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Abstract
Functions as a Service (FaaS) is a crucial element of cloud
computing, particularly for machine learning inferences. To
reduce latency, cloud offloading has been proposed, position-
ing the FaaS provider closer to the client on the Edge-Cloud
continuum. We extend this approach by proposing a multi-
provider, fully decentralised model to enhance the flexibility,
scalability, and resilience of FaaS. Additionally, we identify
the necessary security properties and available countermea-
sures.
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1 Introduction
Functions as a Service (FaaS) is a cloud computing approach
that allows for the execution of functions without the need
to manage the underlying infrastructure. This model offers
a pay-per-use billing system and provides elasticity, mak-
ing it particularly useful for machine learning (ML) model
inference [17, 24].
Current FaaS approaches typically rely on a single cloud
provider, this introduces latency issues due to the distance
between the client and the data centre. In addition, this ap-
proach faces challenges in scalability and resilience due to
the dependence on a single provider.
Multicloud approaches are used to call multiple providers at
the same time, looking for the best performance/cost equilib-
rium and improve the scalability and resilience by handling
multiple providers [23].
To improve FaaS latency, it has been proposed to execute
loads closer to client on Edge-Cloud continuum. When Edge
capacity is reached, cloud offloading transfers the load to
the cloud to maintain availability, but at the cost of higher
latency [13, 15].
P2P approaches have been proposed to handle cloud offload-
ing [15] and load distribution [4, 5] in FaaS settings, although
these approaches often leave security considerations under-
developed.
Other works focus on the security of FaaS [9], especially on
the use of Trusted Execution Environments (TEE) [20] to
guarantee the computation integrity and data privacy.
In this paper, we propose a new model for decentralised
FaaS, allowing for flexible scheduling and offloading. We
identify the necessary security properties and the available
countermeasures.

The paper is organised as follows. Section 2 reviews the FaaS
and decentralisation approaches. Section 3 describes our pro-
posedmodel. Section 4 identifies the FaaS security challenges
our model faces and the possible countermeasures. Section
5 discusses the paths to be explored. Section 6 concludes.

2 Related works
Functions as a Service (FaaS) is a cloud computing model that
allows developers to execute individual functions or pieces of
code in response to specific events without the need to man-
age the underlying infrastructure. In this model, the cloud
provider automatically provisions, scales, and manages the
servers required to run the code [10]. Users are billed based
on the actual execution time and resources consumed by
their functions, rather than on pre-allocated server capacity.

2.1 FaaS challenges and solutions
Surveys such as [10, 17] have reviewed the challenges of
serverless computing. We concentrate here on three primary
challenges: scalability, resilience, and latency.
For scalability and resilience, two complementary approaches
are possible: using multiple providers (the multicloud ap-
proach [23]) and improving FaaS scheduling. Utilizing multi-
ple providers enhances elasticity and resilience by distribut-
ing the load across various cloud services [12]. Scheduling
involves the efficient allocation of computational resources
to execute functions in response to events. It optimizes per-
formance, ensuring scalability and resilience. Effective sched-
uling dynamically distributes resources to handle varying
workloads, maintaining system responsiveness and reliabil-
ity.
Latency is another significant challenge, particularly in sce-
narios involving cold and warm starts. A cold start involves
initializing a new execution environment, causing signifi-
cant latency (can add more than 2 seconds of latency [14]),
while a warm start uses an already-initialized environment
for near-instant execution.
Solutions to mitigate latency include scheduling to prevent
cold starts such as pre-warming (keeping execution envi-
ronments warm by periodically invoking them), provisioned
concurrency (asking the cloud provider to keep a specified
number of execution always warm) and event event trig-
gers (using an event trigger to pre-allocate resources). To
reduce warm start latency, an approach is edge computing,
placing the execution environment closer to the client in the
IoT-cloud continuum.



