits the context Γ, which is a non
deterministic process. A consequence of non determinism is the loss of confluence for cut elimination (but not of
strong normalisation, Proposition 30); since splitting the context is irreversible, a net can have different normal
forms, like the second net of figure 5b (from left to right) which coincides with the second net of figure 5c: this
same net reduces, following the two figures, to two different normal forms.

Remark 25. A cyclic cut is a glueing cut. Indeed, given a cyclic cut link ⟨p,q ▷cut⟩ in a net, because p and q
belong to the target of a same link e and the only links which may have several targets are daimon links it follows
that e is a daimon link.

Remark 26. The side condition of Figure 3 entails that a cyclic cut is not reducible: for example the net ⟨▷✠

p,q⟩+ ⟨p,q ▷cut⟩ is a net in normal form.

Remark 27. A cut link which is not reducible is either a clashing cut or a cyclic glueing cut. Notice, however,
that while clashing cuts never disappear during cut elimination, cyclic cuts may disappear (see Figure 10b).

Remark 28. In the standard framework of MLL proof structures the cut elimination of an axiom against a cut
is defined as the identification of the two extreme positions, therefore eliminating such a cut may create loops
(section 1). To avoid loops from occurring during cut elimination an ad hoc condition is usually added (see for
example [13]). In our framework, this condition is the rather natural side condition of Figure 3.

✠

p1 p2 ⊗ `

cut cut

q r

q1 q2 r1 r2

✠

✠ ✠

→

✠

p1 p1
2

⊗

cut

cut

q

q1 q2

r1 r2

✠

p2
2

cut

✠ ✠

✠

→

✠

p1 ⊗

cut

q

q1 q2

r2

✠

p2
2

cut

✠

✠

→

✠

p1

⊗

cut

q

q1 q2

✠

✠

→

✠

p1
1

cut

q1 q2

✠ ✠

p2
1

cut

→

✠

p1
1

cut

q1

✠

(a) Eliminating first the irreversible cut (✠/`) produces a neta which cannot normalize in ✠0.

aThe (✠/`) reduction step is not deterministic but in this very special case any choice yields the same net.

✠

p1 p2 ⊗ `

cut cut

q r

q1 q2 r1 r2

✠

✠ ✠

→∗

✠

p2

cut

r

q2 p2
1

cut

`
r1 r2

✠ ✠

→

✠

p1
2

cut

q2 r1 r2

✠

p2
1

cut

p2
2

cut

✠

✠

→∗ ✠

(b) Eliminating the reversible cut (✠/⊗) produces a cycle which can be eliminated by the elimination of the (✠/`) cut
remaining, hence that net can normalize in ✠0.

✠

p1
1

p2 `

cut
cut

r

q1 q2

r1 r2

✠

✠

p2
1

cut

✠

→

✠

p2

cut

r

q2 p2
1

cut

`
r1 r2

✠ ✠

→

✠

p1
2

cut

q2 r1 r2

✠

p2
1

cut

p2
2

cut

✠

✠

→

q2 r2

✠

p2
1

cut

p2
2

cut

✠

✠

→
q2

✠

p2
1

cut

✠

(c) Non determinism also comes from the choice of how we reduce (`/✠) cuts, different choices leading to different normal
forms: the “wrong” choice results in a net which cannot normalize to ✠0.

Figure 5: Non homogeneous cut eliminations contains two sources of non–determinism.

Remark 29. Notice that whenever daimons are binary and typed by dual atomic formulas the cut elimination
procedure for MLL✠ defined in Definition 19 is exactly the standard cut elimination procedure for MLL [7], [13].

The rewriting rule, denoted →, associated with cut elimination is the union of the homogeneous and non–
homogeneous cut elimination i.e. →h ∪→nh. We write S c−→S′, when S′ is obtained from S by eliminating the cut
c. We write by S→mult S′ (resp. S→¬mult S′) whenever S c−→S′ and c is multiplicative (resp. not multiplicative).
Given two binary relations R1 and R2 on a set X we denote by R1 ·R2 their composition, i.e. for two x,y ∈ X
xR1 ·R2y if and only if there exists z such that xR1z and zR2y.
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Proposition 30. Cut elimination is strongly normalising, furthermore:
1. →∗ can be factorised as→∗mult · →∗¬mult.
2. If c is a (`/✠) cut in S; if S c−→·→∗ S′ then S→∗ · c−→S′.
3. If c is not a (`/✠) cut in S; if S→∗ · c−→S′ then S c−→·→∗ S′.

A,B ≜ X ∈ Var
| A`B | A⊗B

H1,H2 ≜ A ∈ Form
| H1,H2 | H1 ∥H2

(a) Grammar defining Form (first two
rows), and grammar defining Hseq
(last two rows).

(A`B)⊥ = A⊥⊗B⊥ (A⊗B)⊥ = A⊥`B⊥

(b) De Morgan laws lifting the involution (·)⊥ from Var to Form.

✠
Γ

Γ,A,B `
Γ,A`B

Γ,A ∆,B
⊗

Γ,∆,A⊗B

Γ,A ∆,A⊥
cut

Γ,∆

Γ,A,B,∆
ex

Γ,B,A,∆
ax

A,A⊥

(c) Rules used for constructing the proof trees. The rules (✠,`,⊗,cut,ex) define
the MLL✠ fragment. Substituting the (✠)–daimon rule with the (ax)–axiom rule
results in the fragment MLL, that is (ax,`,⊗,cut,ex).

Figure 6: Grammar of formulas and (hyper)sequent, de Morgan laws and inference rules.

⟨c ▷ℓ a, p1,b⟩+ ⟨p1, p2 ▷` p⟩ →l` ⟨c ▷ℓ a, p,b⟩ ⟨c ▷ℓ a, p2,b⟩+ ⟨p1, p2 ▷` p⟩ →r` ⟨c ▷ℓ a, p,b⟩

Figure 7: The two cases (left and right) defining the switching rewriting. The left reduction→l` destroys p1 and
makes p2 a conclusion; while the right reduction→r` destroys p2 and makes p1 a conclusion.

✠
Γ

π1

A,Γ
π2

A⊥,∆
cut

Γ,∆

π1

A,Γ
π2

B,∆
⊗

Γ,∆,A⊗B

π0

A,B,Γ `
A`B,Γ

π0

Γ,B,A,∆
ex

Γ,A,B,∆
⟨▷✠ p1, . . . , pn⟩ S1 +S2+ S1 +S2+ S0+ (S0,a)

⟨S1(1),S2(1)▷cut⟩ ⟨S1(1),S2(1)▷⊗ p⟩ ⟨S0(1),S0(2)▷` p⟩

Figure 8: Induction defining the relation ≡R . The proof in the first row is represented by a net below it in the
second row. The position p is always supposed fresh. In each case and for each 0 ≤ i ≤ 2, Si is a net which
represent πi i.e. Si ≡R πi. In the case of the exchange rule we explicitly mention the arrangement i.e. the order
of the conclusion and assume (S0,a′)≡R π0 and a(i) = a′(i) whenever i≤ |Γ| or |Γ|+2 < i. On the other hand,
a′(|Γ|+1) = a(|Γ|+2) and a′(|Γ|+2) = a(|Γ|+1).

2 Multiplicative Linear Logic and proof nets
We define the well–known notion of proof net [7] in our setting: in the presence of the generalised axiom (✠),
proof nets are similar to the paraproof nets of Curien [4] (which come from Girard Ludics [10]). We then formulate
the Danos–Regnier criterion [5]: testing the acyclicity and connectedness of (several) graphs allows to determine
whether a net is a (para)proof net or not [4].

We fix a countable set Var of propositional variables. The set Var comes with an (explicit) involution (·)⊥; for
each atomic variable X there exists its dual atomic variable X⊥ in Var. The set Form of formulas of multiplicative
linear logic is defined by the grammar in Figure 6a. The involution (·)⊥ is lifted from Var to Form as in Figure 6b.
The set Hseq of hypersequents is defined by the grammar in Figure 6a, a sequent is an hypersequent without the
parallel ‘∥’ constructor. The introduction of hypersequents is naturally suggested by the constructions on types
(section 3): indeed as the interpretation of the `–connective is based on the interpretation of the “,”–connective,
the interpretation of the ⊗–connective relies on that of the “∥”–connective (Definition 49 and Definition 58).
Technically hypersequents are necessary in our proof of the completeness theorem (Theorem 88).

A proof of MLL (resp. MLL✠) is a tree constructed using the rules (ax,`,⊗,cut,ex) (resp. (✠,`,⊗,cut,ex))
of Figure 6c.

Definition 31. A net S represents4 a proof π of MLL✠, denoted π ≡R S or S≡R π , whenever the relation defined
in Figure 8 holds. A net represents a proof of MLL whenever it represents a proof of MLL✠ where every sequent
conclusion of a (✠)–rule has shape A,A⊥ for A ∈ Form. A representation of a proof π is a net S which represents

4In the standard Linear Logic terminology π is a sequentialisation of the proof net S.
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π . A proof net of MLL✠ (resp. MLL) is a net which represents a proof of MLL✠ (resp. MLL): we say that S is
correct. A net S is correctly typeable5 by a sequent Γ whenever it represents a proof of Γ in MLL✠.

Notation 32. Let P denote MLL or MLL✠ and let S be a net. We write S ⊢P Γ whenever there exists a proof π in
P such that S is the representation of π . Furthermore we denote ⦃Γ : P⦄ the set of all the nets S such that S ⊢P Γ.

A substitution is a map θ : Var→ Form such that θ(X⊥) = θ(X)⊥ for each X ∈ Var. A substitution can
be lifted to formulas and hypersequents by induction: θ(A⊗ B) = θ(A)⊗ θ(B) ; θ(A` B) = θ(A)` θ(B) ;
θ(A ∥ B) = θ(A) ∥ θ(B) ; θ(A,B) = θ(A),θ(B). Given two hypersequents, we denote ∆ ≤ Γ whenever there
exists a substitution θ such that θ∆ = Γ.

Proposition 33. Let Γ and ∆ be two sequents and suppose ∆≤ Γ. For any net S: (1) if S ⊢MLL✠ ∆ then S ⊢MLL✠ Γ

and (2) if S ⊢MLL ∆ then S ⊢MLL Γ.

Definition 34. The switching rewriting is defined on unordered nets as the contextual closure of the rules in
Figure 7. A switching of a net S is a normal form of S for the switching rewriting: we often denote it σS.

Remark 35. The switching rewriting strongly normalizes since every step reduces the number of links of the net.
The rewriting is also non-deterministic and non-confluent, every normal form is a par–free net. The switching
rewriting can be lifted to (ordered) nets; with the notations of Figure 7 whenever an unordered net |S| with n
conclusions is such that |S| →l` |S′| we define (|S| ,a)→l` (|S′| ,a′) where a′(i) = a(i) for each 1 ≤ i ≤ n and
a′(n+1) = p2 i.e. the new conclusion is made last conclusion (similarly we can define it for the case→r`).

Definition 36. The undirected multigraph6 induced by two partitions P and Q of a set X is (V,E,brd) denoted
G(P,Q) where: (1) V = {1}×P∪{2}×Q the vertices are the classes of P and Q (as a disjoint union); (2) E = X ;
(3) For any edge x in X ; brd(x) = {(1,Px),(2,Qx)} where Px ∈ P is such that x ∈ Px and Qx ∈ Q is such x ∈ Qx.

Two partitions P and Q of a set X are orthogonal if the multigraph G(P,Q) is acyclic and connected.

Definition 37. In a net S denote p≥S q the relation which holds whenever there exists a link e such that p ∈ s(e)
and q ∈ t(e). Denote ≥∗S its reflexive and transitive closure; a position p is above a position q whenever p ≥∗S q.
Given a position q we denote q ↑i S the set of initial positions which are above q in S.

Remark 38. Given a cut–free net S with conclusions p1, . . . , pn the sets p1 ↑i S, . . . , pn ↑i S form a partition of the
initial positions of S. We denote this partition ↑i S.

Notation 39. Let S be a net and let {d1, . . . ,dn} be the set of daimon links of S. The partition {t(d1), . . . , t(dn)} on
the set of initial positions of S is denoted by P✠(S).

Reformulated in the context of hypergraphs we get the following theorem from [5].

Theorem 40 ([4], [5]). Given a cut–free net S, the following assertions are equivalent:
1. S is a proof net of MLL✠;
2. For every switching σS of S, the partitions P✠(S) and ↑i σS of the set of initial positions of S are orthogonal;
3. Every switching σS of S is acyclic and connected7.

3 Interaction of nets, orthogonality, and types
We define how nets can interact and if the interaction of two nets leads to the ✠-link with no outputs (✠0) we
say they are orthogonal. This recalls classical realisability proposed by J.-L. Krivine [12], where (the closure by
antireduction of) the set {✠0} will play the role of the pole. Notice, however, that our setting is fully symmetrical:
both the elements of truth values and falsity values are nets.

The notion of ordered hypergraph and arrangement introduced in section 1 will now explicitly come into
play as it is necessary for defining the interactions of nets (see Figure 9a). We will denote by #S the number
of outputs of a net S. Given a partial function f : N→ E with a finite domain of cardinality n and ordered as
i1 < i2 < · · · < in, the collapse of f , denoted f↓, is the total function with domain [1;n] such that f↓(m) = f (im)
for any integer 1≤ m≤ n.

5Notice that with the expressions “correctly typeable” we mean here that the net is both correct (it represents a proof) and that we can label
its conclusions with the formulas of Γ.

6Recall that a multigraph is a graph where two vertices may be connected by several edges (not to be confused with the notion of hypergraph
of Definition 1). The function brd maps each edge to its endpoints.

7We refer to the graph naturally induced by the net σS.
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` ⊗

✠

a b c p q

✠

d r

cut

(a) Representation of the interaction
S :: T of two nets S = ⟨▷✠ a,b,c⟩+
⟨a,b ▷` d⟩ and T = ⟨▷✠ p,q⟩ +
⟨p,q ▷⊗ r⟩.

⊗

✠ ✠

p1 p2

p

cut

q

✠

→

✠ ✠

p1 p2q1 q2

✠

cut cut
→

✠

p2q2

✠

cut → ✠

(b) The cut elimination procedure applied to S′ :: T ′ leads to ✠0, showing that S′⊥ T ′.
In this figure S′ = ⟨▷✠ q⟩ and T ′ = ⟨▷✠ p1⟩+ ⟨▷✠ p2⟩+ ⟨p1, p2 ▷⊗ p⟩.

Figure 9: The interaction of two nets (Definition 41) and two orthogonal nets (Definition 42).

Definition 41. Let S=(|S| ,a(S)) and T =(|T | ,a(T )) be two nets and k =min(#S,#T ), we define their interaction
S :: T = (|S :: T | ,a(S :: T )) as:

|S :: T | ≜ |S|+ |T |+∑1≤i≤min(#S,#T )⟨S(i),T (i)▷cut⟩ a(S :: T ) ≜


/0 when #S = #T
a(S) ↾[k+1;#S]↓ when #S > #T
a(T ) ↾[k+1;#T ]↓ when #S < #T

Definition 42. Two nets S1 and S2 are orthogonal if S1 :: S2→∗ ✠0
8: when this holds we write S1 ⊥ S2. For a net

S and a set of nets Λ, if for every λ ∈ Λ we have S⊥ λ we write S⊥ Λ.

Remark 43. Since cut links are asymmetric, namely ⟨p,q ▷cut⟩ and ⟨q, p ▷cut⟩ are distinct nets, the interactions
S :: T and T :: S are not the same net. However, this has no consequence on cut elimination because the reduction
steps do not depend on the order of the inputs of a cut link. Thus S :: T reduces to ✠0 if and only if T :: S does,
and as expected the relation of orthogonality is symmetric.

Definition 44. Given a set A of multiplicative nets, we define the orthogonal of A as A⊥ = {P | ∀R ∈ A,P ⊥ R}.
A type A is a set of multiplicative nets such that A⊥⊥ = A.9

Remark 45. Since cut elimination preserves the conclusions of a net and ✠0 has no output, two orthogonal nets
have the same number of conclusions. Thus, for every type A, for every R ∈ A and for every S ∈ A⊥, the nets
R and S have the same number of conclusions: we denote by #A the number of conclusions of the nets in A.
Obviously #A = #A⊥.

Remark 46. Clash cuts are preserved during cut elimination, thus a net containing such a cut cannot reduce to
✠0. Hence, there cannot be two nets S and S′ respectively in A and A⊥ such that their ith conclusions S(i) and
S′(i) are both outputs of a `–link (or ⊗–link): their interaction S :: S′ contains a clash cut and thus the nets cannot
be orthogonal.

Remark 47. A net S which is orthogonal to the daimon link with a single output (i.e. ✠1) has a single conclusion
which can be the output of a daimon link, a tensor link or a par link. For instance the three cut–free nets ⟨▷✠ p⟩,
⟨▷✠ p1⟩+ ⟨▷✠ p2⟩+ ⟨p1, p2 ▷⊗ p⟩ and ⟨▷✠ p1, p2⟩+ ⟨p1, p2 ▷` p⟩ are all orthogonal to ✠1 (one case is proved
in Figure 9b).

The following proposition is a key step for proving propositions 51 and 54.

Proposition 48. Given three net S and T and R such that #S ≥ #T + #R: the interaction S :: (T ∥ R) is equal to
(S :: T ) :: R.

In the following definition 49 the side condition #S≥ #A ensures that whenever a net S in A�B interacts with
a net of T ∈A⊥ the remaining conclusions of S :: T are conclusions of S, this will allow to activate Proposition 48.

Definition 49. Given two sets of nets A and B their functional composition denoted A � B, and their parallel
composition denoted A ∥ B are defined as follows:

A�B ≜ {S | for any T ∈ A⊥,S :: T ∈ B and #S≥ #A} A ∥ B ≜ {S ∥ T | S ∈ A,T ∈ B}⊥⊥

Remark 50 (Density of the parallel composition). For any two types A and B we have (A ∥− B)⊥ = (A ∥ B)⊥,
where A ∥− B = {S ∥ T | S ∈ A,T ∈ B}.

8Note that we require the existence of such a reduction, not all reductions need to behave this way.
9Equivalently, a type is a set A such that A = B⊥ for some set B, see, for instance, [11].
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a b c

d

⊗

✠

cut

✠

→

a1 b c

✠

cut

✠

a2

cut
→

a1 b

✠

cut

(a) The elimination of a (✠/⊗) cut preserves cycles in a net.

a b c

d

`

✠

cut

✠

→

a1 b c

✠

cut

✠

a2

cut

✠

→

c

✠ ✠

a2

cut →✠0

(b) The elimination of a (✠/`) cut may break a cycle in a net.

a b c

d

`

✠

cut

✠

→

a1 b c

✠

cut

✠

a2

cut

✠

→

a1 b

✠

cut

✠

(c) The elimination of a (✠/`) cut can preserve cycles.

Figure 10: The evolution of (switching) cycles and (switching) disconnections during non homogeneous cut elim-
ination.

Proposition 51 (Duality). Given two types A and B: (A ∥ B)⊥ = A⊥ �B⊥ and (A�B)⊥ = A⊥ ∥ B⊥.

Remark 52. The duality of the constructions (Proposition 51) ensures that the set of types is closed under the ∥
and � operations. Moreover, the intersection of two types is still a type. This is not the case for the union which
needs to be closed under bi–orthogonal.

Remark 53. For two types A and B the unordered nets of A ∥ B and of B ∥ A are the same, so as the unordered
nets of A�B and B�A.

Proposition 54. Given A,B and C three types; (A�B)�C = A� (B�C) and (A ∥ B) ∥ C = A ∥ (B ∥ C).

Definition 55. Given A and B two types with one conclusion, we define their tensor product (denoted ⊗) and
their compositional product (denoted `):

A⊗B ≜ {S+ ⟨S(1),S(2)▷⊗ p⟩ | S ∈ A ∥ B}⊥⊥ A`B ≜ {S+ ⟨S(1),S(2)▷` p⟩ | S ∈ A�B}⊥⊥

where p denotes a fresh position.

