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Abstract. Constant-time programming is the de facto standard to pro-
tect security-sensitive software against cache-based timing attacks. This
software countermeasure is effective but may incur a significant perfor-
mance overhead and require a substantial rewrite of the code. In this
work, we propose a secure cache-locking hardware mechanism which
eases the writing of secure code and has little execution overhead. To rea-
son about the security of software, we propose a high-level leakage model
such that accesses to locked memory addresses do not generate any ob-
servable leakage. To ensure the adequacy of this leakage model, we also
propose a concrete hardware leakage model for a RISC-V micro-controller
where the secure code may be interrupted, at any time, by some arbi-
trary malicious code. Using the Observational Non-Interference setting,
we show formally that the security of the software model is preserved
at the hardware level. We evaluate the effectiveness and performance of
this mechanism, notably on block ciphers. We also propose and evaluate
a new constant-time sorting algorithm.

1 Introduction

In the Internet of Things context, there is an explosion in the number of small de-
vices based on low-end microcontrollers. These devices have restricted resources
(computing power, battery, memory) yet embed secrets, e.g. secret keys, that
need to be protected. Protecting assets under such strict resource constraints
is challenging, yet, opens the opportunity to revisit software/hardware security
countermeasures. Beyond logic attacks, e.g. exploitation of buffer overflows, an
important class of attacks are passive side-channel attacks whereby an attacker
measures some physical properties of a computation such as power consumption,
electromagnetic emanations or timing, in order to deduce confidential informa-
tion. The paper focuses on cache-based timing attacks that are among the easiest
to exploit [26, 28, 24] since they do not require any physical access to the device.
Device vendors are increasingly concerned about these attacks since many IoT
devices both manipulate confidential data and allow the execution of code under
the control of a possible attacker. We show that cache locking is an efficient
hardware mechanism which can be exposed at the ISA level using a hardware/-
software contract [17] and can be leveraged to ease the writing of secure code



free of timing leakage. Pure hardware countermeasures have been proposed. How-
ever, static cache partitioning [14] limits the available size of the cache during
the whole execution and cache randomisation [25] necessitates a robust random
generator, which is difficult to achieve with limited hardware resources. Our so-
lution has the advantage of locking only the necessary amount of cache lines
when needed, and requires few modifications to the hardware. Moreover, com-
pared to a software countermeasure such as the (cryptographic) constant-time
programming discipline [8, 23, 21], we enable a more flexible programming dis-
cipline lifting the constraint forbidding memory accesses with security sensitive
data [21].

Our cache locking hardware/software contract is expressed as a high-level
leakage model that a programmer can use to reason about the security of its code
and is preserved by the hardware implementation of the cache-locking mecha-
nism. Our contributions are phrased as follows:

– a high-level software leakage model which relaxes the usual constant-time
model so that locked memory accesses are not observable;

– a systematic security study of design choices for cache/memory consistency
schemes (write through or write back, write around or write allocate); their
security implication and leakage model;

– a formal proof that a secure code according to the high-level software leakage
model is still secure for a concrete hardware leakage model accommodating
for an arbitrary attacker sharing the cache;

– experimental evidence that cache-locking enables fast and secure implemen-
tations of block ciphers, e.g. AES, and a variant of Batcher’s sort.

The rest of the paper is organised as follows. In Section 2, we present our hard-
ware and attacker model, recall the main features of the cache-locking mechanism
of Gaudin et al. [16] and the definition of Observational Non-Interference that
will serve as our security property. In Section 3, we present our formal model of a
memory equipped with a cache and a locking mechanism. Section 4 presents our
experimental results demonstrating that, using our cache-locking mechanism,
it is feasible and simple to get faster secure implementations for standard algo-
rithms. In Section 5, we prove that the ONI software contract is preserved at the
hardware level. Related work is presented in Section 6 and Section 7 concludes.
The benchmarks and a Coq development with mechanised proofs are available3.

2 Hypotheses and Background

Hypotheses and Attacker Model. Our target hardware is a single-core RISC-V
microcontroller without out-of-order execution or speculation. Nonetheless, it
features a shared cache for code and data. We make the pessimistic assumption
that the secure program may be interrupted at any time by some arbitrary
attacker sharing the memory cache and able to observe all the memory accesses.

3 https://gitlab.inria.fr/scratchs-public/esorics2024-artefact
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Gaudin et al. [16] propose a cache locking mechanism inspired by PLcache [27].
They implement a 4-way set-associative data cache with a LRU eviction policy.
For a given cache set, 3 out of the 4 cache lines may be marked as locked.
The locking mechanism is exposed at the ISA level by a lock and a unlock

instruction which are used to toggle the lock bit of a cache line. A locked cache
line is loaded into the cache and cannot be evicted unless it is explicitly unlocked.
This ensures that accessing a locked address is necessarily a cache hit.

Observational Non-Interference (ONI) is the software/hardware contract that
we ensure for the cache-locking mechanism studied in this paper. Informally, two
executions are ONI if, starting from initial configurations that only differ on the
secret values, their leakage traces are identical. In other words, the executions
are indistinguishable for an attacker observing the leakage trace. Our presen-
tation follows Barthe et al., [8] where they formalise secure compilation as the
preservation of ONI. The program execution is modelled by a small-step opera-
tional semantics which is augmented by a leakage trace. The initial configuration
is constructed from a set I of inputs.

Definition 1 (Program Model). Given program states State, trace events

Event and input I, a program P is given by a pair (I, · t−→ ·) where:

– I : I → P(State) constructs an initial configuration from an input i ∈ I
– · t−→ · is the deterministic transition relation of the program which emits a

trace t ∈ Event∗.

