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Abstract: A quantum theory of massive Abelian vector bosons with non-minimal cou-
plings to gravity has been studied within an evolving, isotropic, and homogeneous gravita-
tional background. The vectors may play a role of dark matter if stabilizing Z2 symmetry
is imposed. In order to construct a gauge invariant theory of massive vectors that couple to
the Ricci scalar and Ricci tensor, a generalization of the Stuckelberg mechanism has been
invoked. Constraints that ensure consistency of the model had been formulated and corre-
sponding restrictions upon the space of non-minimal couplings have been found. Canonical
quantization of the theory in evolving gravitational background was adopted. Mode equa-
tions for longitudinally and transversally-polarized vector bosons were derived and solved
numerically. Regions of exponential growth in the solutions of the mode equations have
been determined and discussed in detail. The spectral energy density for the three polar-
izations has been calculated, and the UV divergence of the integrated total energy density
has been addressed. Finally, assuming their stability, the present abundance of the vector
bosons has also been calculated.
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1 Introduction

The mystery of dark matter (DM) still remains unexplained. Although there exists an
overwhelming experimental evidence confirming a presence of a dark sector through its
gravitational effects on visible matter, a deeper understanding of its fundamental nature
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has yet to be achieved. In pursuit of this, a plethora of DM models have been proposed,
the vast majority of which introduce not only new dark degrees of freedom but also beyond
the Standard Model (BSM) couplings, for a recent review see Ref.[1, 2]. Usually, theories of
DM postulate some interactions between the SM degrees of freedom, DM particles and/or
mediators connecting dark and visible sectors. The proliferation of DM scenarios accom-
panied by BSM interactions has inspired astroparticle physicists to explore more minimal
DM theories, which do not require BSM beyond the mere existence of DM particles [3–7].

A plausible dark matter model should not only offer a compelling explanation for its cos-
mological origin but also predict the existence of stable, non-relativistic DM relics with an
abundance consistent with the experimental data measured by the Planck collaboration [8].
The absence of evidence for non-gravitational interactions of DM renders the purely gravi-
tational dark matter scenario exceptionally intriguing and conceptually elegant. In recent
years, this model has garnered significant attention, particularly due to the fact that it has
been demonstrated that gravity itself can be the sole and sufficient source of dark particles
[9–24]. The purely gravitational production of dark matter is a broad topic, encompassing
a variety of phenomena, whose origins are rooted in gravitational interactions. For an ex-
cellent recent review, see Ref.[25]. In this work, we focus on the production of dark particles
from the vacuum in the early Universe, driven solely by the non-adiabatic expansion of the
background metric. This process has been explored in the context of spin-0 [3–7, 12, 26–28],
spin-1/2 [12, 29], spin-1 [30–36], and even spin-3/2 [37], or spin-2 [38] particles. In most
studies on dark matter, the discussion is often limited to the minimal scenario, where dark
particles are only minimally coupled to gravity. However, it has been demonstrated that re-
laxing this assumption is well justified and and can have significant consequences for scalar
particles [26, 27]. The theory of massive spin-1 field does not preclude the existence of addi-
tional non-minimal couplings to gravity. Such possibility in the context of dark matter has
been first highlighted in Ref.[32] and subsequently discussed to some extent in Ref.[33, 34].
Recent works [35, 36, 39] provide a more comprehensive discussion of the phenomenology
of non-minimally coupled vectors, identifying instabilities of the model and exploring its
viability as a dark matter candidate. The aim of this work is to extend our previous study,
where we explored the gravitational production of minimally-coupled spin-1 dark matter
[31], by offering a more detailed analysis of the dynamics of non-minimally coupled vec-
tors. Specifically, we allow for non-minimal couplings between the vector field and both the
Ricci scalar and Ricci tensor. Additionally, we examine the dynamics of the vector field in
the post-inflationary universe, considering two reheating scenarios: one with a matter-like
equation of state and the other with a radiation-like equation of state. While our analysis
remains closely related to the works of [35, 36], it provides a more thorough study of the
phenomenology and cosmic evolution of non-minimally coupled vectors, extending the work
in Ref. [36] by discussing the dynamics of the transverse modes, incorporating two distinct
reheating models, and discussing the consequences of the applied regularization scheme.

This article is organized as follows. In sec. 2, we describes dynamics of the early universe,
considering the evolution of the inflaton field during and after inflation. Non-minimal cou-
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plings of vector fields to gravity are introduced in sec. 3. Sec. 4 discusses constraints imposed
upon non-minimal couplings. In this section, we derive robust limits on the parameters of
the model, enabling us to identify the stable region of the theory that is free from insta-
bilities. In sec. 5, we show and discuss properties of solutions of the mode equations for
three physical polarizations of the vector field during and after inflation. Then, in sec. 6, we
derive the full expression for the energy density of the non-minimally coupled spin-1 field,
investigate its cosmic evolution, discuss diffrent methods of regularization, and calculate the
relic abundance. Sec. 7 contains summary of our findings and outlines potential directions
for future work.

2 Background dynamics

2.1 Cosmic inflation

Let us assume that the dynamics of the primordial universe is governed by a single scalar
field ϕ with a minimal coupling to gravity. Its action is given by

Sϕ ≡
∫

d4x
√
−g

[
1

2
gµν∂

µϕ∂νϕ− V (ϕ)

]
, (2.1)

where g denotes the determinant of a metric tensor gµν . Hereafter, we will consider the
above action in the spatially flat FLRW metric with the following line element:

ds2 = dt2 − a2(t)dx⃗2 = a2(τ)
[
dτ2 − dx⃗2

]
, (2.2)

with a being the scale factor, and τ denoting the conformal time coordinate.
Above, V (ϕ) represents the potential term for the inflaton. As concrete examples, we
explore the α−attractor T model [40–42],

V (ϕ) ≡ Λ4 tanh2n
(

|ϕ|√
6αMPl

)
≃

Λ4, |ϕ| ≫
√
6αMPl,

Λ4
(

|ϕ|√
6αMPl

)2n
, |ϕ| ≪

√
6αMPl,

(2.3)

with Λ representing the scale of inflation, and n, α being parameters of the model. Note
that Λ is bounded from above such that [43]

Λ ≃ MPl

(
3π2

2
r∆2

s

)1/4

≲ 5.6× 10−3MPl, (2.4)

where r is the tensor-to-scalar ratio, and ∆2
s denotes the amplitude of scalar perturbations

measured at the pivot scale kCMB
⋆ [8], i.e.,

∆2
s ≡ ∆2

s(k
CMB
⋆ ) = 2.1× 10−9. (2.5)

In what follows, we will use the benchmark values of α = 1/6 and Λ = 3·10−3 MPl, together
with two well-motivated values for the exponent n corresponding to the quadratic (n = 1)
and quartic (n = 2) potential near the minimum.
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Varying the action (2.1) with respect to the metric tensor yields the energy-momentum
tensor of the inflaton field

T ϕ
µν = ∂µϕ∂νϕ− gµν

[
1

2
gσρ∂σϕ∂ρϕ− V (ϕ)

]
. (2.6)

The (0, 0) component of T ϕ
µν for a homogeneous inflaton field, ϕ(t, x⃗) ≡ ϕ(t), takes the form

ρ = T 0ϕ
0 =

1

2
ϕ̇2 + V (ϕ), (2.7)

where ϕ̇ ≡ dϕ/dt. The isotropy of the background metric implies that all mixed components
vanish, T ϕ

i0 = 0, while the diagonal (i, i) spatial components, representing the pressure, are

p =
1

2
ϕ̇2 − V (ϕ). (2.8)

The dynamics of the inflaton field is described by the classical equation of motion,

ϕ̈+ 3Hϕ̇+ V,ϕ(ϕ) = 0, (2.9)

where V,ϕ(ϕ) ≡ ∂V (ϕ)/∂ϕ, and H = ȧ/a denotes the Hubble rate.

Figure 1. Upper panels: Evolution of the inflaton field during and after inflation for two choices
of the inflaton potential, i.e., quadratic (left) and quartic (right). Lower panels: Evolution of the
equation-of-state parameter w. The colored dots indicate the value of the field amplitude and the
value of w = −1/3 at the very end of inflation. Hereafter ae denotes the scale factor at the end of
inflation. The initial value of the ϕ field is chosen such that one gets 60 e-folds of inflation, and for
the quadratic (quartic) potential it is equal ϕini = 3.41MPl (ϕini = 3.76MPl).

Assuming that the total energy budget of the early universe is dominated by the inflaton
energy density, the evolution of H is determined by the Friedmann equation

H2 =
1

3M2
Pl

(
1

2
ϕ̇2 + V (ϕ)

)
. (2.10)
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The solutions of the inflaton equation of motion for the two values of n are illustrated
in Fig. 1. Two phases can be identified in the dynamics of the ϕ field: the slow-roll
period and the oscillatory stage. The termination of the former coincides with the end of
inflation, which happens when ä = 0. After that moment, the inflaton starts to oscillate
with a decreasing amplitude. For completeness, in Fig. 2 we also present the corresponding
evolution of the Hubble rate.

Figure 2. The Hubble rate H (purple solid line) and its analytical approximation, (2.11), (green
dashed line), Ha, as a function of the number of e-folds in two reheating scenarios: with quadratic
(left) and quartic (right) inflaton potential. For completeness we also show the evolution of the
Ricci scalar (blue line). The solid (dashed) parts of these curves corresponds to R < 0 (R > 0).

2.2 Reheating

In the standard cosmological scenario, the universe undergoes a reheating phase after the
end of inflation, during which the energy density accumulated in the coherent oscillations
of the inflaton is gradually transferred to the Standard Model sector [44–49]. This energy
injection is typically achieved through direct interactions between ϕ and relativistic de-
grees of freedom. The duration of reheating is determined by the strength of the ϕ − SM

coupling. In various realistic models, reheating is never instantaneous; thus, it is more
appropriate to distinguish the epoch of reheating preceding the early radiation-dominated
era [17, 18, 50, 51].
The phenomenology of reheating may involve not only perturbative processes, such as
decays of inflaton quanta or scattering events, but also a plethora of non-perturbative phe-
nomena, including resonant particle production [46, 47, 49], tachyonic enhancement [52–55],
and back-reactions [56, 57]. This implies that the description of the post-inflationary dy-
namics is highly model-dependent. On the other hand, gravitational production of spin-1
fields is not very sensitive to the details of reheating, provided that the energy density of
the primordial plasma remains a subdominant component of the total energy budget and
that the vector field Xµ does not have direct couplings to the visible sector.
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For the purpose of this work, we assume that after the end of inflation, the universe under-
goes the reheating phase, during which the inflaton oscillates around the minimum of its
potential, and transmits its energy to the SM sector. The character of the inflaton oscilla-
tions depends on the shape of the inflaton potential near its minimum (2.3), whereas the
efficiency of reheating, and thus its duration, is determined by the form and the strength
of the inflaton-matter coupling. Remaining agnostic about the physics of reheating, we will
parameterize our ignorance by introducing three quantities that characterize the duration
of this epoch: {w̄,Hrh, Trh}, where w̄ ≡ ⟨p⟩/⟨ρ⟩ with ⟨· · · ⟩ denoting an average over one
oscillation period. 1

Adopting (2.7) and solving one-period averaged inflaton equation of motion (2.9) together
with the Friedmann equation (2.10) one can find the following approximate solution for the
Hubble rate in terms of the scale factor

H(a) ≈ He

(ae
a

) 3
2
(1+w̄)

, (2.11)

where He ≡ H(ae). Consequently, its value at the very end of reheating is

Hrh ≡ H(arh) = He

(
ae
arh

) 3
2
(1+w̄)

. (2.12)

Note that the temperature of the thermal bath at a = arh, which we refer to as reheating
temperature, is then

Trh ≡
(

90

π2g⋆,rh
M2

PlH
2
rh

)1/4

, (2.13)

with g⋆,rh being the number of relativistic degrees of freedom at the end reheating. The
consistency with the predictions of Big Bang Nucleosynthesis imposes the following lower
bound on Trh [59–61]:

Trh ≳ 4 MeV. (2.14)

In Fig. 2, we compare the evolution of H(a) and the Ricci scalar R(a) for two reheating
models with n = 1 and n = 2. For completeness, we also plot the analytical approximation
for the Hubble rate (2.11), which matches the numerical solution very well in the region
a > ae. In addition, in realistic models of inflation, H(a) is not exactly constant between
the onset (Hini) and the end of inflation. Instead, it slowly decreases with a typical variation
of the order of He ∼ 0.15Hini.