Proposition 56 (Duality). Given A and B two types with one conclusion, (A⊗B)⊥ = A⊥`B⊥ and (A`B)⊥ =
A⊥⊗B⊥.

4 Realisability Model: Adequacy
We introduce our realisability model on untyped nets and prove it is adequate. We identify a sufficient property of
interpretation bases to prove adequacy (Theorem 64): for any basis B satisfying the property, a net S representing
an MLL✠ proof of a sequent Γ is a realiser of Γ i.e. it belongs to JΓKB . This adequacy result immediately applies
to MLL, since a net representing a proof of MLL represents, in particular, a proof of MLL✠.

We start by giving an interpretation of formulas and hypersequents of multiplicative linear logic. We provide an
interpretation of hypersequents instead of sequents as it turns out that handling hypersequents is more convenient
and proving a result on hypersequents proves it on sequents too. However, do keep in mind that the proof trees we
defined using Figure 6c are constructed with sequents.
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Definition 57. An interpretation basis B is a function that associates with each atomic proposition X a type
JXKB , the interpretation of X , such that:

• Each net in JXKB has one conclusion.
• For any atomic proposition X , we have JX⊥KB ⊆ JXK⊥B .

Definition 58. Given an interpretation basis B, the interpretation of MLL formulas and of hypersequents of MLL
is defined by induction:

JA⊗BKB ≜ JAKB⊗ JBKB .
JA`BKB ≜ JAKB ` JBKB .

JH1,H2KB ≜ JH1KB �JH2KB .
JH1 ∥H2KB ≜ JH1KB ∥ JH2KB .

Remark 59. Using duality of types (Proposition 56) and the properties of orthogonality one proves that for an
interpretation basis B and an MLL formula A we have JA⊥KB ⊆ JAK⊥B .

Definition 60. A multiplicative net realises – with respect to an interpretation basis B – an hypersequent H of
MLL formulas whenever it belongs to JH KB .

Notation 61. For a hypersequent H , we will often write S ⊩B H instead of S ∈ JH KB , and sometimes S ⊩ H
or S ∈ JH K when there is no ambiguity on the basis B.

From the point of view of cut elimination, a daimon link with n outputs may be thought as the approximation
of a proof net with n outputs. More precisely, by iterating the process we have seen in Remark 24, every cut–free
proof π of a formula C can be obtained by applying the cut elimination procedure to the daimon link ✠1 (of
conclusion C) cut against the appropriate identities of C,C⊥ (this generalises to a sequent Γ and ✠n). Furthermore
daimon links and proof nets (with the same number of conclusions) are interchangeable with respect to geometrical
correctness (Table 1): in a correct (resp. incorrect) net S, substituting a daimon link with n outputs by a proof net
with n outputs produces a correct (resp. incorrect) net. However, proof nets and daimons (with the same number
of conclusions) differ on realisability: for instance a proof net ending with a tensor link can never realise a formula
of the form A`B whereas a daimon link can (Theorem 64). We will thus say that a daimon link “approximates”
a sequent: this suggests Definition 62.

Definition 62. A type A is approximable if and only if ✠1 ∈ A. A basis B is approximable if for each X ∈ Var,
the type JXKB is approximable.

Remark 63. Because inclusion is preserved by bi–orthogonal closure, a type A is approximable if and only if
{✠1}

⊥⊥ ⊆ A which is equivalent to the inclusion A⊥ ⊆ {✠1}⊥.

Theorem 64 (Adequacy). Let B be an approximable basis. For any net S and sequent Γ S ⊢MLL✠ Γ⇒ S ⊩B Γ.

Proof. The technique is standard in the works on realisability (see [12] or [14]): one proceeds by induction on
the size of a proof π represented by S. For the base case one must show that ✠n realises any sequent Γ with n
formulas. To do so one first checks that, for any formula A, JAKB is approximable (✠1 ∈ JAKB).

Remark 65. An approximable basis yields adequacy, in particular, for MLL. Notice, however, that there exist
bases yielding an interpretation that is adequate for MLL but not for MLL✠.

5 Testability and tests
The partitions involved in the Danos Regnier criterion (Theorem 76) and their orthogonality with the daimons of
a net can be translated as tests; so that for a formula A, a net S testable by A (definition 66 below) and orthogonal
to tests(A) is a correct net (Theorem 76). We will show that these tests are proofs of MLL✠ (Theorem 77). This
means that for realisers in an approximable basis, testability (Definition 66) and correct typeability (Definition 31)
coincide: this is Proposition 82.

Definition 66 ((Atomic) testable cut–free nets). A formula labelling of a cut–free net S is a function τ : VS→ Form
such that:

• (Par) When ⟨p1, p2 ▷` p⟩ occurs in S: if τ(p1) = A and τ(p2) = B then τ(p) = A`B.
• (Tens) When ⟨p1, p2 ▷⊗ p⟩ occurs in S: if τ(p1) = A and τ(p2) = B then τ(p) = A⊗B.

A formula labelling of a cut–free net S is atomic when for each daimon link ⟨▷✠ p1, . . . , pn⟩ in S the formula τ(pi)
is a propositional variable.

A cut–free net S with n conclusions is testable (resp. atomic testable) by a sequent Γ = A1, . . . ,An, which we
denote S |≃Γ (resp. S |≃at

Γ), if there exists a formula (resp. an atomic formula) labelling τ of S such that τ(S(i)) =Ai
for each 1≤ i≤ n.
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Remark 67. S |≃Γ iff S |≃at
∆ and Γ = θ∆ for some substitution θ and sequent ∆.

Remark 68. S |≃at
Γ iff S without its ✠–links is the syntactic forest of (the formulas of) Γ.

Remark 69. A cut–free proof net S ⊢✠MLL Γ is in particular testable by that sequent i.e. S |≃Γ. However, a net S |≃Γ

which is testable by Γ may not be a proof net because it could contain cycles or disconnections: the testability
condition only provides information on the multiplicative links constituting the net S. When is S atomic testable
by A, orthogonality with the tests of A coincides with correctness (Proposition 75).

Remark 70. Let S |≃at A1, . . . ,An be a cut–free net. For any nets T1, . . . ,Tn cut–free and atomically testable re-
spectively by A1

⊥, . . . ,An
⊥ denoting S0 the normal form of S :: T1 ∥ · · · ∥ Tn, S0 is obtained by homogeneous

cut–elimination, and we have (1) S0 equals ✠0 (2) S0 is equal to the sum of k ≥ 2 daimon without conclusions
(S0 = ∑1≤i≤k ✠0) or (3) S0 contains a cyclic cut (S0 = R+ ⟨▷✠ q⃗,a,⃗r,b, p⃗⟩+ ⟨a,b ▷cut⟩).

Remark 71. Given a net S = (|S| ,a(S)) we denote S✠ = (
∣∣S✠∣∣ ,a(S✠)) the net such that

∣∣S✠∣∣ is the hypergraph
consisting of the daimon links occurring in S. The arrangement a(S✠) is induced by a(S) because above every
conclusion of S there is binary tree: each initial position p can be associated with a sequence ξ = adr(p) of
{l,r}∗ and an integer i = root(p) so that going up from S(i) following the left/right instruction of ξ one reaches
the initial position p. The initial positions of S are then ordered by the lexicographical order of (root(p),adr(p))
fixing l ≤ r.

Notation 72. Given a net S with n initial positions, and P = {C1, . . . ,Ck} a partition of the initial positions of S we
denote by NatS(P) the partition {a(S✠)−1(C1), . . . ,a(S✠)−1(Ck)} of {1, . . . ,n}. We might abusively write Nat(P)
for NatS(P).

Proposition 73. Let A be a formula, given two cut free nets S |≃at A and T |≃at A⊥ the assertions are equivalent:
1. The nets S and T are orthogonal.
2. The nets S✠ and T✠ are orthogonal.
3. The partition NatS(P✠(S)) and NatT (P✠(T )) are orthogonal.

Definition 74. A cut-free net T is a test of a formula A if T |≃at A⊥ and there exists a net S |≃at A and a switching σS
such that NatT (P✠(T )) = NatS(↑i σS). We denote by tests(A) the set {S | S is a test of A}.

Proposition 75. For S cut–free, S |≃at A, we have: S ⊢MLL✠ A⇔ S⊥ tests(A).

A net S with n conclusion can always be transformed in a net with 1 conclusion by putting a bunch of par–links
below its conclusions; this allows to generalise the previous proposition.

Theorem 76 (Danos–Regnier Tests). Given a cut–free net S |≃at A1, . . . ,An; S ⊢MLL✠ A1, . . . ,An if and only if S is
orthogonal to tests(A1) ∥ · · · ∥ tests(An).

Theorem 77. Any test T of a formula A is correctly typeable by A⊥, T ⊢MLL✠ A⊥.

Proof. Consider a test T of A then by Theorem 76 any net S ⊢MLL✠ A is orthogonal to T . By the counter–proof
criterion [4] a net N |≃at A⊥ orthogonal to each proof of A is a proof; therefore it follows that T is a proof of A⊥.

Remark 78. Theorem 76 is a refinement of the counter–proof criterion of P.L. Curien [4]: if S |≃at A and S⊥ tests(A)
then S ⊢MLL✠ A – and every element of tests(A) are proofs of A⊥ (Theorem 77), but the converse does not hold.

From Theorem 76 and Theorem 77 one obtains an “interactive” criterion for the nets of multiplicative linear
logic (MLL). One takes a net of S of MLL (i.e. a net with binary daimons) and confronts it with the tests of the
according formulas (Definition 74). A straightforward consequence of the Theorem 76 is the reformulation of
Béchet’s theorem in our framework.

Corollary 79. Let S |≃at A1, . . . ,An be a cut–free net. If S is not correct then there exists nets T1 ∈ tests(A1), . . . ,Tn ∈
tests(An) such that the normal form of S :: T1 ∥ · · · ∥ Tn is not correct: we are in case (2) or (3) of Remark 70.

Remark 80. The Corollary 79 obviously applies to MLL nets, the main difference with Béchet’s original result is
that his opponents are MLL proof nets (in our framework they are MLL✠ proof nets). However it is not difficult to
adapt our techniques to obtain Béchet’s result.
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Figure 11: The daimon link ✠2 is not orthogonal to ✠` ∥✠`: a disconnected net never reduces to a connected
one (and ✠0 is connected).

Remark 81. Consider an approximable basis B and a sequent Γ=A1, . . . ,An we have JΓKB =(JA1K⊥B ∥ · · · ∥ JAnK⊥B)⊥.
By Theorem 64, for any A⊥i we have ⦃A⊥i : MLL✠⦄⊆ JA⊥i KB while tests(Ai)⊆ ⦃A⊥i : MLL✠⦄ (Theorem 77) thus
tests(Ai) ⊆ JA⊥i KB ⊆ JAiK⊥B (Remark 59). Because the ∥–construction preserves inclusions and orthogonality
inverts inclusions we derive that JΓKB ⊆ (tests(A1) ∥ · · · ∥ tests(An))

⊥.

Remark 81 combined with the previous theorem (Theorem 76) means that for realisers in an approximable
basis, testability and (correct) typeability collapse.

Proposition 82. Given B an approximable basis10 and a sequent Γ for any cut–free net S ∈ JΓKB the assertions
are equivalent:

1. S |≃Γ i.e. S |≃at
∆ for some sequent ∆≤ Γ.

2. S ⊢MLL✠ Γ.

6 Completeness
Using Proposition 82 we provide a completeness result; we exhibit an approximable basis for which a net S
realising a sequent Γ is testable, and so equivalently S ⊢MLL✠ Γ. This basis, denoted 1, maps each atomic formula
to {✠1}

⊥⊥
.

Proposition 83. For any sequent Γ and any cut–free net S; if S ∈ JΓK1 then S |≃Γ.

Remark 84. By the Proposition 83 and the Theorem 64 we have that S ∈ JΓK1 iff S ⊢MLL✠ Γ.

Since the base 1 is approximable, Proposition 82 allows to prove:

Theorem 85 (MLL✠ completeness). Given a cut–free net S and a sequent Γ;
• If for all basis B we have S ∈ JΓKB , then S ⊢MLL✠ Γ.
• S ∈ JΓKB for any approximable basis B iff S ⊢MLL✠ Γ.

Remark 86. The non homogeneous cut elimination allows to distinguish the types JX ,X⊥KB and JX ,Y KB for a
well chosen basis: for instance for the basis, that we will denote B⟨`⟩, which maps positive propositional vari-
ables to {✠`}⊥ and negative propositional variables to {✠`}⊥⊥ , where ✠` denotes the geometrically incorrect
net ⟨▷✠ a⟩+ ⟨▷✠ b⟩+ ⟨a,b ▷` c⟩.

In that case, (1) because ✠2 is not orthogonal to ✠` ∥ ✠` (Figure 11) it follows that ✠2 /∈ JX ,XKB⟨`⟩
and more generally ✠2 /∈ JX ,Y KB⟨`⟩; (2) by the property expressed in Remark 90 (and illustrated in Figure 12),
✠2 ∈ JX ,X⊥KB⟨`⟩; (3) point (1) above is not in contradiction with the theorem of adequacy (Theorem 64) because,
even though ✠2 ⊢MLL✠ X ,Y , the basis B⟨`⟩ is not approximable.

Remark 87. The ability to distinguish realisers of the sequents X ,X⊥ and X ,Y (Remark 86) allows us to derive the
completeness result for MLL (Theorem 88) from the completeness result for MLL✠ (Theorem 85). In Remark 86,
to show that ✠2 /∈ JX ,Y KB⟨`⟩ we have used incorrect nets (specifically ✠`), which explains that the completeness
theorem for MLL (Theorem 88) refers to any basis B (and not only to approximable basis). In the terms of Table 1,
we retrieve provability correctness by using interactions with geometrically incorrect nets.

Theorem 88 (MLL completeness). Let S be a cut–free net such that each of its daimon link has exactly two
outputs, Γ be a sequent such that S |≃at

Γ; if S ∈ JΓKB for any basis B then, S ⊢MLL Γ.

Remark 89. A result of adequacy for MLL can also be stated: given an interpretation basis B (not necessarily
approximable) such that for each propositional variable X we have JX⊥KB = JXK⊥B , for any net S, if S ⊢MLL Γ then
S ∈ JΓKB .

10The Proposition 82 actually holds for any “adequate” basis B.
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a b

g h

✠

cut cut

S Sp1 pn. . . →∗

✠

p1 pn. . .

Figure 12: The interaction of two orthogonal nets S and S with a daimon reduces to a daimon (with two less
outputs).

Remark 90. The completeness result for MLL (Theorem 88) only identifies cut–free and atomic proofs (i.e. where
axioms introduce sequents of the form X ,X⊥). This is because for any atomic formulas X and Y , and for any basis
B such that JX⊥KB = JXK⊥B , ✠2 ∈ JX `X⊥,Y `Y⊥KB while X `X⊥ and Y `Y⊥ are not dual formulas: contrary
to the atomic case we cannot use ✠2 to distinguish JX `X⊥,Y `Y⊥KB⟨`⟩ from JX `X⊥,X⊥⊗XKB⟨`⟩.

The fact that ✠2 ∈ JX `X⊥,Y `Y⊥KB⟨`⟩ (and more generally for any basis B such that JX⊥KB = JXK⊥B) is
derived from the fact that, for any integer k and for any two orthogonal nets S1 and S2 with one conclusion, the
interaction ✠k+2 :: (S1 ∥ S2) has at least one reduction to ✠k by cut elimination (Figure 12). We use this property
for k = 2 and k = 4 to show that ✠2 ∈ JX `X⊥,Y `Y⊥KB . More precisely, we prove that, ✠2 ⊥ JX `X⊥K⊥B ∥
JY `Y⊥K⊥B: given S,S and R,R two pairs of orthogonal nets (with one conclusion), when all nets S,S,R,R have
disjoint sets of vertices, we can derive the following:

⟨▷✠ a,b⟩ :: S+S+ ⟨S(1),S(1)▷⊗ q⟩+R+R+ ⟨R(1),R(1)▷⊗ r⟩
→ ·→ ⟨▷✠ a1,a2,b1,b2⟩ :: S+S+R+R
→∗ ⟨▷✠ b1,b2⟩ :: R+R
→∗ ✠0
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(a) Extra cases for the elimination of (✠/⊗) cuts, on the left the elimination step when one of the inputs belongs to the daimon
above the cut, on the right the elimination step when both inputs belong to the daimon above the cut.
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(c) Extra cases for the elimination of (✠/`) cuts: when both inputs belong to the daimon above the cut.

Figure 13: Complements to Figure 4 for defining non homogeneous cut elimination (Definition 22).
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B Complements to section 1
We recall the notion of homomorphism and isomorphism between hypergraphs.

Definition 91 (Homomorphism and isomorphisms of hypergraphs). An homomorphism between two (labelled)
hypergraphs H1 = (V1,E1,s1, t1, ℓ1) and H2 = (V2,E2,s2, t2, ℓ2) is a pair of bijective maps ⟨ f V , f E⟩, such that

• (COMMUTATION) For any edge e1 of H1, s2( f E(e1)) = f V (s1(e1)), i.e. the following diagram commutes:

e1 s1(e1)

e2 s2(e2)

s1

f E fV

s2

• (LABEL-PRESERVING) The function f E preserves the labels of the links, i.e. for any link e in H1; ℓ(e) =
ℓ( f E(e))

The homomorphism is an isomorphism if both f V and f E are bijective.

B.1 Rewriting properties of nets: Strong Normalisation
Proposition 92 (Strong normalisation Proposition 30). The cut elimination rewriting −→ is strongly normalising.

Proof. This is obtained by observing that an appropriate measure on nets always decrease with cut elimination,
i.e. whenever S→ S′ then m(S) > m(S′). Such a measure m may be the pairs (connective(S),cut(S)) where
connective(S) is the number of ⊗– and `– links in S, while cut(S) is the number of cut links in S. The order
involved is then the lexicographical order.

Indeed we have in that case that S→ S′ implies m(S) > m(S′): the (⊗/✠), (`/✠) and multiplicative steps
always decrease the number connective(S), finally the glueing steps do not change connective(S) however they
make the numbe of cuts cut(S) decrease.

B.2 Rewriting properties of nets: unrelated cuts
Notation 93. Given two binary relations R1 and R2 on a set X we denote by R1 ·R2 the composition of the two
relation, i.e. for two x,y ∈ X xR1 ·R2y if and only if there exists z such that xR1z and zR2y.

Notation 94. Given a net S and cut link c we denote by S c−→S′, whenever S→ S′ by eliminating the cut c. Note
that whenever S→ S′ there exists a cut c such that S→ cS′, namely the unique cut which belong to S but not S′.

Notation 95. We denote by→mult the relation between nets such that S→mult S′ whenever S c−→S′ and c is multi-
plicative, on the other hand we denote S→¬mult S′ whenever S c−→S′ and c is not a multiplicative cut. Similarly one
defined→glue,→¬glue,→(`/✠) ,→¬(`/✠),→(⊗/✠) and→¬(⊗/✠).

Definition 96. Given a net S two cuts c1 and c2 in S are unrelated whenever:
• S can be written as C+R1 +R2 where R1 is the redex of the cut c1 and R2 is the redex of the cut c2.
• By eliminating c1, S reduces to C+R′1 +R2.
• By eliminating c2, S reduces to C+R1 +R′2.

Proposition 97 (Strong Confluence of unrelated cuts). Given S some net containing two reductible and unrelated
cuts c1 and c2. The diagram below commutes:

S S1

S′1 S2

c1

c2 c1

c2

Where the dotted arrows are the existence of a reduction.