We write F for the program states without successors: F = {a | ¬∃b, t.a t−→ b}.

The leakage traces are concatenated along the execution. Therefore, the

multi-step relation of a relation · t−→ · is defined as follows:

a
ϵ−→0 a

a
t−→ a′ a′

t′−→n a′′

a
t·t′−−→n+1 a′′

We also consider an equivalence relation ϕ ⊆ State×State over the initial states
which identifies initial configurations of a program that are deemed indistin-
guishable i.e. only differ by the value of secret data.

Definition 2. (ONI) A program P = (I, · t−→ ·) is observationally non-interferent
for a predicate ϕ, written ONI (ϕ, P ), if and only if the following holds:

∧{
a ∈ I(i) ∧ a′ ∈ I(i′) ∧ ϕ(a, a′)
a

t−→n b ∧ a′ t′−→n b′

}
=⇒ t = t′ ∧ (b ∈ F(P ) ⇐⇒ b′ ∈ F(P ))

Barthe et al. [8] propose reasoning principles to show that Observational
Non-Interference is preserved by compiler passes.

In Section 5, we propose a reasoning principle adapted to a setting where the
secure program shares resources (e.g., a memory cache) and the CPU with an
arbitrary attacker.



3 Memory Interface and Models of Cache

We provide an abstract model of a memory sub-system made of a cache and a
main memory. The model is instantiated by a software model where the cache
only records locked addresses and several concrete secure hardware models for
cache policies such as write-allocate, write-around or write-back. The memory is
modelled by a relation of the form

ρ ⊢id (c,m)
τ,v−−→ (c′,m′)

where ρ ∈ REQ is a memory request; id ∈ {D,A} is the process identifier; c, c′ ∈
CACHE are models of the cache; m,m′ ∈ MEMORY = ADDRESS → VALUE represent
the main memory; v ∈ VALUE⊥ is the (optional) answer that is returned to the
process performing the request and τ is the leakage that is associated to the
request. Typically, at the hardware level, the leakage is either a cache hit (fast)
or a cache miss (slow) that is observable by an attacker. The memory requests
are as follows: REQ ∋ ρ ::= load(a) | store(a, v) | lock(a) | unlock(a) where v
represents a value and a is an address. An address a can be uniquely decomposed
into a triple (t, s, w) ∈ TAG×SETID×WORDID where s identifies the cache set where
the address a may be cached, w identifies the word in the cache line and the t is
the tag that is stored in the cache. We define tag&set(t, s, w) = (t, s). The request
is only performed if the address is in the memory space of the process (written a ∈
id). The lock(a) and unlock(a) instructions lock or unlock the address a. The
lock instruction leaks information. However, its implementation ensures that
subsequent load and store requests at a locked address are indistinguishable.
The load returns, as value v, the value read at address a. Depending on the
cache state, it is either read from cache or memory.

3.1 Software Cache Model

The software cache model provides a high-level security model that is indepen-
dent of the concrete implementation and allows reasoning about the security of
the program in isolation, i.e. without considering an explicit attacker. Our model
refines the usual constant-time model to account for the lock and unlock prim-
itives. Without lock instructions, our model coincides with the usual constant-
time model [8] where all the memory accesses are leaked. The software cache
model L ∈ CACHES only records the cache lines that are locked. As caches pro-
vide a number of ways for each cache set, a convenient representation is:

CACHES = SETID → P(TAG)

The transition relation is given in Fig. 1. For load and store, we leak the trace
τ = LS(a, a ∈ L) i.e. tag&set(a) if the address a is not locked. The lock and
unlock operations always leak tag&set(a). For a load(a) request, the address is
fetched from the memory M and M(a) is returned to the calling process. The
other requests return nothing (⊥). The lock request checks that the address can
be locked in the cache. This is the case if the address is already locked or the
cache still has a free way in the cache set.



.

.a ∈ id τ = LS(a, a ∈ L)

load(a) ⊢id (L,M)
τ,M(a)−−−−→

S
(L,M)

a ∈ id τ = LS(a, a ∈ L)

store(a, v) ⊢id (L,M)
τ,⊥−−→
S

(L,M [a 7→ v])

a ∈ id canLock(a, L)
τ = tag&set(a)

lock(a) ⊢id (L,M)
τ,⊥−−→
S

(L ∪ {a},M)

a ∈ id τ = tag&set(a)

unlock(a) ⊢id (L,M)
τ,⊥−−→
S

(L \ {a},M)

Given an address a = (t, s, w), we have:

a ∈ L ≜ t ∈ L(s) canLock(a, L) ≜ a ∈ L ∨ |L(s)| < nbways−1

L ∪ a ≜ L[s 7→ L(s) ∪ {t}] L \ a ≜ L[s 7→ L(s) \ {t}]
LS(a, b) = if b then • else tag&set(a) tag&set(a) = (t, s)

Fig. 1. Software cache semantics

Example 1. Consider the following code which applies a permutation given by
perm to the secret buffer sec. If the array perm is not locked, the trace of mem-
ory (load) events is

∏n
i=0(tag&set(sec + i); tag&set(perm + sec[i])). The pro-

gram is not secure because the load events depend on the secret value sec[i].

lock_array(perm,n);

for(i = 0; i<n; i++)

sec[i] = perm[sec[i]];

unlock_array(perm,n);

ct_load(t, i, n){

res = 0;

for(j = 0; j < n; j++)

res = ct_select(i==j, t[j], res);

return res;}
A classic secure countermeasure may replace perm[sec[i]] by ct load(perm,

sec[i],n) where ct load is a constant-time load gadget which iterates over all
the indices of perm and performs a constant-time selection over the desired index
(ct_select(cond,a,b) returns a if cond is true, b otherwise). For our example,
this turns a vulnerable O(n) code into a O(n2) secure code. If the perm array is
locked, the situation is quite different. For any secret array sec, we get the exact
same trace of load events:

∏n
i=0(tag&set(sec + i); •) and therefore, the code is

secure, for the software model, while retaining the O(n) complexity.