1For the power-law inflaton potential, V ∝ ϕ2n, the averaged equation-of-state parameter w̄ can be
related to the exponent n through the following formula [58]:

w̄ ≃ n− 1

n+ 1
, for a ∈ [ae, arh],

where ae (arh) is the scale factor at the end of inflation (reheating) while the end of reheating is defined by
the condition ρ(arh) = ρR(arh) where ρR denotes the energy density of radiation.
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3 Spin-1 spectator field with non-minimal couplings to gravity

Our intention is to quantify the production of vector particles arising solely from the non-
adiabatic expansion of the background metric in the early universe. To that end, we examine
the dynamics of a massive spin-1 gauge boson, Xµ, non-minimally coupled to gravity, whose
action is

SX =

∫
d4x

√
−g

{
−1

4
gµαgνβXµνXαβ +

m2
X

2
gµνXµXν −

ξ1
2
gµνRXµXν +

ξ2
2
RµνXµXν

}
,

(3.1)

where, Xµν ≡ ∂µXν − ∂νXµ, while Rµν and R = gµνR
µν represent the Ricci tensor and

scalar, respectively. The parameters ξ1 and ξ2 are dimensionless coupling constants that
characterize the non-minimal interactions of Xµ with gravity.
Let us emphasize that the mass of the Xµ field, mX , can be generated via the classical
Stueckelberg mechanism [62], or equivalently, by taking the appropriate limit of the Higgs
mechanism [63]. However, in this context, we encounter not only a gauge-breaking mass
term but also an additional source of gauge non-invariance due to the direct, non-minimal
couplings to R and Rµν . Therefore, the following generalization of the classical Stuckelberg
mechanism is required:

SX =

∫
d4x

√
−g

{
−1

4
gµαgνβXµνXαβ + (3.2)

+
1

2

[
gµν − ξ1

R

m2
X

gµν + ξ2
Rµν

m2
X

]
(∂νΦX +mXXν)(∂µΦX +mXXµ)

}
,

where ΦX stands for the Stuckelberg real scalar field. Note that the sign in front of the
kinetic term for ΦX is fixed to be positive, whereas the signs in front of the R/m2

X and
Rµν/m2

X terms are arbitrary. The action above remains invariant under the following local
UX(1) transformation:

Xµ(x) → X̃µ(x) = Xµ(x) + ∂µλ(x), (3.3)

ΦX(x) → Φ̃X(x) = ΦX(x)−mXλ(x). (3.4)

By choosing the unitary gauge, i.e., selecting λ(x) such that Φ̃X = 0, we recover the action
(3.1). Accordingly, throughout the remainder of this work, we will continue to use the
action (3.1) in the spatially flat FLRW metric, with the line element given by (2.2).
It is important to emphasize that in this work, the Xµ field is treated as a spectator
field during inflation and reheating, meaning it does not influence neither the background
metric nor the inflaton field configuration. In other words, this assumption implies that
the gravitational production of dark vectors has a negligible impact on the dynamics of the
primordial universe, with the dark sector becoming relevant only at later stages, such as
during the post-radiation epochs.
Next, by going to the Fourier space,

Xµ(τ, x) =

∫
d3k

(2π)3
Xµ(τ, k)e

ik⃗·x⃗, (3.5)
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one can show, see e.g., [32], that the action SX for the two transverse modes T = ± and
the single longitudinal mode L, representing the three physical degrees of freedom of Xµ,
is given by

ST =
∑
T=±

∫
dτ

∫
d3k

(2π)3

{
1

2
|X ′

T|2 −
1

2
[k2 + a2m2

eff,x]|XT|2
}
, (3.6)

SL =

∫
dτ

∫
d3k

(2π)3

{
1

2

1

A2
L

|X ′
L|2 −

1

2
a2m2

eff,x|XL|2
}
, (3.7)

where k2 ≡ |⃗k|2, ′ ≡ d/dτ , and

AL ≡ AL(a, k) =

√
k2 + a2m2

eff,t(a)

ameff,t(a)
, (3.8)

m2
eff,x ≡ m2

eff,x(a) = m2
X − ξ1R(a) +

1

6
ξ2R(a)− ξ2H

2(a), (3.9)

m2
eff,t ≡ m2

eff,t(a) = m2
X − ξ1R(a) +

1

2
ξ2R(a) + 3ξ2H

2(a). (3.10)

A few remarks are here in order. Firstly, the time component of the Xµ field does not
have a kinetic term [31], making it an auxiliary degree of freedom that can be integrated
out. Furthermore, the action ST takes the form of the action for a scalar field with a time-
dependent mass, m2 = m2

eff,x(a) [25]. On the other hand, from Eq.(3.7), one can see that
the kinetic term for the longitudinal polarization is not canonically normalized. Moreover,
by examining Eq.(3.10), one observes that m2

eff,t(a) does not have a definite sign. Therefore,
there may be regions in the (ξ1, ξ2) parameter space where the kinetic term of XL becomes
negative, leading to the so-called ghost instability [32, 35, 64].

To discuss the evolution of Xµ it is instructive to perform the following transformation
of its longitudinal component:

XL = ALXL, (3.11)

such that the action SL expressed in terms of the redefined field XL has a proper kinetic
term,

SL =
1

2

∫
dτ

∫
d3k

(2π)3

{
|X ′

L|2 +
A′

L

AL

(
X ′
LX ∗

L + X ∗′
L XL

)
−

[
a2m2

eff,xA
2
L −

(
A′

L

AL

)2
]
|XL|2

}
.

(3.12)

Integrating by parts and dropping the boundary term, one can get rid of the second term,
obtaining

SL =
1

2

∫
dτ

∫
d3k

(2π)3

{
|X ′

L|2 −

[
a2m2

eff,xA
2
L +

A′′
L

A
− 2

(
A′

L

AL

)2
]
|XL|2

}
. (3.13)
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Then, from the above action and the action for the transversely-polarized modes, one can
read out the following equations of motions2 (EoM):

X ′′
T + ω2

TXT = 0, (3.14)

X ′′
L + ω2

LXL = 0, (3.15)

where the time-dependent frequencies are

ω2
T ≡ ω2

T(a, k) = k2 + a2m2
eff,x(a), (3.16)

ω2
L ≡ ω2

L(a, k) = a2m2
eff,x(a)A

2
L(a, k) +

A′′
L(a, k)

AL(a, k)
− 2

(
A′

L(a, k)

AL(a, k)

)2

. (3.17)

The above compact form of the longitudinal mode frequency conceals the complicated
structure of ω2

L in terms of k,mX , a, a′, a′′

2

(
A′

L

AL

)2

= 2
(a′am2

eff,t +m′
eff,tmeff,t a

2)2

(k2 + a2m2
eff,t)

2
− 4

(a′meff,t +m′
eff,ta)

2

k2 + a2m2
eff,t

+ 2
(a′meff,t +m′

eff,ta)
2

(ameff,t)2
,

(3.18)

A′′
L

AL
=

a′′am2
eff,t +m′′

eff,tmeff,t a
2 − (a′)2m2

eff,t − (m′
eff,t)

2a2

k2 + a2m2
eff,t

−
(a′am2

eff,t +m′
eff,tmeff,t a

2)2

(k2 + a2m2
eff,t)

2

+ 2
(a′meff,t +m′

eff,ta)
2

(ameff,t)2
−

a′′meff,t +m′′
eff,ta+ 2m′

eff,ta
′ameff,t

ameff,t
. (3.19)

After some straightforward algebra, one finds

ω2
L = k2

m2
eff,x

m2
eff,t

+ a2m2
eff,x(a)

− k2

k2 + a2m2
eff,t(a)

[
a′′

a
+

m′′
eff,t

meff,t
+ 2

a′

a

m′
eff,t

meff,t
− 3

(a′meff,t +m′
eff,ta)

2

k2 + a2m2
eff,t(a)

]
, (3.20)

with

m′
eff,t = −3

2

H

meff,t

{
2H ′

[(
ξ1 −

1

2
ξ2

)
(3w − 1)− ξ2

]
+ 3H

(
ξ1 −

1

2
ξ2

)
w′
}
, (3.21)

m′′
eff,t = −3

2

H ′

meff,t

{
2H ′

[(
ξ1 −

1

2
ξ2

)
(3w − 1)− ξ2

]
+ 3H

(
ξ1 −

1

2
ξ2

)
w′
}

− 3

2

H

meff,t

{
2H ′′

[(
ξ1 −

1

2
ξ2

)
(3w − 1)− ξ2

]
+ 9H ′w′

(
ξ1 −

1

2
ξ2

)
+ 3H

(
ξ1 −

1

2
ξ2

)
w′′
}

− 9

4

H2

m3
eff,t

{
2H ′

[(
ξ1 −

1

2
ξ2

)
(3w − 1)− ξ2

]
+ 3H

(
ξ1 −

1

2
ξ2

)
w′
}2

, (3.22)

2Note that the evolution of the physical longitudinal component of the vector field, can be found from
Eq.(3.15) together with Eq.(3.11).
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and

H ′ =
a′′

a2
− 2

a′2

a3
, (3.23)

H ′′ =
a′′′

a2
− 6

a′′a′

a3
+ 6

a′3

a4
, (3.24)

w′ =
2

3

1

H

[
H ′ + 2

1

a

H ′2

H2
− 1

a

H ′′

H

]
, (3.25)

w′′ =
2

3

1

H

[
2H ′′ + 6

1

a

H ′′H ′

H2
− 3

H ′2

H2
− 6

1

a

H ′3

H3
− 1

a

H ′′′

H

]
. (3.26)

Note that w(a) := p(a)/ρ(a) ̸= w̄.

Similarly, the frequency of the transversely polarized modes can be written as an explicit
function of k,mX, a, a

′

ω2
T = k2 + a2m2

X − a2H2

[
3(3w − 1)

(
ξ1 −

1

6
ξ2

)
+ ξ2

]
. (3.27)

Note that for ξ1, ξ2 = 0, both effective masses are equal, i.e., m2
eff,t(a) = m2

X = m2
eff,x(a).

Thus, m′
eff,t = 0 = m′′

eff,t, and Eq.(3.20) recovers the standard formula [31, 32]

ω2
T

∣∣∣∣
ξ1=0=ξ2

= k2 + a2m2
X , (3.28)

ω2
L

∣∣∣∣
ξ1=0=ξ2

= k2 + a2m2
X − k2

k2 + a2m2
X

[
a′′

a
− 3

a′2m2
X

k2 + a2m2
X

]
. (3.29)

4 Viability of non-minimal couplings to gravity

The goal of this section is to determine the regions in the (ξ1, ξ2) space for which the model
of non-minimally coupled massive vectors is not ill-defined, meaning it does not suffer from
any instabilities. These instabilities pertain to the longitudinal component of the Xµ field
and include [35, 64]

• ghost instability,

• uncontrolled production and super-luminal propagation of short-wavelength modes.

The former arises when the effective mass m2
eff,t, appearing in the prefactor A2

L that mul-
tiplies the kinetic term of the L mode, becomes negative. More precisely, for modes with
k2 ≪ |a2m2

eff,t|, the function A2
L is positive. However, in the opposite case, k2 ≫ |a2m2

eff,t|,
the kinetic term of the longitudinal polarization acquires a wrong sign, indicating the pres-
ence of ghosts. The latter instabilities are related to the UV behavior of the dispersion
relation.
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4.1 Ghost instability

We aim to find values of the non-minimal couplings for which the sign of the kinetic term

s(a) ≡ sign

{
a2m2

eff,t(a)

k2 + a2m2
eff,t(a)

}
, (4.1)

remains unchanged over time for any k2.3 To that end, it is instructive to rewrite m2
eff,t(a)

as an explicit function of the scale factor a. Therefore, we first recast the Ricci scalar as:

R(a) = −6

(
ä

a
+H2(a)

)
. (4.2)

Using the fact that

ä

a
= −ρ(a) + 3p(a)

6M2
Pl

, H2(a) =
ρ(a)

3M2
Pl

, (4.3)

where ρ(a) and p(a) denote the total energy density and the pressure, respectively, one
finds

R(a) = 3H2(a)[3w(a)− 1]. (4.4)

Inserting the above expression into Eqs.(3.10) and (3.9), we get

m2
eff,t(a) = m2

X − 3

[(
ξ1 −

1

2
ξ2

)
(3w(a)− 1)− ξ2

]
H2(a), (4.5)

m2
eff,x(a) = m2

X −
[
3

(
ξ1 −

1

6
ξ2

)
(3w(a)− 1) + ξ2

]
H2(a). (4.6)

In general, the effective masses have two sources of time dependence: H(a) and w(a).
The Hubble rate remains roughly constant during the de Sitter stage of inflation and sub-
sequently decreases monotonically over time. During the reheating period, it also expe-
riences an oscillatory contribution, as shown in Fig. 2. The equation-of-state parameter
w(a) is roughly constant during inflation (winf ≃ −1), the eras of radiation-domination
(wrd = 1/3) and matter-domination (wmd = 0), as well as during the hypothetical epoch of
kination (wk = 1), changing smoothly during the transition phases. However, during the
early stages of reheating, w(a) oscillates rapidly between [−1, 1], as illustrated in Fig. 1.
In single-field inflationary models, the character of these oscillations is determined by the
form of the inflaton potential near its minimum.

In the following subsections, we will determine for which values of ξ1 and ξ2 the func-
tion s(a) remains positive throughout the entire evolution. We first discuss a simplified
scenario by setting one of the non-minimal couplings to zero, and then we consider a more
general case with ξ1 ̸= 0 and ξ2 ̸= 0.

3One could look for positivity regions that are parameterized by k2. In other words, regions of ξ1, ξ2)
would be allowed by the positivity of the kinetic term for XL if k2 satisfied certain conditions. This is not
what we are going to do here, since such restrictions upon k2 is unphysical and, in general, invalidate the
Fourier representation adopted in (3.5).
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4.1.1 ξ1 = 0

To begin with, let us first investigate the simplified scenario with ξ1 = 0. In this case,
m2

eff,t(a) reduces to

m2
eff,t(a)

∣∣∣∣
ξ1=0

= m2
X +

1

2
ξ2 [3w(a) + 1]H2(a). (4.7)

Hence, the positivity of m2
eff,t(a) is guaranteed for ξ2 meeting the following condition:

2

(
mX

H(a)

)2

> −ξ2[3w(a) + 1]. (4.8)

Since H(a) is a decreasing function of time, the left-hand side increases over time starting at
its minimal value during inflation. Therefore, the most restrictive constraint on ξ2 should
be imposed when the mX/H(a) ratio is smallest, i.e, at the very beginning of inflation.
Consequently, the ghost instability is absent if

2 > −ηeξ2[3w(a) + 1], (4.9)

where we have introduced the η−1
e parameter, defined as

η−1
e ≡

(
mX

Hini

)2

. (4.10)

The possible range of variation for η−1
e is constrained by the following requirements. First,

the energy density of the Xµ field, ρX , should constitute a subdominant component of the
total energy of the primordial universe. On the other hand, ρX must be sufficiently large
to eventually dominate the energy budget of the universe after the radiation-dominated
phase. Assuming that gravitational production is the sole mechanism responsible for the
creation of Xµ, the second prerequisite implies that this mechanism must efficiently generate
Xµ particles, which happens for sufficiently low mass, i.e., below the inflationary Hubble
scale4. Altogether, this means that η−1

e ∈ (0, 1). Consequently, for ξ1 = 0, the positivity of
s(a) imposes the following constraint on ξ2:

for ξ1 = 0 −ηeξ2 ≳
2

3w + 1
for w ∈ [−1,−1/3) and − ηeξ2 ≲

2

3w + 1
for w ∈ (−1/3, 1].

(4.11)

4.1.2 ξ2 = 0

Choosing ξ2 = 0 allows us to simplify Eq.(4.5) as

m2
eff,t(a)

∣∣∣∣
ξ2=0

= m2
X − 3ξ1 [3w(a)− 1]H2(a). (4.12)

4Recently, it has been shown that purely gravitational production can efficiently generate super-heavy
scalars with mass ≲ O(103)He [27], and a non-minimal coupling to gravity. This opens an intriguing
possibility for an ultra-heavy spin-1 field, which we left for future work.
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Hence, the condition s(a) > 0 implies

1

3

(
mX

H(a)

)2

> ξ1 [3w(a)− 1] . (4.13)

Analogously to the case discussed above, the strongest constraint on ξ1 should be imposed
when the ratio mX/H(a) is the smallest

1

3
≳ ηeξ1[3w(a)− 1]. (4.14)

The above condition is met trivially during radiation-domination phase, whereas in generic
case one finds

for ξ2 = 0 ηeξ1 ≳
1

3(3w − 1)
for w ∈ [−1, 1/3) and ηeξ1 ≲

1

3(3w − 1)
for w ∈ (1/3, 1].