Proof. Let us fix a net S containing (at least) two unrelated cuts that we denote c1 and c2. This means that one
can write S has C+R1 +R2 where the Ri are the corresponding redexes. Assuming (without loss of generality)
that Ri→ R′i: by contextual closure, the elimination of c1 rewrites S in S1 =C+R′1 +R2 and the elimination of c2
rewrites S in S2 =C+R1 +R′2

Using contextual closure once more we conclude that S1 reduces to C+R′1 +R′2 by eliminating c2 while S2
reduces to C+R′1 +R′2 by eliminating c1.
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Remark 98. Consider a cut c which is not multiplicative in a net S if c is not related with a cut c′ in S then if
S c−→S′ the cut produced by c are also unrelated with c′.

Definition 99 (Strongly unrelated cuts). We say that two cuts c1 = ⟨p1,q1 ▷cut⟩ and c2 = ⟨p2,q2 ▷cut⟩ are strongly
unrelated whenever they are distinct and the set D1 of daimon links above p1 or q1 does not intersect with the set
D2 of daimon links above p2 or q2.

Remark 100. The notion of strongly unrelated cuts is to obtain the stability of unrelated cuts (as in Remark 98)
also for multiplicative cuts. Given a multiplicative cut c of a net S and a cut c′ of S unrelated with c, if S c−→S′ then
the cut produced by the elimination of c remain unrelated with c in S′.

Proposition 101. Given a net S and a partition of its set of cut links cut(S) = C1 ⊎C2 such that each cuts of C1
and C2 are strongly unrelated then the assertions are equivalent:

1. S→∗ T
2. S→∗1 S′→∗2 T , where→1 eliminates cut from C1 or the cut it produces and→2 eliminates cuts from C2 or

the cut it produces.

Proof. 1⇒ 2. If two cut c and d are unrelated: if c is not multiplicative, any cut created by the elimination of
c will still be unrelated with d (Remark 98). If c is multiplicative since C1 and C2 are strongly unrelated and
thus c and d are strongly unrelated cuts, the non multiplicative cuts say c1 and c2 created by the elimination of c
involve a different daimon link than that of d thus c1 and c2 are still unrelated with d (Remark 100). Therefore, it
follows that for each step of cut elimination c−→1 and c′−→2 the cuts c and c′ are unrelated thus using the property of
confluence of unrelated cuts (Proposition 97) one concludes.

2⇒ 1. indeed because→1 and→2 are special case of the cut elimination→.

B.3 Multiplicative Factorization of Cut Elimination – Proof of Proposition 30 item 1
Remark 102. Given a cut c in a net S if c is a multiplicative cut then for any other cut c′ of S: c and c′ are
unrelated, because the redexes of cuts only involve three links made of the cut link and the two links above the
input of that cut. Therefore two cuts of two distinct multiplicative redexes cannot involve a same connective link
since otherwise it means that these two cuts have for input a same position i.e. the target of the connective link
(this violates the property of targget–disjointness of nets).

Proposition 103 (General commutation of the Multiplicative cuts). For any net S containing a multiplicative cut
c, for any sequence of cuts α∗ in S then the following diagrams commutes;

S S1

S′1 S2

c

α∗ α∗

c

Where the dotted arrows are the existence of a reduction.

Proof. Because the multiplicative cut c is unrelated with any cut d of S (Remark 102) we conclude using the
confluence of unrelated cuts (Proposition 97).

Remark 104. If S reduces to S′ by eliminating a non multiplicative cut then any multiplicative cut c occuring in
S′ is a multiplicative cut occuring in S.

Remark 105. Given a net S containing a cut c and one of its reduction S→c S′, if a multiplicative or clash cut c′

occurs in S′ and not S: then c was a multiplicative cut.
This is because (1) glueing cuts make cuts disappear (2) (⊗/✠) and (`/✠) cuts create two new cuts which

can be of types (⊗/✠), (`/✠) or (✠/✠) but these new cuts are never multiplicative cuts.

Proposition 106 (Cut Elimination Factorisation). The relation induced by the cut–elimination rewriting →∗ of
Definition 22 and Definition 19 is equal to→∗mult · →∗¬mult.

Proof. The inclusion of→∗mult · →∗¬mult in→∗ is obvious.
Let us now show the converse inclusion. We do so by induction on the length of the reduction sequence. If

there is only one reduction this is trivial.
Let us treat the general case when S→∗ S′ doing a sequence of n > 1 steps. Then this can be decomposed as

S→∗ S0
c−→S′; apply the induction hypothesis yielding that there exists a net S1 such that S→∗mult S1 →∗¬mult S0.

Two case may occur depending on the type of the cut c.
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• If c is not multiplicative; then S0→¬mult S′ and from S→∗mult · →∗¬mult S0. we derive S→∗mult · →∗¬mult S′.
• If c is multiplicative; note that whenever T →∗¬mult T ′ a multiplicative cut c occuring in T ′ will aslo occur

in T and be also a multiplicative cut (Remark 104). To conclude however it will be necessary to do an
induction on the reduction sequence S1→∗¬mult S0:

– If it contains only one step of reduction; then the situation is the following S1
c′−→S0

c−→S′ where c′ is not
multiplicative and c is a multiplicative cut. Applying Remark 104 non multiplicative cuts cannot create
multiplicative cuts, therefore the cut c also appears in S1 and thus both cuts c and c′ occur in S1. As
a consequence since multiplicative commute (Proposition 103) it follows that S1

c−→S′0
c′−→S′. Therefore

S1→∗mult→∗¬mult S′.
– If the sequence of non multiplicative cut–elimination contains n element. Note that it may be factor-

ized as S1 →∗¬mult S2 →¬mult S0 while S0 →mult S′. Applying the previous result (the case when the
→¬mult sequence is of length 1) we derive that S1→∗¬mult S2→mult S′0→¬mult S′. Since the sequence
S1→∗¬mult S2 has a smaller length than that of S1→∗¬mult S2→¬mult S0 we call the induction hypothesis
and ensure S1→∗mult · →∗¬mult S′0 Finally since S′0→¬mult S′ we derive S1→∗mult · →∗¬mult S′.

Now we can conclude; the situtation was S→∗mult S1→∗¬mult S0→mult S′ But we have shown that S1→∗¬mult
S0→mult S′ yields S1→∗mult · →∗¬mult S′. This yields S→∗mult S1→∗mult · →∗¬mult S′ which means S→∗mult
· →∗¬mult S′.

Remark 107. The previous proposition is a novelty of the cut elimination with generalised axiom we have intro-
duced. The standard cut–elimination procedure of MLL proof structure ( [7]) does not enjoy such a factorisation:
mainly because the Remark 105 fails, a non multiplicative cut (that is in that case an (ax/cut) cut) can be elimi-
nated creating a single cut that may be a multiplicative cut.

Remark 108. If S→∗mult S0 i.e. S reduces to S0 by eliminating multiplicative cuts only, then S and S0 have the
same orthogonal.

B.4 Delaying Irreversible cuts elimination – proof of Proposition 30 item 2
Proposition 109 (Non–Deterministic non homogeneous cut elimination commutes to the right). Given S some
net containing a non homogeneous cut link c of a daimon link against a `–link. The diagram below commutes,
for any cut kind of cut link c′;

S S1

S′1 S2

c

c′ c′

c

Where the dotted arrows are the existence of a reduction.

Proof. If c′ is a multiplicative cut the commutation holds (Proposition 103). And more generally if c′ and c are
unrelated then the commutation also hold (Proposition 97). Thus c′ is a glueing or non homogeneous cut involving
the same daimon link as c.

Let us treat each cases depending on the type of the cut c′;
• Assuming that c′ is a glueing cut, and assuming (without loss of generality) that the two first conclusions of

the daimon link are the premisses of the cut links c and c′, the reduction will be of the form:

⟨▷✠ p1, . . . , pn⟩+ ⟨r1,r2 ▷` r⟩+ ⟨▷✠ q1, . . . ,qk⟩+ ⟨p1,r ▷cut⟩+ ⟨p2,q1 ▷cut⟩
→ ⟨▷✠ p1

1, p2,A⟩+ ⟨▷✠ p2
1,B⟩+ ⟨▷✠ q1, . . . ,qk⟩+ ⟨p1

1,r2 ▷cut⟩+ ⟨p2
1,r2 ▷cut⟩+ ⟨p2,q1 ▷cut⟩

→ ⟨▷✠ p1
1,q2, . . . ,qk,A⟩+ ⟨▷✠ p2

1,B⟩+ ⟨p1
1,r2 ▷cut⟩+ ⟨p2

1,r2 ▷cut⟩

By consistently chosing the partition during the elimination of the cut c this can be matched by first starting
with the elimination of the glueing cut c′.

⟨▷✠ p1, . . . , pn⟩+ ⟨r1,r2 ▷` r⟩+ ⟨▷✠ q1, . . . ,qk⟩+ ⟨p1,r ▷cut⟩+ ⟨p2,q1 ▷cut⟩
→ ⟨▷✠ p1,q2, . . . ,qk, . . . , pn⟩+ ⟨r1,r2 ▷` r⟩+ ⟨p1,r ▷cut⟩
→ ⟨▷✠ p1

1,q2, . . . ,qk,A⟩+ ⟨▷✠ p2
1,B⟩+ ⟨p1

1,r1 ▷cut⟩+ ⟨p2
1,r2 ▷cut⟩

• In the first non homogeneous case the redex is of the following form

⟨▷✠ p1, . . . , pn⟩+ ⟨r1,r2 ▷` r⟩+ ⟨q1,q2 ▷⊗ q⟩+ ⟨p1,r ▷cut⟩+ ⟨p2,q ▷cut⟩.
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After one step of cut elimination this becomes in all generality, given that A = {a1, . . . ,ak} and B =
{b1, . . . ,bl} partition p2, . . . , pn,

⟨▷✠ p1
1, p2,A′⟩+ ⟨▷✠ p2

1,B⟩++⟨q1,q2 ▷⊗ q⟩+ ⟨p1
1,r1 ▷cut⟩+ ⟨p2

1,r2 ▷cut⟩+ ⟨p2,q ▷cut⟩.

Without loss of generality assume that p2 occurs in the class A = {p2} ∪ A′, then after one step of cut
elimination this becomes;

⟨▷✠ p1
1, p1

2, p2
2,A
′⟩+ ⟨▷✠ p2

1,B⟩++⟨p1
1,r1 ▷cut⟩+ ⟨p2

1,r2 ▷cut⟩+ ⟨p1
2,q1 ▷cut⟩+ ⟨p2

2,q2 ▷cut⟩.

Indeed one can obtain the same redex by first eliminating c′, when eliminating the `–link we need to make
a consistent choice e.g. the partition of p1

2, p2
2, . . . , pn made of the two classes B and A′∪{p1

2, p2
2}:

⟨▷✠ p1, . . . , pn⟩+ ⟨r1,r2 ▷` r⟩+ ⟨q1,q2 ▷⊗ q⟩+ ⟨p1,r ▷cut⟩+ ⟨p2,q ▷cut⟩
→ ⟨▷✠ p1, p1

2, p2
2 . . . , pn⟩+ ⟨r1,r2 ▷` r⟩+ ⟨p1,r ▷cut⟩+ ⟨p1

2,q1 ▷cut⟩+ ⟨p2
2,q2 ▷cut⟩

→ ⟨▷✠ p1, p1
2, p2

2, . . . , pn⟩+ ⟨r1,r2 ▷` r⟩+ ⟨p1,r ▷cut⟩+ ⟨p1
2,q1 ▷cut⟩+ ⟨p2

2,q2 ▷cut⟩
→ ⟨▷✠ p1

1, p1
2, p2

2,A
′⟩+ ⟨▷✠ p2

1,B⟩++⟨p1
1,r1 ▷cut⟩+ ⟨p2

1,r2 ▷cut⟩+ ⟨p1
2,q1 ▷cut⟩+ ⟨p2

2,q2 ▷cut⟩.

• In the non homogeneous second case both cuts are made of ` links against a daimon thus in all generality
a reduction is of the following form form;

⟨▷✠ p1, . . . , pn⟩+ ⟨r1,r2 ▷` r⟩+ ⟨q1,q2 ▷` q⟩+ ⟨p1,r ▷cut⟩+ ⟨p2,q ▷cut⟩
→ ⟨▷✠ p1

1, p2,A⟩+ ⟨▷✠ p2
1,B⟩+ ⟨q1,q2 ▷` q⟩+ ⟨p2,q ▷cut⟩+ ⟨p1

1,r1 ▷cut⟩+ ⟨p2
1,r2 ▷cut⟩

→ ⟨▷✠ p1
1, p1

2,A1⟩+ ⟨▷✠ p2
2,A

2
2⟩+ ⟨▷✠ p2

1,B⟩+ ⟨p1
2,q1 ▷cut⟩+ ⟨p2

2,q2 ▷cut⟩+ ⟨p1
1,r1 ▷cut⟩+ ⟨p2

1,r2 ▷cut⟩

Indeed starting by eliminating the cut c′ we can obtain the same redex by making consistent choices in the
partitions:

⟨▷✠ p1, . . . , pn⟩+ ⟨r1,r2 ▷` r⟩+ ⟨q1,q2 ▷` q⟩+ ⟨p1,r ▷cut⟩+ ⟨p2,q ▷cut⟩
→ ⟨▷✠ p1

2, p1,A1∪B⟩+ ⟨▷✠ p2
2,A2⟩+ ⟨r1,r2 ▷` r⟩+ ⟨p1,r ▷cut⟩+ ⟨p1

2,q1 ▷cut⟩+ ⟨p2
2,q2 ▷cut⟩

→ ⟨▷✠ p1
1, p1

2,A1⟩+ ⟨▷✠ p2
2,A2⟩+ ⟨▷✠ p2

1,B⟩+ ⟨p1
2,q1 ▷cut⟩+ ⟨p2

2,q2 ▷cut⟩+ ⟨p1
1,r1 ▷cut⟩+ ⟨p2

1,r2 ▷cut⟩

Proposition 110 (General right commutation, Proposition 30item 2). For any net S containing an irreversible cut
c, and given α∗ a series of cut elimination of cuts occuring in S then the following diagram commutes;

S S1

S′1 S2

c

α∗ α∗

c

Proof. This follows from a simple induction on α∗. If α∗ is made of only one cut the proposition 109 gets us the
conclusion. Otherwise we decompose the sequence of reductions as α∗ = β ·β ∗ and by applying the proposition
109 we obtain the following diagram.

S S1

S′1 S2

S3

c

β β

c

β ∗

Calling the induction hypothesis on β ∗ we can complete the diagram as follows and conclude.

S S1

S′1 S2

S′2 S3

c

β β

c

β ∗ β ∗

c
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B.5 Reversible cuts can be anticipated – Proof of Proposition 30 item 3
Proposition 111 (Deterministic non homogeneous cut elimination commutes to the left). Given S some net con-
taining a non homogeneous cut link c of a daimon link against a ⊗–link. The diagram below commutes, for any
cut kind of cut link c′;

S S1

S′1 S2

c′

c c

c′

Where the dotted arrows are the existence of a reduction.

Proof. We reason as in the proof for proposition 109, if the two cuts involved different link of the net we conclude.
Furthermore if c′ is an homogeneous cut the proposition hold. Thus we assume that c and c′ are both non–
homogeneous and involve the same daimon link.

• If c′ is also a tensor link its clear that the elimination of the two cuts commute.
• If c′ is a ` link we can call the previous proposition 109 on the cut c′, claiming that its elimination commutes

on the right with any step of cut elimination. In particular any elimination of c′ followed by any elimination
of c can be matched by an elimination of c followed by an elimination of c′. Thus we conclude.

Proposition 112 (General left commutation). For any net S containing an reversible cut c, and given α∗ a series
of cut elimination of cuts occuring in S then the following diagram commutes;

S S1

S′1 S2

α∗

c c

α∗

Proof. As for the previous proposition it follows from a simple induction on α∗. If α∗ is made of only one cut the
proposition 111 gets us to conclude. Otherwise we decompose the sequence of reductions as α∗ = β ∗ ·β and by
applying the proposition 111 together with the induction hypothesis we obtain the following diagram.

S S1 S2

S′1 S2 S3

c

β ∗ β

c c

β ∗ β

Remark 113. Moreover, following a similar method, we can easily establish that glueing cuts commute to the
left with any kind of cut. The case with a (`/✠) cut is taken care of since we know these cuts can be delayed
(Proposition 30 item 2). For the other cases note that two related glueing cuts indeed commute, furthermore by
some simple calculations, one can prove that a glueing cut and (⊗/✠) cut will also commute. Indeed the result of
commutation of two cuts may then be generalised to sequences of cut elimination as in Proposition 112.

Proposition 114 (Proposition 30 item 3). Given a net S containing a cut c that is not a (`/✠) cut. If S→∗ c−→S′

then S c−→→∗ S′.

Proof. This is a consequence of Proposition 112 and Remark 113.

C Complements to section 2

C.1 Multigraph
The notion of multigraph is used several times: (1) in order to define orthogonal partitions one must compute a
multigraph and (2) in all generality the graph underlying an hypergraph should also be a multigraph – this will be
defined in the next section of this appendix (subsection C.2).

Definition 115. An (undirected) multigraph is a tuple G = (VG,EG,brdG) such that:
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• VG and EG are two disjoint sets, whose elements are respectively called nodes and edges.
• The border function brdG : EG →P(VG) maps edges to sets of nodes of cardinal 1 or 2. The intuition is

that whenever brdG(e) = {x,y} then x and y are the two endpoints of the edge e, while if brdG(e) = {x} the
edge e forms a loop.

C.2 Graph underlying an hypergraph
In section 2 we informally refer to the notion of graph underlying an hypergraph. This induced graph can be
formally defined as in the following Definition 116

Definition 116 (Underlying graph). Given an hypergraph H = (VH ,EH , tH ,sH ) its underlying directed graph
is a directed graph denoted G(H ) = (VG,EG, tG,sG) obtained from H as follow;

• A vertex of G(H ) is either a position of the hypergraph H , or a link of H , i.e. VG =VH ⊎EH .
• An edge of G(H ) is a tuple (e, p, in) of a link e ∈ EH with p ∈ s(e) or a tuple (e, p,out) with p ∈ t(e).
• For an edge (e, p, in) we have t(e, p, in)= e and s(e, p, in)= p. For an edge (e, p,out) we have t(e, p,out)= p

and s(e, p,out) = e.

Definition 117 (Induced undirected graph). Given a directed graph G = (VG,EG, tG,sG) its induced undirected
graph is the graph G∗ = (V ∗G,E

∗
G,brdG∗) such that:

• The set of vertices VG and V ∗G are the same;
• The set of edges EG and E∗G are the same;
• For any edge e its border in G∗ is given by brdG∗(e) = {sG(e), tG(e)}.

Remark 118. The paths of the induced undirected graph G∗ of a directed (multi)graph G = (VG,EG, tG,sG) are
exactly the paths in G where we allow edges to be travelled through in both direction (source–target or target–
source).

Definition 119. Given an hypergraph H its underlying graph G(H )∗ is the induced undirected graph of G(H ).

The previous definition is the one involved in in the theorem of Danos Regnier (Theorem 40): given a switching
σS of a net S the acyclicity and connectedness of σS is that of its underlying undirected graph G(σS)∗.

C.3 On substitutions – proof of Proposition 33
Proposition 33. Let Γ and ∆ be two sequents and suppose ∆≤ Γ. For any net S: (1) if S ⊢MLL✠ ∆ then S ⊢MLL✠ Γ

and (2) if S ⊢MLL ∆ then S ⊢MLL Γ.

Proof. This is because if a sequent ∆ can be introduced by a daimon rule (resp. an axiom rule for MLL) then for
any substitution θ the sequent θ∆ can be introduced by a daimon rule (resp. an axiom rule for MLL). Thus a proof
by induction on the represented proof tree allows us to conclude.

