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Abstract—This article focuses on the development of 

classification architectures for Synthetic Aperture Radar (SAR) 

image analysis, particularly for target recognition. Several 

methods based on deep artificial neural networks are explored 

and compared. Specifically, this work investigates the study of 

pretrained architectures such as Xception and DenseNet, which 

were originally developed and trained on the ImageNet database 

containing optical images. However, adaptation of these 

architectures is necessary within the context of SAR radar 

images. The goal was to take advantage of the powerful feature 

extraction capabilities of these models to effectively classify 

objects in radar images. We evaluated and compared the 

classification performances of each technique using the publicly 

MSTAR dataset. This led to the proposal and development of 

new architectures based on the Xception and DenseNet models. 

Using these models, it is possible to achieve impressive 

recognition rates close to 99.5% on the test dataset, surpassing 

several benchmarks reported in the scientific literature on the 

same dataset. 

Keywords—Automatic Target Recognition, Deep Learning, 

SAR classification, Transfer Learning, Fine Tuning. 

I. INTRODUCTION 

The identification and classification of radar targets from 

SAR images offer a significant advantage over the challenges 

humans face when analyzing such images, unlike 

conventional images, especially optical ones. This difficulty 

stems from the characteristics of radar images, the observed 

scenes within uncontrolled environments, their resolution, and 

the limited color dynamics. Consequently, there is 

considerable interest in categorization and object detection 

within the field of remote sensing [1]-[5]. 

Our objective is to leverage SAR data to design a 

recognition architecture based on existing deep learning 

models. However, the unique characteristics of SAR image 

databases pose challenges in directly applying established 

models such as DenseNet121 [6], Xception [7], ResNet [8], 

MobileNet [9], and other which are predominantly developed 

for optical images like those in ImageNet [10]. Adapting these 

models for SAR images often requires significant 

modifications, potentially altering their architectures based on 

the desired performance for recognition applications [11]. 

Previous literature has addressed this issue by proposing 

dedicated architectures for SAR image tasks, including 

classification, detection, and classification, or detection alone. 

Such research often draws inspiration from and compares with 

architectures developed for various image types, including 

classical or optical images. 

In this context, our focus lies on developing, implementing 

and comparing neural networks customized for SAR image 

processing. We have also endeavored to enhance existing 

models from scientific literature to better suit radar image 

analysis. 

In Section II, we explain the potential of transfer learning 

and fine-tuning strategies applied to the CNN architectures 

proposed. Here, we present the CNN architectures proposed 

for target recognition on SAR images, along with the 

experimentation conducted to evaluate them. Section III 

discusses the obtained results and performances of the 

proposed methods. Finally, we conclude with our findings and 

outline future perspectives. 

II. MACHINE LEARNING METHODS FOR TARGET RECOGNITION 

This section quickly presents the different architectures used 

in this study: The Multilayer Perceptron (PM) and several 

Convolutional Neural Network (CNN) models. 

A. Multilayer Perceptron (PM) 

A Multilayer Perceptron (PM) is a type of artificial neural 

network that consists of multiple layers of interconnected 

neurons. PM are powerful models capable of learning 

complex patterns and relationships in data. They are widely 

used in various fields, including pattern recognition, 

classification, regression, and time series prediction. 

Despite their effectiveness, PM have certain limitations. 

They require a large amount of labeled data for training, and 

their performance et memory resource depends heavily on the 

choice of hyperparameters such as number of layers, number 

of neurons per layer, and activation functions. Additionally, 

MLPs are prone to overfitting, especially when dealing with 

noisy or small datasets. 

TABLE I. ARCHITECTURE OF THE PM MODEL. 

 

In summary, PMs are a fundamental building block of 

machine learning and have proven to be effective models for 

a wide range of tasks. However, they require careful tuning 



and consideration of various factors to achieve optimal 

performance. In this study, the PM is used as the minimum 

reference with a recognition rate of 93.90% based on the tests. 

Its architecture is presented in Table I and the classification 

results in Section III. 

B. Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is other type of 

artificial neural network specifically designed for images. 

CNNs are particularly effective in tasks involving image 

recognition, object detection, and classification. One of the 

key advantages of CNNs is their ability to automatically learn 

hierarchical representations of data. By exploiting the spatial 

correlations present in images, CNNs can learn to extract 

meaningful features at different levels of abstraction, leading 

to superior performance compared to traditional machine 

learning methods.  