(4.15)

4.1.3 ξ1 ̸= 0 and ξ2 ̸= 0

As already mentioned, Eq.(4.5) has two sources of time-dependency, i.e., w(a) and H(a).
To eliminate the latter, one would need to set the non-minimal couplings to zero, i.e., ξ1 = 0

and ξ2 = 0. Alternatively, one can also get rid of the term w(a) by adjusting

ξ1 =
1

2
ξ2. (4.16)

Note that for this choice, the non-minimal part of the Lagrangian density reads

√
−gLNM

X ≡
√
−g

[
−ξ1

2
RgµνX

µXν +
ξ2
2
RµνX

µXν

]
=

√
−gξ1GµνX

µXν , (4.17)

where Gµν is the Einstein tensor, defined as Gµν ≡ Rµν − 1
2Rgµν . This scenario has been

investigated in Ref.[34], where a different parametrization was applied, i.e., ξ1 = α2/6.
For this choice, Eq.(4.5) simplifies as

m2
eff,t(a)

∣∣∣∣
ξ1=ξ2/2

= m2
X + 6ξ1H

2(a). (4.18)

Hence, m2
eff,t(a) remains positive for ξ1 =

1
2ξ2 provided that

ξ1 ≳ −1

6
η−1
e . (4.19)

Finally, let us discuss the most general scenario with ξ1 ̸= ξ2
2 and ξ1,2 ̸= 0. In this case, it

is instructive to rewrite the condition for the positivity of m2
eff,t(a) as follows,

f(w, ξ1, ξ2) ≤
(

mX

H(a)

)2

, (4.20)

with

f(w(a), ξ1, ξ2) ≡ 3

[(
ξ1 −

1

2
ξ2

)
(3w(a)− 1)− ξ2

]
. (4.21)
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The strongest constraint on the function f(w(a), ξ1, ξ2) comes from the ultralight vectors,
for which mX → 0. In this case, f(w(a), ξ1, ξ2) is bounded from above

f(w(a), ξ1, ξ2) ≲ 0. (4.22)

On the other hand, for a given mass mX ̸= 0, m2
eff,t(a) remains positive through the whole

evolution for {ξ1, ξ2} satisfying the following condition:

f(w(a), ξ1, ξ2) ≲ η−1
e , η−1

e ∈ (0, 1). (4.23)

Using the fact that w(a) ∈ [−1, 1], one can identify the region in the ξ1 − ξ2 parameter
space where the above condition is always satisfied for a fixed value of η−1

e . This is shown
in the left panel of Fig. 3 for η−1

e = 1. The shaded region corresponds to values of ξ1 and
ξ2 for which condition (4.23) holds at all times, ensuring the positivity of s(a) for all modes
throughout their entire evolution. In the right panel of Fig. 3, we compare the viable regions
in the ξ1 − ξ2 parameter space for two limiting values of η−1

e ∈ {0, 1}. One observes that
an increase in the mX/Hini ratio leads to a slight broadening of the area where m2

eff,t(a) > 0.

Figure 3. Left: Region in the ξ1 − ξ2 parameter space satisfying f(w(a), ξ1, ξ2) ≲ 1, i.e. for
η−1
e = 1, with two limiting choices of the equation-of-state parameter w = −1 (light pink region)

and w = 1 (light cyan region). Right: Values of ξ1 − ξ2 ensuring the positivity of m2
eff,t(a) for two

values of η−1
e ∈ {0, 1}.
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4.2 UV behaviour

Let us now examine the UV behaviour of ω2
T(a, k) and ω2

L(a, k). In the limit, k → ∞, one
finds

ω2
T(a, k) → k2, ω2

L(a, k) → k2
m2

eff,x(a)

m2
eff,t(a)

, as k → ∞. (4.24)

The non-standard high-energy limit of ω2
L(a, k) warrants a more detailed discussion. It is

important to emphasize that, in the ghost-free region of the parameter space, the sound
speed, defined by the ratio c2s ≡ m2

eff,x(a)/m
2
eff,t(a) [64], can be either positive or negative,

depending on the sign of m2
eff,x(a). Additionally, in the general case, c2s may also exceed

unity [64]. Both situations are worrying, as they may lead to: i) uncontrolled produc-
tion (a phenomenon known as runaway production; see Ref.[35, 64]) and ii) super-luminal
propagation of short-wavelength longitudinal modes [64].

4.2.1 Uncontrolled production of short-wavelength modes

As first noted in Ref.[35], in the region of the {ξ1, ξ2} parameter space for which m2
eff,x(a)

becomes negative, the angular frequency ω2
L is not bounded from below for short-wavelength

modes. The negativity of ω2
L in the UV regime results in an exponentially enhanced creation

of large k modes. This, in particular, has dramatic consequences for the considered model,
as it leads to uncontrolled tachyonic production of longitudinal modes with high momenta.
Let us now examine the conditions for the occurrence of such an instability.

A key point to emphasize is that the occurrence of runaway production is attributable
to the existence of a direct coupling between the Xµ field and the Ricci tensor. By turning
off such term, i.e., setting ξ2 = 0, one can easily verify that

c2s =
m2

eff,x(a)

m2
eff,t(a)

= 1, for ξ2 = 0. (4.25)

In addition, both effective masses are also equal during the de Sitter phase of inflation,
when the total energy density of the universe is dominated by the potential energy of the
inflaton field and winf = −1, i.e.,

c2s =
m2

eff,x(a)

m2
eff,t(a)

= 1, for a ≲ ae. (4.26)

For non-vanishing ξ2, c2s may become negative only if w ̸= −1 and mX ≪ H(a). In this
case, neglecting the mass term, one finds

c2s
mX≪H(a)

≃
3
(
ξ1 − 1

6ξ2
)
(3w(a)− 1) + ξ2

3
[(
ξ1 − 1

2ξ2
)
(3w(a)− 1)− ξ2

] . (4.27)
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In the RD-phase of the universe, the above expression is always negative, regardless of the
values of non-minimal couplings {ξ1, ξ2}, while for the MD and kination phase, c2s becomes
negative in the following regions:

c2s < 0, for ξ1 ∈ (2ξ2, 6ξ2), and w = 0, (4.28)

c2s < 0, for ξ1(ξ1 − ξ2) < 0, and w = 1. (4.29)

In general case, the credibility of the model can be restored in two ways. Firstly, one could
impose the positivity condition on m2

eff,x(a), analogously to the constraint that we have
applied to m2

eff,t(a). Requiring m2
eff,x(a) ≳ 0, one gets

f̃(w, ξ1, ξ2) ≲

(
mX

H(a)

)2

, (4.30)

with

f̃(w, ξ1, ξ2) ≡ 3[3w(a)− 1]

(
ξ1 −

1

6
ξ2

)
+ ξ2. (4.31)

Adopting the similar arguments as in Sec.(4.1), i.e., using the fact that w(a) ∈ [−1, 1],
one can find regions in the ξ1 − ξ2 parameter space for which m2

eff,x(a) > 0 for a fixed
value of η−1

e . Hence, the conditions (4.20) together with (4.30) determine the values of the
non-minimal couplings, for which the theory is both ghost-free and does not suffer from an
uncontrolled tachyonic production of short-wavelength modes. The regions in the ξ1 − ξ2
parameter space, satisfying Eqs.(4.20) and (4.30) for two limiting values of η−1

e , i.e., η−1
e = 0

(left panel), and η−1
e = 1 (right panel), are shown in Fig. 4. Note that in the limit mX → 0,

the blue and pink regions do not intersect, indicating that there is no region in the ξ1 − ξ2
parameter space for which both m2

eff,t(a) and m2
eff,x(a) are positive simultaneously for an

arbitrary choice of w ∈ [−1, 1]. This observation implies that longitudinal polarization
of ultralight vectors non-minimally coupled to gravity would suffer either from the ghost
instability, or as a result of uncontrolled tachyonic enhancement of short-wavelength modes.
Hence, for mX → 0 the theory is well-defined only for ξ1 = 0 = ξ2. On the other hand,
for heavier vectors there exists values of {ξ1, ξ2} for which both effective masses remain
positive throughout cosmological evolution. For a fixed Hini, the instability-free region
increases with mX , and its boundaries are determined by the following conditions:

η−1
e > 6ξ1 ∧ η−1

e > 6(ξ1 − ξ2) ∧ η−1
e > 3(ξ2 − 4ξ1). (4.32)

On the other hand, instead of imposing a positivity condition on m2
eff,x(a), one could also

introduce a UV cut-off for the model. The imposition of the cut-off scale seems well justified,
as even in the minimal model, the energy-density integrals are divergent in the limit k → ∞,
see Ref.[31]. However, it is not entirely clear what the appropriate energy scale for the cut-
off is. One of the more natural choices appears to be setting the cut-off scale at ΛUV =

ke ≡ aeHe. Modes with shorter wavelength, i.e, k ≫ ke never exist the Hubble horizon, and
can be considered as quantum fluctuations. Note that in this case, the positivity condition
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Figure 4. Regions in the ξ1− ξ2 parameter space satisfying f(w(a), ξ1, ξ2) ≲ η−1
e (4.20) (pink) and

f̃(w(a), ξ1, ξ2) ≲ η−1
e (4.30) (blue), for η−1

e = 0 (left panel) and η−1
e = 1 (right panel).

for m2
eff,x(a) can be relaxed. Namely, there might be some region in the ξ1 − ξ2 parameter

space, for which m2
eff,t(a) > 0 and m2

eff,x(a) < 0 simultaneously. For such values of the non-
minimal couplings, one might expect that tachyonic instability could significantly enhance
the production of both longitudinal and transverse modes. Consequently, in this scenario,
the predictions of the model would likely be very sensitive to the choice of the UV cut-off,
which requires careful study and is thus left for future work

4.2.2 Super-luminal propagation

As noted in Ref.[35], even in the instability-free region of the model, one may encounter
another problem: the super-luminal propagation of short-wavelength modes. This occurs
for values of the non-minimal couplings {ξ1, ξ2} for which m2

eff,x(a) > m2
eff,t(a), i.e.,

−1

2
ξ2(3w(a)− 7) ≥ 0. (4.33)

Since 3w(a) − 7 < 0 for w(a) ∈ [−1, 1], the sound speed c2s exceeds unity only if ξ2 < 0.
This observation, along with the conditions (4.32), implies that for a given value of η−1

e ,
the model is well-defined for choices of non-minimal couplings that satisfy the following
conditions:

ξ1 ∈
(
−η−1

e

12
,
η−1
e

6

)
, ξ2 ∈

[
0,

η−1
e

3
+ 4ξ1

)
. (4.34)

Fig. 5 illustrates the consistency region in the {ξ1, ξ2} parameter space for two benchmark
values of η−1

e , i.e., η−1
e = 0.16 (left panel) and η−1

e = 0.006 (right panel).

Finally, let us emphasize that within the aforementioned region, ω2
L(a, k) is not necessarily
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positive for all values of k. Contrarily, some modes can still be exponentially enhanced, but
tachyonic production no longer leads to the uncontrolled population of short-wavelength
modes. On the other hand, for {ξ1, ξ2} in the region defined by Eq.(4.34), the purely grav-
itational production of transverse modes is inefficient, as the positivity condition imposed
on m2

eff,x(a) implies that ω2
T(k, a) remains also positive for all modes.

Figure 5. Instability-free region in the ξ1 − ξ2 parameter described by Eq.(4.34) for η−1
e = 0.16

(left panel) and η−1
e = 0.006 (right panel).

5 Cosmic evolution of non-minimally coupled vectors

Let us discuss dynamics of the non-minimally coupled Xµ field, focusing exclusively on the
instability-free region of the model, described by Eq.(4.34).

5.1 Adiabaticity condition

The amplitude of matter fields with a non-conformal couplings to gravity can be enhanced
by a non-adiabatic expansion of the primordial universe [25]. More precisely, the quasi-
exponential growth of the background metric during inflation, followed by its sudden change
during the transition phase, may lead to a violation of the adiabaticity condition

Aλ(k, a) ≡
ω′
λ

ω2
λ

≪ 1. (5.1)

The adiabatic parameter, Aλ(k, a), is typically small in the remote past and future but can
become large, or even divergent, during inflation and at the onset of reheating, thereby
triggering efficient particle production [25, 65, 66]. Let us now examine this phenomenon
in more details.

– 18 –



Figure 6. Evolution of different energy scales: the Hubble horizon (red line), the Compton wave-
length (dashed, green), and two effective Compton wavelengths (purple lines) for the quadratic
(left) and quartic (right) reheating models. Modes with wavelengths k−1 ≥ k−1

e exit the horizon
during inflation, cross the (effective) Compton wavelength curves, and re-enter the horizon in the
post-inflationary epoch. In contrast, modes with shorter wavelengths, k−1 ≤ k−1

e , always remain
below horizon.

For the minimally-coupled vector field, the adiabatic parameters take the form

AT(k, a)

∣∣∣∣
ξ1,ξ2=0

=
(amX)2aH

ω
3/2
T

∣∣∣∣
ξ1,ξ2=0

, (5.2)

and

AL(k, a)

∣∣∣∣
ξ1,ξ2=0

=
(aH)3

ω
3/2
L

{(mX

H

)2
+

k2(amX)2

(k2 + a2m2
X)2

[
2 +

Ḣ

H2
− 3(amX)2

k2 + a2m2
X

]

− k2

k2 + a2m2
X

[
2 + 3

Ḣ

H2
+

Ḧ

H3
− 3

a2m2
X

(
2 + Ḣ

H2

)
k2 + a2m2

X

+
3a4m4

X

(k2 + a2m2
X)2

]

}∣∣∣∣
ξ1,ξ2=0

.