Remark 120. The Proposition 33 implies that whenever A≤ B the set ⦃A : MLL✠⦄ is contained in ⦃B : MLL✠⦄
but also that ⦃A : MLL⦄ is contained in ⦃B : MLL⦄

D Complements to section 3

D.1 On the notion of Interaction
D.1.1 Proof of Proposition 48

We have presented a notion of interaction S :: T between two net S and T in Definition 41, this definition makes
direct use of the order on the conclusions of the nets (the arrangement of section 1). An alternative can be to define
the interaction between two nets S and T using a notion of interface σ , a functional and injective relation between
the conclusions of S and T , then S ::σ T is equal to S+T +∑(p,q)∈σ ⟨S(p),T (p)▷cut⟩. This makes orthogonality
more subtle to define so we chose to work with ordered conclusions which determines the interaction S :: T , in
some sense the order on the conclusions is used to define a canonical interface.

Proposition 48. Given three net S and T and R such that #S ≥ #T + #R: the interaction S :: (T ∥ R) is equal to
(S :: T ) :: R.
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Proof. Consider three net S,T and R such that #S ≥ #T + #R. Note that #T ∥ #R = #T + #R thus #S ≥ #T ∥ #R
and so min(#S,#T ∥ #R) = #T ∥ #R. As a consequence S :: (T ∥ R) is equal to

S :: (T ∥ R) = S+T +R+ ∑
1≤i≤#T∥#R

⟨S(i),(T ∥ R)(i)▷cut⟩

Note that for any 1≤ i≤ #T we have (T ∥ R)(i) = T (i) thus:

S :: (T ∥ R) =

(
S+T + ∑

1≤i≤#T
⟨S(i),T (i)▷cut⟩

)
+R+ ∑

#T+1≤i≤#T∥R
⟨S(i),(T ∥ R)(i)▷cut⟩

Furthermore note that for each #T +1≤ i≤ #S we have that the conclusion S(i) is the conclusion (S :: T )(i−
#T ) of S. Also for any #T + 1 ≤ i ≤ #T + #R we have (T ∥ R)(i) equal to R(i− #T ). Thus we can rewrite the
interaction S :: (T ∥ R) as follows:

S :: (T ∥ R)

=

(
S+T + ∑

1≤i≤#T
⟨S(i),T (i)▷cut⟩

)
+R+ ∑

#T+1≤i≤#T∥R
⟨S(i),(T ∥ R)(i)▷cut⟩

=

(
S+T + ∑

1≤i≤#T
⟨S(i),T (i)▷cut⟩

)
+R+ ∑

#T+1≤i≤#T∥R
⟨(S :: T )(i−#T ),R(i−#T )▷cut⟩

=

(
S+T + ∑

1≤i≤#T
⟨S(i),T (i)▷cut⟩

)
+R+ ∑

#T+1−#T≤i≤#T∥R−#T
⟨(S :: T )(i),R(i)▷cut⟩

=

(
S+T + ∑

1≤i≤#T
⟨S(i),T (i)▷cut⟩

)
+R+ ∑

1≤i≤R
⟨(S :: T )(i),R(i)▷cut⟩

=S :: T +R+ ∑
1≤i≤R

⟨(S :: T )(i),R(i)▷cut⟩

=(S :: T ) :: R

D.1.2 Interaction of nets and unrelated connective links

The following proposition will be used in the proof of the result of adequacy (Theorem 64) in the inductive cases.
In particular when one interprets S as the image of a proof π0 of Γ,A,B, the link e represents a `-link (say a link
⟨p1, p2 ▷` p⟩) and T is an opponent from JΓK⊥B .

Proposition 121. Given two nets S and T with #S ≥ #T and a link e such that the positions of s(e) are included
in the outputs of S :: T and are the only conclusions of S. Then we have:

(S :: T )+ e = (S+ e) :: T.

Proof. Recall the definition of the interaction

S :: T = S+ ∑
1≤i≤#T

⟨S(i),T (i)▷cut⟩+T

Thus we have that

(S :: T )+ e =

(
S+ ∑

1≤i≤#T
⟨S(i),T (i)▷cut⟩+T

)
+ e

Because each input of e is a conclusion of S in S :: T then each input of e is a conclusions S( j) of S with
j ≥ #T . Furthermore say S = (|S| ,a(S)) then S+e = (|S|+e,(a(S)\ s(e)) · t(e)) and for each 1≤ i≤ #T we have
S(i) = (S+ e)(i). It follows that:(

S+ ∑
1≤i≤#T

⟨S(i),T (i)▷cut⟩+T

)
+ e =

(
S+ ∑

1≤i≤#T
⟨(S+ e)(i),T (i)▷cut⟩+T

)
+ e

Which itself is equal to
(S+ e)+∑1≤i≤#T ⟨(S+ e)(i),T (i)▷cut⟩+T = (S+ e) :: T
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D.2 On types, proving duality results and associativity
D.2.1 The Merge Operator

Definition 122 (Merge of two nets). The merge of two daimon links d = ⟨▷✠ p⟩ and d′ = ⟨▷✠ q⟩ is the daimon
link d ▷◁ d′ = ⟨▷✠ p,q⟩. Given a net S containinng a daimon link d i.e. S = d + S0 and a net S′ containing a
daimon link d′ i.e. S′ = d′+S′0. We denote by S ▷◁(d,d

′) S′ the net S0 +S′0 +(d ▷◁ d′).

Proposition 123. Given two nets S and S′ respectively containing daimons d and d′ so that S = S0 + d and
S′ = S′0 +d′: S ▷◁(d,d

′) S′ is equal to S ▷◁(d,d
′) d′+S′0.

Proof. One merely needs to write the nets S ▷◁(d,d
′) S′ and (S ▷◁(d,d

′) d′)+S′0 as sum of links to conclude.

Notation 124. We fix a convention to denote the daimon links resulting from cut elimination steps involving
daimons (glueing and non homogeneous):

• In a glueing step say d = ⟨▷✠ p,a⟩ and d′ = ⟨▷✠ q,b⟩ the glueing redex d + ⟨a,b ▷cut⟩+ d′ reducing to
⟨▷✠ p,q⟩ we denote that resulting daimon link by ga,b(d,d′).

• In a (⊗/✠) step say d = ⟨▷✠ p,a⟩ the reddex d + ⟨a,b ▷cut⟩+ ⟨b1,b2 ▷⊗ b⟩ reducing to ⟨▷✠ p,a1,a2⟩+
⟨a1,b1 ▷cut⟩+ ⟨a2,b2 ▷cut⟩ we denote that resulting daimon link by pa(d).

• In a (`/✠) step say d = ⟨▷✠ p,a⟩ the reddex d+⟨a,b▷cut⟩+⟨b1,b2 ▷` b⟩ reducing to ⟨▷✠ pA,a1⟩+⟨▷✠

pB,a2⟩+ ⟨a1,b1 ▷cut⟩+ ⟨a2,b2 ▷cut⟩ for a partition p = pA⊎ pB we denote that resulting daimon links by
t1
a,A(d) and t2

a,B(d).
Given a reduction step S→ S′ eliminating a cut c we denote S→c S′. Given an elimination step S→c S′

that isn’t multiplicative, we denote by dc the daimon involve in the redex if it is unique, otherwise we denote the
unordered pair of daimons g(dc) in the case of a glueing cut.

Proposition 125. Given a net S containing a cut c = ⟨a,b ▷cut⟩ and daimon d of S if S→c S′:
• If c is multiplicative S ▷◁d ✠1→c S′ ▷◁d ✠1.
• If d isn’t dc or contained in g(dc) then S ▷◁d ✠1→c S′ ▷◁d ✠1.
• If c is a glueing cut and d belongs to g(dc) then S ▷◁d ✠1→ S′ ▷◁gs(c)(g(dc)) ✠1
• If c is a (⊗/✠) cut and d = dc then S ▷◁d ✠1→ S′ ▷◁pa(d) ✠1
• If c is a (`/✠) cut and d = dc and S→c S′ by chosing a partition A⊎B of the daimon d = ⟨▷✠ p⟩ then

S ▷◁d ✠1→ S′ ▷◁t1
a,A(d) ✠1 and S ▷◁d ✠1→ S′ ▷◁t2

a,B(d) ✠1.

Proof. If the reduction S→ S′ is a multiplicative step, then it does not affects the daimon of S and therefore we
conclude. In the other cases one (or two for the glueing cut) daimon are involved in the cut–elimination, if these
daimons don’t contain d then by contextual closure one can ensure the proposition.

Now let us treat the three cases where the daimon d is involved.
• Say the reduction in S is that of a glueing cut:

⟨▷✠ p,a⟩+ ⟨a,b ▷cut⟩+ ⟨▷✠ q,b⟩ → ⟨▷✠ p,q⟩.

Say (without loss of generality) that d = ⟨▷✠ p,a⟩ then in S ▷◁d ✠1 the daimon d is isomorphic to ⟨▷✠

p,a,u⟩ and the redex becomes:

⟨▷✠ p,a,u⟩+ ⟨a,b ▷cut⟩+ ⟨▷✠ q,b⟩ → ⟨▷✠ p,u,q⟩.

Indeed the resulting daimon is ga,b(d1,d2) ▷◁ ✠1 and therefore the redex of S ▷◁d ✠1 is S′ ▷◁ga,b(d1,d2) ✠1.
• Say the reduction is that of a (⊗,✠) cut:

⟨▷✠ p,a⟩+ ⟨a,b ▷cut⟩+ ⟨b1,b2 ▷⊗ b⟩ → ⟨▷✠ p,a1,a2⟩+ ⟨a1,b1 ▷cut⟩+ ⟨a2,b2 ▷cut⟩.

It follows that:

⟨▷✠ p,a⟩+ ⟨a,b ▷cut⟩+ ⟨b1,b2 ▷⊗ b⟩ ▷◁ ✠1

= ⟨▷✠ p,a,u⟩+ ⟨a,b ▷cut⟩+ ⟨b1,b2 ▷⊗ b⟩
→ ⟨▷✠ p,a1,a2,u⟩+ ⟨a1,b1 ▷cut⟩+ ⟨a2,b2 ▷cut⟩
= ⟨▷✠ p,a1,a2⟩+ ⟨a1,b1 ▷cut⟩+ ⟨a2,b2 ▷cut⟩ ▷◁ ✠1

Thus we have shown that in S→ S′ the daimon d became pa(d) and we have that S ▷◁d ✠1 rewrites to
S′ ▷◁pa(d) ✠1.
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• Say the reduction is that of a (`,✠) cut:

⟨▷✠ p,a⟩+ ⟨a,b ▷cut⟩+ ⟨b1,b2 ▷` b⟩ → ⟨▷✠ pA,a1⟩+ ⟨▷✠ pB,a2⟩+ ⟨a1,b1 ▷cut⟩+ ⟨a2,b2 ▷cut⟩.

It follows that:

⟨▷✠ p,a⟩+ ⟨a,b ▷cut⟩+ ⟨b1,b2 ▷` b⟩ ▷◁ ✠1

= ⟨▷✠ p,a,u⟩+ ⟨a,b ▷cut⟩+ ⟨b1,b2 ▷` b⟩
→ ⟨▷✠ pA,a1,u⟩+ ⟨▷✠ pB,a2⟩+ ⟨a1,b1 ▷cut⟩+ ⟨a2,b2 ▷cut⟩
= ⟨▷✠ pA,a1⟩+ ⟨▷✠ pB,a2⟩+ ⟨a1,b1 ▷cut⟩+ ⟨a2,b2 ▷cut⟩ ▷◁ ✠1

Thus we have shown that in S→ S′ the daimon d can rewrites in two daimons t1
a,A(d) or t2

b,B(d) for any

choice of partition A and B of p. As a consequence S ▷◁d ✠1 rewrites to S′ ▷◁t1
a,A(d) ✠1 or to S′ ▷◁t2

a,B(d) ✠1
still for any choice of partition.

Remark 126. The previous proposition ensures the (less precise) statement: given a net S with a daimon link d
if S→ S′ then there exists a daimon d′ in S′ so that S ▷◁d ✠1 → S′ ▷◁d′ ✠1. By a simple induction, this can be
generalised to multiple steps of cut elimination.

Proposition 127. Given S and T two nets such that S :: T →✠k, d a daimon of S, and d0 =✠n some daimon link:
the net (S ▷◁d ✠n) :: T reduces to ✠n+k.

Proof. Assume that S and T are orthogonal, then S :: T → ✠k. Consider d some daimon of S then in particular
it is a daimon of S :: T and S ▷◁d d0 :: T is equal to S :: T ▷◁d d0. Because S :: T →✠k it follows that S :: T ▷◁d

✠n→✠k ▷◁
d′ d0 where d′ is a daimon link of ✠k (Remark 126). Since ✠k is a net made of a single daimon link,

necessarily d′ =✠k and thus since d0 =✠n ✠k ▷◁
d′ d0 =✠n+k Therefore we conclude S :: T ▷◁d d0→✠n+k.

Proposition 128. Given two nets S and T are orthogonal. S′ a net obtained from S by adding n conclusions to
some (eventually distinct) daimons of S then S′ :: T reduces to ✠n.

Proof. One inductively uses the previous proposition(Proposition 127).

D.2.2 Behavior of Identity cut–nets

Definition 129. We call a cut c occuring in a net S irreversible whenever it is of type (✠/`) (Definition 16). An
identity cut–net whenever it is of the following form

⟨▷✠ a⃗, p1 ,⃗b, p2, c⃗⟩+ ⟨p1, p2 ▷` p⟩+ ⟨p,q ▷cut⟩+ ⟨▷✠ d⃗,q, e⃗⟩

Namely, the `–involved above the input p of the cut link is such that both its inputs are outputs of the same
daimon .

Proposition 130 (Normal Form of Identity cut–nets). An identity cut–net S with n conclusions has a unique
normal form which is (up to isomorphism) ✠n.

Proof. Note that the conclusions of an identity cut–net are all outputs of (one of the two) daimon links. Writing S
as the following:

S ::= ⟨▷✠ a⃗, p1 ,⃗b, p2, c⃗⟩+ ⟨p1, p2 ▷` p⟩+ ⟨p,q ▷cut⟩+ ⟨▷✠ d⃗,q, e⃗⟩

The n conclusions of S correspond to the set obtained from the vector a⃗,⃗b, c⃗, d⃗, e⃗ (note that this vetor contains no
repetition).

Fixing a choice for the partition of the context d⃗, e⃗ of the daimon containing the position q we obtain a reduc-
tion:

⟨▷✠ a⃗, p1 ,⃗b, p2, c⃗⟩+ ⟨p1, p2 ▷` p⟩+ ⟨p,q ▷cut⟩+ ⟨▷✠ d⃗,q, e⃗⟩

→ ⟨▷✠ a⃗, p1 ,⃗b, p2, c⃗⟩+ ⟨p1,q1 ▷cut⟩+ ⟨p2,q2 ▷cut⟩+ ⟨▷✠ d⃗l,q1, e⃗l⟩+ ⟨▷✠ d⃗r,q2, e⃗r⟩
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At this point two cuts occur thus two reductions are possible, both lead to the same net. Eliminating first
⟨p1,q1 ▷cut⟩:

⟨▷✠ a⃗, p1 ,⃗b, p2, c⃗⟩+ ⟨p1,q1 ▷cut⟩+ ⟨p2,q2 ▷cut⟩+ ⟨▷✠ d⃗l,q1, e⃗l⟩+ ⟨▷✠ d⃗r,q2, e⃗r⟩

→ ⟨▷✠ a⃗,⃗b, p2, c⃗, d⃗l, e⃗l⟩+ ⟨p2,q2 ▷cut⟩+ ⟨▷✠ d⃗r,q2, e⃗r⟩

→ ⟨▷✠ a⃗,⃗b, d⃗r, e⃗r, c⃗, d⃗l, e⃗l⟩

≡ ⟨▷✠ a⃗,⃗b, c⃗, d⃗, e⃗⟩
≡ ⟨▷✠ S(1), . . . ,S(n)⟩

Eliminating first ⟨p2,q2 ▷cut⟩:

⟨▷✠ a⃗, p1 ,⃗b, p2, c⃗⟩+ ⟨p1,q1 ▷cut⟩+ ⟨p2,q2 ▷cut⟩+ ⟨▷✠ d⃗l,q1, e⃗l⟩+ ⟨▷✠ d⃗r,q2, e⃗r⟩

→ ⟨▷✠ a⃗, p1 ,⃗b, d⃗r, e⃗r, c⃗⟩+ ⟨p1,q1 ▷cut⟩+ ⟨▷✠ d⃗l,q1, e⃗l⟩

→ ⟨▷✠ a⃗, d⃗l , e⃗l ,⃗b, d⃗r, e⃗r, c⃗⟩

≡ ⟨▷✠ a⃗,⃗b, c⃗, d⃗, e⃗⟩
≡ ⟨▷✠ S(1), . . . ,S(n)⟩

This is true for any choice of partition during the first (✠/`) step, therefore S has a unique normal which is (upto
iso) ⟨▷✠ S(1), . . . ,S(n)⟩.

Remark 131. From Proposition 130 one derive that an identity cut–net without conclusions always reduces to
✠0.

Remark 132. A net which is cut–free and has no conclusions is a sum of daimon links without conclusions: such
a net cannot contain connective otherwise to have no conclusion a cut needs to be added, similarly its daimon links
cannot have outputs otherwise to have no conclusions a cut must be present in the net.

Proposition 133 (Identity cut–net behavior). Consider an identity cut S without conclusions and denote its two
daimons d1 and d2. Let T1 and T2 be two nets without conclusions, and d′1 a daimon of T1 while d′2 denotes a
daimon of T2, the assertions are equivalent:

1. T1→∗ ✠0 and T2→∗ ✠0.
2. S ▷◁d1,d′1 T1 ▷◁

d2,d′2 T2 reduces to ✠0

Proof. 1⇒ 2. This is the easy implication. T2 →∗ ✠0 thus by applying Proposition 127 S ▷◁d1,d′1 T1 ▷◁d2,d′2 T2
reduces to S ▷◁d1,d′1 T1 ▷◁

d2, f (d′2) ✠0 that is S ▷◁d1,d′1 T1 again applying Proposition 127 with T1→∗ ✠0 yields that
S ▷◁d1,d′1 T1 reduces to S ▷◁d1 ✠0 that is S. We conclude since S→∗ ✠0 (Remark 131).

2⇒ 1. The other direction requires the use of Proposition 30 (item 2) and Proposition 30 (item 3). The cut
that we will denote c occuring in S is a (`/✠) cut thus it can be performed last (Proposition 30item 2). Thus if
S ▷◁d1,d′1 T1 ▷◁

d2,d′2 T2 reduces to ✠0 one can factorize the reduction as S ▷◁d1,d′1 T1 ▷◁
d2,d′2 T2→∗ U with U →c ✠0,

one can verify that this implies that U is (isomorphic to) the following net

⟨▷✠ p1, p2⟩p+ ⟨p,q ▷cut⟩+ ⟨▷✠ q⟩

That is, U and S are isomorphic nets.
In that case note that the cuts of T1 and T2 in the net S ▷◁d1,d′1 T1 ▷◁d2,d′2 T2 are unrelated and thus applying

Proposition 97, one can factorize the reduction leading to U as follows:

S ▷◁d1,d′1 T1 ▷◁
d2,d′2 T2→∗2 S1→∗1 S→c→∗ ✠0 (1)

where→1 eliminates cuts occuring in T1 or its reducts only and→2 eliminates cuts occuring in T2 or its reducts
only. As a consequence using Proposition 127 one may rewrite the first step of the reduction: (S ▷◁d1,d′1 T1) ▷◁

d2,d′2

T2→∗2 (S ▷◁d1,d′1 T1) ▷◁
d2, f (d′2) T ′2

Necessarily because c (and the cut it produces) is a cut that is not in T2 or any of its redexes, and because the
cuts of T1 and T2 also are disjoint the reduction Equation 1 implies that T ′2 must be cut–free and thus in particular
a normal form of T2.

Similarly because (S ▷◁d1,d′1 T1) ▷◁
d2, f (d′2) T ′2 reduces to S by →∗1 applying Proposition 127 one obtains that

S1 = (S ▷◁d1,d′1 T1) ▷◁
d2, f (d′2) T ′2 reduces to S in the following way: there is a reduction T1 → T ′1 and S equals

(S ▷◁d1,d′1 T ′1) ▷◁
d2, f (d′2) T ′2 . Again because c (and the cut it produces) is a cut that is not in T1 or any of its redexes,
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and because the cuts of T1 and T2 also are disjoint the reduction Equation 1 implies that T ′1 must be cut–free and
thus in particular a normal form of T1.

