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Abstract  24 

Global pollinator decline urgently requires effective methods to assess their trends, 25 

distribution and behaviour. Passive acoustics is a non-invasive and cost-efficient 26 

monitoring tool increasingly employed for monitoring animal communities. However, 27 

insect sounds remain highly unexplored, hindering the application of this technique for 28 

pollinators. To overcome this shortfall and support future developments, we recorded and 29 

characterized wingbeat sounds of a variety of Iberian domestic and wild bees and tested 30 

their relationship with taxonomic, morphological, behavioural and environmental traits 31 

at inter- and intra-specific levels. Using directional microphones and machine learning, 32 

we shed light on the acoustic signature of bee wingbeat sounds and their potential to be 33 

used for species identification and monitoring. Our results revealed that frequency of 34 

wingbeat sounds is negatively related with body size and environmental temperature 35 

(between-species analysis), while positively related with experimentally induced stress 36 

conditions (within-individual analysis). We also found a characteristic acoustic signature 37 

in the European honeybee that supported automated classification of this bee from a pool 38 

of wild bees, paving the way for passive acoustic monitoring of pollinators. Overall, these 39 

findings confirm that insect sounds during flight activity can provide insights on 40 

individual and species traits, and hence suggest novel and promising applications for this 41 

endangered animal group. 42 
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Introduction 48 

Bees (Hymenoptera: Apoidea) are considered the most important group of pollinators 49 

(Pashte & Kulkarni, 2015; Hung et. al, 2018). With over 20,000 species worldwide, these 50 

flying insects play a crucial role in ecosystem services, food security and sustainable 51 

development (Patel et. al, 2021). However, surveys in North America and Europe have 52 

reported negative trends in bees and other relevant pollinators (e.g. syrphid flies) during 53 

the past decades (National Research Council, 2007; Potts et al., 2016),  associated to 54 

different anthropogenic drivers, such as habitat loss and fragmentation, climate change or 55 

agricultural intensification (Winfree, 2010; Goulson et al., 2015; Wagner et al., 2021). 56 

This global decline calls for developing scalable, inexpensive and efficient methods to 57 

monitor behaviour and trends of bee communities.  58 

 Commonly studied in a variety of vertebrate and invertebrate species, animal 59 

sounds are a well-established source of ecological information (Bradbury & Vehrencamp, 60 

1998) that can reveal species presence, abundance, position, body size or behavioural 61 

status (Obrist et. al, 2010). Thus, passive acoustic monitoring (PAM) has become an 62 

emerging technique that is used to record, store and analyse animal sounds in an 63 

automated, non-invasive way (Sugai et al., 2019a). In combination with computational 64 

tools, PAM has proven to efficiently record animal activity for a wide variety of subjects, 65 

e.g. population density (Marques et al., 2013; Pérez-Granados & Traba, 2021) and 66 

distribution (Ribeiro et al., 2022), conservation (Laiolo, 2010) or climate change research 67 

(Llusia et al., 2013; Desjonquères et al., 2022). PAM is typically aimed to record well-68 

known species-specific acoustic signals that are emitted by specialized sound-producing 69 

structures and play a role in mating, resource defence or navigation (Wilkins et al., 2013).  70 

In comparison with birds, bats or anurans (animal groups extensively studied with 71 

PAM;  Sugai et al., 2019a), bees do not possess specialized sound-producing structures 72 

and emit incidental sounds that arise as a by-product of activities such as moving or eating 73 

(Chesmore, 2008), e.g. a diverse a suit of pitches generated by rhythmic thoracic 74 

oscillations (see review by Hrncir et al., 2005). Some of the most well-known examples 75 

of bee sounds are emitted during different behaviours of social species, such as 76 

honeybees, bumblebees or some stingless bees (Hrncir et al., 2005; Hrncir et al., 2008; 77 

Rittschof & Seeley, 2008; De Luca et al., 2014), and they are usually exclusive to certain 78 

families, genus or species (e.g. buzz pollination, see Pritchard & Vallejo-Marín, 2020). 79 

There is, however, one sound type found across all bee species: the flight buzz.  80 



Bees’ flight and its associated sounds have been theoretically studied since the 60s 81 