CNNs are characterized by their architecture, which 

consists of multiple layers, including convolutional layers, 

pooling layers, and fully connected layers. The convolutional 

layers apply convolution operations to the input data, which 

involves sliding a filter (also known as a kernel) across the 

input image to extract local features. These features are then 

passed through activation functions to introduce non-linearity 

into the network.  

In this study, we build upon the framework developed by 

C. Coman et al. [12], which introduces a specific architecture 

designed for MSTAR data, denoted as CNN1. Its architecture 

is presented in Table II and the classification results in Section 

III.  

TABLE II. ARCHITECTURE OF THE CNN1 MODEL. 

 

In summary, Convolutional Neural Networks are a 

powerful class of models for image processing tasks, capable 

of learning complex patterns and representations directly from 

raw pixel data. Their effectiveness, versatility, and scalability 

have made them the go-to choose for a wide range of computer 

vision applications.  

Subsequently, it is a question of studying to what extent 

less specific CNN architectures can offer equivalent or better 

recognition rates. For this, we studied 4 CNN architectures 

well known in the literature:  

• Xception model [7]: is a deep CNN architecture 

introduced in 2017 by Chollet (creator of Keras, a 

popular machine learning library in Python). The 

main advantage of the Xception architecture lies in its 

innovative approach to convolution. Instead of using 

traditional convolution filters, Xception uses deep 

convolution modules called “Depthwise Separable 

Convolutions”. These modules help reduce the 

number of parameters while maintaining network 

performance, which can lead to more computationally 

and memory efficient models.  

• Inception ResNetV2 [13]: is a deep CNN architecture 

that combines the concepts of the Inception 

architecture [14] with the residual blocks of ResNet 

[8]. It was introduced by Google as part of the 

TensorFlow project. This architecture was designed 

to achieve better performance in image classification, 

object detection and semantic segmentation tasks. It 

is renowned for its ability to extract complex features 

at different resolution levels, making it a popular 

choice for many computer vision applications. 

• MobileNetV2 [9]: is a deep CNN architecture 

designed to run efficiently on mobile devices by 

reducing the number of parameters and calculations. 

It builds upon an original architecture, aiming to 

improve both performance and efficiency. It is based 

on a structure inverted residual where the convolution 

layers are placed between the linear activation layers. 

• DenseNet121 [6]: is a deep CNN architecture 

proposed by Huang et al. in 2017. It connects each 

layer to all previous layers in a dense manner, which 

promotes maximum information flow through the 

network. This architecture allows better use of the 

features learned at different spatial scales. 

To do this, it involves modifying and improving the 

behavior of the 4 architectures via two techniques which differ 

in their approach: Fine-Tuning method and Transfer Learning 

method. The goal of fine-tuning and transfer learning is to 

exploit pre-trained neural network models to improve their 

performance for new problems or types of data (here SAR 

images: MSTAR database – section III-A). In both cases, the 

goal is to take the knowledge gained from a pre-trained model 

on a large general data set and apply it to a new related task 

(Table III). For all architectures, the weights of the 

convolutional layers of these architectures are those optimized 

on the ImageNet database. 

TABLE III. SUMMARY KEY DIFFERENCES BETWEEN TRANSFER LEARNING 

AND FINE-TUNING. 

Feature Transfer Learning (TL-) Fine-Tuning (FT-) 

Objective 
Leverage pre-trained 

knowledge for a new task 

Further specialize a pre-

trained model 

Layers Updated 
Early layers frozen, final 

layers retrained 

More layers (potentially 

all) updated 

Training Time Faster Slower 

Data Requirement Less data needed May require more data 

1) Transfer Learning method on architectures (TL-)  

This method involves transferring knowledge learned from 

one task or data set to another related task or data set. By 



initializing the model with weights learned from a pre-trained 

model, transfer learning can speed up training and improve 

generalization, especially when the target dataset is small. 

A pre-trained model, such as an ImageNet-trained Xception, 

ResNetV2… serves as the initial foundation. The lower layers 

of the model, responsible for extracting fundamental features 

like edges and shapes, are typically kept frozen (with weights 

unchanged) during training. Conversely, the upper layers, 

responsible for capturing higher-level, task-specific features, 

are retrained using a new dataset tailored to address your 

specific problem. 