From this argument one shows that

S = (S ▷◁d1,d′1 T ′1) ▷◁
d2, f (d′2) T ′2 . (2)

Furthermore T ′1 and T ′2 are both cut–free and without conclusions they are therefore sums of ✠0 links Re-
mark 132. If T ′1 (resp T ′2) is ∑1≤i≤n✠0 (resp. ∑1≤i≤k ✠0) then S = (S ▷◁d1,d′1 ∑1≤i≤n✠0) ▷◁

d2, f (d′2) T ′2 equals
(S + ∑1≤i≤n−1✠0) ▷◁

d2, f (d′2) T ′2 that will be (S + ∑1≤i≤n−1✠0) ▷◁
d2, f (d′2) ∑1≤i≤k ✠0 that is S + ∑1≤i≤n−1✠0 +

∑1≤i≤k−1✠0.
From Equation 2 this means that necessarily n− 1 = 0 and k− 1 = 0 i.e. T ′1 and T ′2 equal ✠0. Therefore we

conclude that T1→∗ ✠0 and T2→∗ ✠0

D.2.3 Proofs of section section 3 – Proposition 51 , Proposition 56 and Proposition 54

Proposition 51 (Duality). Given two types A and B: (A ∥ B)⊥ = A⊥ �B⊥ and (A�B)⊥ = A⊥ ∥ B⊥.

Proof. Consider a net S orthogonal to A ∥ B. For any a ∈ A and b ∈ B the net S :: (a ∥ b) reduces to ✠0. Since
S :: (a ∥ b) = S :: a :: b (Proposition 48) and since the orthogonality holds for any pair (a,b), in particular for any
net b∈B the net (S :: a) :: b reduces to ✠0. This means that, for any a∈A, S :: a is orthogonal to B i.e. S :: a∈B⊥.
Since A = (A⊥)⊥, this means that S ∈ A⊥ �B⊥.

On the other hand, consider a net S ∈ A⊥ � B⊥: for any a ∈ A = (A⊥)⊥ the net S :: a belongs to B⊥ and so
for any b ∈ B the net S :: a :: b reduces to ✠0. Since S :: a :: b = S :: (a ∥ b) (Proposition 48), we have that S is
orthogonal to A ∥ B (using Remark 50).

Hence we showed (A ∥B)⊥ = A⊥�B⊥. As a consequence (A�B)⊥ = (A⊥⊥ �B⊥⊥)⊥ = (A⊥ ∥B⊥)⊥⊥ = A⊥ ∥
B⊥.

Lemma 134. Given a net with no conclusions R and two types with one conclusion A and B: If R ▷◁d ⟨▷✠

p1, p2⟩+ ⟨p1, p2 ▷` p⟩belongs to A⊥`B⊥ then R ▷◁d ⟨▷✠ p⟩ belongs to A⊥`B⊥

Proof. To do so one shows that R ▷◁d ⟨▷✠ p⟩ is orthogonal to any net orthogonal to A⊥`B⊥. Consider therefore
an opponent U orthogonal to A⊥`B⊥. We distinguish two cases:

• If U =U ′+ ⟨U ′(1),U ′(2)▷⊗ q⟩ has a terminal tensor link. Note that, by assumption:

R ▷◁d ⟨▷✠ p1, p2⟩+ ⟨p1, p2 ▷` p⟩ :: U →∗ ✠0

Since multiplicative cuts can be performed first and R ▷◁d ⟨▷✠ p1, p2⟩+ ⟨p1, p2 ▷` p⟩ :: U reduces to
R ▷◁d ⟨▷✠ p1, p2⟩ :: U ′ by eliminating a multiplicative cut hence we derive the following (Proposition 106)

R ▷◁d ⟨▷✠ p1, p2⟩ :: U ′→∗ ✠0.

In the meanwhile we have the following reduction:

R ▷◁d ⟨▷✠ p⟩ :: U

= R ▷◁d ⟨▷✠ p⟩ :: U ′+ ⟨U ′(1),U ′(2)▷⊗ q⟩
→ R ▷◁d ⟨▷✠ p1, p2⟩ :: U ′

→ ✠0(previous argument)

• If U has a terminal daimon link outputing its only conclusion q. Then U may written as as ⟨▷✠ q⟩ ▷◁d′ R′.
Therefore one can identify an identity cut–net V in the interaction:

R ▷◁d ⟨▷✠ p1, p2⟩+ ⟨p1, p2 ▷` p⟩ :: U

= R ▷◁d ⟨▷✠ p1, p2⟩+ ⟨p1, p2 ▷` p⟩ :: ⟨▷✠ q⟩ ▷◁d′ R′

= (R ▷◁d ⟨▷✠ p1, p2⟩)+ ⟨p1, p2 ▷` p⟩+ ⟨p,q ▷cut⟩+(⟨▷✠ q⟩ ▷◁d′ R′)

= [⟨▷✠ p1, p2⟩+ ⟨p1, p2 ▷` p⟩+ ⟨p,q ▷cut⟩+(⟨▷✠ q⟩ ▷◁d′ R′)] ▷◁d R

= [⟨▷✠ p1, p2⟩+ ⟨p1, p2 ▷` p⟩+ ⟨p,q ▷cut⟩+ ⟨▷✠ q⟩] ▷◁d′ R′ ▷◁d R

= [V ] ▷◁d′ R′ ▷◁d R

32



Now since V is a cut net without conclusions while R′ and R both have no conclusion while [V ] ▷◁d′ R′ ▷◁d

R→∗ ✠0 (because by assumption R ▷◁d ⟨▷✠ p⟩ :: U →✠0) we derive that R→∗ ✠0 and R′→✠0 (Propo-
sition 133).
We then derive the following

R ▷◁d ⟨▷✠ p⟩ :: U

= R ▷◁d ⟨▷✠ p⟩ :: ⟨▷✠ q⟩ ▷◁d′ R′

→∗ ✠0 ▷◁
d ⟨▷✠ p⟩ :: ⟨▷✠ q⟩ ▷◁d′ R′

= ⟨▷✠ p⟩ :: ⟨▷✠ q⟩ ▷◁d′ R′

→∗ ⟨▷✠ p⟩ :: ⟨▷✠ q⟩ ▷◁d′ ✠0

= ⟨▷✠ p⟩ :: ⟨▷✠ q⟩
→ ✠0

in the end we have shown that R ▷◁d ⟨▷✠ p⟩ belongs to (A⊥`B⊥)⊥⊥ which is A⊥`B⊥ and conclude.

Proposition 56 (Duality). Given A and B two types with one conclusion, (A⊗B)⊥ = A⊥`B⊥ and (A`B)⊥ =
A⊥⊗B⊥.

Proof. One equality implies the other: say that (A⊗B)⊥ = A⊥`B⊥ holds for any pair of types. Then A⊥⊗B⊥ =

(A⊥⊗B⊥)⊥⊥ = (A⊥⊥ `B⊥⊥)⊥ = (A`B)⊥.
Let us now prove A⊥`B⊥ = (A⊗B)⊥. As for A⊥`B⊥ ⊆ (A⊗B)⊥, we prove

{S+ ⟨S(1),S(2)▷⊗ p⟩ | S ∈ A ∥ B} ⊆ {T + ⟨T (1),T (2)▷` p⟩ | T ∈ A⊥ �B⊥}⊥

which is enough to conclude because the previous inclusion yields (since bi–orthogonality preserves inclusion)

A⊗B⊆ {T + ⟨T (1),T (2)▷` p⟩ | T ∈ A⊥ �B⊥}⊥

that is (since the tri–orthogonal of a set is the orthogonal of this set):

A⊗B⊆ (A⊥`B⊥)⊥.

Which implies (A⊗B)⊥ ⊇ (A⊥`B⊥) (Orthogonality inverts inclusion).
So let S0 ∈ {S+ ⟨S(1),S(2)▷⊗ p⟩ | S ∈A ∥ B} and T0 ∈ {T + ⟨T (1),T (2)▷` p⟩ | T ∈A⊥�B⊥}. One easily

sees that S0⊥T0: after eliminating the multiplicative cut we obtain a net S :: T , where S ∈A⊥�B⊥ and T ∈A ∥ B:
these constructions are orthogonal (Proposition 51).

As for (A⊗B)⊥ ⊆A⊥`B⊥, let T ∈ (A⊗B)⊥ i.e. T⊥{S+ ⟨S(1),S(2)▷⊗ p⟩ | S ∈A ∥ B}⊥⊥; we can deduce
that the unique terminal link of T is either a `–link or a ✠–link:

• if T = T0 + l has a terminal `–link l then, for every S0 ∈A ∥ B the net S ::= S0 + ⟨S(1),S(2)▷⊗ p⟩ belongs
A⊗B. In a single multiplicative step of cut elimination T :: S reduces to T0 :: S0 and since S :: T →∗ ✠0 it
follows that T0 :: S0→∗ ✠0, using Proposition 30 item 3. As a consequence T0⊥ A ∥ B i.e. T0 ∈ A⊥ � B⊥
and T ∈ A⊥`B⊥;

• if T has for terminal link a daimon link then T may be written as R ▷◁d ⟨▷✠ p⟩ where R is a net without
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conclusions. Let us start an argument from the assumption that T belongs to (A⊗B)⊥:

T ⊥ A⊗B

⇔ T ⊥ {Sa ∥ Sb | Sa ∈ A,Sb ∈ B}⊥⊥

⇔ T ⊥ {Sa ∥ Sb + ⟨Sa(1),Sb(1)▷⊗ p⟩ | Sa ∈ A,Sb ∈ B}
⇔ T :: Sa ∥ Sb + ⟨Sa(1),Sb(1)▷⊗ p⟩ →∗ ✠0 (for any Sa ∈ A,Sb ∈ B)

⇔ R ▷◁d ⟨▷✠ p⟩ :: Sa ∥ Sb + ⟨Sa(1),Sb(1)▷⊗ p⟩ →∗ ✠0 (for any Sa ∈ A,Sb ∈ B)

⇔ R ▷◁d ⟨▷✠ p1, p2⟩ :: Sa ∥ Sb→∗ ✠0 (Proposition 30item 3)

⇔ R ▷◁d ⟨▷✠ p1, p2⟩ ⊥ {Sa ∥ Sb | Sa ∈ A,Sb ∈ B}
⇔ R ▷◁d ⟨▷✠ p1, p2⟩ ⊥ A ∥ B

⇔ R ▷◁d ⟨▷✠ p1, p2⟩ ∈ A⊥ �B⊥

⇒ R ▷◁d ⟨▷✠ p1, p2⟩+ ⟨p1, p2 ▷` p⟩ ∈ A⊥`B⊥

⇒ R ▷◁d ⟨▷✠ p⟩ ∈ A⊥`B⊥ (Lemma 134)

⇔ T ∈ A⊥`B⊥

Proposition 54. Given A,B and C three types; (A�B)�C = A� (B�C) and (A ∥ B) ∥ C = A ∥ (B ∥ C).

Proof. The result is a consequence of the two following properties:
1. the density of the parallel composition (Remark 50);
2. Proposition 48: more precisely, for any nets S1,S2,S3,S4 such that #S1 ≥ #S2 +#S3 +#S4, we have

(S1 :: (S2 ∥ S3)) :: S4 = ((S1 :: S2) :: S3) :: S4 = (S1 :: S2) :: (S3 ∥ S4).

By Proposition 51 it is enough to show that one of the two constructions is associative. Let us do it for the
parallel composition: more precisely, using property 1 we prove that (A ∥ (B ∥ C))⊥ = (A ∥− (B− ∥ C−))⊥ and
((A ∥ B) ∥C)⊥ = ((A ∥− B) ∥− C)⊥, and using property 2 that (A ∥− (B− ∥C−))⊥ = ((A ∥− B) ∥− C)⊥. From the
previous equalities one deduces A ∥ (B ∥C) = (A ∥ (B ∥C))⊥⊥ = ((A ∥ B) ∥C)⊥⊥ = (A ∥ B) ∥C.

To prove the equality (A ∥ (B ∥ C))⊥ = (A ∥− (B ∥− C))⊥ one proves that, for every net S, the following
equivalence holds: S⊥ A ∥ (B ∥C) ⇐⇒ S⊥ A ∥− (B− ∥C−). Indeed:

S⊥ A ∥ (B ∥C)

⇔S⊥ A ∥− (B ∥C) (by property 1)
⇔∀a ∈ A,∀x ∈ B ∥C,S :: (a ∥ x)→✠0 (by definition)
⇔∀a ∈ A,∀x ∈ B ∥C,(S :: a) :: x→✠0 (by Proposition 48)
⇔∀a ∈ A,S :: a⊥ (B ∥C) (by definition)

⇔∀a ∈ A,S :: a⊥ (B ∥− C) (by property 1)

⇔∀a ∈ A,∀x ∈ (B ∥− C),(S :: a) :: x→✠0 (by definition)

⇔∀a ∈ A,∀x ∈ (B ∥− C),S :: (a ∥ x)→✠0 (by Proposition 48)

⇔S⊥ A ∥− (B ∥− C) (by definition).

To prove the equality ((A ∥ B) ∥ C)⊥ = ((A ∥− B) ∥− C)⊥, we need to express the (obvious) fact that, given
three nets S,T,U such that #S = #T +#U , once the list of S’s conclusions that one decides to cut with the list of
conclusions of T (resp. U) is chosen, the interaction between S on the one hand and T and U on the other hand is
uniquely determined. With the conventions of definition 41, when we write (S :: T ) :: U we cut the first part (“the
head”) of the sequence a(S) with a(T ) and the last part (“the tail”) of the sequence a(S) with a(U). We denote by
exU (S) the net S where we have swapped the tail and the head of a(S): the previous fact can then be expressed by
the equality (S :: T ) :: U = (exU (S) :: U) :: T .
Like for the previous equality, we prove that, for every net S, the following equivalence holds: S ⊥ (A ∥ B) ∥
C ⇐⇒ S⊥ (A ∥− B) ∥− C. Indeed:
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S⊥ (A ∥ B) ∥C

⇔S⊥ (A ∥ B) ∥− C (by property 1)
⇔∀x ∈ A ∥ B,∀c ∈C,S :: (x ∥ c)→✠0 (by definition)
⇔∀x ∈ A ∥ B,∀c ∈C,(S :: x) :: c→✠0 (by Proposition 48)
⇔∀x ∈ A ∥ B,∀c ∈C,(exc(S) :: c) :: x→✠0 (by the obvious fact above)

⇔∀c ∈C,exc(S) :: c ∈ (A ∥ B)⊥ (by definition)

⇔∀c ∈C,exc(S) :: c ∈ (A ∥− B)⊥ (by property 1)
⇔∀a ∈ A,∀b ∈ B,∀c ∈C,(exc(S) :: c) :: (a ∥ b)→✠0 (by definition)
⇔∀a ∈ A,∀b ∈ B,∀c ∈C,((exc(S) :: c) :: a) :: b→✠0 (by Proposition 48)
⇔∀a ∈ A,∀b ∈ B,∀c ∈C,((S :: a) :: b) :: c→✠0 (by the obvious fact above)
⇔∀a ∈ A,∀b ∈ B,∀c ∈C,(S :: (a ∥ b)) :: c→✠0 (by Proposition 48)
⇔∀a ∈ A,∀b ∈ B,∀c ∈C,S :: ((a ∥ b) ∥ c)→✠0 (by Proposition 48)

⇔S⊥ (A ∥− B) ∥− C (by definition).

To prove the last equality (A ∥− (B− ∥C−))⊥ = ((A ∥− B) ∥− C)⊥, we proceed like before and we show that,
for every net S, the following equivalence holds: S⊥ A ∥− (B− ∥C−) ⇐⇒ S⊥ (A ∥− B) ∥− C. Indeed:

S⊥ A ∥− (B− ∥C−)

⇔∀a ∈ A,∀b ∈ B,∀c ∈C,S :: (a ∥ (b ∥ c))→✠0 (by definition)
⇔∀a ∈ A,∀b ∈ B,∀c ∈C,(S :: a) :: (b ∥ c)→✠0 (by Proposition 48)
⇔∀a ∈ A,∀b ∈ B,∀c ∈C,((S :: a) :: b) :: c→✠0 (by Proposition 48)
⇔∀a ∈ A,∀b ∈ B,∀c ∈C,(S :: (a ∥ b)) :: c→✠0 (by property 2)
⇔∀a ∈ A,∀b ∈ B,∀c ∈C,S :: ((a ∥ b) ∥ c)→✠0 (by Proposition 48)

⇔S⊥ (A ∥− B) ∥− C (by definition).

E Complements to section 4

E.1 Proving Remark 59
Proposition 135 (Constructions preserve inclusion). Consider four types A0 ⊆ A and B0 ⊆ B then:

1. A0 ∥ B0 ⊆ A ∥ B
2. A0 �B0 ⊆ A�B
3. A0⊗B0 ⊆ A⊗B
4. A0 `B0 ⊆ A`B

Proof. We treat each point independently.
1. Consider x an element of A0 ∥− B0 then x is of the form a0 ∥ b0 with a0 ∈A0 and b0 ∈ B0. Because we have

the inclusion A0 ⊆ A and B0 ⊆ B it follow then that x = a0 ∥ b0 belongs to A ∥− B and thus to A ∥ B.
As a consequence A0 ∥− B0 ⊆ A ∥ B thus, because bi orthogonality preserves inclusion, it follows that
(A0 ∥− B0)

⊥⊥ ⊆ (A ∥ B)⊥⊥ therefore A0 ∥ B0 ⊆ A ∥ B by density (Remark 50)
2. If A0 ⊆ A and B0 ⊆ B we equivalently have the inclusions A⊥0 ⊇ A⊥ and B⊥0 ⊇ B⊥. Using the previous

demonstrated fact it follows that A⊥0 ∥ B⊥0 contains A⊥ ∥ B⊥. Again using the fact that orthoganility invert
inclusions we then derive that (A⊥0 ∥B⊥0 )

⊥ is included in (A⊥ ∥B⊥)⊥. By duality this means A0 �B0⊆A�B
(Proposition 51).

3. In the ⊗–case we reason similarly to the ∥ case.
4. For the `–case we can reason by duality using the ⊗–case.
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Proposition 136 (Remark 59). Given a formula A and a basis B, we have JA⊥KB ⊆ JAK⊥B .

Proof. By induction on the formula. If A = X is an atomic formula this is trivial. If A = B⊗C then:

J(B⊗C)⊥KB = JB⊥`C⊥KB

= JB⊥KB ` JC⊥KB

⊆ JBK⊥B ` JCK⊥B (Proposition 135 and induction hypothesis)

= (JBKB⊗ JCKB)⊥ (Proposition 56)

= (JB⊗CKB)⊥ (Proposition 56)

Similarly, if A = B`C:

J(B`C)⊥KB = JB⊥⊗C⊥KB

= JB⊥KB⊗ JC⊥KB

⊆ JBK⊥B⊗ JCK⊥B (Proposition 135 and induction hypothesis)

= (JBKB ` JCKB)⊥ (Proposition 56)

= (JB`CKB)⊥ (Proposition 56)

E.2 On approximable basis
Remark 137. Given two nets S and T the net S :: T is equal to the net T :: S, that is, up to ismorphism of the cut
links mapping each ⟨S(i),T (i)▷cut⟩ to a cut link ⟨T (i),S(i)▷cut⟩.

Proposition 138. Given B an approximable basis for any formula A of MLL the type JAKB is approximable.

Proof. By induction on A. In the case where A is atomic this follows from the definition.
• For a formula A⊗B. Let us show ✠1 belongs to JA⊗BKB by showing that ✠1 is orthogonal to JA⊗BK⊥B .