(Esch & Wilson, 1967; Unwin & Corbet, 1984; Santoyo et al., 2016). More recently, 82 

applied studies have shown that wingbeat frequency and pattern during flight may be 83 

species-specific, and thus it could serve as a ‘fingerprint’ for automatic species 84 

classification (Potamitis & Rigakis, 2015; Kawakita & Ichikawa, 2019). However, most 85 

studies on this topic have been performed in laboratory settings, with a narrow number of 86 

species (e.g. only Bombus sp. or Apis mellifera), or without considering morphological 87 

(e.g. body size) and environmental (e.g. temperature) factors (Gradišek et al., 2017; 88 

Parmezan et al., 2021).  89 

For PAM to be a reliable tool to remotely monitor bee communities, it is 90 

paramount to detect which are the most relevant factors affecting the variability of 91 

wingbeat sounds between and within species. Here we recorded and characterized 92 

wingbeat sounds of a variety of Iberian bees under field conditions and tested their 93 

relationship with species and individual traits. Particularly, we investigate four sources of 94 

inter- and intra-specific variation in sound frequency (taxonomy, morphology, 95 

temperature and behaviour) and hypothesize that: (i) each taxa shows a specific wingbeat 96 

acoustic signature; (ii) frequency of wingbeat sounds is negatively correlated with body 97 

size; and positively correlated with (iii) air temperature and (iv) induced stress. Thereby, 98 

we examine the information that can be retrieved from wingbeat sounds of bees and assess 99 

the applicability of PAM to investigate bee diversity, morphology and behaviour through 100 

their sounds. 101 

 102 

Material & Methods 103 

Study area 104 

The study was conducted in three farmlands located in Central Spain (Torrelaguna and 105 

La Cabrera, Madrid), between 600 and 1200 meters a.s.l., at the southern side of the 106 

mountain range Sierra de Guadarrama (see Fig. S1 for farm pictures). These areas belong 107 

to the mesomediterranean bioclimatic layer, characterized by highly variable 108 

temperatures (mean annual temperatures between 12ºC and 17ºC) and moderate rainfall 109 

(annual precipitation of 500 mm; Rivas-Martínez, 1983; AEMET, 2020; Girón et. al, 110 

2020).  111 



Sound recording and insect sampling 112 

To record their sounds, we actively searched for bees in the three farmlands from May to 113 

July 2019, during a total of 8 sampling days. Fieldwork was conducted between 9:30 AM 114 

and 1:30 PM in warm days, with clear sky, little wind and no precipitation. To increase 115 

the diversity of sampled species, the active search was oriented to maximise the selection 116 

of specimens with different characteristics, by in-situ observation of the size, colour and 117 

shape of the flying insects. Additionally, we focused on individuals of the European 118 

honeybee (Apis mellifera), the most abundant bee species in the study farmlands, to 119 

explore the intra-specific variability of their sounds. Each specimen was recorded under 120 

two treatments: (i) in natural conditions (NC) during free ranging flight manoeuvres 121 

between flowers before capture; and (ii) subjected to an experimentally-induced stress 122 

(IS) after capture, while being confined inside the entomological net.  123 

We recorded wingbeat sounds of the focal bees with a directional microphone 124 

(ME-66 and module K6; Sennheiser) connected to a portable digital audio recorder 125 

(PMD-660 Marantz Professional). During recordings, the tip of the microphone was 126 

placed at a distance of 2-5 cm above the thorax of the insect to correctly register the sound 127 

without disrupting its behaviour (De Luca et. al, 2019; see Fig S2 for a graphic 128 

visualization of the recording protocol). To increase the signal-to-noise ratio, the audio 129 

gain of the recorder was manually regulated while continuously tracking sound 130 

amplitude. We used a shock-mount to avoid stand-borne noise, a windshield to reduce 131 

excessive pressure from wind, and headphones to properly perceive the sound source. 132 

The recordings were stored as uncompressed .wav files and digitalised at a sampling rate 133 

of 48kHz and a depth of 16 bits.  134 

During sampling, air temperature were measured with a datalogger (HOBO U23 135 

Pro V2, ONSET), located at 20-30 cm from the floor in a shaded area. Every specimen 136 

were euthanised in small plastic vials (33 cm3) with 70% alcohol to ensure their proper 137 

conservation. Individuals were then carefully dried and labelled for subsequent 138 

taxonomic identification and morphological measurement.  139 

 140 



Acoustic analysis 141 

We created and visualized spectrograms of the recorded sounds using the Raven Pro v. 142 