(5.3)

One observes that in the relativistic limit, i.e., (amX)−1 ≫ k−1, the dispersion relation
(3.29) for the longitudinal component of the vector field becomes

ω2
L

∣∣∣∣
ξ1,ξ2=0

≈ k2 − 2a2H2, (amX)−1 ≫ k−1, (5.4)

where we have neglected terms proportional to Ḣ. Hence, for a given mode, AL(k, a)

diverges near its horizon crossing, defined by the condition ah.cH(ah.c) = k, see Fig. 6, or
more precisely, at the moment when k ≃

√
2aH. This initiates tachyonic enhancement of

the long-wavelength modes. The growth continues until k crosses the Compton wavelength
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(amX)−1, which happens at aC.cmX = k. After that, the evolution of the super-horizon
longitudinal modes becomes adiabatic, as AL(k, a) eventually becomes small.
On the other hand, for short-wavelength modes one finds

ω2
L ≈ k2 − a2H2

[
2 +

Ḣ

H2

]
= k2 − a2H2

2
(1 + 3w), k−1, (aH)−1 ≪ (amX)−1, (5.5)

and hence

AL(k, a)

∣∣∣∣
ξ1=ξ2=0

≈ − (aH)3

[k2 − a2H2

2 (1 + 3w)]3/2

[
2 + 3

Ḣ

H2
+

Ḧ

H3

]
, k−1, (aH)−1 ≪ (amX)−1,

(5.6)

where we have neglected the mass of the Xµ field. In this case, the frequency ω2
L does not

pass through zero during the de Sitter stage of inflation, and since Ḣ, Ḧ → 0, the adiabatic
parameter is strongly suppressed during this phase. However, for w > −1/3, i.e., after the
end of inflation, AL diverges when k2 = a2H2(1 + 3w)/2. Furthermore, rapid oscillations
of the ϕ field lead to a sudden, non-adiabatic change in a, ȧ, ä, amplifying AL during the
transition from the inflationary phase to the reheating epoch.
In contrast, ω2

T never passes through zero. For relativistic (non-relativistic) modes, the adia-
batic parameter scales as AT ≃ (amX)2aH/k3 (AT ≃ aH/k), which implies that AT ≪ AL.
Therefore, for the transverse components, the largest departures from adiabaticity occur at
the end of inflation, when (aH)−1 reaches a minimum.
In the presence of non-minimal couplings, the adiabatic parameters acquire more compli-
cated structure, i.e.,

AT(k, a) =
(aH)3

ω
3/2
T

{
m2

X

H2
−
[
3(3w − 1)(ξ1 −

1

6
ξ2) + ξ2

](
1 +

Ḣ

H2

)}
, (5.7)

AL(k, a) =
(aH)3

2ω
3/2
L

{
c2′s
aH

k2

a2H2
+ 2

(
m2

eff,x

H2
+

meff,xm
′
eff,x

aH3

)
+

2k2
(

m2
eff,t

H2 + 2
meff,tm

′
eff,t

aH3

)
(k2 + a2m2

eff,t)
2

×
[
a′′

a
+

m′′
eff,t

meff,t
+ 2

a′

a

m′
eff,t

meff,t
− 3

(a′meff,t −m′
eff,ta)

2

k2 + a2m2
eff,t

]
− k2

k2 + a2m2
eff,t

× 1

(aH)3

[
a′′′

a
− a′′a′

a2
+

m′′′
eff,t

meff,t
−

m′′
eff,tm

′
eff,t

m2
eff,t

+ 2
a′′a− a′2

a2
m′

eff,t

meff,t
+ 2

a′

a

m′′
eff,tmeff,t −m′2

eff,t

m2
eff,t

− 6
(a′meff,t −m′

eff,ta)(a
′′meff,t −m′′

eff,ta)

k2 + a2m2
eff,t

+ 6
(a′meff,t −m′

eff,ta)
2(a′am2

eff,t + a2m′
eff,tmeff,t)

(k2 + a2m2
eff,t)

2

]}
.

(5.8)
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Neglecting terms involving derivatives of the effective masses, one finds

AT(k, a) =
(amX)2aH

ω
3/2
T

, (5.9)

AL(k, a) ≃
(aH)3

ω2
L

{(meff,x

H

)2
+

k2(ameff,t)
2

(k2 + a2m2
eff,t)

2

[
2 +

Ḣ

H2
−

3(ameff,t)
2

k2 + a2m2
eff,t

]

− k2

k2 + a2m2
eff,t

[
2 + 3

Ḣ

H2
+

Ḧ

H3
− 3

a2m2
eff,t

(
2 + Ḣ

H2

)
k2 + a2m2

eff,t

+
3a4m4

eff,t

(k2 + a2m2
eff,t)

2
]

}
.

(5.10)

The inclusion of non-minimal terms does not qualitatively change the behavior of super-
horizon modes. For these modes, the most significant departures from adiabaticity occur
at horizon exit for longitudinal polarization and at the end of inflation for transverse po-
larizations. However, the presence of direct couplings between Xµ and R,Rµν has a more
significant effect on sub-horizon modes, as it alters the dispersion relation of the longitudinal
modes in the large-k limit

ω2
L ≈

m2
eff,x

m2
eff,t

k2 − a2H2

2
(1 + 3w). (5.11)

Therefore, one expects that for certain values of the non-minimal couplings, the violation
of adiabaticity may be more pronounced compared to the minimal case, leading to a more
efficient gravitational production of large-k modes.

5.2 Initial conditions

During inflation the energy budget of the universe was dominated by the potential energy
of the inflaton field, implying winf = −1. Hence, during the de-Sitter phase of inflation the
dispersion relations (3.16) and (3.17) become

ω2
T,inf ≡ ω2

T

∣∣∣∣
a<ae

= k2 + a2m2
X − 3a2H2(ξ2 − 4ξ1), (5.12)

ω2
L,inf ≡ ω2

L

∣∣∣∣
a<ae

= k2 + a2m2
eff,inf −

k2

k2 + a2m2
eff,inf

[
a′′

a
+

m′′
eff,inf

meff,inf

+2
a′

a

m′
eff,inf

meff,inf
− 3

(a′meff,inf + am′
eff,inf )

k2 + a2m2
eff,inf

]
, (5.13)

where

m2
eff,inf ≡ m2

X − 3(ξ2 − 4ξ1)H
2. (5.14)

In the infinite past, i.e., τ → −∞, a → 0, a′ → 0 . . . , implying

lim
τ→−∞

ω2
T,inf(a) = lim

τ→−∞
ω2
L,inf(a) = k2. (5.15)
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Hence, we will assume that all modes initially are in the Bunch-Davies vacuum

XBD ≡ lim
τ→−∞

XT = lim
τ→−∞

XL =
1√
2k

e−ikτ , (5.16)

X ′
BD ≡ lim

τ→−∞
X ′

T = lim
τ→−∞

X ′
L =

−ik√
2k

e−ikτ . (5.17)

It is important to highlight that as long as w = −1, both frequencies are equal, ω2
L = ω2

T =

k2, in the limit k → ∞. Therefore, except for the last few e-folds of inflation (N ∼ −2),
ω2
T and ω2

L remain positive for large-k modes, regardless of the values of the non-minimal
couplings. This implies that uncontrolled tachyonic production of short-wavelength modes
does not occur during the de Sitter stage of inflation and requires a deviation from the pure
de Sitter equation of state, i.e., winf = −1.

5.3 The transverse modes

Note that for ξ1, ξ2 meeting the condition (4.32), the angular frequency ω2
T remains positive

for all momentum modes. Indeed, one can easily check that

k2 + a2H2
ini

(
η−1
e − 3

H2(a)

H2
ini

(ξ2 − 4ξ1)

)
> 0, (5.18)

as (H(a)/Hini)
2 ≤ 1 throughout the whole evolution. This indicates that in the instability-

free region of the model, transverse modes does not experience tachyonic growth.
The approximate analytical solution to Eq.(3.14) can be derived in the pure de Sitter limit.
Namely, during the de Sitter stage of inflation, the scale factor evolves as adS = −1/(τHdS)

with HdS =const., which, in turn, implies that m2
X − 3H2

dS(ξ2 − 4ξ1) remains constant,
making adS the only source of time variation in ω2

T,inf . Equation (3.14) with ω2
T = ω2

T,inf

resembles the equation of motion of a conformally coupled scalar field, with the solution
given by:

XT(adS) =
eiπ(2ν+1)/4

2

√
π

adSHdS
H(1)

ν

(
k

adSHdS

)
, ν ≡

√
1

4
−

m2
X − 3H2

dS(ξ2 − 4ξ1)

H2
dS

.

(5.19)

In Fig. 7 we plot the amplitude squared of the kc mode (c.f. Fig. 6) as a function of the
number of e-folds for two values of η−1

e and different non-minimal couplings. The numerical
solutions match the analytical (densely-dashed lines) approximation very well for a < ae.
The slight discrepancy between the two arises from the fact that, in a realistic inflationary
scenario, the Hubble rate is not constant but slowly evolves over time. After inflation,
|XT|2 enters the oscillatory regime once the Hubble rate drops below mX . In this region,
the frequency, ω2

T ≈ a2m2
X , becomes a slowly-varying function, and the solution to the

mode equation takes the JWKB form

XT(a) ≃
c1√
2ωT

exp

(
−i

∫
dτ̃ ωT

)
+

c2√
2ωT

exp

(
i

∫
dτ̃ ωT

)
, (5.20)

From the above, one extracts the late-time behaviour of the envelope: |XT|2 ∼ a−1. Note
that the inclusion of the non-minimal terms does not affect the evolution of transverse
modes.
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Figure 7. Upper panels: Evolution of the kc mode of the transversely-polarized vectors with mass
mX = 5 · 1012 GeV (left panel) and mX = 1012 GeV (right panel), assuming quadratic (n = 1)
inflaton potential during reheating. Densely-dashed lines correspond to the analytical solution
Eq.(5.19). Lower panels: Evolution of the transverse frequency ω2

±/k
2
e .

5.4 The longitudinal mode

The intricate structure of ω2
L indicates a non-trivial evolution of the longitudinally polarized

modes. A comprehensive discussion of the solutions to the mode equation (3.15) for the
minimally coupled model can be found in Refs.[30–32]. The inclusion of non-minimal cou-
plings significantly influences the dispersion relation of the longitudinal modes, resulting in
a more complex time dependence. In particular, taking into account the non-minimal terms
introduces additional contributions to ω2

L, which are proportional to the scale factor and its
derivatives. To analyze the solutions to the mode equation, it is convenient to distinguish
five distinct scales: the distance to the comoving Hubble horizon (aH)−1, wavenumber of a
given mode 1/k, and the Compton wavelengths (amX)−1, (ameff,x)

−1, and (ameff,t)
−1. The

angular frequency ω2
L is controlled by different energy scales at different moments. Thus,

the evolution of XL at a given time is determined either by its momentum k or by one of
the other energy scales. As one can see from Fig. 6, the effective Compton wavelengths only
x-type is shown deviate from the (amX)−1 curve only at sufficiently early times, typically
during inflation. This suggests that the presence of terms proportional to ξ1, ξ2 should not
have a substantial impact on the evolution of the longitudinal modes. Instead, one might
expect that the inclusion of non-minimal terms will only slightly modify the solutions ob-
tained in the minimally coupled model and will not alter their qualitative behavior.

In Fig. (8), we compare numerical results obtained for the minimal model with ξ1, ξ2 = 0

(dashed green curves) with its non-minimal extension for three different momentum modes:
kd, kc, and ka, cf. Fig.(6). Notably, the inclusion of non-minimal couplings does not affect
the overall behavior of XL. Initially, the amplitude of all modes remains constant, and it
is independent on the values of ξ1, ξ2. Modes with the wavenumber longer than (aeHe)

−1

(kc and kd) exit the horizon at some point during inflation, as indicated by the red dashed
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Figure 8. Upper panels: Evolution of the ka, kc and kd modes of the longitudinal component of the
Xµ field with mass mX = 5·1012 GeV (left) and mX = 1012 GeV (right) for different values of ξ1, ξ2,
assuming quadratic inflaton potential during reheating, i.e., n = 1. Lower panels: The longitudinal
frequency ω2

±/k
2
e as a function of the number of e-folds. The onset of tachyonic growth coincides

with the frequency becoming negative (pale parts of the ω2
L curves), which, in turn corresponds to

the horizon exit. Depending on the choice of the non-minimal couplings, the enhancement can be
either more pronounced (triangle), or suppressed (star) compared to the minimal case (ξ1 = 0 = ξ2).
For a given values of ξ1, ξ2 lighter vectors experience stronger amplification.

vertical line. From that point onward, ω2
L becomes negative, and the solution to the mode
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equation takes the form [31]

XL ∼ H

k3/2
a, for a ∈ (ah.c, aC.c). (5.21)

The tachyonic growth of a given mode is terminated when the effective Compton wavelength
falls below its wavenumber (indicated by the green dashed vertical line). As a result, heavier
vectors undergo weaker amplification, since the time interval between ah.c and aC.c is shorter
for them. Depending on the choice of the non-minimal couplings, the enhancement can
either be more significant or suppressed compared to the minimal case. For fixed values
of ξ1 and ξ2, this effect is more pronounced for lighter species, as the contribution of the
non-minimal terms to their effective masses remains relevant for a longer period. One
of the most remarkable properties of longitudinal modes is that their amplitude remains
frozen in the interval between aC.c and the point at which the Hubble rate falls below
mX . After that, the dynamics of the longitudinal modes begin to resemble the one of the
transverse polarization. Specifically, one observe that |XL|2 starts to oscillate as described
by Eq.(5.20), with an increasing frequency amX , and a gradually decreasing amplitude that
scales as ∼ a−1. In contrast, modes with wavelength shorter than (aeHe)

−1 never exit the
horizon and undergo tachyonic amplification. For these modes, gravitational effects become
relevant at the very onset of reheating. Near the transition point, rapid, quasi-periodic
oscillations of the derivatives of the scale factor induce a sudden short-scale variation of
the dispersion relation. This, in turn, violates the adiabaticity condition (5.1), triggering
strong parametric resonance for modes with momentum k ∼ O(10), cf. the evolution of the
ka mode in Fig.(8). For ξ1 = 0 = ξ2 and mX ≪ He, the frequency of large-k longitudinal
modes becomes

ω2
L ≈ k2 − a′′

a
= k2 +

1

6
a2R. (5.22)

Interestingly, the same dispersion relation is also observed for light scalars with the minimal
coupling to gravity, see Ref [27]. To gain a better understanding of the resonance, it is
convenient to determine the time structure of the Ricci scalar. To that end, we use the fact
that during inflation

R ≃ ϕ̇2 − 4V (ϕ)

M2
Pl

, (5.23)

and that for the power-law potential V (ϕ) ∼ ϕ2n [43]

ϕ ≃ ϕe

(ae
a

) 3
n+1 ×

[
I−1
z

(
1

2n
,
1

n

)] 1
2n

, (5.24)

where ϕe denote the field value at the end of inflation, I−1
z is the inverse of the regularized

incomplete beta function, and z = 1−4(t−te)/T with T being the (time-dependent) period
of the oscillations. For the quadratic and quartic potential, I−1

z becomes [22, 67]

cos [mϕ(t− te)], n = 1, (5.25)

cn
(
x,

1√
2

)
, n = 2, (5.26)
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with

x ≡
√
λϕe

ae
a
(t− te), (5.27)

and mϕ = Λ2/(
√
3αMPl) is the mass of the inflaton, λ = (Λ/MPl)

4/(9α2) denotes its
quartic coupling, and cn is the elliptic cosine. Inserting the solution (5.24) into Eq.(5.23),
one gets

R = −
m2

ϕϕ
2
e

2M2
Pl

(ae
a

)3 [
1 + 3 cos [2mϕ(t− te)]− 3

H

m2
ϕ

sin [2mϕ(t− te)]−
9

2

H2

m2
ϕ

cos2 [2mϕ(t− te)]

]
,

≃ −
m2

ϕϕ
2
e

2M2
Pl

(ae
a

)3
[1 + 3 cos [2mϕ(t− te)]] , for n = 1, (5.28)

R ≃ −ϕ4
eλ
(ae
a

)4{
cn4

(
x,

1√
2

)
− 1

λ

(
a

ae

)2 1

ϕ2
e

[
Hcn

(
x,

1√
2

)
+

+
√
λϕe

ae
a
[1 +H(t− te)]dn

(
x,

1√
2

)
sn
(
x,

1√
2

)]2}
,

≃ −λ

2
ϕ4
e

(ae
a

)4 [
1− 3cn4

(
x,

1√
2

)]
, for n = 2, (5.29)

where we have neglected rapidly-dying terms, suppressed by the powers of H. During
reheating, R acquires an oscillatory contribution, whose envelope decays as a power law of
the scale factor, with a more rapid decrease for n = 2, cf. Fig.(2). Due to the fact that
efficiency of the resonance is triggered by the evolution of the Ricci scalar, short-wavelength
modes are mostly produced at the very onset of reheating, when the amplitude of R is the
highest.