The interpretation JA⊗BK⊥B is equal to (JAKB ⊗ JBKB)⊥ and so to JAK⊥B ` JBK⊥B . To be orthogonal to
JAK⊥B ` JBK⊥B is to be orthogonal to the nets S+ ⟨p1, p2 ▷` p⟩ where S belongs to JAK⊥B �JBK⊥B . Consider
S such a net, then:

✠1 :: S+ ⟨p1, p2 ▷` p⟩
→ ✠1 ∥✠1 :: S (Definition 22)
= S :: (✠1 ∥✠1) (Remark 137)
= (S :: ✠1) :: ✠1 (Proposition 48)

By induction ✠1 belongs to JAK⊥⊥B and S belongs to JAK⊥B �JBK⊥B we conclude that S ::✠1 belongs to JB⊥KB .
Again by induction ✠1 belongs to JBK

⊥⊥
B and so in particular it belongs to in JB⊥K⊥B . To conclude: we have

shown that S :: ✠1 belongs to JB⊥KB , hence it is orthogonal to JB⊥K⊥B so in particular it is orthogonal to
✠1. As a consequence S :: ✠1 :: ✠1 reduces to ✠0.

• Now consider a formula of the form A`B. Again let us show that ✠1 is orthogonal to JA`BK⊥B i.e. to
JAK⊥B⊗ JBK⊥B . To be orthogonal to that type is to be orthogonal to the nets a ∥ b+ ⟨p1, p2 ▷⊗ p⟩. Consider
such a net, then:

✠1 :: a ∥ b+ ⟨p1, p2 ▷⊗ p⟩
→ ✠2 :: a ∥ b (Definition 22)

= ✠1 ▷◁ ✠1 :: a ∥ b (Definition 122)

By induction both JAKB and JBKB contains ✠1 thus JAKB �JBKB contains ✠2 (Proposition 178). Equiva-
lently this means that ✠2 is orthogonal to JAK⊥B ∥ JBK⊥B , hence ✠2 ⊥ a ∥ b. This concludes to show that ✠1
belongs to JA`BKB .
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E.3 Adequacy – Proof of Theorem 64
Theorem 64 (Adequacy). Let B be an approximable basis. For any net S and sequent Γ S ⊢MLL✠ Γ⇒ S ⊩B Γ.

Proof. We proceed by induction on the proof π which is represented by the net S.
Base case. In the base the proof π consists of a proof tree using a single ✠–rule introducing any sequent

Γ = A1, . . . ,An of length n. Then any net S representing π is isomorphic to ✠n, we must therefore show that ✠n
belongs to JΓKB .

Because B is approximable any interpretation JAKB is approximable (Proposition 138): for every 1 ≤ i ≤ n
we have ✠1 ∈ JAiKB i.e. u⊥✠1 for every u ∈ JAiK⊥B . We want to show that ✠n ∈ JA1, . . . ,AnKB or equivalently
that ✠n is orthogonal to JA1, . . . ,AnK⊥B = (JA1KB � . . .�JAnKB)⊥ = JA1K⊥B ∥ . . . ∥ JAnK⊥B . By density (Remark 50)
to prove ✠n⊥ JA1K⊥B ∥ . . . ∥ JAnK⊥B it is enough to prove that u1 ∥ · · · ∥ un⊥✠n for every ui ∈ JAiK⊥B . We proceed
by induction on n:

✠n :: (u1 ∥ · · · ∥ un)

= (. . .(✠n :: u1) :: . . .) :: un (Proposition 48)
→∗ (. . .(✠n−1 :: u2) :: . . .) :: un (Proposition 128 and u1⊥✠1)

= ✠n−1 :: (u2 ∥ · · · ∥ un) (Proposition 48)
→∗ ✠0 (Induction hypothesis)

As a consequence ✠n is contained in the type JA1, . . . ,AnKB , i.e. ✠n realises the sequent Γ.
To conclude observe that any proof π of conclusion Γ = A1, . . . ,An which uses only one inference rule in

MLL✠, must use a daimon inference rule. Then any such proof π is mapped by JπK to the daimon link with n
outputs ✠n. Hence we have showed the base case of the induction, where the induction is performed on the size
(its number of inference rules) of the proof π .

Inductive cases. We look at the last rule of π which may be a ⊗,` or cut–rule:
IND·1 Assume that the last rule in the represented proof is a `–rule with main conclusion A`B. Thus the

sequent is of the form Γ,A` B, and by assumption S ⊢MLL✠ Γ,A` B. Say the conclusions of S are
ordered as q1, . . . ,qn, p then since p is given the type A`B the net S is of the form S′+ ⟨p1, p2 ▷` p⟩
where S′ ⊢MLL✠ Γ,A,B.
Calling the induction hypothesis we can deduce S′ ⊩B Γ,A,B. By definition, this menas that for any γ in
JΓK⊥B , we have S′ :: γ ⊩B A,B, and thus S′ :: γ + ⟨p1, p2 ▷` p⟩ ⊩B A`B.
Furthermore interaction and sum commute (Proposition 121) hence, S′ :: γ+⟨p1, p2 ▷` p⟩= S′+⟨p1, p2 ▷`
p⟩ :: γ so that S :: γ ⊩B A`B for any γ ∈ JΓK⊥B: this allows us to conclude that S ⊩B Γ,A`B.

IND·2 Assume that the last rule in the represented proof is a ⊗–rule with main conclusion A⊗B. Thus the
sequent is of the form Γ,∆,A⊗B, and S is of the form S1⊗S2 where S1 ⊢MLL✠ Γ,A and S2 ⊢MLL✠ ∆,B.
Calling the induction hypothesis we obtain S1 ⊩B Γ,A and S2 ⊩B ∆,B. Thus for any γ ∈ JΓK⊥B and
δ ∈ J∆K⊥B S1 :: γ ⊩B A and S2 :: δ ⊩B B. In particular this means that the tensor union of the two nets
S1 :: γ +S2 :: δ + ⟨p1, p2 ▷⊗ p⟩ is in JAKB⊗ JBKB = JA⊗BKB .
Note that S1 :: γ +S2 :: δ + ⟨p1, p2 ▷⊗ p⟩= S1 +S2 + ⟨p1, p2 ▷⊗ p⟩ :: γ ∥ δ (Proposition 48 and Proposi-
tion 121). Thus S1+S2+⟨p1, p2 ▷⊗ p⟩ :: γ ∥ δ ⊩B A⊗B. Since this hold for any γ ∈ JΓK⊥B and δ ∈ J∆K⊥B
we conclude that S1 +S2 + ⟨p1, p2 ▷⊗ p⟩ ⊩B Γ,∆,A⊗B i.e. S ⊩B Γ,∆,A⊗B.

IND·3 Assume that the last rule in π is a cut rule between two subproofs π1 and π2 of respective conclusions
Γ,A and ∆,A⊥. Then a net S which represents π is of the form S = S1 + S2 + ⟨S1(#S1),S2(#S2) ▷cut⟩
where S1 (resp. S2) is a representation of the proof π1 (resp. π2).
Applying the induction hypothesis we derive S1 belongs to JΓ,AKB and S2 belongs to J∆KB . Hence
for any u ∈ JΓK⊥B and v ∈ J∆K⊥B we have S1 :: u ∈ JAKB and S2 :: v ∈ JA⊥KB . Because JA⊥KB ⊂ JAK⊥B
(Remark 59) it follows that (S1 :: u)⊥(S2 :: v). Let us rewrite this net to conclude:

S1 :: u :: S2 :: v

= S1 :: u + ⟨(S1 :: u)(1),(S2 :: v)(1)▷cut⟩+ S2 :: v (Definition 41)
= S1 :: u + ⟨S1(#S1),S2(#S2)▷cut⟩+ S2 :: v (Identity)
= (S1 + ⟨S1(#S1),S2(#S2)▷cut⟩) :: u+S2 :: v (Proposition 121)
= (S1 + ⟨S1(#S1),S2(#S2)▷cut⟩+S2) :: u :: v (Proposition 121)
= S :: u :: v (Identify S)

= S :: (u ∥ v) (Proposition 48)
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This shows that S is orthogonal to any u ∥ v when u ∈ JΓK⊥B and v ∈ J∆K⊥B . In other words S is orthogonal
to JΓK⊥B ∥− J∆K⊥B and therefore to JΓK⊥B ∥ J∆K⊥B (Remark 50) thus by duality it belongs to JΓKB �J∆KB

(Proposition 51) i.e. by definition to JΓ,∆KB .

F Complements to section 5

F.1 On orthogonality of Paritions
F.1.1 Orthogonal Partitions and bijections

Definition 139 (image of a partition). Given a partition P = {C1, . . . ,Cn} of a set X and a function f : X → Y the
image of P by f is the set { f (C1), . . . , f (Cn)}, it is denoted f (P).

Proposition 140 (Bijections preserve partitions). Given f : X→Y a bijection between two sets. For any partition
P of X the image f (P) is a partition of Y .

Definition 141. An isomoprhisms f : G→ H between two undirected multigraph G = (VG,EG,brdG) and H =
(VH ,EH ,brdH) is a pair of functions ( fV , fE) such that:

• fV : VG→VH is a bijection.
• fE : EG→ EH is a bijection.
• For any edge e of EG we have that fV (brdGe) equals brdH f (e).

Proposition 142. Given f : X → Y a bijection P and Q two partitions of X. The assertions are equivalent:
• The partitions P and Q are orthogonal.
• The partitions f (P) and f (Q) are orthogonal.

Proof. We show that the induced graph by P and Q and by f (P) and f (Q) are isomorphic, i.e. that G1 ::= G(P,Q)
and G2 ::= G(f(P), f(Q)) are isomorphic. The bijection between the set of edges is given by f : X → Y while the
bijection between the vertex–sets VG1 and VG2 is given by the map associating with a subset of X its image under
f i.e. F : {x1, . . . ,xn}→ { f (x1), . . . , f (xn)}.

Finally, one can check that the border function are coherent: for A∈P the image f (brdG(P,Q)(A)) is brdG( f (P), f (Q))( f (A)).

F.1.2 Orthogonal Partitions and their representations as nets

Definition 143. A natural partition is a partition of a subset of N. A natural partition of size n is a partition of the
set of integers {1, . . . ,n}.

Remark 144. Given a natural partition P of size n, any partition to Q which is orthogonal to P is also a natural
partition of size n.

Definition 145. A net S = (|S| ,a(S)) containing only daimon links represents a natural partition P of size n
(which we denote S≡ P) whenever:

• For each class {i1, . . . , ik} in P there exists a daimon link ⟨▷✠ S(i1), . . . ,S(ik)⟩ in S.
• For each daimon link ⟨▷✠ S(a1), . . . ,S(am)⟩ contained in S the set of integers {a1, . . . ,an} is a class of the

partition P.

Remark 146. Given a natural partition P of size n there exists (infinitely) many nets S which represent P, however
all these nets are isomorphic.

Notation 147. Given a natural partition P of size n we abusively denote by P✠ a representation of P.

Proposition 148. Given P and Q two natural partition of size n, and two nets S and T such that S ≡ P while
T ≡ Q, the assertions are equivalent:

• The partitions P and Q are orthogonal.
• The nets S and T are orthogonal.

Proof. Observe that G(P,Q) is acyclic and connected if and only if S :: T is acyclic and connected. Then we can
prove each implication:
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1⇒ 2. Assuming that G(P,Q) then S :: T is acyclic and connected. Because S and T contain only daimon links,
S :: T contains only glueing cuts. Furthermore the elimination of glueing cuts preserve acyclicity and
connectedness while S :: T is a net without conclusion (and cut–elimination preserve the conclusion of a
net). The only cut free, acyclic–connected net with no conclusions is ✠0 thus we conclude S :: T →✠0
meaning that S and T are orthogonal.

2⇒ 2. Assume that S :: T →✠0 note that the reduction step of glueing cuts preserve acyclicity and connect-
edness in both directions, as a consequence since S :: T reduces to ✠0 by eliminating only glueing cuts
and since ✠0 is acyclic and connected we conclude that S :: T is also acyclic and connected. This means
equivalently that G(P,Q) is acyclic and connected.

F.2 Proving Proposition 75
F.2.1 Elimination of Multiplicative cuts and addresses

Definition 149. An address is a sequence of elements of {l,r}. The element at position l (resp. r) relatively to
p in a net S is as follows:

Find(p;l)≜
{

p1 if p ∈ ⟨p1, p2 ▷□ p⟩ belongs to S
undefined otherwise. .

Find(p;r)≜
{

p2 if p ∈ ⟨p1, p2 ▷□ p⟩ belongs to S
undefined otherwise. .

The element at address ξ relatively to p in a net S is defined inductively:

Find(p;ε) = p ; Find(p;l ·ξ ) = Find(Find(p;l);ξ ) ; Find(p;r ·ξ ) = Find(Find(p;r);ξ )

Remark 150. For each position p of a net S = (|S| ,a(S)) there exists an address ξ and an integer i so that
p = Find(S(i);ξ ) (This can be shown by induction on the number of links in S). For a position p we denote that
index i by root(p) and ξ by adr(p).

Remark 151. Adresses are ordered in the following way: we set l ≤ r and lift to adresses using the lexicograph-
ical order.

Definition 152 (cut–free initial order). Given a cut–free net S = (|S| ,a(S)) we can order the initial positions of
S: A position p is smaller than q if root(p) < root(q) or if root(p) = root(q) while adr(p) ≤ adr(q) (for the
lexicographical order). This induced order is denoted ≤a(S).

Given a conclusion p of a net S an address ξ is defined for p is Find(p;ξ ) is defined in S. An address is
maximal for a position p if ξ is defined for p and no address that is defined for p has ξ for strict prefix. We denote
max(p) the maximal addresses of a position p.

Proposition 153. Given a net S, p a conclusion of S and ξ an address. The assertions are equivalent:
• ξ is maximal for p.
• Find(p;ξ ) is an initial position of S.

Corollary 154. Given a net S = (|S| ,a(S)) the set of initial positions of S is equal to⋃
1≤i≤#S

Find(S(i);max(S(i))).

Notation 155. Given a position p in a net S we denote linkS(p) the set of connective links above p in S.
Given an (unordered) net S = (V,E,s, t) and a set of link E0 of S we denote by S\E0 the net (V ∩

⋃
e∈E\E0

t(e)∪
s(e),E \E0,s, t).

Proposition 156. Given S and T two nets such that S |≃at A1, . . . ,An while T |≃at A⊥1 , . . . ,A
⊥
n then by eliminating only

multiplicative cuts the interaction S :: T reduces to

S✠+T✠+ ∑
1≤i≤n

∑
ξ∈{l,r}Ni

⟨Find(S(i);ξ )S,Find(T (i);ξ )T ▷cut⟩

Proof. Assume that S and T contain connective links (i.e. ⊗– and `–links) and more precisely, without loss
of generality assume that their first conclusion is the output of a connective link. As a consequence since S |≃at

A1, . . . ,An and T |≃at A⊥1 , . . . ,A
⊥
n witness dual sequents it follows that A1 = B1⊗B2 while A⊥1 = B1 `B2.
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First note that S :: T is equal to

S+T + ∑
1≤i≤n

⟨S(i),T (i)▷cut⟩= S+T + ⟨S(1),T (1)▷cut⟩+ ∑
2≤i≤n

⟨S(i),T (i)▷cut⟩

Furthermore since A1 = B1⊗B2 while A⊥1 = B1 `B2 we can ensure that a link ⟨p1, p2 ▷⊗ S(1)⟩ occurs in S and
is terminal while a link ⟨q1,q2 ▷` S(1)⟩ occurs in T and is terminal.

As a consequence ⟨S(1),T (1)▷cut⟩ is a multiplicative cut in S :: T and its elimination produces the following
reduction:

S+T + ⟨S(1),T (1)▷cut⟩
→ S\ ⟨p1, p2 ▷⊗ S(1)⟩+T \ ⟨q1,q2 ▷` T (1)⟩+ ⟨p1,q1 ▷cut⟩+ ⟨p2,q2 ▷cut⟩
= S\ ⟨p1, p2 ▷⊗ S(1)⟩+T \ ⟨q1,q2 ▷` T (1)⟩

+ ⟨Find(S(1);l),Find(T (1);l)▷cut⟩+ ⟨Find(S(1);r),Find(T (1);r)▷cut⟩
By contextual closure of the cut elimination procedure we derive the following reduction:

S :: T = S+T + ∑
1≤i≤n

⟨S(i),T (i)▷cut⟩

= S+T + ⟨S(1),T (1)▷cut⟩+ ∑
2≤i≤n

⟨S(i),T (i)▷cut⟩

→ S\ ⟨p1, p2 ▷⊗ S(1)⟩+T \ ⟨q1,q2 ▷` T (1)⟩
+ ⟨Find(S(1);l),Find(T (1);l)▷cut⟩+ ⟨Find(S(1);r),Find(T (1);r)▷cut⟩+ ∑

2≤i≤n
⟨S(i),T (i)▷cut⟩

Now consider the two nets S0 = (S \ ⟨p1, p2 ▷⊗ S(1)⟩,Find(S(1);l) · Find(S(1);r) · a(S)) and T0 = (T \
⟨q1,q2 ▷` T (1)⟩,Find(T (1);l) ·Find(T (1);r) · a(2)). Observe that because S |≃at A1, . . . ,An it follows that S0 |≃

at

B1,B2,A2, . . . ,An while because T |≃at A⊥1 , . . . ,A
⊥
n it follows that T0 |≃

at B⊥1 ,B
⊥
2 ,A

⊥
2 , . . . ,A

⊥
n . Because S0 and T0 have

less connective links than S and T we can apply the induction hypothesis. Furthermore we observe that

S\ ⟨p1, p2 ▷⊗ S(1)⟩+T \ ⟨q1,q2 ▷` T (1)⟩
+ ⟨Find(S(1);l),Find(T (1);l)▷cut⟩+ ⟨Find(S(1);r),Find(T (1);r)▷cut⟩+ ∑

2≤i≤n
⟨S(i),T (i)▷cut⟩

= S0 +T0 + ⟨Find(S(1);l),Find(T (1);l)▷cut⟩+ ⟨Find(S(1);r),Find(T (1);r)▷cut⟩+ ∑
2≤i≤n

⟨S(i),T (i)▷cut⟩

= S0 +T0 + ⟨S0(1),T0(1)▷cut⟩+ ⟨S0(2),T0(2)▷cut⟩+ ∑
2≤i≤n

⟨S(i),T (i)▷cut⟩

= S0 +T0 + ⟨S0(1),T0(1)▷cut⟩+ ⟨S0(2),T0(2)▷cut⟩+ ∑
3≤i≤n+1

⟨S0(i),T0(i)▷cut⟩

= S0 +T0 + ∑
1≤i≤n+1

⟨S0(i),T0(i)▷cut⟩

= S0 :: T0

By calling the induction hypothesis on S0 :: T0 we derive the reduction:

S0 :: T0→∗ S✠0 +T✠
0 + ∑

1≤i≤#S0

∑
ξ∈max(S0(i))

⟨Find(S0(i);ξ )S,Find(T0(i);ξ )T ▷cut⟩

First observe S✠0 = S✠ and T✠
0 = T✠. Now note that any for any 3 ≤ i ≤ #S0 we have S0(i) = S(i−1) while

T0(i) = T (i−1) thus the sum of cut links can be rewritten:

∑
1≤i≤#S0

∑
ξ∈max(S0(i))

⟨Find(S0(i);ξ )S0 ,Find(T0(i);ξ )T0 ▷cut⟩

= ∑
1≤i≤2

∑
ξ∈max(S0(i))

⟨Find(S0(i);ξ )S0 ,Find(T0(i);ξ )T0 ▷cut⟩+ ∑
3≤i≤#S0

∑
ξ∈max(S0(i))

⟨Find(S0(i);ξ )S0 ,Find(T0(i);ξ )T0 ▷cut⟩

= ∑
1≤i≤2

∑
ξ∈max(S0(i))

⟨Find(S0(i);ξ )S0 ,Find(T0(i);ξ )T0 ▷cut⟩+ ∑
3≤i≤#S0

∑
ξ∈max(S(i−1))

⟨Find(S(i−1);ξ )S,Find(T (i−1);ξ )T ▷cut⟩

= ∑
1≤i≤2

∑
ξ∈max(S0(i))

⟨Find(S0(i);ξ )S0 ,Find(T0(i);ξ )T0 ▷cut⟩+ ∑
2≤i≤#S

∑
ξ∈max(S(i))

⟨Find(S(i);ξ )S,Find(T (i);ξ )T ▷cut⟩

To conclude observe that max(S0(i)) is equal to {s | ∃i ∈ {l,r}i · s ∈max(S(i))} Furthermore Find(T (1);l)
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is equal to T0(1). Thus we derive the following:

∑
1≤i≤2

∑
ξ∈max(S0(i))

⟨Find(S0(i);ξ )S0 ,Find(T0(i);ξ )T0 ▷cut⟩

= ∑
i∈{l,r}

∑
ξ∈max(Find(S(1);i)S)

⟨Find(X ;ξ )S0 ,Find(X ;ξ )T0 ▷cut⟩

= ∑
i∈{l,r}

∑
ξ∈max(Find(S(1);i)S)

⟨Find(S(1); iξ )S,Find(T (1); iξ )T ▷cut⟩

= ∑
ξ∈max(S(1))

⟨Find(S(1);ξ )S,Find(T (1);ξ )T ▷cut⟩

Putting all together the sum of cut links can be written as:

∑
ξ∈max(S(1))

⟨Find(S(1);ξ )S,Find(T (1);ξ )T ▷cut⟩+ ∑
2≤i≤#S

∑
ξ∈max(S(i))

⟨Find(S(i);ξ )S,Find(T (i);ξ )T ▷cut⟩

= ∑
1≤i≤#S

∑
ξ∈max(S(i))

⟨Find(S(i);ξ )S,Find(T (i);ξ )T ▷cut⟩

As a consequence we conclude that S0 :: T0 reduces to

S✠+T✠+ ∑
1≤i≤#S

∑
ξ∈max(S(i))

⟨Find(S(i);ξ )S,Find(T (i);ξ )T ▷cut⟩

Finally, because S :: T → S0 :: T0 we conclude.