1.5.0. software (Cornell Lab of Ornithology; Fig. 1; Fig. S3). An optimal spectrogram 143 

configuration was applied to all the recordings (Window size: 4098; Overlap: 90%; 144 

Window Type: Hann), providing a high resolution of wingbeat sound frequencies. For 145 

each individual and treatment, a single audio with the best signal-to-noise ratio was 146 

selected and three acoustic parameters measured for both the fundamental harmonic (i.e. 147 

the lowest frequency of a periodic wave; Arthur et. al, 2014) and the second harmonic. 148 

These parameters were: duration (s), dominant frequency (Hz) and maximum energy 149 

(dB). To best characterise between- and within-bee variation in sound frequency 150 

throughout the individual displacement, we also measured dominant frequency and 151 

maximum energy in a short segment at the onset, centre and end of the selected audio 152 

(Fig. S2). The duration of each segment corresponds to ca. 10% of the duration of the 153 

entire audio. Based on these measurements, we calculated how often sound energy was 154 

higher at the fundamental harmonic than at the second one. By pairwise comparisons of 155 

energy in harmonics of the same segment, we thus estimated a within-bee percentage of 156 

audio segments with dominant frequency in the fundamental harmonic.  157 

 158 

Trait measurements 159 

We measured two morphological traits from the focal specimens: the intertegular distance 160 

(ITD), defined as the minimum linear distance between both tegulae, measured over the 161 

thoracic dorsum (Cane, 1987), and the average forewings length (WL; Fig. S4). Both 162 

morphological traits are considered good proxies for body size (Hagen & Dupont, 2013; 163 

van Roy et. al, 2014). For these measurements, photographs of every specimen were taken 164 

over paper measured in millimetres with a digital camera Canon EOS M10 (Canon, 165 

Tokyo, Japan) adjusted to an optical microscope Leica MZ6 (Leica, Wetzlar, Germany), 166 

ranging between 0,8 and 4 magnifications. The length in millimetres was measured with 167 

the software Image J (Abràmoff et. al, 2004). When one of the two wings was deteriorated 168 

or absent, the average between two measurements of the other wing was calculated.   169 

 170 

 171 



Figure 1. Spectrogram visualization of three collected individuals from different species: Megachile 172 
(Megachile) octosignata, Xyllocopa cantabrita, Apis mellifera. The spectral component observed at a 173 
frequency of 5 Hz in the third spectrogram corresponded to environmental noise.  174 

 175 

Regression models 176 

To examine factors that influence inter- and intra-specific variation in the dominant 177 

frequency of wingbeat sounds, we used general linear mixed-effect models (LMM), with 178 

Gaussian error structure, including dominant frequency as response variable, and 179 

morphological, environmental and behavioural factors as explanatory variables. 180 

Specifically, we fitted two models: (i) a LMM at inter-specific level, using all recorded 181 

individuals, and (ii) a LMM at intra-specific level, with only specimens from the most 182 

abundant species, the domestic bee (A. mellifera). In each model, we included seven fixed 183 

factors: WL (mm), ITD (mm), temperature (°C, linear and quadratic terms, to account for 184 

potential linear and curvilinear relationships), experimental treatment (NC vs. IS), audio 185 

segment (4 levels; entire, onset, centre and end), harmonic type (fundamental vs. second) 186 

and family (Andrenidae, Apidae, Halictidae, and Megachilidae). Additionally, we added 187 

individual identity as a random factor in both LMMs to account for repeated measures 188 

within individuals, and species and genus as random factors in the inter-specific model to 189 

evaluate the amount of variation explained by these factors. As ITD and WL were 190 

correlated at inter-specific level, we first fitted a linear regression with both variables at 191 

inter-specific level (log10 transformed to achieve linearity) and used WL and statistically 192 

controlled ITD (residuals of the regression) as explanatory variables in the LMM model 193 

to avoid collinearity. All continuous variables (WL, ITD and temperature) were centred 194 

and scaled (mean of 0 and standard deviation of 1) to facilitate model fitting.  195 