The inclusion of the non-minimal terms alters the large-k limit of ω2
L, such that

ω2
L ≈

m2
eff,x

m2
eff,t

k2 −
[
a′′

a
+

m′′
eff,t

meff,t
+ 2

a′

a

m′
eff,t

meff,t

]
. (5.30)

In this case, the efficiency of the resonance becomes sensitive to the values of ξ1, ξ2, as the
inclusion of non-minimal terms introduces an additional dependence of ω2

L on a′, a′′, . . . In
particular, for the specific values of ξ1, ξ2, we observe an amplification of the amplitude of
sub-horizon modes relative to the minimal model with ξ1 = 0 = ξ2. More rigours treat-
ment requires analysis of the stability/instability charts of the (quasi)-periodic differential
equations. A detailed analysis is however beyond the scope of this work.

Although, Fig.(8) illustrates the generic features of the non-minimal model, it is instructive
to explore the allowed parameter space in greater detail. In the left panel of Fig.(9), we
map the variation of the squared amplitude within the instability-free triangle. Specifi-
cally, we plot the ratio |Xmax

L (ξ1, ξ2)|2/|Xmax
L (0, 0)|2 for the kc mode, where |Xmax

L (ξ1, ξ2)|2

represents the maximum squared amplitude for a given set of ξ1 and ξ2, as a function of
the non-minimal couplings. Note that the kc mode becomes super-horizon, and for the
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chosen value of η−1
e , it intersects the (effective) Compton wavelength curve during infla-

tion. Consequently, its amplitude is maximized around aC.c, prior to the end of inflation,
aC.c < ae.

In general, depending on the values of the non-minimal couplings two scenarios emerge:
i) |Xmax

L (ξ1, ξ2)|2 > |Xmax
L (0, 0)|2, and ii) |Xmax

L (ξ1, ξ2)|2 < |Xmax
L (0, 0)|2. The strongest

enhancement of the amplitude occurs along the green hypotenuse, described by the curve
f(−1, ξ1, ξ2) = η−1

e = f̃(−1, ξ1, ξ2). For ξ1, ξ2 lying exactly on this line, one finds

m2
eff,inf = η−1

e

[
1−

(
H

Hini

)2
]
H2

ini, (5.31)

which implies that |Xmax
L (ξ1, ξ2)|2 is maximized for the non-minimal couplings for which

both effective masses vanish at the very onset of inflation. Note however that their ratio,
defining the sound speed c2s, remains finite, as demonstrated in the right panel of Fig.(9),
and goes to unity in the remote past, when the evolution of the metric becomes more
de Sitter-like. It is important to highlight that the inclusion of non-minimal couplings can
amplify the squared amplitude by up to three orders of magnitude compared to the minimal
case. The opposite effect is observed for ξ1, ξ2 lying near the intersection of the ξ2 = 0 and
f̃(1, ξ1, ξ2) = η−1

e curves. In the red region, |Xmax
L (ξ1, ξ2)|2 might be suppressed by more

than an order of magnitude relative to its minimal value.
In the right panel of Fig.(9), we plot the evolution of the sound speed c2s as a function

of the number of e-folds for benchmark values of the non-minimal couplings. In general, c2s
deviates from unity for ξ2 ̸= 0. During the de Sitter phase of inflation all curves approach
a constant limit c2s → 1. Shortly before the end of inflation, curves corresponding to non-
zero values of ξ2 starts to decrease. The depth of the minimum is the largest for ξ1, ξ2
that are close to the f(−1, ξ1, ξ2) = η−1

e = f̃(−1, ξ1, ξ2) line. After inflation ends, c2s starts
oscillating with a damped amplitude. Eventually, the evolution of the sound speed becomes
static.

6 The energy density of non-minimally coupled vector field

Varying the action (3.1) with respect to the metric tensor, we obtain the energy-momentum
tensor for the X field. The complete derivation can be found in Appendix (A); here, we
provide only the final result.
The stress-energy tensor of the non-minimally coupled vector field has three constituents:

TX
µν ≡ TM

µν + T ξ1
µν + T ξ2

µν , (6.1)

that is, the minimal part

TM
µν = gµν

(
1

4
gρσgαβXραXσβ −

m2
X

2
gαβXαXβ

)
− gαβXµαXνβ +m2

XXµXν , (6.2)

and two non-minimal terms,

T ξ1
µν = ξ1

[
−RXµXν −Gµνg

ρσXρXσ − gµνg
ρσgαβ∇σ∇ρ(XαXβ) + gρσ∇µ∇ν(XρXσ)

]
,

(6.3)
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Figure 9. Left: The maximal value of the squared amplitude |XL(ξ1, ξ2)|2 ≡ |XL|2 normalized to
|XL(0, 0)|2 ≡ |X (0)

L |2. Different symbols represent several benchmark values of the non-minimal cou-
plings (ξ1, ξ2): box (5 ·10−4,0), triangle (-10−4, 10−3), point (0, 2 ·10−3), five-point star(10−3,10−3),
six-point star (5 · 10−4, 10−3). Right: Evolution of the sound speed for selected values of ξ1, ξ2.

T ξ2
µν =

ξ2
2

[
− gµνg

αρgβσRρσXαXβ + 2gρσRνσXµXρ + 2gρσRµσXνXρ + gρσ∇ρ∇σ(XµXν)

+ gµνg
λρgκσ∇λ∇κ(XρXσ)− gλσ∇µ∇σ(XλXν)− gλσ∇ν∇σ(XλXµ)

]
, (6.4)

proportional to ξ1 and ξ2, respectively. After quantizing the vector field one can use the
above expressions to calculate the expectation value of the Xµ field energy density ⟨ρ̂X⟩,
see Appendix (B). It includes contributions from longitudinal and transverse modes, each
of which is composed of three parts, as shown in Eqs. (B.37)-(B.38) in terms of the power
spectra defined in Eqs. (B.33)-(B.35). Hereafter, we will discuss the properties of differential
energy densities

d

d ln k
⟨ρ̂M,ξ1,ξ2

L,± ⟩, (6.5)

which we refer to as spectral energy density, as functions of a for a fixed momentum, e.g.,
for ka, kc and kd in Fig. 10, and/or as functions of momentum k at definite times, e.g.,
Figs. 12 and 11.

Depending on the momentum k of the modes, different components may dominate the
total energy density. However, at late times, the largest contribution to ⟨ρ̂X⟩ comes from
the standard minimal term ⟨ρ̂MX ⟩ (blue curves in Fig. 10). Specifically, it can be observed
that, for all modes, the non-minimal components (yellow and brown curves) are strongly
redshifted after the end of inflation. Such suppression originates from the additional H2

factor multiplying the non-minimal terms, see also Ref.[34]. In particular, after the end
of inflation the Hubble rate decreases as a power-law with the scale factor, according to
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Figure 10. Evolution of different components of the spectral energy density for transverse (left
column) and longitudinal (right column) polarizations, illustrated for three modes: the sub-horizon
ka mode (first row) and two super-horizon modes kc (middle row) and kd (last row). Each component
is normalized to the inflaton energy density at the end of inflation. Above, αX ′

L
≡ a2m2

X/(k2 +

a2m2
X)A2

L, αX ′
LXL

≡ a2m2
X/(k2+a2m2

X)ALA
′
L and αXL

≡ a2m2
XA2

L+a2m2
X/(k2+a2m2

X)A′2
L . Pale

regions of the curves correspond to negative values of the respective quantities.

Eq.(2.11). Hence, at late times we apply the following approximation

⟨ρ̂X⟩ ≃ ⟨ρ̂MX ⟩. (6.6)
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Figure 11. Spectral energy density as a function of momentum for quadratic (left) and quartic
(right) reheating model, shown for the longitudinal (solid) and transverse (dashed) components of
the minimally-coupled vector field (ξ1 = ξ2 = 0). The spectra are normalized to the inflaton energy
density at the end of inflation, ρe ≡ 3M2

PlH
2
e .

6.1 Super-horizon modes

For super-horizon modes, e.g., kc, kd in Fig. 10, the spectral energy density of the longitudi-
nal polarization is several orders of magnitude larger than d⟨ρ̂±⟩/d ln k. Longitudinal modes
with long-wavelength, i.e., k−1 ≳ k−1

e , are amplified by tachyonic instability. Consequently,
the energy density of the low-k modes is dominated by the energy of the longitudinal com-
ponent of the Xµ field, i.e.,

⟨ρ̂X⟩ ≃ ⟨ρ̂ML ⟩, for k ≲ ke. (6.7)

In Fig. 11, we present the spectral energy density of the longitudinal and transverse polar-
izations as a function of k in three different moments of time at three different moments in
time: at the end of inflation a = ae, at a = a⋆, defined by the following condition:

mX = H(a⋆), (6.8)

and at late times, i.e, a = al, when the evolution of modes becomes adiabatic5. Initially,
d⟨ρ̂L⟩/d ln k scales as k2 for all super-horizon modes, and as k4 for short-wavelength modes
with k−1 ≲ k−1

e . Then, around a = a⋆, one observes the formation of a peak in the
spectrum, centered around k ≃ k⋆. The k⋆ mode reenters the horizon at the moment when
the comoving Compton wavelength (amX)−1 crosses the Hubble sphere, such that

k⋆ ≡ a⋆mX . (6.9)

The position of the peak is determined by the evolution of the Hubble rate during reheating.
Comparing the two models shown in Fig. 11, we see that for a given mass, the wavelength
of the k⋆ mode is longer for the quartic reheating scenario, c.f. Fig. 6. The long-wavelength
part of the spectrum, i.e., k−1 > k−1

⋆ , grows as k2. The scaling with k in the central
part, i.e., for k−1 ∈ (k−1

e , k−1
⋆ ) is model dependent. Namely, for mX > Hrh one finds

5Note that a⋆ and al depend on mX
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that d⟨ρ̂L⟩/d ln k ∝ k
2(3w̄−1)
3w̄+1 [31], which gives d⟨ρ̂L⟩/d ln k ∝ k−2 and d⟨ρ̂L⟩/d ln k ∝ k0 in

the quadratic and quartic reheating scenarios, respectively. At late times, i.e., when the
evolution of the Xµ field becomes static, its energy density drops as a−3, indicating that
Xµ behaves like non-relativistic matter.
A qualitatively similar structure is also observed for vectors with non-minimal gravitational
coupling. Fig. 12 presents the spectral energy density of the Xµ field as a function of k

for different choices of ξ1, ξ2 at late times. The long-wavelength part of d⟨ρ̂L⟩/d ln k has a
peak around k = k⋆, whose position shifts towards the left as η−1

e decreases. Depending on
the values of ξ1, ξ2, the energy density of the non-minimally coupled spin-1 field may either
exceed or be lower than the energy density of the minimally coupled vectors. For instance,
for ξ1 = ξ2 = 10−3 (ξ1 = −10−4, ξ2 = 10−3), the inclusion of non-minimal couplings
contributed to the decrease (increase) of the energy density stored in the Xµ field compared
to the minimal case. Such behavior is consistent with the relative amplification observed
in Fig. 9. Finally, it is worth highlighting that the observed effects depends only on the
relative ratio ξ1,2/η

−1
e , see also [35].

▲

★

▲

★

Figure 12. Spectral energy density of the longitudinal (L) and transverse (T) components of the
minimally (dashed green) and non-minimally (violet curves) coupled vector field for the quadratic
(left panel) and quartic (right panel) reheating model at late times.
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6.2 Sub-horizon modes

Initially, the spectral energy density of the sub-horizon modes increases as k4 for both
the longitudinal and transverse components of the Xµ field, see Ref.[31]. Later, the scaling
changes to k3 as the short-wavelength modes become non-relativistic. Figure 12 shows that
all curves converge in the region k−1 ≲ k−1

e , regardless of the values of the non-minimal
couplings. This behavior results in the well-known UV divergence of the expectation value
of the energy density, which requires regulation. To render the energy density UV finite,
various regularization schemes can be employed. Below, we briefly discuss three of them.

• UV cut-off
The simplest strategy relies on introducing a UV cut-off scale Λ. This approach,
however, involves a fairly arbitrary choice of the cut-off scale, which can introduce
ambiguity into the model and its predictions. Physical observables, such as the present
abundance of the Xµ field, are expected to be independent of the specific value of Λ.
One of the more intuitive choices for the cut-off scale seems to be Λ = O(1)ke, since
only super-horizon modes are efficiently amplified by tachyonic instability. Hence,
such a choice is well-justified if the dominant contribution to the total energy density
comes from the super-horizon modes. Contrarily, if other production mechanisms
efficiently create short-wavelength modes, a larger cut-off should be considered. This,
however, increases the complexity of the computational analysis.