To enhance resilience and scalability, decentralisation through
peer-to-peer (P2P) approaches are the next step, as showed
with IPFS [6] for file sharing. This allows multiple providers
to be found and called by a client. This extension of the
multicloud approach enables better distribution of providers,
with some positioned closer in the continuum for improved
latency. Additionally, the volunteer computing approach [3,
11] can be leveraged to exploit unused computing resources,
particularly in consumer devices, further enhancing the sys-
tem’s scalability, resilience and latency.

2.2 Decentralised FaaS
Currentworks on decentralised FaaS, such as Serverledge [15],
aim to offload computation to edge nodes and cloud regions.
Serverledge organizes edge and cloud nodes into different
regions and zones, allowing users to send requests to any
edge node. When resource consumption becomes too high,
scaling is handled automatically. Nodes can offload tasks
vertically to the cloud or horizontally to another edge node.
Another approach, DFaaS [4], uses a peer-to-peer (P2P) net-
work for edge nodes to exchange status information and
offload tasks if needed. Each 5G/WiFi station has an associ-
ated edge node, and a proxy within the node decides whether
to offload tasks.
Existing approaches have limitations. They do not address
security concerns. DFaaS and Serverledge require edge nodes
with datacenter-like capabilities to handle numerous func-
tions simultaneously. Serverledge also relies on a global
registry, which poses resilience issue, and lacks customis-
ability such as thematic nodes (e.g. LLM specialised nodes).
Serverledge operates within a single cloud ecosystem with
a single scheduler, limiting resilience and creating vendor
lock-in.

3 Proposed model
In this section we present our D-Lambda architecture (figure
1). We propose to create a virtual broker on a peer-to-peer
network. Clients and providers meet and negotiate the exe-
cution of functions on this P2P network.
We feature four components, separated in the client and
provider infrastructures. On the client side: The client calls
a function. The querier handles the search for a provider
and the negotiation of the provisioning. On the provider
side, the provider looks for potential clients and handles
the negotiation. The executor executes the function.
This architecture allows for a client to use multiple providers
at the same time for better scalability and resilience. It also al-
lows to look for closer providers on the IoT-Cloud continuum
for a lower latency.
We detail in figure 2 the execution process of our architecture.
For the initialization part (cold start). The client first asks
the querier to look for potential providers on the P2P net-
work. The querier then contacts the potential providers and

Figure 1. Decentralising the broker

negotiates the provision with them. Once the negotiation is
done, the provider loads the function in the executor. The
functions are then called by the client through the querier
that transmits them to the providers executing them with
their executor. On reception of the output, the querier sends
an acknowledgement to the provider.
The search for a provider using a P2P network can be done in
multiple ways. It can be done using a topical pubsub [2] or a
specific key on a DHT [21]. Those rendez-vous points allow
for a pre-selection of the type of provider for some topic
(e.g. compute power, geographical zones). The search can be
either active with the client broadcasting its requirement or
passive with the providers advertising themselves.
TheQuerier has the responsibility to choose a reliable provider
(e.g. Reputation systems [8], testing latency with a ping).
The Querier verifies that the clients requirements are com-
patible with the providers specifications (e.g. listing 1). It
is also in charge of anticipating the performance issues by
offloading from the edge to the cloud or contacting multiple
providers.

Listing 1. Example of provider specifications
" cpu " : { " c o r e s " : 2 } ,
"memory " : { " s i z e " : " 5 12MB" } ,
" gpu " : { " vram " : " 2GB " } ,
" t e e " : { " enab l ed " : t r u e }

Once the Querier has found a possible provider, it negotiates
a contract for the execution of the function. It is an agree-
ment signed by both parties that specifies the conditions of
execution (e.g. number of calls, cost, specific technologies
like TEE, quality of Service).
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Figure 2. D-Lambda execution process

In case of conflict between the client and provider on the
contract execution, the arbitrage can be done using a trusted
third party or a smart contract on a blockchain.

4 Security
In section 3, we presented our model of decentralised FaaS.
In this section we delve in the security of our model. We
study how each actor (clients and providers) can protect
themselves from malicious behaviors. We consider that com-
ponents of the same infrastructure trust each other. We first
identify the security properties to guarantee from the clients
and providers point of view. We then identify the possible
countermeasures.