3.2 Hardware Cache Models

In this part, we present our hardare model for a n-way associative cache, a
minimal set of primitive for implementing classic caching policies, and discuss
secure guidelines for using them.

Hardware Cache Model Unlike the software model, a hardware cache con-
tains concrete cache lines. We model a standard n-way associative cache where
the eviction policy USAGE is local to a cache set and a cache line is made of



fetch : CACHEH × MEMORY× ADDRESS× WAY →LEAK CACHEH
write back : CACHEH × MEMORY× ADDRESS× WAY →LEAK MEMORY

update usage : CACHEH × REQ → CACHEH
lock way : CACHEH × ADDRESS× WAY → LOCKED → CACHEH
is locked : CACHEH × ADDRESS → LOCKED

write in cache : CACHEH × ADDRESS× WAY× VALUE → CACHEH
read from cache : CACHEH × ADDRESS× WAY → VALUE

way of address : CACHEH × ADDRESS → WAY⊥
way to evict : CACHEH × REQ× → (ADDRESS× WAY)⊥

Fig. 2. Interface of Hardware Caches

i) a valid bit indicating whether the line holds valid data; ii) a dirty bit indi-
cating whether the content of the cache line needs to be synchronised with the
main memory; iii) a locked bit indicating whether the cache line is locked; iv) a
memory address tag; and v) the content of the cache line.

CACHELINE ≜ VALID× DIRTY× LOCKED× TAG× VALUEnb words

CACHEH ≜ SETID → USAGE× CACHELINEn

Each access to the memory interface generates a leakage trace made of the
following hardware events: LEAKH ::= F(t, s) | WB(t, s) | Hit where F(t, s) is
leaked when a cache line is fetched from memory; WB(t, s) is leaked when a
cache line is written back to memory and Hit corresponds to a cache hit. The
F(t, s) and WB(t, s) events are generated in case of cache misses. They model
our assumption that RAM memory accesses may leak information, for instance,
in case of contention over the RAM controller.

Hardware Cache Interface The memory requests i.e. load, store, lock and
unlock, are implemented using the interface of Fig. 2. Function fetch(c,m, a, w)
updates the cache c with the content of the memory m at address a. It is
stored in the way w of the cache set associated with the address a. Func-
tion write back(c,m, a, w) synchronises the content of the memory m with the
cache line for the address a that is stored in the way w, if that line is dirty.
Similarly to fetch, write back may leak the event WB(tag&set(a)). Function
update usage(c, r) updates the eviction policy depending on the memory re-
quest r. Function lock way(c, a, w, b) sets to the boolean b, the lock status of the
way w of the cache set of the address a. It is used by the lock and the unlock

requests. Function is locked(c, a) tells whether there is a way of the cache set of
address a such that the address a is locked. Function write in cache(c, a, w, v) is
used by the store request. It writes the value v in the cache set of the address
a in the way w. Function read from cache(c, a, w) returns the value v that is
stored in the cache set of the address a in the way w. It is used when the way
w is caching the content of the address a. Function way of address(c, a) returns
the way where the content of the address a is cached; or ⊥ if the address is not



cached. Finally, the function way to evict(c, r) assumes that the memory request
r accesses an address a, and returns a way w′ that can be evicted together with
the address a′ that is currently cached in way w′. The decision is based on the
current eviction policy of the cache set of a and the current request r. For a
lock(a) request, it may return ⊥ if all the available ways are already locked.

The following inference rule illustrates how the hardware interface can be
used to implement a store request using a write-back strategy.

.

.
a ∈ id

way of address(C, a) =⊥ way to evict(C, store(a, v)) = ⌊a′, w⌋
write back(C,M, a′, w) =α M ′ update usage(C, store(a, v)) = C1

fetch(C1,M
′, a, w) =β C2 write in cache(C2, a, w, v) = C3

store(a, v) ⊢id (C,M)
α·β,⊥−−−−→

H
(C3,M

′)

The rule considers the case where the address a is not cached. Suppose that,
according to the eviction policy, the way to evict w contains the content of
the address a′. If the cache line is dirty, write back(C1, a

′, w) writes in memory
the content of the cache line and generates the trace α = WB(tag&set(a′)).
The content of the address a is fetched from memory and generates the trace
β = F(tag&set(a)). Eventually, the value v is written in the way w of the cache
set of the address a.

Guideline for Secure Locks Using this interface, we have implemented several
policies: write-through (data is always written in cache and in memory) with
write-allocate (on store cache-miss, first allocate line in cache) or write-around
(on store cache-miss, only write in memory), and write-back (only write in cache,
write back when evicting lines from the cache). The implementation of all these
variants of cache policies can be found in the Coq development.

An important secure guideline is that the state of a locked cache line must
not change when it is accessed for a load or a store. It follows that the eviction
policy must be independent of the previous accesses to locked cache lines. This
can be enforced by keeping the usage information of a cache set unmodified for
every memory request accessing a locked address. Another subtle point is the
handling of the unlock request. After the lock is released, when the cache line is
eventually evicted, it is necessary to write the cache line to memory even if the
cache line has not been modified. Otherwise, by observing a WB(t, s) event at
eviction time, an attacker would deduce that the cache line was modified under
lock. To prevent this situation, several options are secure. In our implementation,
the lock request always sets the dirty bit and the unlock request resets the lock
bit. Eventually, at eviction time, the cache line will be written back regardless
of its previous use. Another option is to eagerly write the cache line to memory
at the time of the unlock request.