• Normal ordering
Another method to regularize the energy density is based on normal ordering [25,
68]. In this case, the physical expectation value of the energy density is calculated
with respect to the initial vacuum state, e.g., the Bunch-Davies vacuum, whereas the
normal ordering is performed with respect to the late-time ladder operators. At late
time, when the evolution of the modes becomes adiabatic, the total energy density
can be approximated by the following formula [25]:

⟨: ρ̂X :⟩ = ⟨: ρ̂L :⟩+ ⟨: ρ̂T :⟩, (6.10)

with

⟨: ρ̂L :⟩ ≃ lim
τ→∞

⟨ρ̂L⟩ ≈
1

a4

∫
d3k

(2π)3
(k2 + a2m2

X)1/2 lim
τ→∞

|βL
k |2, (6.11)

lim
τ→∞

|βL
k |2 =

1

2ωL
|X ′

L|2 +
ωL

2
|XL|2 −

1

2
, (6.12)

and

⟨: ρ̂T :⟩ ≃ lim
τ→∞

⟨ρ̂T⟩ ≈
1

a4

∑
T=±

∫
d3k

(2π)3
(k2 + a2m2

X)1/2 lim
τ→∞

|βT
k |2, (6.13)

lim
τ→∞

|βT
k |2 =

1

2ωT
|X ′

T|2 +
ωT

2
|XT|2 −

1

2
. (6.14)

Note that contributions from modes with very short wavelengths, for which ωL =

ωT ≈ k, vanish thanks to the 1/2 factor in |βk|2. This factor thus plays a crucial role
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in eliminating UV divergences of the energy density spectrum.

For future convenience, it is instructive to introduce the comoving number density
spectra

N L
k ≡ k3

2π2
|βL

k |2, NT
k ≡

∑
T=±

k3

2π2
|βT

k |2. (6.15)

At sufficiently late times, when a′, a′′ become negligible and the Hubble rate falls

▲

★

▲

★

Figure 13. Normal-ordered comoving number density normalized to (aeHe)
3 for the longitudinal

(L) and transverse (T) components of the minimally (green) and non-minimally (violet curves)
coupled vector field in the quadratic (left panel) and quartic (right panel) reheating model.

below mX , the dispersion relations for the longitudinal and transverse polarizations
converge to the same asymptotic limit, ωL ≈ a

√
(k/a)2 +m2

X ≈ ωT. In the non-
relativistic regime, this simplifies to ωL ≈ amX ≈ ωT, and the solutions to both mode
equations oscillate with decreasing amplitude, according to Eq.(5.19). Consequently,
at late times,6 the Bogolubov coefficients |βL

k |2, |βT
k |2 become constant, so does the

comoving number density.

In Fig. 13, we plot the comoving number density as a function of k/ke for two re-
heating scenarios. The spectra are evaluated at late times, when |βk|2 and thus Nk

6Typically for a ≳ e3a⋆.
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remain static for the adopted values of η−1
e and the non-minimal couplings. Notably,

regularization via normal ordering implies a non-trivial structure of the UV tails. In
the reheating model with a quadratic inflaton potential, a central UV peak emerges
around k/ke ≃ 6. Interestingly enough, a similar finding has been reported recently
in Ref.[27] in the context of superheavy scalars non-minimally coupled to gravity.
On the other hand, for n = 2 there are two main peaks in the large-k part of the
spectrum. In both considered models, the comoving number density of the transverse
components is subdominant regardless of the values of non-minimal couplings.

At late times, one can express the spectral energy density in terms of the comoving
number density as follows

⟨: ρ̂L :⟩ ≃ mX⟨: n̂L :⟩, a3⟨: n̂L :⟩ =
∫

d ln k N L
k ≡ NL, (6.16)

and

⟨: ρ̂T :⟩ ≃ mX⟨: n̂T :⟩, a3⟨: n̂T :⟩ =
∑
T=±

∫
d ln k NT

k ≡ NT, (6.17)

where NL,NT do not depend on time. Note that this result confirms a matter-like
scaling of the Xµ field’s energy density at late times.
In the left panel of Fig. 14, we compare the unregulated (dashed curves) spectral en-

▲

★ ▲

✶

■
★

Figure 14. Left: Comparison of the unregulated (solid curves) and regularized (dashed curves)
spectral energy density. Right: Normal-ordered spectral energy density for the benchmark values
of the non-minimal couplings.

ergy density of the longitudinally polarized modes with the normal-ordered spectrum.
As with the spectral number density, additional high-k peaks emerge in the regular-
ized energy density spectrum that were not present in the unregulated spectra. This
noisy pattern is induced by quantum interference effects, as discussed in Ref.[23]. The
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regularized spectra accurately reproduce the unregulated energy densities for k ≲ k⋆,
with only minor deviations around k ∼ ke.

To gain a better understanding of the UV tail, in the right panel of Fig. 14, we
plot the spectral energy densities for five benchmark values of the non-minimal cou-
plings and compare them with the spectrum of minimally coupled vectors (green
dashed curve). We observe that the large-k part of the spectra exhibits a multi-peak
structure. For the chosen non-minimal couplings, the position of the peaks shows
little dependence on ξ1, ξ2. 7, while their magnitude is highly sensitive to the values
of ξ1, ξ2. In particular, depending on ξ1, ξ2, the height of the large-k peaks can either
tower or be comparable with the k⋆ peak. For instance, for ξ1 = 10−3 = ξ2 (light pur-
ple curve) and ξ1 = 5 · 10−4, ξ2 = 0, (red curve), the production of long-wavelength
modes is not enhanced compared to the minimal case, but the entire spectrum is
dominated by the UV peaks, whose magnitudes are nearly two orders of magnitude
larger than that of the k⋆ peak. On the other hand, for ξ1 = ξ2/2 (orange curve)
the long-wavelength peak is slightly higher than the UV peaks. This behavior arises
because the effective reduction of two non-minimal couplings to a single coupling to
the Einstein tensor Gµν hinders the resonance effects, thereby suppressing the pro-
duction of short-wavelength modes. Furthermore, the spectrum is enhanced in both
the super-horizon and sub-horizon regions for values of ξ1, ξ2 that amplify the k⋆ peak
peak compared to the minimal case. In general, the amplification of the large-k peaks
is related to the behavior of the sound speed at the onset of reheating. As first noticed
in Ref.[64]the magnitude of the UV peaks is correlated with the minimal value of c2s
for ξ2 ̸= 0. However, as we see, even if Xµ has no direct coupling to the Ricci tensor,
implying a constant sound speed c2s = 1, the production of short-wavelength modes
can still be significantly more efficient than in the minimal case, given sufficiently
large values of the ratio ξ/η−1

e .

• Adiabatic regularization
The best-established approach for handling UV divergences is adiabatic regulariza-
tion, developed by Fulling and Parker [69–71]. This method involves i) finding ap-
proximate solutions to the mode equations based on the Jeffreys-Wentzel-Kramers-
Brillouin (JWKB) method, ii) expanding the obtained solutions, as well as the observ-
ables constructed from them, into an adiabatic series, iii) identifying the divergent
terms of the composite quantities, and iv) subtracting the adiabatic counterterms
that remove the divergent part of a given observable. Although the above procedure is
well-defined, applying it to regularize the energy density integral of the non-minimally
coupled spin-1 field appears to be fairly intricate, as it requires finding counterterms
up to the fourth order in the adiabatic expansion. Therefore, we left this task for
future work.

7This observation stems from the fact, that for all considered values of ξ1, ξ2, the minimum of c2s does
not vary much. However, if min(c2s) is considerably smaller (by at least one order of magnitude), the UV
peaks shift towards larger k, see Ref.[64].
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6.3 Relic abundance

Assuming that, at present, the kinetic energy of the Xµ field constitutes a negligible fraction
of its total energy 8, the fractional energy of that field, expressed in terms of the critical
energy density ρcrit,0 = 3M2

PlH
2
0 = 1.054× 10−5 h2 GeV cm−3, can be calculated as

ΩXh2 =
ρX,0

ρcrit,0
h2 ≃

mXnX,0

ρcrit,0
h2, (6.18)

where nX,0 denotes the present number density of Xµ particles. Leveraging the fact that at
late times, i.e., for a ≳ a⋆, the integrated comoving number density NX = NL +NT ≈ NL

(see Eqs.(6.16) and (6.17)) of the Xµ field becomes frozen, one finds

NX = const., =⇒ nX,0 =
NX

a3eH
3
e

(
ae
a0

)3

H3
e , for a ≳ a⋆, (6.19)

where we have applied normalization introduced in Ref.[32].
It is convenient to recast the redshift factor as(

ae
a0

)3

=

(
ae
arh

)3(arh
a0

)3

. (6.20)

Assuming that the comoving entropy density, sa3, is conserved after the completion of
reheating, one can express the ratio arh/a0 in terms of the reheating temperature(
arh
a0

)3

= s0

(
2π2

45
gs⋆,rh

)−1

T−3
rh ≈ (6.34× 10−29) ·

(
106.75

gs⋆,rh

)
·
(
1010GeV

Trh

)3

cm−3GeV−3,

(6.21)

where s0 = 2970 cm−3 is the present entropy density, and gs⋆,rh denotes the effective number
of relativistic degrees of freedom at the end of reheating.
Furthermore, from the Friedmann equation, one finds

H2
rh ≃ H2

e

(
ae
arh

)3(1+w̄)

=
π2

90
g⋆,rh

T 4
rh

M2
Pl

, (6.22)

which, in turn, implies(
ae
arh

)3

=

(
π2g⋆,rh
90

T 4
rh

H2
eM

2
Pl

) 1
1+w̄

≈ (7.71 · 10−25)
1

1+w̄

( g⋆,rh
106.75

) 1
1+w̄

×
(
1.6 · 1014 GeV

He

) 2
1+w̄

(
Trh

1010 GeV

) 4
1+w̄

. (6.23)

Consequently,

ΩXh2 ≃ 3.94× 1033 × (7.71 · 10−25)
1

1+w̄ × NX

a3eH
3
e

·
(

mX

1.6× 1014 GeV

)
×

(
106.75

gs⋆,rh

)
·
( g⋆,rh
106.75

) 1
1+w̄ ·

(
He

1.6× 1014 GeV

) 1+3w̄
1+w̄

·
(

Trh

1010 GeV

) 1−3w̄
1+w̄

. (6.24)

8Note that this assumption implies a lower limit on the vector mass mX .
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Hence, for the reheating scenario with a matter and radiation-like equation-of-state one
finds,

ΩXh2
∣∣∣∣
w̄=0

≃ 0.12× NX

a3eH
3
e

· mX

He
·
(

He

1012 GeV

)2 Trh

104 GeV
, (6.25)

and

ΩXh2
∣∣∣∣
w̄=1/3

≃ 0.12× NX

0.12 a3eH
3
e

· mX

He

(
He

108 GeV

)5/2

, (6.26)

respectively. Note that above, we have fixed gs⋆,rh = 106.75 = g⋆,rh, i.e., no extra relativistic
degrees of freedom beyond the SM.
Since the comoving number density, NX , depends on the mass of the Xµ field, its cou-
plings to gravity, and the inflationary Hubble scale, ΩXh2 is a function of six parameters
{mX , He, Trh, ξ1, ξ2, n} in general. Consequently, the present abundance of the X quanta
pivots not only on the free parameters of the model but also on the evolution of the primor-
dial universe—particularly on the transition from the inflationary to radiation-dominated
phase. One observes that ΩXh2 is sensitive to the inflationary scale, the average equation
of state during reheating, and the reheating duration through Trh. However, the above
findings indicate that for a radiation-like reheating scenario (n=2) the relic density of Xµ

is independent on the details of reheating, see also [30–32]. In Fig. 15, we show ΩXh2

as a function of Trh for benchmark values of the non-minimal couplings, two choices of
mX , and fixed He. Interestingly, depending on the values of ξ1, ξ2, the present density of
non-minimally coupled massive spin-1 fields can be either greater or smaller than that of
vectors with minimal coupling to gravity. The abundance of the former exceeds that of the
latter for all ξ1, ξ2 for which the production of the long-wavelength modes is more efficient
than in the minimal case. In addition, one observes the same effect for ξ1, ξ2 for which the
large-k peak dominates over the k⋆ peak in the number density spectrum. Comparing our
results in the two considered scenarios, we find that for fixed mX , He and low reheating
temperature, the production of the Xµ quanta is more efficient in the quartic reheating
model. For instance, for ξ1, ξ2 = 0 and η−1

e = 0.006 the present value of ΩXh2|w̄=0 exceeds
ΩXh2|w̄=1/3 if Trh ≳ 105GeV, and for ξ1, ξ2 for which ΩXh2|w̄=0(ξ1, ξ2) > ΩXh2|w̄=0(0, 0)

(ΩXh2|w̄=0(ξ1, ξ2) < ΩXh2|w̄=0(0, 0)) this happens at lower (higher) reheating temperature.
We also observe that for fixed He, Trh, ξ1, ξ2, decreasing the mass leads to a reduction in
the present abundance.

Let us now consider the possibility that the Xµ field constitutes the dominant component
of dark matter. Its stability, ensured by the Z2 invariance of the action (3.1), along with
the fact that its abundance is generated solely through gravitational phenomena, makes Xµ

an appealing candidate for DM.
It is well known (see e.q., Refs.[30–32]) that the present abundance of massive vectors
with minimal coupling to gravity can saturate the observed relic density of dark matter
ΩDMh2 = 0.120 ± 0.001 measured by the Planck Collaboration [8] in the vast range of
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parameter space. Recently, the authors of Ref.[64] presented more general results for non-
minimally coupled vectors. We aim to complement this study by examining the impact of
non-zero ξ1, ξ2 on the relic abundance of Xµ in two realistic reheating scenarios. Notably,
the inclusion of non-minimal terms expands the parameter space in which Xµ can serve as a
viable dark matter candidate. As shown in Fig. (15), in the matter-like reheating scenario,
the estimated abundance of the Xµ field aligns with ΩDMh2 across a range of temperatures
spanning more than two orders of magnitude for the considered values of ξ1, ξ2. In con-
trast, in the quartic reheating model and for the chosen values of mX , He, ΩXh2 exceeds
ΩDMh2 even in the minimal coupling case. Introducing non-zero values of ξ1, ξ2 does not
substantially alter this result, as it does not significantly reduce the number density of
heavy vectors. Presumably, in this model the inclusion of the non-minimal couplings might
be more important for lighter species for which the minimal gravitational production is not
efficient enough. However, the numerical analysis for light, non-minimally coupled vectors
is computationally challenging, requiring tracking their evolution through late times (often
up to dozens of e-folds after inflation). Therefore, analytical estimates for the comoving
number density, including contributions from large-k modes, would be valuable; we leave
this direction for future work.
Finally, in Fig.(16) we scan the instability-free region of the model, and determine the
value of the reheating temperature for which the present density of the Xµ field matches
DM abundance in the quadratic reheating scenario. In the left panel, we include only the

Figure 15. The present abundance of the Xµ field as a function of the reheating temperature Trh for
the benchmark values of the non-minimal couplings ξ1, ξ2, fixed He, and two mass mX = 1012 GeV

(upper) and mX = 1011 GeV (lower), in the quadratic (left) and quartic (right) reheating models.
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long-wavelength part of the spectrum adopting the ’standard’ cut-off at ΛUV = ke. The
observed pattern is consistent with the scan (9). Namely, compared to the ξ1, ξ2 = 0 case,
the condition ΩXh2|w̄=0 = ΩDM is met at higher (lower) Trh for points lying in the bottom-
right corner (along the hypotenuse), where the maximal squared amplitude is smaller (or
larger) than in the minimal case. In the right panel, we also include the large-k part of the
normal-ordered spectrum, considering larger cut-off ΛUV = 40 ke. Here, we observe that a
lower reheating temperature is required to match the DM abundance, as including the full
spectrum reduces the required Trh by more than an order of magnitude compared to the
left panel. Interestingly, a different pattern emerges: the highest Trh is required for points
lying along the ξ1 = ξ2/2 curve, for which the Xµ field has only one non-minimal coupling
to Einstein tensor.