We checked the assumptions of normality and homogeneity of the residuals by 196 

visually inspecting a quantile-quantile plot and the residuals against the fitted values, both 197 

indicating no deviation from these assumptions. We inspected model stability by 198 

excluding data points one at a time from the data. We derived variance inflation factors 199 

(Field, 2009) using the function vif of the R-package car (version 2.1-4; Fox & Weisberg 200 

2011) and they did not indicate collinearity between fixed effects to be an issue. We 201 

conducted all analyses in R using the lmer function of the R-package lme4 (v. 3.1-139; 202 

Pinheiro et al. 2017). 203 

 204 

Classification analysis 205 

To visualise and test for inter-specific differences in wingbeat sounds, we created density 206 

scatter plots with dominant frequency and flight time as axes, and taxonomic entities as 207 

grouped variables. Among all measurements of dominant frequency, we chose the 208 

fundamental frequency at the centre of the recorded audio to avoid the doppler effect 209 

(compared with onset and ending segments). Acoustic segregation between species, 210 

genus or families were then explored based on sound properties. 211 

Additionally, we applied a machine learning framework to test if wingbeat sounds 212 

encode species-specific acoustic signatures that can be used for automated acoustic 213 

species identification. As a first approach, we focused the identification test on 214 

discriminating the wingbeat sounds produced by a domestic bee (A. mellifera) from those 215 

of wild bees (17 species). For this purpose, we only selected recordings of the first 216 

treatment (under natural conditions, NC) and with moderate and high signal to noise ratio 217 

(SNR >= 15 dB). This led to a filtered database, including 18 bee species and 42 audio 218 

recordings, with a balanced distribution of classes (22 and 20 recordings from domestic 219 

and wild bees, respectively).  220 

First, we characterized the audio samples in the spectral domain by computing the 221 

power spectrum. This spectral representation allowed us to compare visually the spectral 222 

differences between classes. To have tight representation of the spectral domain, we then 223 

computed mel-frequency cepstral coefficients (MFCC). MFCCs have been the dominant 224 

features used for audio classification since they have the ability to deliver a compact 225 

representation of sounds with high harmonic content, such as speech and music (Rabiner 226 

& Schafer, 2010). In particular, we used 20 coefficients extracted between the frequency 227 



band where the wingbeat sounds and the harmonics were predominant (i.e., 0.1 and 5 228 

kHz). The final predictor matrix included 20 MFCC coefficients and 42 observations. We 229 

measured binary classification performance using a Random Forest classifier (number of 230 

trees = 300, maximum features = 6) and computing the balanced accuracy metric in a 231 

stratified 10-fold cross-validation scheme. To assess whether the accuracy of the machine 232 

learning model was significantly better than expected by chance, we computed baseline 233 

accuracies using two dummy classifier strategies: majority and random. The majority 234 

strategy simulates a classifier always returning the most frequent class, which, in our case, 235 

is Apis mellifera. The random strategy generates predictions uniformly at random. The 236 

automated classification analyses were performed in Python 3, using the package librosa 237 

(McFee et al., 2015) for audio characterization, and the package scikit-learn (Pedregosa 238 

et al., 2011) for fitting and evaluation of statistical classifiers.  239 

 240 

Results 241 

Taxonomic and morphological traits 242 

Overall, 73 bees were registered and captured, and 65 of them identified at species level 243 

(Table S1). The taxonomic identification revealed 27 species, belonging to 4 families: 244 

Apidae (42 individuals; 57%), Andrenidae (15; 21%) Halictidae (9; 12%) and 245 

Megachilidae (7; 10%). European honeybee (Apis mellifera) was the most commonly 246 

collected species, with 26 registered individuals (36%). A set of 16 species, one subgenus, 247 

and one genus was represented by a single specimen. The average WL was 8.84 mm 248 

(±2.39) and varied between the 2.73 and 17.73 mm, while the average ITD was 2.93 mm 249 

(± 0.97) and varied between 0.76 and 6.52 mm (Table S1). Temperature was 24.04 ºC 250 

(±10.63) and ranged between 16.25 and 41.39 ºC. 251 

 252 

Bee sounds 253 

Wingbeat sounds were analysed in 69 individuals under NC treatment and 71 individuals 254 

under IS treatment. These sounds were highly variable and characterized by a large 255 

number of harmonics (1-12), with sharp, moderate or restricted frequency modulation 256 