Example 2. Consider again the code of Ex. 1. For a memory access at an address
sec+ i that is not locked, we may get the events: i) Hit if the value is cached;



Algorithm AES(bs) AES(l) Blowfish DES RC4 CAST

Lock size ✗ 1320 B 4 kB 512 B 256 B 4 kB

Overhead < 1% ✗ 1 kB 8 kB 16 B 256 B 4 kB

# Cycles (for 10 kB) 8.7 · 106 2.2 · 106 8.0 · 105 1.0 · 108 8.2 · 105 2.0 · 106
Table 1. Block Ciphers: lock size, overhead and running time

ii) F(tag&set(sec+ i)) if the value is read from RAM; iii) WB(tag&set(sec+
i) to synchronize the cache with the RAM; iv) but also some other unrelated
WB(t, s) to evict cache lines or some other F(t, s) modeling prefetching. For
a memory access at a locked address perm + sec[i], the hardware guarantees a
Hit event. Moreover, the unlock request ensures that there will always be a
WB(tag&set(perm+ i)) event.

4 Evaluation

To evaluate the overhead induced by our locking mechanism to get a Constant-
Time Secure (CTS) program, we consider standard blocks ciphers, algorithms
from the GhostRider benchmark [20] and an original sorting algorithm based
on Batcher’s sort [9]. As a baseline, we take non-CTS reference implementa-
tions and, when possible, state-of-the-art CTS implementations using other CT
programming techniques e.g., bitslicing. We simulate an in-order mono-thread
32-bit RISC-V (RV32I) processor with a L1d cache. The cache contains 128
cache sets, each consisting of 4 ways, each holding 16-byte cache lines.

The block ciphers we consider use lookup tables (e.g., S-boxes) that are
vulnerable to timing attacks. With our locking mechanism, it suffices to lock the
table to get a CTS program. As the number of table accesses is proportional
to the size of the plain text, the overhead cause by locking the lookup table
is amortised over time. In Table 1, we show for each block cipher the amount
of data needed so that the encryption overhead gets below 1%. We also give
the amount of locked data and the number of cycles taken to encrypt 10kB of
plain text. AES(bs)4 is a secure bitsliced implementation of AES. AES(l) and
all other implementations are obtained by locking the S-boxes. Our results show
that AES(l) is more efficient than the highly optimised AES(bs) implementation.
In general, the overhead is amortised for fairly small amount of data (from 256 B
to 8 kB). Moreover, the amount of locked data is also relatively small and only
occupy at most 50% of the whole cache.

We also evaluate our cache locking mechanism over the programs from the
GhostRider benchmark [20] which are also considered by Miao et al. for the
evaluation of their own hardware support for constant-time programming [22]:
histogram, binary search, permutation, dijkstra, heappop. Unlike block ciphers,
the amount of locked data is linear in the size of the problem. As a result, we
are limited to instances of the problem which fit within the physical constraints

4 https://www.bearssl.org/
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of the cache. Fig. 3 details our result for binary search. The results for other
algorithms can be found in Appendix B.
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Fig. 4. Overhead of CTS sorts algorithms
compared to vulnerable merge-sort.

The Memory Oblivious (MO(L)) binary search is obtained from the textbook
baseline binary search by locking the array within the cache before performing
the search. The CTS(L) binary search is a CTS binary-search which, in addition
to locking the array, is rewritten to avoid secret dependent control-flow. This
includes forbidding early return from the main loop and performing branchless
tests. The CTS binary search algorithm is actually a linear traversal of the array
because, without hardware support, there is no other way to get a constant-
time search. To amortise the cost of locking, we perform n successive searches
where n is the array size. For the MO(L) and CTS(L) versions, as expected,
the overhead remain mostly constant as the algorithms still have the O(log(n))
complexity. Given that locking gets amortised, the MO(L) version incurs very
little overhead compared to the CTS(L) where the body of the search code is
modified. The linear CTS version, without hardware locking, is not competitive.
This highlights the benefit of our locking mechanism.

For our previous experiments, the size of the locked data is determined by the
algorithms. Therefore, we have the physical constraint that the locked data fits
within the cache. Here, we present a novel CTS sorting method where the size of
the locked data K is a parameter which can be tuned to improve efficiency. This
novel method is a hybridization of a CTS merge-sort and any network sorting
algorithms. Network sorts consist in swapping elements using a pre-determined
sequence of pairs of indices which only depends on the size n of the array. Hence,
they are CTS by construction.

In our case, instead of swapping single elements, we propose to swap chunks
of sorted arrays of size K/2. Given an array A of size N and a parameter K,
we lock two arrays L and H of size K/2. Using the array L as a scratchpad,



each chunk of A of size K/2 is sorted using a CTS merge-sort. Then, for each
pair (i, j) of the sorting network, we copy the chunk i of the array A in the
locked array L and the chunk j of the array A in the locked array H. We then
perform the merging of the two sorted array and write the K/2 smallest values
in the chunk i and the K/2 biggest values in the chunk j. Because the arrays L
and H are locked, it is feasible to have a CTS merging procedure that runs in
O(K). We applied this hybridization on two different networks sorts : Batcher’s
sort [9], and Daniel J. Bernstein’s portable sort (DJBsort)4.