Figure 16. Left: The reheating temperature needed to saturate the observed relic abundance of
dark matter, considering only contributions from super-horizon modes. Right: The same for both
super-horizon and sub-horizon modes.

7 Summary

We have discussed a quantum theory of massive Abelian vector bosons in the FLRW clas-
sical gravitational background, i.e. within isotropic and homogeneous universe. Our goal
was to investigate in detail gravitational production of spin-1 fields, which could serve as
candidates for dark matter if a stabilizing Z2 symmetry is imposed. We have assumed the
presence of the non-minimal couplings between vectors and the Ricci scalar and the Ricci
tensor. In order to preserve the U(1) invariance of the non-minimal couplings a generaliza-
tion of the Stuckelberg mechanism has been introduced.
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We have determined constraints that ensure the consistency of the model by eliminating
the ghost instability, uncontrolled ("run-away") production and super-luminal propagation
of short-wavelength modes. It has been shown that during inflation (i.e. for w = −1),
since m2

eff,x(a) ∼ m2
eff,t(a) as for in k2 → ∞, there is no "run-away" production of short-

wavelength modes. This issue may arise only during the post-inflationary epochs in models
with a non-zero coupling to the Ricci tensor. Furthermore, it has been found that in the
limit of massless vectors mX → 0, there is no safe region where both effective masses,
m2

eff,x(a) and m2
eff,t(a), remain positive for an arbitrary barotropic parameter w ∈ [−1, 1].

So, if the non-minimal couplings are present, then the vectors can not be arbitrarily light.

Canonical quantization of the Abelian gauge field in an evolving gravitational background
has been employed. We have derived and solved numerically the mode equations for both
longitudinal and transverse components of the vector boson. It has been shown that, when
the consistency conditions are imposed, the squared frequency of the transverse polariza-
tion is always positive (ω2

T (τ, k) > 0), excluding the possibility of exponential enhancement
even for non-minimal couplings. In contrast, the long-wavelength modes of the longitudinal
component of the Xµ field are generally subject to exponential enhancement during certain
periods of inflation and/or reheating. The tachyonic amplification is sensitive to the values
of non-minimal couplings, and depending on the specific choices of ξ1, ξ2, it may intensify
or attenuate the effect observed in the minimal model. Regions of exponential enhancement
of the solutions have been determined numerically, illustrated, and thoroughly discussed.
In addition, it has been pointed out that the inclusion of non-minimal couplings alter the
dynamics of subhorizon modes that never exit the Hubble horizon.

The spectral energy density for three physical polarizations has been calculated. Two
peaks in the spectrum that may likely dominate the integrated energy density have been
identified. The first, corresponding to lower momentum k⋆ < ke, has already been observed
for the minimally-coupled vectors. The second, appearing in the UV tail od the spectrum,
could dominate the gravitational production of vectors, making its unambiguous verifica-
tion crucial. Since the spectral energy density is UV divergent, a regularization method
must be adopted. Here, we have compared the regularization by normal ordering [25, 68]
against a one with a straightforward cut-off imposed on sub-horizon modes. Both methods
coincide until roughly the location of the first peak, however for higher momentum they
differ substantially. In particular the second peak might be solely an artifact of regular-
ization method adopted to cure the UV divergence of the spectral density. Hence, more
comprehensive discussion involving the adiabatic regularization is needed. Therefore, a
more comprehensive discussion involving adiabatic regularization is warranted. Eventually,
assuming the stability of the Xµ field, we have determined its present abundance and ex-
plored the parameter space where the predicted relic density matches the observed dark
matter density.

Finally, let us outline potential extensions and future directions stemming from this work.
First, it would be interesting to explore the full dynamics of the vector field in the presence
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of the (dark) Higgs field. Additionally, obtaining analytical solutions for the mode equa-
tions of the longitudinal components could be beneficial, as it would allow for a quantitative
description of the spectrum of non-minimally coupled vectors in terms of their mass, the
inflationary Hubble scale, and the non-minimal couplings. Lastly, to reliably verify the
existence of an additional peak in the UV tail of the spectrum, a more thorough analysis
of the regularization methods is necessary, along with independent validation of the results
using adiabatic regularization.
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A Energy-momentum tensor of non-minimally coupled vector field

In this appendix, we derive the generic formula for the energy-momentum tensor of a
non-minimally coupled vector field. To begin, let us recall the standard definition of the
stress-energy tensor

Tµν :=
2√
−g

δSM

δgµν
, (A.1)

with SM being an action for a matter component.
To find the energy-momentum tensor of a spin-1 field Xµ, whose action is given in Eq.(3.1),
it is instructive to distinguish the following terms:

TX
µν = TM

µν + T ξ1
µν + T ξ2

µν , (A.2)

accounting for three contributions arising from the minimal coupling, i.e., from the the
first two terms in Eq.(3.1), the non-minimal coupling to the Ricci scalar (the third term in
Eq.(3.1)), and the non-minimal coupling to the Ricci tensor (the fourth term in Eq.(3.1)).
Then, utilizing the following expression for the variation of the determinant of the metric
tensor:

δ(
√
−g) = −

√
−g

2
gµνδg

µν , (A.3)

one can find the well-known formula for the energy-momentum tensor of the minimally-
coupled vector field

TM
µν = gµν

(
1

4
gρσgαβXραXσβ −

m2
X

2
gαβXαXβ

)
− gαβXµαXνβ +m2

XXµXν . (A.4)
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Derivation of the remaining two contributions is less common in standard textbooks, and
thus deserves special emphasis. First, we observe that the variation of the third term in
Eq.(3.1) is given by

δ

(
−ξ1

2

√
−ggµνRXµXν

)
= −ξ1

2

[
gµνRδ(

√
−g) +

√
−gRδgµν +

√
−ggµνδR

]
XµXν

= −ξ1
2

√
−gR

[
−1

2
gµνg

ρσXρXσ +XµXν

]
δgµν

− ξ1
2

√
−ggµνδRXµXν . (A.5)

From the definition of the Ricci scalar, one finds

δR = Rµνδg
µν + gµνδRµν , (A.6)

whereas the variation of the Ricci tensor, known as the Palatini identity, reads

δRµν = ∇ρ(δΓ
ρ
νµ)−∇ν(δΓ

ρ
ρµ), (A.7)

with

δΓρ
µν = −1

2

[
gσµ∇ν(δg

σρ) + gσν∇µ(δg
σρ)− gµσgνλ∇ρ(δgσλ)

]
. (A.8)

Hence,

−ξ1
2

√
−ggµνXµXνδR = −ξ1

2

√
−ggαβXαXβRµνδg

µν − ξ1
2

√
−ggαβXαXβg

µνδRµν , (A.9)

and the variation of the second term can be explicitly written as

I ≡ −ξ1
2

√
−ggαβXαXβg

µνδRµν = −ξ1
2

√
−ggαβXαXβg

µν
[
∇ρ(δΓ

ρ
νµ)−∇ν(δΓ

ρ
ρµ)
]

=
ξ1
4

√
−ggαβXαXβg

µν

{
∇ρ

[
gσν∇µ(δg

σρ) + gσµ∇ν(δg
σρ)− gνσgµλ∇ρ(δgσλ)

]
−∇ν

[
gσρ∇µ(δg

σρ) + gσµ∇ρ(δg
σρ)− gρσgµλ∇ρ(δgσλ)

]}
=

ξ1
2

√
−g

{
∇µ∇ν(XσX

σ)− gµν∇ρ∇ρ(XσX
σ)

}
δgµν , (A.10)

where passing from the second to third equality we have performed two integration by parts
for each term.
All in all,

δ

(
−ξ1

2

√
−ggµνRXµXν

)
= −ξ1

2

√
−g

[
(Rµν −

1

2
gµνR)gρσXρXσ +RXµXν

+ gµν∇ρ∇ρ(XσX
σ)−∇µ∇ν(XσX

σ)

]
δgµν , (A.11)
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and, thus,

T ξ1
µν = ξ1

[
−RXµXν −Gµνg

ρσXρXσ − gµνg
ρσgαβ∇σ∇ρ(XαXβ) + gρσ∇µ∇ν(XρXσ)

]
.

(A.12)

Similarly, the variation of the last term in the action (3.1) reads

δ

(
ξ2
2

√
−ggµρgνσRρσXµXν

)
=

ξ2
2

[
gµρgνσRρσδ(

√
−g) +

√
−ggνσRρσδg

µρ

+
√
−ggµρRρσδg

νσ +
√
−ggµρgνσδRρσ

]
XµXν

=
ξ2
2

√
−g

[
−1

2
gαρgβσRρσXαXβgµν + gρσRνσXµXρ

+ gρσRµσXνXρ

]
δgµν +

ξ2
2

√
−ggµρgνσXµXνδRρσ. (A.13)

Inserting relation (A.8) into (A.7), one finds that the last term above can be written as

J ≡ ξ2
2

√
−ggµρgνσXµXνδRρσ =

ξ2
2

√
−ggµρgνσXµXν

[
∇λ(δΓ

λ
σρ)−∇σ(δΓ

λ
λρ)
]

= −ξ2
4

√
−ggµρgνσXµXν

{
∇λ

[
gασ∇ρ(δg

αλ) + gαρ∇σ(δg
αλ)− gσαgρβ∇λ(δgαβ)

]
−∇σ

[
gαρ∇λ(δg

αλ) + gαλ∇ρ(δg
αλ)− gλαgρβ∇λ(δgαβ)

]}
= −ξ2

4

√
−g

{
∇σ∇µ(X

σXν) +∇σ∇ν(X
σXµ)−∇σ∇σ(XµXν)− gµν∇ρ∇σ(X

ρXσ)

}
δgµν .

(A.14)

The above formula can be further simplified by noting that

J̄ ≡ ∇σ∇µ(X
σXν)−∇µ∇σ(X

σXν) +∇σ∇ν(X
σXµ)−∇ν∇σ(X

σXµ)

= Xν(∇σ∇µX
σ)−Xν(∇µ∇σX

σ) +Xσ(∇σ∇µXν)−Xσ(∇µ∇σXν) +Xµ(∇σ∇νX
σ)

−Xµ(∇ν∇σX
σ) +Xσ(∇σ∇νXµ)−Xσ(∇ν∇σXµ)

= Xν([∇σ,∇µ]X
σ) +Xσ([∇σ,∇µ]Xν) +Xµ([∇σ,∇ν ]X

σ) +Xσ([∇σ,∇ν ]Xµ). (A.15)

In the absence of torsion, the commutator of covariant derivatives acting on contravariant
and covariant vectors is given by

[∇α,∇β]X
µ = Rµ

ναβX
ν , [∇α,∇β]Xµ = −Rν

µαβXν , (A.16)

which, in turn, implies

J̄ = XνR
σ
ρσµX

ρ −XσRρ
νσµXρ +XµR

σ
ρσνX

ρ −XσRρ
µσνXρ

= gσρ (RρµXσXν +RρνXσXµ) . (A.17)
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As a result

J =
ξ2
4

√
−g

{
− gσρ(RρµXσXν +RρνXσXµ) +∇σ∇σ(XµXν) + gµν∇ρ∇σ(X

ρXσ)

−∇µ∇σ(X
σXν)−∇ν∇σ(X

σXµ)

}
δgµν , (A.18)

which, in turn, implies

δ

(
ξ2
2

√
−ggµρgνσRρσXµXν

)
=

ξ2
4

√
−g

[
− gµνg

αρgβσRρσXαXβ + 2gρσRνσXµXρ

+ 2gρσRµσXνXρ +∇σ∇σ(XµXν) + gµν∇ρ∇σ(XρXσ)

−∇µ∇σ(X
σXν)−∇ν∇σ(X

σXµ)

]
δgµν . (A.19)

Consequently,

T ξ2
µν =

ξ2
2

[
− gµνg

αρgβσRρσXαXβ + 2gρσRνσXµXρ + 2gρσRµσXνXρ + gρσ∇ρ∇σ(XµXν)

+ gµνg
λρgκσ∇λ∇κ(XρXσ)− gλσ∇µ∇σ(XλXν)− gλσ∇ν∇σ(XλXµ)

]
. (A.20)

B Energy density

The energy density of the Xµ field, ρX ≡ g00TX
00, can be written as a sum of three contri-

butions

ρX ≡ ρMX + ρξ1X + ρξ2X , (B.1)

arising from minimal coupling to gravity, non-minimal coupling to the Ricci scalar, and
non-minimal coupling to the Ricci tensor, respectively.
In conformal coordinates, gµν = (a2,−a2,−a2,−a2), gµν = (a−2,−a−2,−a−2,−a−2), and
the only non-zero components of the connection Γλ

µν are

Γ0
00 = Γ0

ii = Γi
i0 = Γi

0i = aH. (B.2)

Hence,

R00 = −3H′, Rij =
(
H′ + 2H2

)
δij , (B.3)

with

H ≡ a′

a
= Ha, H′ = −(1 + 3w)

2
a2H2. (B.4)

The Ricci scalar is

R = −6a−2
(
H′ +H2

)
, (B.5)
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and the non-zero components of the Einstein tensor are

G00 = 3H2, Gij = −
(
2H′ +H2

)
δij . (B.6)

As a result, one finds

ρMX =
1

2a4

[
(X ′

i − ∂iX0)
2 +

1

2
(∂jXi − ∂iXj)

2 + a2m2
XX2

0 + a2m2
XX2

i

]
, (B.7)

ρξ1X =
ξ1
a4

[
− 9wa2H2X2

0 + 3H2a2X2
i +∇2

i (X
2
0 )−∇2

i (X
2
j )

]
, (B.8)

ρξ2X =
ξ2
2a4

[
9

2
(1 + 3w)a2H2X2

0 +
3

2
(−1 + w)a2H2X2

i −∇2
i (X

2
0 ) +∇i∇j(XiXj)

− [∇0,∇i](XiX0)

]
. (B.9)