First, it is necessary to modify the initial architectures 

somewhat. Notably the last connected layer of all 

architectures, we process the 10 classes of the MSTAR 

database against 1000 classes used for example in Xception 

[7]. To do this, it is necessary to replace the last layer of the 

CNN architecture with a layer of 10 outputs whose weights 

are defined by learning on the MSTAR classes. 

The other layers remain fixed with the optimized coefficients 

obtained by training on the ImageNet database and are used in 

the feature extraction. It is also possible to add a hidden layer 

well suited in size, but this technique was not retained in our 

study case because it did not allow us to improve performance. 

The learning results obtained are shown section III. 

2) Fine Tuning method on architectures (FT-) 

Fine-tuning involves adjusting the parameters of a pre-trained 

model using a smaller dataset specific to the new problem. 

This involves further specializing a pre-trained model for a 

specific task by adjusting its weights. This process allows the 

model to adapt its previously learned representations to better 

fit the new task, potentially achieving higher accuracy than 

training from scratch.  

For training, it is often possible to freeze the initial layers 

of the CNN models, and only adapt the final layers for the new 

classification problem. Freezing all convolutional layers 

corresponds to the previously presented TL-models. In this 

phase of Fine-tuning the coefficients of the previous model 

will vary slightly. Indeed, we will use the TL-models obtained 

previously which already has optimized coefficients. It is 

therefore a question of modifying weakly at each iteration the 

weights of the last selected convolutional layers, to adapt it 

progressively to our database, without completely modifying 

the knowledge already acquired. We denote by FT-models the 

resulting architectures which integrates the training of the last 

two convolutional layers of the TL-models in addition to the 

final layer (classifier). The learning results obtained are shown 

section III. 

3) Complete Training methods on architectures (CT-)  

To analyze the performance limits of the architectures 

presented previously, we implemented the global training 

strategy only on the Xception model. Here all layers of the 

FT-Xception model are retrained, this means all weights are 

recalculated and optimized based on MSTAR database. We 

designate this completely reconstructed architecture as CT-

                                                           
1 The Air Force Moving and Stationary Target Recognition Database (MSTAR).                                                                  

Available online: https://www.sdms. afrl.af.mil/datasets/mstar/ (accessed on 14 March 2024). 

Xception. The initial coefficients during training are those of 

the FT-Xception model. The learning results obtained are 

shown section III. 

III. RESULTS  

This section presents a comprehensive analysis of the 

obtained results. We will evaluate the performance of the 

models across various evaluation criteria. 

A. Data Description 

This section focuses on applying various classification 

methods to the public MSTAR database 1 . The MSTAR 

database serves as the foundation for our experiments. This 

publicly available dataset consists of 5172 grayscale images, 

each with a resolution of 128 x 128 pixels (see Table IV).   

For training purposes, the MSTAR data is divided into a 

learning base and a test base.  An important feature of the 

learning base is the balanced distribution of images across 

target classes. This ensures that the model receives an equal 

amount of training data for each target type, promoting 

balanced learning.  The test base also exhibits a relatively 

balanced distribution across most target classes, with the 

exception of a few outliers. Figure 1 provides a visual 

overview of the MSTAR database's contents. 

TABLE IV.  NUMBER OF IMAGES PER CLASS (TARGET) IN THE LEARNING / 

TEST MSTAR DATABASE. 

 

 

Fig. 1. Samples of raw SAR images of some targets from 

the MSTAR database. 

We compare the performance of our architectures and our 

results to those presented by other methods. This comparison 

aims to understand the complex and often unpredictable 

relationship between the data content and the chosen 

architecture. Oftentimes, we lack information regarding the 

distribution nature of the data in the feature space, which can 

be extensive (equivalent to the number of pixels in an image). 

Consequently, we resort to heuristic approaches when 

selecting the model (architecture) to ensure optimal 

performance. 



TABL E V. RESULTS USING PRE-TRAINED ARCHITECTURES. 

 

TABLE VI. SUMMARY OF CLASSIFICATION RESULTS. 

 

TABLE VII. COMPARISON OF THE SC-XCEPTION MODEL WITH OTHER MODELS FROM THE SCIENTIFIC LITERATURE. 