CTS sorting algorithms are necessary for implementing the Post-Quantum
NIST candidates NTRU and Classic McEliece which sort arrays of 768 32-bit
integers4. In Fig. 4, we show the overhead of CTS sorting algorithms w.r.t a
vulnerable merge-sort for sorting an array of 768 32-bit integers. We consider
our hybrid sort with a locked buffer of size K ranging from 64B to 3kB (i.e. a
buffer of the same size as the array of 768 integers, which results in a pure CTS
merge-sort without the use of the network). We also compared the hybrids with
the original version of both DJB’s portable sort and Batcher’s sort (i.e. with no
locked buffer). The results show that the hybrids outperform both network sorts
with any K greater or equal to 64 bytes, and that the overhead decreases as the
locked size increases.

Take-away Our locking mechanism has the advantage that, once the relevant
tables are locked, we get memory oblivious programs [21] running as fast as the
vulnerable code. For block ciphers, as the locking cost gets amortised, we get
CTS implementations running as fast as the vulnerable code. Moreover, for our
RISC-V microcontroller, our CTS AES with locking outperforms an optimised
bitsliced implementation with the additional advantage of keeping the reference
implementation mostly unchanged. When the lock size is linear in the problem,
we are limited to problem sizes fitting the physical limitations of the cache.
Moreover, multiple runs of the algorithm are needed to amortise the locking
cost. Yet, the locking mechanism significantly improves scalability compared to
standard constant-time programming techniques. Our CTS sorting algorithm
also shows that the amount of locked data can be used as a parameter to tune
efficiency.

5 Observational Non-Interference with Attacker

In subsection 5.1, we introduce a model where a defender D-program is scheduled
with an attacker A-program. In subsection 5.2, we then provide a reasoning
principle which isolates the proof obligations pertaining to the D-program and
the A-program. Eventually, we instantiate the proof principle for our setting
where the D-program and the A-program share a memory cache.

4 https://sorting.cr.yp.to
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5.1 Semantics of Instructions and Processes

We consider a set of instructions representative of the RISC-V ISA with arith-
metic, jump and memory instructions, where rs, rd represents registers and op
contains the operation to apply and a potential immediate value.

instr ::= arith(rd , rs1 , rs2 , op) | jal(rd , rs1 , rs2 , op)
| load(rd , rs1 ) | store(rs1 , rs2 ) | lock(rs1 ) | unlock(rs1 )

The semantics of instructions is parameterised by the memory sub-system.
In our model, the code is stored in a separate read-only memory C. A transition
takes the form (R,M) →τ

id (R′,M ′) where R, R′ model the state of the archi-
tectural registers of process id, M , M ′ represent the memory state (including
the cache) and τ is the leakage trace induced by the transition. Each transition
consists in fetching the instruction i stored at the address R(PC) in the code
segment C and updating the registers and memory according to i. The leakage
τ of an instruction consists in the leakage due to the memory requests (if any)
and the leakage due to the instruction itself. For our processor, the ALU in-
structions (except division) take a single cycle. Therefore, for op ̸= div, we have
Larith(op, v1, v2) = •. The number of cycles of a division depends on the num-
ber of bits of the denominator. Therefore, we have Larith(div, v1, v2) = log2(v2).
Our jump instruction jal(rd, rs1, rs2, op) is a jump and link which sets rd to
the next instruction and sets the program counter according to op(rs1, rs2). A
regular jump is a jal where rd is the immutable zero-register. In term of leak-
age, we make the worst-case assumption and leak the destination of jumps. As
a result, if a jump sets the program counter to the value v, the transition leaks
the value v. The details of the semantic rules are given in Appendix C.

Without loss of generality, we consider two processes id ∈ {D,A} where D
stands for defender and A stands for attacker. Both processes are scheduled ac-
cording to a deterministic policy and share a memory and a cache. In the model,
each process has its own private copy of registers. In a concrete implementation,
at context-switch time, the operating system would save and restore registers at
fixed predefined known memory locations. As a result, the state of the system
is of the form (rD, rA,m, s) where rid ∈ REGISTERS → VALUE, m is a memory
equipped with a cache and s is the scheduler state. At each transition, depending
on the scheduler policy, one of the process performs a transition and the state
of the scheduler is updated by the leakage trace of the instruction. This models
instruction-based but also scheduling strategies based on memory access pat-
terns. This excludes malicious schedulers which inspecting the memory content.
With the caveat of Subsection 5.4, this also allows time-based schedulers.

5.2 ONI Preservation Principle with Attacker

Our proof principle differs from Barthe et al. [8] because, unlike secure com-
pilation, we consider an explicit attacker that may be scheduled with the se-
cure program. A technical consequence is that we rely on a notion of backward
simulation (not a forward simulation). This is needed to cope with situations



where the attacker may perform a denial of service attack and prevent the se-
cure program from executing by monopolising the shared cache. We adapt their
lock-step principle [8, Theorem 1] so that it uses a backward simulation (see
Definition 3) instead of a forward simulation and also extend the notion of lock-
step 2-simulation [8, Def. 6] with a preservation property of final states (see
Definition 4).

Definition 3 (Backward simulation). A relation ≈ is a backward lockstep-
simulation between a hardware program model (IH, · −→

H
·) and a software pro-

gram models (IS, · −→
S

·) iff:

– for every hardware step α −→
H

β, and every software state a such that a ≈ α,

there exists a software state b and a software step a −→
S
b such that b ≈ β.