(Fig. 1). Sound energy of the harmonics typically decreases with frequency (i.e. lower 257 

harmonics having higher energy), although some individuals did not follow that pattern. 258 



Duration of bee flying between flowers ranged from 1.9 s (± 1.3) in wild bees to 2.1 s (± 259 

0.8) in the European honeybee. The fundamental frequency of sounds produced by this 260 

domestic bee (at the centre of the audio segment) was on average 222.4 Hz (± 21.4) and 261 

251.3 Hz (± 15.9) under NC and IS treatments, respectively. In wild bees, the fundamental 262 

frequency was on average 180.3 Hz (± 50.9) and 195.5 Hz (± 95.7). The fundamental 263 

harmonic was higher in energy than the second harmonic in 80% of the time for all 264 

observations, and 90% of the time for the IS treatment (Table S2). In general, dominant 265 

frequency and the patterns of frequency modulation were distinct across specimens and 266 

might be good candidate parameters for acoustic species identification (see Figure S5). 267 

The greatest intensity of background noise occurred between 0 and 70 Hz.  268 

 269 

Determinants of wingbeat sounds at inter- and intra-specific level 270 

Using the full dataset (n=138 individuals, 27 species), the first LMM model revealed that 271 

frequency of bee sounds was related to wing length bound to harmonic, as well as 272 

experimental treatment (NC vs. IS) and air temperature (Table S3; Figure 2). Lower 273 

frequencies were emitted by larger-sized bees and individuals subjected to higher 274 

temperatures, while stress was associated with high-pitched sounds. We also found 275 

significant differences in dominant frequency among the bee families and the audio 276 

segments within the recording (Table S3). Using the subset for the European honeybee 277 

(n=26 individuals), the second LMM model pointed out that the frequency of wingbeat 278 

sounds of this species was also associated to its behavioural status, with higher-pitched 279 

sounds under stress conditions (Table S4). We also found significant differences in 280 

dominant frequency among the harmonics and the audio segments within the recording 281 

(Table S4, Figure 2).  282 

 283 

 284 

 285 

 286 

 287 



 288 

Fig. 2. The effects of wing length, environmental temperature and treatment (NC vs. IS) on the wingbeat 289 

frequency of all bees.  290 

 291 



Fig. 3. The dominant frequency of wingbeat sounds of the European honeybee (Apis mellifera) under two 292 

experimental treatments: flight between flowers under natural conditions (NC) and flight inside a net 293 

under experimentally-induced stress (IS).  294 

Inter- and intra-specific acoustic signatures  295 

The power spectrum of wingbeat sounds of the European honeybee showed multiple 296 

consistent peaks at low frequencies (Fig. 4) that were only masked by the background 297 

noise at higher frequencies. On the contrary, the mixed set of wingbeat sounds of wild 298 

bee species were highly variable and did not show a clear signal. Our statistical analyses 299 

on the discrimination between these sounds showed that the Random Forest classifier had 300 

an average balanced accuracy of 0.77 ± 0.12, over 10 cross-validation runs. The baseline 301 

accuracies obtained were 0.5 (±0) for the majority strategy and 0.47 (±0.21) for the 302 

random strategy, showing that our model’s accuracy is significantly better than chance. 303 

The main classification errors (false positives and false negatives) were observed on the 304 

noisier samples. This suggests that the wingbeat sound of the European honeybee has a 305 

specific acoustic signature and machine learning could be used to automatically 306 

discriminate between domestic and wild bee species.  307 

 308 

Fig. 4. Spectral characteristics of wingbeat sounds of the European honeybee (Apis mellifera; top) and a 309 

mixed set of 17 wild bee species (bottom). The sounds of the domestic bee show consistent regularities at 310 

low frequencies, while the sounds of wild bee species are often noisy with no clear signal.  311 



 312 

The recorded sounds were distinct in frequency and duration across genus and families, 313 

with some level of overlap between groups (Figure 5). We found no significant 314 

differences in dominant frequency at the centre of the audio segment (F=0.11; df=2; 315 

p=0.89) amongst the three taxonomic levels, calculated by the mean differences in 316 

frequency between pairs of species (mean ± standard deviation: 57.6 Hz ± 43.6), genus 317 