4.1 Security properties to guarantee
From the client point of view, Input/Output privacy is
the main privacy challenge: the system should prevent the
provider from having access to the functions inputs and
outputs. It may also require Function Privacy where the
provider does not have access to the function executed on
its infrastructure.
The client requires infrastructure integrity and availability,
the Integrity of the function output is needed, the FaaS
provider should also guarantee theAvailability of executors
to limit the impact on clients of failures and scaling.
The client also expects Billing Honesty from the provider
where only the resources used are billed and Behavior Pri-
vacy where the provider and members of the network do
not track abusively the client behavior in time and number
of requests.
From the provider point of view, the main security challenges
are Execution Isolation and Billing Honesty. Execution
Isolation ensures that requests are isolated from the rest of
the infrastructure. This means that they gain no reading
or writing access to other functions being executed or to

the provider’s underlying infrastructure. Billing Honesty
ensures that clients pay accurately for the execution of their
requests.

4.2 Security countermeasures
We distinguish the following countermeasures to provide the
security guarantees. There is no countermeasure covering
the full set of protection requirements. They must be com-
bined to provide the required security properties. However,
their usage may induce overheads in compute and latency.

Execution Isolation – TEE/ Hardware isolation: TEEs like
Intel TDX, ADM-SEV, ARM Trustzone are hardware iso-
lated execution environments with encrypted memory that
guarantees integrity of the execution and privacy of its data
(Function and Input/Ouput Privacy). They feature remote
attestation schemes that allows to remotely verify that a pro-
gram is being executed in a TEE [20]. In our proposed model,
the querier establishes an encrypted connection with the
executor’s TEE and remotely attests that it is connected to
a TEE. It sends the workload (code and data) directly to the
TEE and receives the output using the encrypted connection.
Software isolation include containers or WASM, which
isolate the workload from the OS and other processes [18],
preventing malicious workloads from interfering with other
workloads.
Cryptographic countermeasures –Homomorphic encryp-
tion (HE) allows to compute on encrypted data, this guar-
antees the privacy of the Input and Output data [1]. It can
be added to our model by encapsulating the function to be
called. Current schemes are too costly to be applied.
Consensus techniques like blockchains or trusted third par-
ties can act as arbitrators by reviewing the execution results
to guarantee the integrity of execution. They can also review
the exchanged messages to arbitrate the billing in case of
conflict [22]. They are added in the querier and provider
components. A reputation system [8] can be featured in the
querier and provider to encourage availability, execution
integrity of providers and billing honesty of both providers
and clients by signaling bad behaviors.
Networking Counter-measures – Distributed Hash tables
(DHT) [21] help by maintain the availability by providing
more possible providers to the client in case of failures or
scaling. Networking anonymity techniques like onion rout-
ing [19] and Mixnets [16] can help keep the client’s behavior
private by hiding its identity and its requests behaviour [7].

5 Discussion
The proposed model has multiple paths to be explored to
improve performance. The first path to explore is the com-
bination of security countermeasures and their impact on
performance. Another approach is function storage, by host-
ing and sharing functions on IPFS for better resilience and



scalability. Scheduling improvements can be made by hav-
ing providers detect the most demanded functions and pre-
load them in anticipation, as well as by clients broadcast
their anticipated load. Performance can also be enhanced
by providers offering multiple functions simultaneously, as
seen in models like tinyfaas. Additionally, "private networks"
can be established to offer better security and performance
guarantees, with their own reputation systems and search
mechanisms. Finally, this FaaS model could also be extended
to microservices, allowing for stateful loads.

6 Conclusion
We have presented the base architecture for a fully decen-
tralised FaaS, designed to enhance scalability, resilience and
latency. Additionally, we have identified the security aspects
of this model and the associated countermeasures with their
place in the architecture. Future work will focus on imple-
mentation and benchmarking, with particular attention to
evaluating latency during both hot and cold starts.
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