– the initial states are in relation ∀i ∈ I, α ∈ IH(i).∃a ∈ IS(i). a ≈ α

Definition 4 (Lockstep 2-simulation). Given equivalence relations ϕ and ψ
over the initial states, (≡S,≡H) is a lockstep 2-simulation with respect to ≈
betweem program models (IS, · −→

S
·) and (IH, · −→

H
·) iff

– For all software steps a
t−→
S

b and a′
t−→
S

b′ such that a ≡S a′ and for all

hardware steps α
τ−→
H

β and α′ τ ′

−→
H

β′ such that α ≡H α′, if the states are in

the simulation relation a ≈ α, a′ ≈ α′, b ≈ β and b′ ≈ β′, we have b ≡S b
′,

β ≡H β′ and τ = τ ′.
– Given (i, i′) such that ϕ(i, i′), initial software states (a, a′) ∈ IS(i) × IS(i

′),
we have a ≡S a

′.
– Given (i, i′) such that ψ(i, i′), initial hardware states (α, α′) ∈ IH(i)×IH(i′),

we have α ≡H α′.

– For all software steps a
t−→
S
b and a′

t−→
S
b′ such that a ≈ α, a′ ≈ α′, a ≡S a

′

and α ≡H α′, we have α ∈ F ⇐⇒ α′ ∈ F .

However, the Preservation of constant-time policy Theorem (see [8, Theorem
1]) is inadequate in our context because it does not account for an attacker. We
propose a more general proof principle. Intuitively, we require that the steps
performed by the attacker generate the same traces and preserve the relations
≈ and ≡ according to Definition 5.

Definition 5 (Attacker Simulation). A pair of relations (≈,≡) form an at-
tacker simulation iff

– Given α
τ−→
A
β such that a ≈ α, we have a ≈ β.

– Given α
τ−→
A

β such that α ≡ α′, there exists β′ such that α′ τ−→
A

β′ and

β ≡ β′.

Our ONI proof principle is given by Theorem 1.



Theorem 1 (ONI preservation with attacker). Consider a software exe-

cution S = (IS, ·
t−→
S

·) and a hardware execution H = (IH, ·
t−→
D

· ∪· t−→
A

·) built

from a defender D = (IH, ·
t−→
D

·) and an attacker A = (IH, ·
t−→
A

·). If we have:

– A lock-step backward simulation ≈ between S and D;
– A lock-step 2-simulation (≡S,≡H) w.r.t ≈ between S and D;
– (≈,≡H) is an attacker simulation for A;
– For equivalent hardware states α ≡H α′, the transitions of the attacker and

defender are mutually exclusive i.e., it is impossible to have two transitions

α
τ−→
D
β and α′ τ ′

−→
A
β′ for some τ , τ ′, β, β′;

then if S is observationally non-interferent then H is also observationally non-
interferent i.e.

ONI(ϕ, S) =⇒ ONI(ψ,H)

The proof can be found in Appendix A. In the following, we show how to in-
stantiate Theorem 1 to our model where a D-program and an A-program share
a memory cache.

5.3 Simulation and Indistinguishability

To apply Theorem 1, we define a simulation relation ≈ as well as software
and hardware equivalence relations ≡S and ≡H. Given a software state S =
(rD, (L,m)) and a target state T = (rD, rA, (C,M), s), the simulation relation
holds i.e., S ≈ T if (a) the defender registers are the same; (b) for defender
addresses, reading from source memory m is identical to reading from the target
memory interface (C,M); and (c) the set of locked addresses in L are also locked
in the concrete cache C. Additionally, the simulation relation states invariants
of the target memory interface, i.e. that the content of non-dirty cache lines is
synchronized with the memory and that locked lines are always dirty.

Then, we define equivalence relations at the software (≡S) and hardware lev-
els (≡H). Two equivalent states will be indistinguishable from the point of view
of an attacker. Because we consider that the attacker knows the defender code,
two memory states are equivalent if their content is the same for code addresses
and for attacker addresses (but their content can be different for addresses in
the defender’s address space). Two software memory sub-systems (L1,m1) and
(L2,m2) are equivalent if the sets of locked lines for each cache set are the same
in L1 and L2 and if memories m1 and m2 are equivalent. We lift this equiv-
alence to software states (R1, (L1,m1)) and (R2, (L2,m2)) by requiring that
R1(PC) = R2(PC) and the memory sub-systems are equivalent. Indeed, we
consider that the attacker can deduce the program counter of the victim at any
point of its execution, since the branch instruction leak their destination.

Two hardware caches C1 and C2 are equivalent if for every set s, the evic-
tion policy usage is the same in both caches, and all cache lines in the set are
equivalent, i.e. their validity, dirty and locked bits are equal, their tags are equal,



and when the line contains code or attacker data, the contents are equal (i.e.,
contents can only differ if it belongs to defender data). Two hardware memory
sub-systems (C1,M1) and (C2,M2) are equivalent if C1 and C2 are equivalent
hardware caches and m1 and m2 are equivalent memories. We lift this equiva-
lence to hardware states (R1

D, R
1
A, (C1,M1), S1) and (R2

D, R
2
A, (C2,M2), S2) by

requiring that R1
D(PC) = R2

D(PC), R
1
A = R2

A, the memory sub-systems are
equivalent, and the scheduler states S1 and S2 are the same.

Our proof of ONI preservation uses Theorem 1 with respect to a generic
memory interface, which we instantiate with three cache policies: write-through
with write-allocate or with write-around, and write-back. Among the properties
we require on the implementation of the target cache, we have the following
property, necessary to prove the first part of Definition 4.