F.2.2 Proof of Proposition 75

Remark 157. Given a net S = (|S| ,a(S)) the net induced by its daimon S✠ comes with the natural order induced
by a(S) and the lexicographical order on address. More specifically given p and q two points of S✠ both can
be written as Find(a;ξ ) where a = root(p)S is a conclusion of S while ξ = adr(p)S. Then p ≤ q if and only if
(root(p),adr(p))≤ (root(q),adr(q)) for the lexicographical order.

Proposition 158. Given two cut free nets S and T atomically testable respectively A1, . . . ,An and A⊥1 , . . . ,A
⊥
n . The

assertions are equivalent;
• S and T are orthogonal.
• S✠ and T✠ are orthogonal.

Proof. Consider S and T two nets (atomically) testable by dual sequents so that #S = #T = n. The following
reduction can be derived (Proposition 156):

S :: T →mult S✠+T✠+ ∑
1≤i≤n

∑
ξ∈max(S(i))

⟨Find(S(i);ξ ),Find(T (i);ξ )▷cut⟩

But observe that the outputs of S✠ and T✠ are ordered according to the lexicographical order on the pairs
(root(p),adr(p)). As a consequence two conclusion have the same index if and only if their respective roots are
S(i) and T (i) for some i and their address is the same. We derive the following

S✠+T✠+ ∑
1≤i≤n

∑
ξ∈max(S(i))

⟨Find(S(i);ξ ),Find(T (i);ξ )▷cut⟩= S✠+T✠+ ∑
1≤i≤N

⟨S✠(i),T✠(i)▷cut⟩

1⇒ 2. By assumptioni S :: T → ✠0, because the multiplicative cuts get eliminated and can always be per-
formed first due to the commutation result (Proposition 103), this ensures that S :: T → S✠ :: T✠ and since
S :: T →✠0 it follows that S✠ :: T✠→✠0.

2⇒ 1. We have shown with the previous equality that S :: T → S✠ :: T✠ thus we immediately conclude.

Proposition 159 (Orthogonality of nets and of natural partitions). Given S✠ and T✠ two nets made only of daimon
links, the assertions are equivalent:

1. S✠ and T✠ are orthogonal.
2. Nat(P✠(S)) and Nat(P✠(T )) are orthogonal.

Proof. Assume that S✠ :: T✠ reduces to ✠0. In other words the following net reduces to ✠0:

S✠+T✠+ ∑
1≤i≤n

⟨S✠(i),T✠(i)▷cut⟩.
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Equivalently this means that S✠ :: T✠ is an acyclic and connected graph. In particular if we contract each cut
link ⟨S✠(i),T✠(i)▷cut⟩ in a single point that we call i the acyclicity and connectedness is preserved. And in that
case the resulting graph is G(Nat(P✠(S)),Nat(P✠(T ))) showning that these two partitions are orthogonal. The
same argument in the other direction hold.

Proposition 73. Let A be a formula, given two cut free nets S |≃at A and T |≃at A⊥ the assertions are equivalent:
1. The nets S and T are orthogonal.
2. The nets S✠ and T✠ are orthogonal.
3. The partition NatS(P✠(S)) and NatT (P✠(T )) are orthogonal.

Proof. This follows from the two previous proposition, Proposition 159 and Proposition 158.
1⇔ 2. As for 1⇒ 2, we need to establish a property of the rewriting of nets: if N→mult N′ and N−→∗✠0 then

N′−→∗✠0. As for 2⇒ 1, it follows from S :: T →∗ S✠ :: T✠.
2⇔ 3. One first proves that S✠ :: T✠ is acyclic and connected (ACC ) if and only if G(Nat(P✠(S)),Nat(P✠(T )))

is.
As for 3⇒ 2, since no cycle occurs in S✠ :: T✠ all (glueing) cuts are acyclic and thus all cuts can be eliminated,

furthermore the elimination of a glueing cut preserves ACC . The net S✠ :: T✠ contains no connective link, thus its
normal form does not contain clash cuts. Hence because the only net without conclusion that is normal, ACC and
contains no clash cuts is ✠0 we conclude S✠ :: T✠→✠0. As for 2⇒ 3, note that anti–steps of cut elimination for
glueing cuts also preserve the ACC property hence if S✠ :: T✠→✠0 it must be that S✠ :: T✠ is ACC .

F.3 Description of tests
The object of this section is to show that the tests of a formula A (Definition 74) may be defined relatively to a
single cut free net S |≃at A: this is because the partitions ↑i σS for some switching of S, only depend on the ⊗– and
`–link of S, which is the same for any cut free net U |≃at A.

We now fix a special propositional variable that we denote V. A formula which contains only the V proposi-
tional variable is called a formula pattern.

Definition 160. An hypergraph M which contains only ⊗– or `–links represents a formula pattern F , denoted
M ≡F F whenever:

• If F = V is the propositional variable V then M consists of ({p}, /0, /0, /0) for some position p.
• If F = A⊗B then M is equal to MA +MB + ⟨MA(1),MB(1)▷⊗ p⟩ where p is a fresh position and MA ≡F A

while MB ≡F B.
• If F = A`B then M is equal to MA +MB + ⟨MA(1),MB(1)▷` p⟩ where p is a fresh position and MA ≡F A

while MB ≡F B.

Proposition 161. Given an hypergraph M and a formula pattern A. If M ≡F A then M is target–surjective and
source surjective, and M has a single conclusion.

Proof. By doing a simple induction on A.

Notation 162. Given a formula pattern A and a position p we denote by A(p) a hypergraph which represents the
formula A and has for conclusion p. Furthermore we denote by A⟨p1, . . . , pn ▷ p⟩ a hypergraph M of conclusion
p representing A and such that p1, . . . , pn are the input positions11 of the hypergraph ordered by lexicographical
order on {l,r}∗ for the addresses of the positions i.e. their addresses adr(pi) in M.

Lemma 163 (Decomposition Lemma). Given a cut–free net S with n conclusion there exists a unique sequence
of n formula patterns A1, . . . ,An such that:

S = S✠+ ∑
1≤i≤n

Ai(S(i)).

Proof. One proceeds by induction on the number of connective links of S.

We prove that test of A can be defined relatively to any single net S |≃at A: the next proposition ensures that the
test of a formula may be described using any single net S |≃at A: this is because the switchings only depend on the
`– and ⊗–links of S which are the same for all the nets U |≃at A.

11that is positions which are the target of no link in M.
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Proposition 164. Given a formula A and a net S |≃at A. For any net T , T is a test of A iff T |≃at A⊥ and for some
switching σS of S we have NatT (P✠(T )) = NatS(↑i σS).

Proof. 2⇒ 1. It is the obvious direction.
1⇒ 2. S is a cut–free net atomically testable by A, consider any U which is also cut–free and atomically

testable by A: we show that for any switching σS of S there exists a switching τU of U such that the partitions
NatS(↑i σS) and NatU (↑i τU) are the same.

S and U can be both written as S✠ +A⟨⃗u ▷ p⟩ and U✠ +A⟨⃗v ▷ q⟩. The nets S✠ and U✠ are normal for the
switching rewriting. Observe that the sum of two normal nets for the switching rewriting is still normal for the
switching rewriting; therefore one can show that S✠+A⟨⃗u ▷ p⟩ →` S′ implies A⟨⃗u ▷ p⟩ →` R (by showing the
contraposition). Indeed this will also be true for the net U .

Therefore we derive the following:
• A switching of S is a net of the form S✠+RS where RS is a normal form of A⟨⃗v▷q⟩.
• Similarly, a switching of U is a net of the form U✠+RU where RU is a normal form of A⟨⃗v▷q⟩.
• Finally observe that two cut–free nets U✠ +R = V✠ +R where R is made of connective links only then

NatU (↑i U) = NatV (↑i V ).
Consider then any two switchings of S and U with the same reduct R and denote them respectively σS and τU : it
follows that NatS(↑i σS) equals NatT (↑i σT ).

To conclude, fix the net S |≃at A. A test T of A is such that T |≃at A⊥ and for some U |≃at A and some of its switching
τU NatT (P✠(T )) = NatU (↑i τU). By the previous considerations there exists a switching σS of S such that
NatS(↑i σS) equals NatU (↑i τU) therefore NatT (P✠(T )) = NatS(↑i σS): this allows us to conclude.

F.4 Orthogonality with tests – proof of Proposition 75 and Theorem 76
Using the previous proposition and the well–known result of Danos Regnier (Theorem 40) we obtain the following
proposition of section 5.

Proposition 75. For S cut–free, S |≃at A, we have: S ⊢MLL✠ A⇔ S⊥ tests(A).

Proof. Consider a test T of tests(A) then T |≃at A⊥ and NatT (P✠(T )) = NatS(↑i σS) for some switching σS of
S (Proposition 164). By assumption S and T are orthogonal thus equivalently NatS(P✠(S)) and NatT (P✠(T ))
are orthogonal (Proposition 73). Then NatS(P✠(S)) is orthogonal to each NatS(↑i σS). we then conclude that
P✠(S) and ↑i σS are orthogonal. Since this holds for any switching σS thus calling theorem 40 we conclude
that S is a proof net. The other direction of the equivalence is obtained using the same argument in the opposite
direction.

We can indeed generalise this result the case where S has multiple conclusions, as usual we do this by trans-
formin the net with multiple conclusions in a net with one conclusion by adding a bunch of `–links.

Definition 165 (General connectives). A generalised `–link on the positions p1, . . . , pn is a module denoted
⟨p0, . . . , pn ▷`n p⟩ and defined by the following induction;

• ⟨p0, p1 ▷`1 p⟩= ⟨p0, p1 ▷` p1⟩.
• For any n > 0 we defined ⟨p1, . . . , pn+2 ▷`n+1 p⟩= ⟨pn−1, pn ▷`n p⟩+ ⟨pn, pn+1 ▷` pn+1⟩.
Similarly we defined the generalised tensor links ⟨p0, . . . , pn ▷⊗n p⟩.

Proposition 166. Let S be a net with conclusions p0, . . . , pn,q1, . . . ,qk. Let S1, . . . ,Sn,T1, . . . ,Tk be n nets with one
conclusion the assertions are equivalent;

1. S⊥ S1 ∥ · · · ∥ Sn ∥ T1 ∥ · · · ∥ Tk.
2. S+ ⟨p0, . . . , pn ▷`n p⟩ ⊥ S1 + · · ·+Sn + ⟨S1(1) . . . ,Sn(1)▷⊗n q⟩ ∥ T1 ∥ · · · ∥ Tk

Proof. By a simple induction of the size of the generalised ` connective.

To derive the generalised theorem one must observe that the tests of `–formulas are tensors of the tests of the
subformulas.

Proposition 167. A test T of A`B is of the form TA ∥ TB + ⟨TA(1),TB(1)▷⊗ p⟩ where p a fresh position, TA is a
test of A and TB is a test of B.

Proof. This comes down to analysing the partitions generated by a the switchings of a net S |≃at A ` B indeed
this these are partitions PA ∪PB where PA is a partition of the representation of A and PB is a partition of the
representation of B.
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This easily leads to a proof of the Danos Regnier theorem as stated in section 5.

Theorem 76 (Danos–Regnier Tests). Given a cut–free net S |≃at A1, . . . ,An; S ⊢MLL✠ A1, . . . ,An if and only if S is
orthogonal to tests(A1) ∥ · · · ∥ tests(An).

F.5 Correctness of Tests and counter proofs – proof of Theorem 77
Theorem 77. Any test T of a formula A is correctly typeable by A⊥, T ⊢MLL✠ A⊥.

We have established the previous theorem using the counter proof criterion of P.L. Curien found in [4]. Let us
clearly state the theorem of counter proofs.

Theorem 168 (Counter Proof Criterion). Given a cut–free net S |≃at A the assertions are equivalent:
• S is orthogonal to each net T |≃at A⊥ representing a proof of A⊥.
• S ⊢MLL✠ A.

Remark 169. The counter proof criterion is formulated in [4] where non–homogeneous cut elimination does not
exists. Because this is not the case in our work we add the hypothesis that S |≃at A and the proof–opponents are of
the form T |≃at A⊥ so that only homogeneous cut will appear and be eliminated. Also observe that a proof of A⊥

such that T |≃at A⊥ is an atomic proof of MLL✠ that is, a proof such that its daimon rules introduce sequents which
contains only propositional variables.

One can establish that the fact that tests of A are proofs of A⊥ is equivalent to an implication of the counter
proof criterion.

Proposition 170. Given a formula A the assertions are equivalent:
1. Each test of A is the representation of a proof of A⊥.
2. For any cut–free net S |≃at A if S is orthogonal to each (cut–free) T |≃at A⊥ representing a proof of A⊥ then

S ⊢✠MLL A.

Proof. The fact that 2⇒ 1 is the proof of Theorem 77 (it uses the counter proof criterion [4], Theorem 168). To
show 1⇒ 2, consider a net S |≃at A and assume that each test t of A represents a proof of A⊥ and is such that t |≃at A⊥.
If the net S is orthogonal to each net T ⊢MLL✠ A⊥ with T |≃at A⊥ then in particular it is orthogonal to the set of tests
tests(A): it follows that S ⊢MLL✠ A (Theorem 76).

In fact the result of adequacy we have obtained for MLL✠ (Theorem 64) allows to generalise the counter proof
criterion of P.L. curien [4] in presence of non homogeneous cuts. More precisely, having an adequate basis implies
a “soundness” result of a counter proof criterion, i.e. any proof of A is orthogonal to any proof of A⊥.

Proposition 171. The first assertion implies the second:
1. There exists an adequate basis.
2. Any S ⊢MLL✠ A is orthogonal to any T ⊢MLL✠ A⊥.

Proof. 1⇒ 2. Say B is an adequate basis then for any formula A we have ⦃A : MLL✠⦄⊆ JAKB . Now since JAKB

equals JA
⊥⊥

KB we derive JAKB ⊆ JA⊥K⊥B (Definition 58). This means that any realiser of A is a orthogonal to any
realiser of A⊥, since by adequacy a net S ⊢MLL✠ A realises A and a net T ⊢MLL✠ A⊥ realises A⊥ we conclude.

Then we can obtain a general form of counter proof criterion namely when we don’t have the restriction that
the proofs are atomic i.e. S |≃at A and T |≃at A⊥.

Proposition 172 (Generalised Counter Proof criterion). Given a formula A and S a cut–free net the assertions are
equivalent:

1. S is orthogonal to each net T representing a proof of A⊥.
2. S ⊢MLL✠ A.

Proof. 1⇒ 2. Assume that S |≃at A0 with A0 such that there exists θ with θA0 = A and that S is orthogonal to each
proof nets T ⊢MLL✠ A⊥. In particular any net T ⊢MLL✠ A⊥0 with T |≃at A⊥0 is such that T ⊢MLL✠ A⊥ (Proposition 33).

As a consequence: S is orthogonal to each T ⊢MLL✠ A⊥0 with T |≃at A⊥0 . by the counter proof criterion [4] we
derive S ⊢MLL✠ A0 and thus S ⊢MLL✠ A (again using Proposition 33).

2⇒ 1. We aim at showing that any proof S ⊢MLL✠ A is orthogonal to any proof T ⊢MLL✠ A⊥ which may have
a different syntax tree (and here lies the novelty with respect to P-L. Curien’s theorem [4]). Showing this impli-
cation by analyzing the rewriting rules of cut–elimination can be delicate, however in the language of realisability
this becomes a trivial consequence of the adequacy theorem (Proposition 171). Hence because adequacy hold
(Theorem 64), we conclude.
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F.6 On Substitutions and Testability – Proof of Proposition 82
Recall that a substitution is a map θ which maps propositional variables to formulas. Naturally substitutions can
be lifted by induction to formulas and to sequents; θ(A□B) ≜ θA□θB and θ(Γ,A) = θ(Γ),θA. A sequent Γ is
an instance of a sequent ∆ whenever there exists a substitution θ such that θ∆ = Γ. In that case we denote ∆≤ Γ.

Remark 173. Given two representation of sequents Γ = A1, . . . ,An and ∆ = B1, . . . ,Bn are such that ∆ ≤ Γ this
implies that for each index 1≤ i≤ n we have Bi ≤ Ai specifically Ai[X1 7→ F1, . . . ,Xk 7→ Fk] = Bi.

Remark 174. Whenever a cut–free net S is such that S |≃Γ then there exists a substitution θ and a sequent ∆ such
that S |≃at

∆ and θ∆.

Let us provide a proof of the previous remark.

Proposition 175. Given a cut–free net S and a sequent Γ. If S |≃Γ then there exists a sequent ∆ and a substitution
θ such that θ∆ = Γ and S |≃at

∆.

Proof. If S |≃at
Γ we can calready conclude. Otherwise S |≃ Γ and let us denote p1, . . . , pn the initial positions

of S, and τ the formula labelling witnessing S |≃Γ. Because formula labellings are total functions each pi as
a formula τ(pi) = Fi associated with it consider then X1, . . . ,Xn a family of distinct propositional variables and
the substitution θ [X1 7→ F1; . . . ;Xn 7→ Fn] then consider the (unique) atomic formula labelling such that τ ′(pi) =
Xi then S |≃at

τ ′(S(1)), . . . ,τ ′(S(n)). Indeed then applying θ to the sequent τ ′(S(1)), . . . ,τ ′(S(n)) will result in
τ(S(1)), . . . ,τ(S(n)) which is Γ.

Proposition 82. Given B an approximable basis12 and a sequent Γ for any cut–free net S ∈ JΓKB the assertions
are equivalent:

1. S |≃Γ i.e. S |≃at
∆ for some sequent ∆≤ Γ.

2. S ⊢MLL✠ Γ.

Proof. Using remark 81 and the fact that the tests of a formula B in ∆ are proofs of B⊥ and by proposition 33 are
proofs of A⊥.