(59.9 Hz ± 44.3) and families (58.3 ± 43.8 Hz).  318 

 319 

Fig. 5. Dominant frequency of the wingbeat sounds (Hz) and flight time between flowers (s) of domestic 320 

and wild bees under NC treatment. Each dot indicates an individual (n=67), grouped by family.  321 

 322 

Discussion 323 

Animal sounds have the potential to provide a large amount of inter- and intra-specific 324 

information and assist researchers to monitor species activity and diversity (Bradbury & 325 

Vehrencamp, 1998; Obrist et al., 2010; Sugai et. al, 2019a). Bee sounds have received 326 

still little attention compared to other groups, despite their diversity and potential for 327 

species automatic classification (Hrncir et al., 2005; Truong et al., 2023). At the inter-328 

specific level, we found that variations in frequency of wingbeat sounds emerged from 329 

taxonomic, morphological, environmental and behavioural differences of a pool of 27 330 

domestic and wild bee species. First, we confirmed a negative relationship between 331 

dominant frequency of these sounds and wing length of the recorded specimens, in 332 



agreement with the general allometric pattern that predicts lower sound frequencies in 333 

larger-sized animals. Second, we found a negative relationship between dominant 334 

frequency and environmental temperature. Finally, we unveiled that bee behaviour also 335 

influenced wingbeat sounds, with bees under induced experimentally-induced stress 336 

conditions (in a net trap) emitting higher-pitched sounds than bees under natural 337 

conditions (in free ranging movements). At the intra-specific level, wingbeat sounds of 338 

the European honeybee exhibited a consistent acoustic signature and limited variations, 339 

being only behaviour a significant determinant of sound frequency.  340 

 341 

Wingbeat frequency 342 

The interest of the scientific community to study wingbeat sounds produced by flying 343 

insects is increasingly growing due to its potential to support species identification, with 344 

applications in pest control or biodiversity monitoring (van Roy et. al, 2014; Zhang et. 345 

al, 2017). In this study, we characterized wingbeat sounds of domestic and wild bees with 346 

acoustic methods under field conditions. Fundamental frequency of the sounds produced 347 

by the European honeybee (Apis mellifera) was on average (± standard deviation) 222.4 348 

± 21.4 Hz (n=26 specimens), a similar frequency to the one observed in previous studies 349 

with smaller samples (e.g. 235.2 ± 7.5 Hz, n = 10, Goyal & Atwal, 1977; 238.2 ± 4.57 350 

Hz, n = 10, Spangler, 1986), while wingbeat sounds of wild bees were on average lower-351 

pitched sounds (180.3 Hz ± 50.9).  352 

It is worth mentioning that frequencies of wingbeat sounds could significantly 353 

vary depending if the insect flight is sustained (hovering flight) or describes a specific 354 

direction (Bae & Moon, 2008). Apart from these flying patterns, other factors such as 355 

temperature or the load imposed on the motor system could be influencing the vibrational 356 

system (Esch & Wilson, 1967; Spangler & Buchmann, 1991). The sound produced is 357 

even more delicate to study in certain taxa such as flies, where wings do not only move 358 

from top to bottom, but also undergo deformations, rotations and speed variations (Sueur 359 

et. al, 2005; Geng et. al, 2017). Thus, further analysis based on larger databases would be 360 

helpful to keep increasing the resolution of insect’s wingbeats frequencies values.  361 

 362 



Morphology and bee sounds 363 

As in other animal groups, there is a certain consensus that frequency of sounds emitted 364 

by insects (also wingbeat sounds) is negatively correlated with their body size (Moore et. 365 

al, 1986; Bennet-Clark, 1998; Darveau et. al, 2005; De Luca et al., 2019). A larger-sized 366 

individual typically has larger wings and hence produces higher forces, which end up 367 

reducing the number of wingbeats they need to fly (van Roy et. al, 2014). This is also 368 

consistent with previous studies in individuals of the Euglossini tribe, bumblebees and 369 

orchid bees (Casey et al., 1985; Joos et. al, 1991; Darveau et. al, 2005), whereas opposite 370 

to some studies in mosquitos (e.g. Villareal et al., 2017). Our results, which include 371 

several solitary species as well as social bees, are still in line with this allometric pattern, 372 