ρ1 ⊢D α1
τ1,v1−−−→
H

β1 ∧ ρ2 ⊢D α2
τ2,v2−−−→
H

β2 ∧ ρ1 ≡ ρ2 ∧ α1 ≡H α2 ⇒
(locked(α1, ρ1) ∧ locked(α2, ρ2) ∧ is load store(ρ1)) ∨ tag&set(ρ1)=tag&set(ρ2)
⇒ β1 ≡H β2 ∧ τ1=τ2

This says that for any two memory requests ρ1 and ρ2 that are equivalent (i.e.
they are both the same kind of request) starting in two equivalent states α1 and
α2, the resulting states β1 and β2 will be equivalent and the traces generated by
the memory requests will be the same, if:

– either the requests are loads or stores, and both addresses are locked (hence
not necessarily the same addresses); or

– the addresses of both requests are in the same tag and set.

These conditions closely match the leakage of memory operations at the software
level: loads and stores leak nothing if accessing locked addresses; in other circum-
stances the tag and set of accessed addresses is leaked. The hardware traces τ1
and τ2 will be equal, but their shape might differ from that of software traces: a
software event corresponding to an unlocked load may become, in the hardware
trace, a simple Hit event, or write-back and fetch events WB(·)·F(·), depending
on whether the corresponding cache line is already in cache, or whether a cache
line has to first be evicted, written back to memory, before the cache line of
interest is fetched from the memory. The complete set of properties required of
a hardware memory interface can be found in the Coq development.

5.4 Discussion

Absence of remaining timing leakage. Our security theorem (see Theorem 1)
establishes that hardware leakage traces are indistinguishable. Yet, our model
is still too abstract to claim the complete absence of timing leaks i.e., a form
of cycle accurate constant-time. Here, we give some insights why the claim may
hold for our RISC-V micro-controller. More precisely, we argue (informally) that
the leakage trace provides the necessary information to reconstruct the state of
the micro-architecture and provide a cycle-accurate simulation. Our hardware



leakage precisely models the cache and memory interaction and, therefore, the
state of the memory cache can be reconstructed. The instruction cache is not
precisely modelled. Yet, as the control decisions are leaked, the current instruc-
tion is known as well as the content of the instruction cache. The remaining
component which has a timing influence is the pipeline which may stall. How-
ever, our pipeline state only depends on the sequence of instructions and may
only stall if results are not ready due to memory operations or multi-cycle arith-
metic operations. Memory operations are precisely modelled in the leakage trace.
Moreover, the only multi-cycle arithmetic operation is division (it depends on
the number of bits of the dividend which is leaked in the trace). Though a for-
mal statement would require a precise hardware model, we are confident that
our formal theorem ensures the absence of timing leakage at the cycle level.

Handling of lock interrupts In the model, the execution gets stuck if there is no
available cache line for locking an address. In practice, this raises a hardware
interrupt. We describe various ways to handle this situation using some OS
support. A first solution is to ensure statically that this situation never occurs
using a resource allocation e.g. the Banker’s algorithm [13]. For an IoT setting
with a static number of processes, this looks like a feasible solution. Another
solution is to pause the process and re-schedule it when the address can be
locked. This requires that another process unlocks a cache line in the same cache
set. This approach would fit nicely in our formal model but has the drawback
that deadlocks may occur. A last solution would be to preemptively unlock a
memory address from another process and relock it during the context-switch.
As this requires some bookkepping on the OS side, this mechanism does not
directly fit our formal model where the OS is abstracted away.

6 Related Work

Countermeasures against cache attacks exist at both the software and hardware
level. At software level, the cryptographic constant-time (CT) discipline which
combines the program counter model [23] with memory obliviousness [21] is the
de facto standard [10]. Our software model relaxes CT so that locked cache lines
are indistinguishable. Barthe et al. [5, 3, 4] study a similar relaxation using the
concept of stealth memory [19] for a sophisticated system including a MMU
and hypercalls. Our model is significantly simpler while modelling a concrete
hardware implementation of a stealth memory. Our locking mechanism is also
directly available using an ISA extension whereas, in the model of Barthe et
al., stealth memory is managed at the OS level. Guarnieri et al. [18] provide a
hardware/software contract between an architectural and a hardware semantics
with speculation. For a more sophisticated architecture, their guarantee is similar
to ours. However, they do not consider a locking mechanism. In the context of
secure compilation, Barthe et al. propose a general framework for preserving
ONI [8] which has been successfully applied to prove correct a CT-preserving
CompCert compiler [6]. We generalise this theory and propose a proof principle
which clearly separates the proof ogligation of a defender and an attacker.



Writing CT programs is notoriously hard. FaCT [12] is a DSL perform-
ing program transformations to turn a well-typed program into a CT program.
FaCT could benefit from our cache locking mechanism in order to deal with
secret-dependent memory accesses and therefore accept more programs. More
generally, we are confident that static verification tools for verifying CT pro-
grams e.g., [15, 2, 11], could be adapted with little modification to capture the
behaviour of locked memory accesses.

At hardware level, there are several approaches to protect against cache at-
tacks. NoMo Cache [14] partitions the cache ways on a process basis. This has
the advantage of improving the security in a transparent manner. Yet, there is
some information leakage if the data does not fit in the private cache set. Our
locking mechanism is more fined-grained but it is the responsibility of the soft-
ware to lock sensitive accesses. Miao and al. [22] propose a cache design where
sensitive data may be evicted. This augments the availability of the cache but
requires more hardware resources and complex macro instructions in order to se-
curely reload the evicted cache lines. Our solution is more lightweight and secure
accesses are always cached at the cost of reserving resources through the locking
mechanism. PLcache [27] proposes a locking mechanism which improves the se-
curity but may leak information in rare cases. We study variations of the design
of Gaudin et al. [16] which fixes the potential information leakage of PLcache.
Oblivous RAM [25] (ORAM) randomises the memory access so that an attacker
may only observe noise. The mechanism requires more hardware resources, in
particular a strong Random Number Generator, than our locking mechanism.
The security proof would also need a notion of probabilistic ONI that is out of
reach of our reasoning principle.