G Complements to section 6

G.1 Decomposition
Proposition 176 (Decomposition). Let B be an interpretation basis, H be an hypersequent, A,B two formulas
and S be a multiplicative net.

• If S = S0 + l has a terminal ` link l above its last conclusion and S ∈ JH ,A`BKB; then S0 belongs to
JH ,A,BKB

• If S = S0 + l has a terminal ` link l above its last conclusion and S ∈ JH ∥ A`BKB; then S0 belongs to
JH ∥ (A,B)KB

• If S = S0 + l has a terminal ⊗ link l above its last conclusion and S ∈ JH ,A⊗BKB; then S0 belongs to
JH ,(A ∥ B)KB

• If S = S0 + l has a terminal ⊗ link l above its last conclusion and S ∈ JH ∥ A⊗BKB; then S0 belongs to
JH ∥ A ∥ BKB

Proof. • Consider S a net with a terminal `–link l decomposing S = S0 + l such that l outputs the only con-
clusion of S. Say S belongs to JA`BKB equivalently S is orthogonal to JAK⊥B⊗ JBK⊥B , since a multiplicative
cut can always be performed first this implies that S0 is orthogonal to JAK⊥B ∥ JBK⊥B thus S0 belongs to
JAKB �JBKB . By allowing types to contain cuts, this arguments easily adapts to JH ,A,BKB .

• The reasonment for a net in JA⊗BKB is similar and also easily adapts to the case JH ,A⊗BKB .
• Consider on the other hand a net S in JH ∥ A⊗BKB , such that S = S0+ l where l is a tensor link and outputs

the last conclusion of S. Equivalently S is a net orthogonal to JH K⊥B �JA⊗BK⊥B i.e. JH K⊥B �JAK⊥B `JBK⊥B .
Since the multiplicative cut commute to the left (Proposition 103) we derive that S0 is orthogonal to JH K⊥B �
JAK⊥B �JBK⊥B . Equivalently (by duality) S0 belongs to JH KB ∥ JAKB ∥ JBKB .

• Similarly we treat the case JH ∥ A`BKB . Consider on the other hand a net S in JH ∥ A`BKB , such that
S = S0 + l where l is a parr link and outputs the last conclusion of S.
Equivalently S is a net orthogonal to JH K⊥B �JA`BK⊥B i.e. JH K⊥B �JAK⊥B⊗ JBK⊥B . Because multiplicative
cuts can always be performed first in a reduction sequence (Proposition 103) is follows that S0 is ortogonal
to JH K⊥B �JAK⊥B ∥ JBK⊥B . Equivalently S0 belongs to JH ,A ∥ BKB .

12The Proposition 82 actually holds for any “adequate” basis B.
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G.2 The merge construction belongs to the composition
From Proposition 127 we can derive easily that an explicitly defined type (called merge and denoted A ▷◁ B)
belongs to the composition of two types A�B. This will be used to show that the functional composition (�) and
the parallel composition (∥) of full types remains full (that is the Proposition 181 of Appendix G) therefore by
duality this will imply that the parallel and functional composition of daimon types is a daimon type.

Definition 177. Given A and B two sets of nets we denote by A ▷◁ B the following set:

{a ▷◁(d,d
′) b | a ∈ A,b ∈ B, d ∈ Ea, ℓa(d) =✠, d ∈ Eb, ℓb(d) =✠}.

Proposition 178 (Merges belongs to the compositional construction). Given A and B two types;

(A ▷◁ B)⊥⊥ ⊆ A�B.

Proof. Consider S a net in A ▷◁ B. S may therefore be written as a ▷◁(da,db) b for two elements a ∈ A and b ∈ B
with da a daimon of a and db a daimon of b. We can thus decompose b as db + b0 and a ▷◁(da,db) b is equal to
(a ▷◁(da),db db)+b0 (Proposition 123).

Now consider an element a of A, then a and a are orthogonal, therefore (a ▷◁(da),db db) :: a reduces to db
(Proposition 127). Furthermore (a ▷◁(da),db db) + b0 :: a is equal to ((a ▷◁(da),db db) :: a) + b0 because a only
interacts with the conclusions of a thus that net reduces to db +b0 which is exactly b and so belongs to B. Thus it
follows that the net ((a ▷◁(da),db db)+b0) :: a that is a ▷◁(da,db) b0 :: a belongs to B for any a∈A thus that it belongs
to A�B.

We have shown A ▷◁ B⊆A�B and thus since inclusion is stable under bi orthogonal, (A ▷◁ B)⊥⊥ ⊆A�B

G.3 Full Types and daimon types
We introduce some terminology regarding types in order to identify types which contain only nets whose conclu-
sions are outputs of daimon links. Such basis are for instance daimon basis, and, one can easily see that 1 is a
daimon basis.

Definition 179. A type A is full when for each 1 ≤ i ≤ #A there exists a net S (resp. T ) such that its conclusion
S(i) (resp. T (i)) is the output of a `–link (resp. ⊗–link).

Remark 180. Observe that in a daimon type A each conclusion of a net S ∈ A is the output of a daimon link
(Remark 185): as a consequence there exists an atomic (that is, containing only propositional variable) sequent Γ

made of #A formulas such that any cut free net S of A is testable by Γ i.e. S |≃at
Γ

Proposition 181. Given two full types A and B;
• Their functional composition A�B is still full.
• Their parallel composition A ∥ B is still full.
Given two daimon types A and B;
• Their functional composition A�B is still a daimon type.
• Their parallel composition A ∥ B is still a daimon type.

Proof. Indeed the parallel A ∥ B remains full since it contains in particular the nets of the form a ∥ b with a ∈ A
and b ∈ B. Similarly this remains true for A�B since it contains the merge A ▷◁ B (Proposition 178).

For the daimon types we conclude using the duality results (Proposition 51).

Proposition 182. Let A and A⊥ be two orthogonal and non–empty types, the assertions are equivalent:
• A is a daimon type.
• Each conclusion of a net S of A is the output of a daimon link.

Proof. 1⇒ 2. This is already discussed in Remark 185. A net S in A is orthogonal to any nets in A⊥, and because
A⊥ is full the conclusions of S cannot be the outputs of connectives otherwise a clashing cut will occur in some
interaction S :: T for some T in A⊥.

2⇒ 1. This requires a much more detailed analysis of the rewriting rules of cut elimination. We will not give
the detail here because this implication is not used in this work and the proof requires the addition of a lot of
content in order to be obtained.
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G.4 Daimon Basis are Compact – proof of Proposition 83
The object of this section is to provide a proof of Theorem 187. Let us define compact basis as basis which satisfy
the first item of Proposition 82; such a basis if also enjoys adequacy, will obviously be complete for MLL✠ (using
Proposition 82).

Definition 183. A basis B is compact if for any Γ and any net S; S ⊩B Γ⇒ S |≃at
Γ.

To obtain MLL✠–completeness (for cut–free nets) Proposition 82 ensure that it is enough to find a basis that
is approximable and compact: such kind of basis are daimon basis (Theorem 187), for instance the basis mapping
each propositional variable to {✠1}

⊥⊥
. Technically this is where it is useful to interpret hypersequents; a basis

is compact is equivalently a basis such that for any hypersequent H which is `− and ⊗–free the interpretation
JH KB contain only nets of whose conclusions are targets of daimon links.

Definition 184 (Daimon type). A type A is a daimon type whenever for each 1 ≤ i ≤ #A its dual A⊥ contains a
net S with a terminal `–link which outputs S(i) and a net T with a terminal ⊗–link which outputs T (i). A basis
B is a daimon basis when for each propositional variable X its interpretation JXKB is a daimon type.

Remark 185. The conclusions of a net which belong to a daimon type A must be the outputs of daimon links
(Remark 46).

A daimon basis is indeed a compact basis; the elements of a (non–empty) daimon type can only have con-
clusions which are outputs of a daimon link otherwise clashing cuts occur (Remark 46), then an induction on the
formulas show compactedness of the basis. First we must show a more general result which holds on hyperse-
quents.

There is a simple inductive process to associate a sequent ↓H to an hypersequent H ; ↓ A ≜ A while ↓
H1,H2 ≜↓H1,↓H2 and ↓H1 ∥H2 ≜↓H1,↓H2.

Lemma 186 (Daimon Basis Property). Let B be a daimon basis. For any cut–free net S; S ∈ JH KB⇒ S|≃at ↓H .

Proof. of lemma 186. By induction on the hypersequent using the measure (c,n) where c is the number of
connectives in the hypersequent and n is the size of the hypersequent.

• If the hypersequent is made of one atomic formula X then S∈ JXKB implies that S belongs to a daimon type,
thus the outputs of S are outputs of a daimon (Remark 185). This by definition means S |≃at X and therefore
S |≃at X .

• Say the hypersequent is made only of atomic formulas. The hypersequent may be of the form H1,H2 then
JH1,H2KB = (JH1K⊥B ∥ JH2K⊥B)⊥ since, JH1K⊥B and JH2K⊥B are open types their parallel composition
remains an open type. JH1,H2KB is the orthogonal of an full type hence it is a daimon type. Thus any
sequent in that type as outputs which comes from a daimon link and thus is the approximation of any sequent
of size n in particular S|≃at ↓H . We do a similar reasonment when H = H1 ∥H2.

• Case of non–atomic hypersequent with a virgula as main connective. Assume that S has a terminal con-
nective link, say the hypersequent is of the form H ,A`B such that S = S0 + l where l is a `–link and is
the last conclusion of S. By proposition 176 it follows that S0 belongs to JH ,A,BKB the measure of that
hypersequent as decreased and so we apply the induction hypothesis; S0|≃

at ↓ (H ,A,B) indeed it follows that
S|≃at ↓ (H ,A`B). A similar argument works for an hypersequent of the form H ,A⊗B.

• Case of non–atomic hypersequent with a parallel as main connective. On the other hand say S belongs to the
interpretation JH ∥A`BKB then it is orthogonal to JH K⊥B �JA`BK⊥B and thus S0 is orthogonal to JH K⊥B �
JA,BK⊥B . Equivalently using proposition 176 S0 belongs to JH ∥ A,BKB the size of the hypersequent as
decreased and so we can apply the induction hypothesis; S0|≃

at ↓ (H ,A,B) and thus S|≃at ↓ (H ,A`B). A
similar argument works for an hypersequent of the form H ∥A⊗B. Similarly we treat the case of H ,A⊗B.

Indeed the previous lemma is a more general form of Theorem 187 as stated in this subsection. One can now
easily derive it:

Theorem 187. Let B be an approximable daimon basis, Γ a sequent, and S a cut–free net; S ⊩B Γ⇒ S ⊢✠MLL Γ.

From this theorem the fact that the base 1 is compact easily follows, because one can show that 1 is a daimon
basis.

Proposition 83. For any sequent Γ and any cut–free net S; if S ∈ JΓK1 then S |≃at
Γ.

Proof. Observe that the type {✠1}
⊥⊥

is indeed a daimon type (Remark 47), therefore the basis mapping each
propositional variable X to {✠1}

⊥⊥
is a daimon basis. We conclude using Theorem 187.
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Figure 15: The interaction of ✠2 with the net ✠` ∥✠`, this cannot reduce to ✠0 since disconnection of the net
is preserved by cut–elimination and ✠0 is connected.

G.5 Proof of Theorem 85
Theorem 85 (MLL✠ completeness). Given a cut–free net S and a sequent Γ;

• If for all basis B we have S ∈ JΓKB , then S ⊢MLL✠ Γ.
• S ∈ JΓKB for any approximable basis B iff S ⊢MLL✠ Γ.

Proof. As for (1) note that if S realises Γ for any basis B then in particular it realises Γ for 1. Thus applying
Proposition 83 S must be testable by Γ, furthermore 1 is approximable hence applying Proposition 82 we conclude
S ⊢MLL✠ Γ.

As for (2) to have the implication that S ∈ JΓKB yields S ⊢MLL✠ Γ simply use the same argument as for point
(1) merely noting that 1 is an approximable basis. To show that S ⊢MLL✠ Γ implies S∈ JΓKB is exactly the theorem
of adequacy (Theorem 64).

G.6 Proof of Theorem 88
The ground form of an MLL formula A is the atomic hypersequent obtain when each⊗ is replaced by a ∥ and each
` is replaced by a �.

Proposition 188. Given a cut–free net a ∥ b with binary daimon links and two formulas A and B which have no
variable in common if a ∥ b belongs to JAKB ∥ JBKB for any base B then a ∈ JAKB and b ∈ JBKB for any basis B.

Proof. We rely on the following fact, a ∥ b belongs JAKB ∥ JBKB so in particular a ∥ b is orthogonal to JAK⊥B ▷◁
JBK⊥B (Proposition 178).

By induction on the formula A and B if both are equal to X and Y some propositional variable, then a ∥ b is
orthogonal to JXKB ▷◁ JY KB for any choice of basis therefore the conclusion of a ∥ b may only be daimon links.
Since furthermore

⋂
BJXKB is empty it follows that JXKB ∥ JY KB is also empty thus the proposition hold.

Note that because a ∥ b ∈ JA ∥ BKB for any basis and in particular for 1 which is daimon basis it follows
that a |≃at A and b |≃at B (Lemma 186). Since a ∥ b ⊥ JAK⊥B ▷◁ JBK⊥B from Proposition 106 one can show using
Proposition 176 that this equivalently means that a✠ ∥ b✠ is orthogonal to Jg(A)K⊥B ▷◁ Jg(B)K⊥B . a✠ ∈ Jg(A)KB

iff a ∈ JAKB we assume that a✠ ̸ Jg(A)KB for some basis. Consider a basis B such that a✠ :: s does not reduce to
✠0, although for this to be possible the outputs of a same daimon link in a must be realising X ,Y . one can easily
check that a✠ ∥ b✠ is not orthogonal to s ▷◁ s′ for all s′ ∈ Jg(B)KB (Because A and B don’t share any propositional
variable the interpretation of g(B) can be chosen so that orthogonality fails) and thus that it does not belong to
JAKB ∥ JBKB for all basis.

Lemma 189 (Splitting a Parallel Interaction). Given a sequent Γ with n formulas and two formulas A and B a net
S ::= S1 ∥ S2 with n+ 2 conclusions such that S(n+ 1) is a conclusion of S1 and S(n+ 2) is a conclusion of S2.
There exists two unique sequents Γ1 and Γ2 such that for any basis:

S ∈ JΓ,A ∥ BKB ⇒ S ∈ JΓ1,AKB ∥ JΓ2,BKB

Proof. The inclusions of JΓ1,AKB ∥ JΓ2,BKB in JΓ,A ∥ BKB is obtained by standard calculations.
on the other hand consider a net S in JΓ,A ∥ BKB and is of the form S1 ∥ S2. S1 ∥ S2 :: γ belongs to A ∥ B. And

such that S1 ∥ S2 :: γ belongs to A ∥ B. The opponent γ of JΓK⊥B is an element of JA1K⊥B ∥ · · · ∥ JAnK⊥B , thus it can
range over JA1K⊥B ∥− · · · ∥− JAnK⊥B and we can set γ =U1 ∥ · · · ∥Un. In S1 ∥ S2 :: (U1 ∥ · · · ∥Un) each Ui is cut with
a conclusion of S1 ∥ S2 i.e. a conclusion of S1 or a conclusion of S2. We can therefore split the Ui’s according to
those that are cut with S1 and those that are cut with S2 let us denote the nets made of the parallel of these families
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respectively U1 and U2. This can be rewritten using Proposition 121 to obtain:

S1 ∥ S2 :: (U1 ∥ · · · ∥Un)

= S1 ∥ S2 :: (U1 ∥U2)

= (S1 :: U1 ∥ S2) :: U2 (Proposition 121)

= (S1 :: U1) ∥ (S2 :: U2) (Proposition 121)

Now U1 range in JΓ1KB while U2 range in JΓ2KB . Since S1 ∥ S2 :: (U1 ∥ · · · ∥ Un) belongs to JAKB ∥ JBKB it
follows that S1 :: U1 ∥ S2 :: U2 belongs to JAKB ∥ JBKB . By Proposition 188 it follows that S1 :: U1 belongs to
JAKB and S2 :: U2 belongs to JBKB .

Theorem 88 (MLL completeness). Let S be a cut–free net such that each of its daimon link has exactly two
outputs, Γ be a sequent such that S |≃at

Γ; if S ∈ JΓKB for any basis B then, S ⊢MLL Γ.

Proof. Assume that S realise the sequent Γ for any basis. In particular then S realises Γ for the basis 1. By
Proposition 83 and Proposition 82 this implies that S ⊢MLL✠ Γ. To conclude one must show that the proof tree
π represented by S is indeed from MLL: this means that (1) its daimon rules should introduce only sequents of
size 2 i.e. of the form X ,Y and (2) these sequents must be such that Y = X⊥. The point (1) is guaranteed by the
assumption that the daimons of S are binary 13.

To prove (2), we reason by induction on the proof tree π represented by S however we will need to show in
the inductive cases that the assumption of the theorem hold.

Base case. If π is made of a single daimon rule, then since the daimons are binary it must introduce a
sequent X ,Y , now we show that it cannot be that X ̸= Y , we assume that S ∈ JX ,Y KB for any base B meaning
S ∈ JXKB �JY KB or S⊥ JXK⊥B ∥ JY K⊥B (Proposition 56). Since we range over all basis we may map X and Y to the
same type in particular we can map both atomic proposition to the type {✠`}⊥ where ✠` ::= ⟨▷✠ p1⟩+ ⟨▷✠

p2⟩+ ⟨p1, p2 ▷` p⟩. In that case;

✠2 ⊥ JXK⊥B ∥ JY K⊥B
⇒ ✠2 ⊥ ({✠`}⊥)⊥ ∥ ({✠`}⊥)⊥

⇔ ✠2 ⊥ {✠`}
⊥⊥ ∥ {✠`}

⊥⊥

⇔ ✠2 ⊥ {✠`}
⊥⊥ ∥ {✠`}

⊥⊥

⇔ ✠2 ⊥ {✠`}
⊥⊥ ∥− {✠`}

⊥⊥

⇒ ✠2 ⊥ {✠`} ∥− {✠`}
⇒ ✠2 ⊥✠` ∥✠`

Indeed one can check that the last assertion is false by computing the reduction of ✠2 :: ✠` ∥ ✠`, this is
illustrated in Figure 15. This shows that ✠2 can realise in all basis only sequents of the form X ,X⊥.

Inductive cases. Assume that S represents a proof terminating with a tensor then it is of the form S ::=
S1 + S2 + ⟨S1(1),S2(1) ▷⊗ p⟩ where p is a fresh position (without loss of generality assume the tensor is made
on the first formula of the subproofs). Let us show we can call again the hypothesis on the subproof S1 and S2.
Since S represents a proof terminating with a tensor it proves a sequent Γ,A⊗B. by Proposition 176 it follows
that S1 ∥ S2 belongs to Γ,A ∥ B and thus using Lemma 189 S1 ∥ S2 belongs to JΓ1,AKB ∥ JΓ2,BKB . Since S is the
tensor of the two proofs π1 and π2 represented by S1 and S2 respectively we may assume that π1 and π2 prove
sequents which have no propositional variable in common. We apply now Proposition 188 and conclude that S1
belongs to JΓ1,AKB while S2 belongs to JΓ2,BKB for any basis B. Calling the induction hypothesis this yields
S1 ⊢MLL Γ1,A and S2 ⊢MLL Γ2,B therefore, S ⊢MLL Γ,A⊗B.

Assume that S represents a proof terminating with a par–rule then it is of the form S ::= S0 + ⟨S0(1),S0(1)▷`
p⟩ where p is a fresh position. Let us show we can call again the hypothesis on the subproof S0. Since S
represents a proof terminating with a ` and belongs to JΓ,A`BKB . by Proposition 176 it follows that S0 belongs
to JΓ,A,BKB for any basis, applying the induction hypothesis it follows that S0 is a proof of MLL of Γ,A,B and
thus S ⊢MLL Γ,A`B.

13in terms of classical realisability one can call the nets with binary daimon proof like.
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