 

To evaluate recognition quality, we utilize metrics such as 

class-specific recognition rates and the Confusion Matrix 

based on the Test set. These metrics possess the capability to 

simultaneously highlight well-identified classes and visualize 

correlations among database classes. Additionally, we employ 

training curves to analyze the neural network's behavior, 

including its stability and convergence speed. This enables us 

to track and optimize the selection of hyperparameters to 

enhance generalization ability. 

B. Comparison of Architectures 

In this part, we present the summary of the results obtained 

and we give the performance of the models through different 

evaluation criteria. Tables V, VI and VII provide a summary 

of the results obtained on the MSTAR database. 

In Table V, we present obtained results using other 

pretrained architectures with the same approach used for 

Xception architecture on connected layer (classifier) and the 



last two convolutional layers. We denote by Nbr-En the 

number of trainable parameters. It can be seen from Table VI 

that the FT-Xception achieves the best rate on the test 

compared to other models. 

The network PM shown a recognition rate of 93.90% on 

the test dataset. This interesting result provided by this simple 

network may be because the useful information is all centered 

in the SAR images. We note that the best results are obtained 

for the T72 class (Table VI). 

As shown in the Table VI, the CNN1 model achieves an 

average recognition rate of 97.69% (a gain of +3.79 compared 

to PM). We see that the CNN1 architecture presents better 

performances compared to a classic PM. However, CNN1 

presents difficulties in classifying the BMP2 target which is 

strongly confused with the T72 and BTR70 targets (according 

to the confusion matrix not presented here due to lack of 

space). 

The overall and per-class rates shown in Table VI are 

obtained based on the MSTAR test dataset (the overall rate is 

slightly different from the average per-class rate because the 

image number per target varies). We can see that all models 

(FT-models and TL-models) have difficulties in correctly 

classifying the BMP2 target which is generally confused with 

the BTR70 and T72 classes. Remember that the two classes 

BTR70 and BMP2 have the smallest number of images in the 

learning base, which can be one of the causes of this difficulty.  

The comparisons presented in Table VII show the 

contribution of our approach SC-Xception and the 

improvement made compared to the best results obtained in 

the scientific literature dealing with the same MSTAR 

database. 

The CT-Xception model achieved a very satisfactory 

overall and class recognition rate which favors the use of 

learning transfer. As a result, the overall training strategy leads 

to the best performance. These results confirm our hypotheses 

that complete training on specific databases such as SAR 

images (MSTAR base) can bring a real gain in terms of 

recognition of targets. Though, it involves optimizing all the 

weights of the pre-trained model as well as requires relearning 

for each problem treated. This relearning is unfortunately very 

costly in terms of time and requires a large volume of data, 

things that we often do not have available. 

Additionally, another approach is to develop a tailored 

architecture that considers constraints related to learning time, 

generalization, and model complexity. In our study, the model 

selection was carried out following a heuristic approach which 

is often adopted by a large scientific community that makes it 

necessary to go through the experimentation of several 

models. Indeed, in the absence of a precise mathematical 

formalism that describes the decision-making mechanisms by 

these networks, the deterministic approach remains often 

difficult to put in place. This problem is rather studied by 

another field under development, that of the explainability of 

AI. 

IV. CONCLUSIONS 

This work tackled the challenge of automatic radar target 

recognition using machine learning techniques. The results 

obtained through studying various neural networks clearly 

demonstrated the effectiveness of these methods in 

classification. A key focus of our approach was leveraging 

architectures developed in the scientific literature through 

transfer learning and fine tuning. We employed a methodical 

approach, first examining the performance of pre-trained 

models after adding a classifier.  We then evaluated these 

models after fine-tuning their final convolutional layers 

specifically for the MSTAR dataset. Notably, the FT-

Xception model achieved the best results within this fine-

tuning stage. Finally, by completely training the FT-Xception 

model, we proposed the CT-Xception model. This final model 

exhibited excellent generalization capability, achieving a 

remarkable recognition rate on the test set, surpassing the best 

results reported in the literature.  It's important to note that 

transfer learning in this work was performed using models 

pre-trained on the ImageNet database, which contains natural 

images. 

We propose a potentially more efficient solution: transfer 

learning from pre-trained architectures on radar images 

themselves. For example, the CT-Xception model could be 

further exploited and adapted using this technique for 

recognizing radar targets in other databases or the robustness 

of the FT-models or CT-Xception model against Gaussian 

white noise. 
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