7 Conclusion

We provide a hardware/software contract for a cache locking mechanism ex-
pressed as the preservation of Observational Non-Interference. Our proof prin-
ciples separate the proof-obligations that are required on the defender and at-
tacker. We also identify the proof-obligations that are required for the cache
implementation and provide mechanised proofs for common caching strategies.
We provide a simple software leakage model where locked accesses are not visible
to an attacker and show the property that need to be enforced by the hardware
implementation to enforce security. We also leverage the locking mechanism to
secure existing algorithms at little engineering cost. We also show how to exploit
locking to speed-up constant-time sorting. As future work, it would be inter-
esting to investigate whether the locking mechanism could be adapted to the
instruction cache. This would allow to further relax the CT model and imple-
ment countermeasures which balance conditionals [1, 7] while mitigating cache
attacks. Another interesting direction is to push the verification effort further
and verify formally that the actual hardware implementation complies with our
hardware contract.
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A Proof of Theorem 1

Proof. To prove ONI (ψ, T ), we suppose that we have two derivations α
t−→
H

n β

and α′ t′−→
H

n β′ and prove that the traces are the same t = t′ and that β ∈
F(T ) ⇐⇒ β′ ∈ F(T ). By definition of ONI , there is a pair of input (i, i′) such
that ϕ(i, i′) and α ∈ IH(i) and β ∈ IH(i′). There is also a pair of software states
(a, a′) ∈ IS(i) × IS(i

′). Because the initial states are in relation by backward
simulation, we have a ≈ α and a′ ≈ α′. By definition of the lockstep 2-simulation
we also have a ≡S a

′ and α ≡H α′.
The proof is by induction over the length of the derivation.



– Base case. A 0-step derivation generates the empty trace ϵ. As a result, the
traces are equal. It remains to prove that α ∈ F ⇐⇒ α′ ∈ F . By definition
of ONI for a 0-step derivation, we have that a ∈ F ⇐⇒ a′ ∈ F .
• If a ∈ F , then a′ ∈ F , and by definition of the backward simulation, we

get that α ∈ F and α′ ∈ F and the property holds.

• Suppose the a /∈ F . As a result, there are software derivations a
t−→
S
b

and a′
t′−→
S
b′ for some t, b, t′ and b′. By definition of ONI , we get that

t = t′. The property follows by definition of the lockstep 2-simulation.
– Inductive case. Suppose that we have two derivations of length n+ 1 of the

form

α
τ1−→
H

1 β1
τ−→
H

n β and α′ τ ′
1−→
H

1 β′
1

τ ′

−→
H

n β′

We need to prove that τ1 · τ = τ ′1 · τ ′ and β ∈ F ⇐⇒ β′ ∈ F . By definition

of the backward simulation, we can exhibit two software derivations a
t1−→
S

1 b1

and a′
t′1−→
S

1 b′1 for some t1, b1, t
′
1 and b′1 such that b1 ≈ β1 and b′1 ≈ β′

1. By

definition of ONI , we get that t1 = t′1. The property follows by induction
hypothesis. ⊓⊔

B Evaluation of Algorithms with Input Dependent Locks

The evaluation results for Histogram, Permuation, Heap-pop and Dijkstra can
be found in Fig. 5, Fig. 6, Fig. 7 and Fig. 8.
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C Semantics of Instructions

The semantics of instructions is given in Fig. 9.
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.

.Decode
R(PC) = ⌊a⌋ load(a) ⊢ M

α,v−−→M ′ decode(v) = ⌊instr⌋
get instr(R,M) ⇒t1 ⌊instr⌋,M ′

ArithP

get instr(R,M) ⇒t1 (arith(rd, rs1, rs2, op),M
′)

t2 = leakarith(op,R(rs2))

(R,M)
t1·t2−−−→
P

(R[rd 7→ op(R(rs1), R(rs2)), PC 7→ incr(R(PC))],M ′)

JumpP

get instr(R,M) ⇒t1 (jump(rd, rs1, rs2, op),M
′)

newPC = op(R(rs1), R(rs2), R(PC))

(R,M)
t1·newPC−−−−−−→

P
(R[PC 7→ newPC , rd 7→ incr(R(PC))],M ′)

LoadP

get instr(R,M) ⇒t1 (load(rd, rs1),M
′)

rd ̸= PC load(R(rs1 )) ⊢ M ′ t2,v−−→M ′′

(R,M)
t1·t2−−−→
P

(R[rd 7→ v, PC 7→ incr(R(PC))],M ′′)

StoreP

get instr(R,M) ⇒t1 (store(rs1, rs2),M
′)

store(R(rs1 ), R(rs2)) ⊢ M ′ t2,⊥−−−→M ′′ perm(R(rs1)) = rw

(R,M)
t1·t2−−−→
P

(R[PC 7→ incr(R(PC))],M ′′)

LockP
get instr(R,M) ⇒t1 (lock(rs1),M

′) lock(R(rs1 )) ⊢ M ′ t2,⊥−−−→M ′′

(R,M)
t1·t2−−−→
P

(R[PC 7→ incr(R(PC))],M ′′)

UnlockP
get instr(R,M) ⇒t1 (unlock(rs1),M

′) unlock(R(rs1 )) ⊢ M ′ t2,⊥−−−→M ′′

(R,M)
t1·t2−−−→
P

(R[PC 7→ incr(R(PC))],M ′′)

Fig. 9. Program semantics
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