To simplify the last two expressions, one needs to calculate the following derivatives:

∇2
i (X

2
0 ) = 2X0∇2

i (X0) + 2(∇iX0)
2, (B.10)

∇2
i (X

2
j ) = 2Xj∇2

i (Xj) + 2(∇iXj)
2, (B.11)

∇i∇j(XiXj) = Xj∇i(∇jXi) + (∇iXi)(∇jXj) + (∇iXj)(∇jXi) +Xi∇i(∇jXj), (B.12)

and

[∇0,∇i](XiX0) = −X0R
ρ
i0iXρ −XiR

ρ
00iXρ = −H′(3X2

0 +X2
i ). (B.13)

Employing a definition of the covariant derivative:

∇µXν = ∂µXν − Γρ
µνXρ, (B.14)

one shows that

∇σ(∇µXν) = ∂σ(∇µXν)− Γλ
σµ(∇λXν)− Γλ

σν(∇µXλ). (B.15)

Consequently, expressions (B.10) - (B.12) become

∇2
i (X

2
0 ) = 2

[
X0∂

2
i X0 + (∂iX0)

2 − 2Γi
i0X0∂iXi − 2Γi

i0Xi∂iX0 − Γ0
iiX0X

′
0 + Γi

i0Γ
0
iiX

2
0

+ Γi
i0Γ

i
i0X

2
i

]
, (B.16)

∇i∇j(XiXj) = Xj∂i∂jXi +Xi∂i∂jXj + (∂iXi)(∂jXj) + (∂iXj)(∂jXi)− 2Γ0
iiXiX

′
i

− 4Γ0
ii (Xi∂iX0 +X0∂iXi) + 2Γ0

iiΓ
0
iiX

2
0 + 2Γ0

iiΓ
i
0iX

2
i , (B.17)
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Inserting the above results back into Eqs.(B.8) and (B.9), one obtains

ρξ1X =
ξ1
a4

[
2

(
X0∂

2
i X0 −Xj∂

2
i Xj + (∂iX0)

2 − (∂iXj)
2

)
− 3aH(X0X

′
0 +X ′

0X0 −XiX
′
i −X ′

iXi)− 9wa2H2X2
0 − 3H2a2X2

i

]
, (B.18)

ρξ2X =
ξ2
2a4

[
Xj∂i∂jXi +Xi∂i∂jXj + (∂iXj)(∂jXi) + (∂iXi)(∂jXj)− 2X0∂

2
i X0 − 2(∂iX

2
0 )

+ 3aH(X0X
′
0 +X ′

0X0 −XiX
′
i −X ′

iXi) + 9(1 + w)a2H2X2
0 + 2a2H2X2

i

]
. (B.19)

Note that for the coupling to Einstein tensor, i.e., for ξ2 = 2ξ1, the above formulas simplify
as

ρξ2=2ξ1
X =

ξ1
a4

[
− 2Xj∂

2
i Xj − 2(∂iXj)

2 +Xj∂i∂kXi +Xi∂i∂kXj + (∂iXj)(∂jXi)

+ 9a2H2X2
0 − a2H2X2

i

]
, (B.20)

which agrees with the result found in Ref.[34].
Then, using decomposition Eq.(3.5), one finds

ρMX =
1

2a4

∫
d3k

(2π)3

∫
d3q

(2π)3
ei(k⃗+q⃗)·x⃗

{
X⃗ ′(k) · X⃗ ′(q)− i

[
X0(k)k⃗ · X⃗ ′(q) +X0(q)q⃗ · X⃗ ′(k)

]
+ (a2m2

X − k⃗ · q⃗)
[
X0(k)X0(q) + X⃗(k) · X⃗(q)

]
+ [⃗k · X⃗(q)][q⃗ · X⃗(k)]

}
, (B.21)

ρξ1X =
ξ1
a4

∫
d3k

(2π)3

∫
d3q

(2π)3
ei(k⃗+q⃗)·x⃗

{
− 3H2a2

[
X⃗(k) · X⃗(q) + 3wX0(k)X0(q)

]
− 2

[
q2 + k⃗ · q⃗

] [
X0(k)X0(q)− X⃗(k) · X⃗(q)

]
− 3aH

[
X0(k)X

′
0(q) +X ′

0(k)X0(q)
]

+ 3aH
[
X⃗(k) · X⃗ ′(q) + X⃗ ′(k) · X⃗(q)

]}
, (B.22)

ρξ2X =
ξ2
2a4

∫
d3k

(2π)3

∫
d3q

(2π)3
ei(k⃗+q⃗)·x⃗

{
a2H2

[
2X⃗(k) · X⃗(q) + 9(1 + w)X0(k)X0(q)

]
+ 3aH

[
X0(k)X

′
0(q) +X ′

0(k)X0(q)
]
− 3aH

[
X⃗(k) · X⃗ ′(q) + X⃗ ′(k) · X⃗(q)

]
− [q⃗ · X⃗(k)][q⃗ · X⃗(q)]− [⃗k · X⃗(k)][⃗k · X⃗(q)]− [⃗k · X⃗(q)][q⃗ · X⃗(k)]− [q⃗ · X⃗(q)][⃗k · X⃗(k)]

+ 2
[
k2 + k⃗ · q⃗

]
X0(k)X0(q)

}
, (B.23)

where we have left time dependence implicit.

The zero component of the vector field, X0, does not have a kinetic term. Furthermore, it
does not mix longitudinal and transverse modes, allowing it to be isolated from the other
three physical components of the Xµ field. It can be shown that

X0(τ, k) =
−ik⃗ · X⃗ ′(τ, k)

k2 + a2m2
X

, X ′
0(τ, k) = ik⃗ · X⃗(τ, k)− 2HX0(τ, k). (B.24)
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Substituting the above relations into Eqs.(B.21)-(B.22), one gets

ρMX =
1

2a4

∫
d3k

(2π)3

∫
d3q

(2π)3
ei(k⃗+q⃗)·x⃗

{
X⃗ ′(k) · X⃗ ′(q)− [⃗k · X⃗ ′(k)][⃗k · X⃗ ′(q)]

k2 + a2m2
X

− [q⃗ · X⃗ ′(q)][q⃗ · X⃗ ′(k)]

q2 + a2m2
X

+ (a2m2
X − k⃗ · q⃗)

[
− [⃗k · X⃗ ′(k)][q⃗ · X⃗ ′(q)]

(k2 + a2m2
X)(q2 + a2m2

X)
+ X⃗(k) · X⃗(q)

]
+ [⃗k · X⃗(q)][q⃗ · X⃗(k)]

}
,

(B.25)

ρξ1X =
ξ1
a4

∫
d3k

(2π)3

∫
d3q

(2π)3
ei(k⃗+q⃗)·x⃗

{
− 3H2a2

[
X⃗(k) · X⃗(q)− 3w

[⃗k · X⃗ ′(k)][q⃗ · X⃗ ′(q)]

(k2 + a2m2
X)(q2 + a2m2

X)

]

+ 2
[
q2 + k⃗ · q⃗

] [ [⃗k · X⃗ ′(k)][q⃗ · X⃗ ′(q)]

(k2 + a2m2
X)(q2 + a2m2

X)
+ X⃗(k) · X⃗(q)

]

− 3aH

[
[⃗k · X⃗ ′(k)][q⃗ · X⃗(q)]

k2 + a2m2
X

+
[⃗k · X⃗(k)][q⃗ · X⃗ ′(q)]

q2 + a2m2
X

+ 4aH
[⃗k · X⃗ ′(k)][q⃗ · X⃗ ′(q)]

(k2 + a2m2
X)(q2 + a2m2

X)

− X⃗(k) · X⃗ ′(q)− X⃗(k)′ · X⃗(q)

]}
, (B.26)

ρξ2X =
ξ2
2a4

∫
d3k

(2π)3

∫
d3q

(2π)3
ei(k⃗+q⃗)·x⃗

{
a2H2

[
2X⃗(k)X⃗(q)− 9(1 + w)

[⃗k · X⃗ ′(k)][q⃗ · X⃗ ′(q)]

(k2 + a2m2
X)(q2 + a2m2

X)

]

+ 3aH

[
[⃗k · X⃗ ′(k)][q⃗ · X⃗(q)]

k2 + a2m2
X

+
[⃗k · X⃗(k)][q⃗ · X⃗ ′(q)]

q2 + a2m2
X

+ 4aH
[⃗k · X⃗ ′(k)][q⃗ · X⃗ ′(q)]

(k2 + a2m2
X)(q2 + a2m2

X)

− X⃗(k) · X⃗ ′(q)− X⃗ ′(k) · X⃗(q)

]
− [q⃗ · X⃗(k)][q⃗ · X⃗(q)]− [⃗k · X⃗(k)][⃗k · X⃗(q)]

− [⃗k · X⃗(q)][q⃗ · X⃗(k)]− [q⃗ · X⃗(q)][⃗k · X⃗(k)]− 2
[
k2 + k⃗ · q⃗

] [⃗k · X⃗ ′(k)][q⃗ · X⃗ ′(q)]

(k2 + a2m2
X)(q2 + a2m2

X)

}
.

(B.27)

Then, let us promote the classical Xµ field to the quantum operator X̂µ and compute the
expectation value of the energy density operator:

⟨ρ̂X⟩ = ⟨ρ̂MX ⟩+ ⟨ρ̂ξ1X ⟩+ ⟨ρ̂ξ2X ⟩. (B.28)

To that end, we introduce a canonical vector field variable

ˆ⃗
X(τ, x⃗) =

∑
λ=±,L

∫
d3k

(2π)3
ϵ⃗λ(k⃗)e

ik⃗·x⃗X̂λ(τ, k), X̂λ(τ, k) ≡ âλ(k⃗)Xλ(τ, k) + â†λ(−k⃗)X ⋆
λ (τ, k),

(B.29)

where the annihilation and creation operators satisfy the following commutation relations:

[âλ(k⃗), â
†
λ′(q⃗)] = δλλ′(2π)3δ(3)(k⃗ − q⃗), [âλ(k⃗), âλ′(q⃗)] = 0, [â†λ(k⃗), â

†
λ′(q⃗)] = 0, (B.30)

the polarization vectors are

k⃗ · ϵ⃗±(k) = 0, k⃗ · ϵ⃗L(k) = k, k⃗ × ϵ⃗±(k) = ∓ikϵ⃗±(k), k⃗ × ϵ⃗L(k) = 0. (B.31)
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Note that the mode functions Xλ are normalized by the Wronskian condition

W [Xλ,X ⋆
λ ] = X ′

λX ⋆
λ −X ⋆′

λ Xλ = −i. (B.32)

Hence, we can identify X± with the transverse mode function satisfying Eq.(3.14), i.e.,
X± = X±, whereas the mode function XL for the longitudinal polarization, satisfying
Eq.(3.14) is related to the longitudinal component of the vector field through Eq.(3.11).
Next, let us define the following power spectra:

⟨X̂λ(τ, k) · X̂λ′(τ, q)⟩ = δλλ′(2π)3δ(3)(k⃗ + q⃗)
2π2

k3
PXλ

(τ, k), (B.33)

⟨X̂ ′
λ(τ, k) · X̂ ′

λ′(τ, q)⟩ = δλλ′(2π)3δ(3)(k⃗ + q⃗)
2π2

k3
PX ′

λ
(τ, k), (B.34)

⟨X̂λ(τ, k) · X̂ ′
λ′(τ, q)⟩+ ⟨X̂ ′

λ(τ, k) · X̂λ′(τ, q)⟩ = δλλ′(2π)3δ(3)(k⃗ + q⃗)
2π2

k3
PXλX ′

λ
(τ, k). (B.35)

The total energy density of the vector field can be expressed as the sum of the energy
densities of the longitudinal and transverse components

⟨ρ̂X⟩ = ⟨ρ̂L⟩+ ⟨ρ̂±⟩, (B.36)

where

⟨ρ̂L⟩ = ⟨ρ̂ML ⟩+ ⟨ρ̂ξ1L ⟩+ ⟨ρ̂ξ2L ⟩, (B.37)

⟨ρ̂±⟩ = ⟨ρ̂M± ⟩+ ⟨ρ̂ξ1± ⟩+ ⟨ρ̂ξ2± ⟩. (B.38)

After some algebra, one finds

⟨ρ̂ML ⟩ = 1

2a4

∫
d3k

(2π)3
2π2

k3

{
a2m2

X

k2 + a2m2
X

A2
LPX ′

L
+

a2m2
X

k2 + a2m2
X

ALA
′
LPXLX ′

L

+

[
a2m2

XA2
L +

a2m2
X

k2 + a2m2
X

(A′
L)

2

]
PXL

}
, (B.39)

⟨ρ̂ξ1L ⟩ = ξ1
a4

∫
d3k

(2π)3
2π2

k3

{
3(aH)2

k2

(k2 + a2m2
X)2

(4− 3w)A2
LPX ′

L

+

[
3(aH)2(4− 3w)

k2

(k2 + a2m2
X)2

A′
LAL + 3aH

2k2 + a2m2
X

k2 + a2m2
X

A2
L

]
PXLX ′

L

+

[
3(aH)2 (4− 3w)

k2

(k2 + a2m2
X)2

(A′
L)

2 + 6aH
2k2 + a2m2

X

k2 + a2m2
X

ALA
′
L − 3a2H2A2

L

]
PXL

}
,

(B.40)

⟨ρ̂ξ2L ⟩ = ξ2
2a4

∫
d3k

(2π)3
2π2

k3

{
3(aH)2(3w − 1)

k2

(k2 + a2m2
X)2

A2
LPX ′

L

+

[
3(aH)2(3w − 1)

k2

(k2 + a2m2
X)2

A′
LAL − 3aH

2k2 + a2m2
X

k2 + a2m2
X

A2
L

]
PXLX ′

L

+

[
3(aH)2

k2

(k2 + a2m2
X)2

(3w − 1)(A′
L)

2 + 6aH
2k2 + a2m2

X

(k2 + a2m2
X)2

A′
LAL + 2(aH)2A2

L

]
PXL

}
,

(B.41)
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and

⟨ρ̂M± ⟩ = 1

2a4

∫
d3k

(2π)3
2π2

k3

{
PX ′

±
(τ, k) + (k2 + a2m2

X)PX±(τ, k)

}
, (B.42)

⟨ρ̂ξ1± ⟩ = ξ1
a4

∫
d3k

(2π)3
2π2

k3

{
− 3a2H2PX±(τ, k) + 3aHPX±X ′

±

}
, (B.43)

⟨ρ̂ξ2± ⟩ = ξ2
a4

∫
d3k

(2π)3
2π2

k3

{
2a2H2PX±(τ, k)− 3aHPX±X ′

±

}
. (B.44)
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