supporting that bees with longer wing length emit lower sound frequencies. In contrast 373 

with wing length, ITD did not show a clear relationship with wingbeat sounds, suggesting 374 

that the former morphological trait could be a better predictor of body size, and thus 375 

wingbeat sounds, than the latter one.  376 

 At the intra-specific level, neither of the two functional traits were related to the 377 

sound frequency emitted by the European honeybee, contrary to what was expected 378 

according to our hypothesis. This, however, aligns with Kendall et. al, (2019), as they 379 

found no significant correlations between ITD and dry weight (an alternative indicator of 380 

body size) in this species. 381 

 382 

Environmental temperature 383 

Temperature is a pervasive factor influencing physiology and behaviour of ectotherms, 384 

such as flying insects (Belton, 1986). Previous studies often found that increases in 385 

wingbeat fundamental frequency were correlated with increases in environmental 386 

temperature, e.g. in various bees and flies (Sotavalta, 1947; Unwin & Corbet, 1984; ) or 387 

in mosquitos (Villarreal et al., 2017). However, this is not always the case. In larger bees, 388 

air temperature can be negatively correlated with wingbeat frequency. As bees 389 

significantly differ in body size, ranging from a few mm to more than 20 mm, body 390 

temperature in larger-sized insects could substantially deviate from environmental 391 

temperature, hence attenuating such a relationship (Unwin & Corbet, 1984; Parmezan et 392 

al., 2021). Actually, we found a negative correlation between wingbeat frequency and 393 

temperature at both the inter- and intra-specific levels, opposite to the most commonly 394 



effect. Other studies have also shown that social bees such as Apis mellifera can be able 395 

to control their wingbeat frequency regardless of external temperature (Parmezan et al., 396 

2021). Even, Sotavalta (1947) did not find differences in Bombus pascuorum wingbeat 397 

frequency over a wide temperature range, while Spangler & Buchmann (1991) did not 398 

consider temperature as an important factor affecting wingbeat frequency in social and 399 

non-social bees. Other factors, such as sex of the individuals, can also be playing a role 400 

in wingbeat frequency (Coelho, 1991). Our results are aligned with this diversity of 401 

relationships reported in the literature between temperature and wingbeat frequency, and 402 

suggest that the effect of temperature on wingbeat frequency may be taxa-specific and 403 

that generalizations on this link are still elusive due to the scarce amount of 404 

documentation available so far. 405 

 406 

Under stress conditions 407 

When the flight of European honeybees were recorded under induced stress conditions 408 

(within an entomological net), dominant frequency of their wingbeat sounds significantly 409 

increased (above 25 Hz) in comparison with those under natural conditions. This shift 410 

may indicate an effect of stress in the frequency of these flight sounds, as a behavioural 411 

response to the context. Sounds emitted from bees’ defensive behaviours, alarming 412 

signals or other intra-specific communication mechanisms have been previously reported 413 

in literature (Hrncir et al., 2005; Hrncir et al., 2008; Wehmann et al., 2015; Pritchard & 414 

Vallejo-Marín, 2020). For instance, the African stingless bee Axestotrigona ferruginea 415 

produces frequent guarding signals to alarm nestmates (Krausa et al., 2021). However, 416 

during these behaviours, insects are typically laying on a surface and their wings are 417 

folded over the thorax, uncoupled from the indirect flight muscles. Thus, the vibrational 418 

response of these non-flying individuals is different (e. g. higher pitched) from the flying 419 

individuals recorded in this study (King & Buchmann, 2003; Hrncir et al., 2008). To the 420 

best of our knowledge, no other study has shown stress-related sounds in flying 421 

individuals. Our findings suggest that there is plenty of room to explore the diversity of 422 

bee sounds under different flying and non-flying behaviors. 423 



 424 

Acoustic species-level identification 425 

Our Random Forest-based models showed a good classification performance of wingbeat 426 

sounds between domestic (Apis mellifera) and wild bee species, evidencing the potential 427 

of bee flight sounds to support automated acoustic identification. Our results are in line 428 

with previous studies using machine learning approaches in other insect groups. For 429 

instance, Kawakita & Ichikawa (2019) successfully identified three species of bees (Apis 430 

mellifera, Bombus ardens and Tetralonia nipponensis), and a hornet (Vespa simillima 431 

xanthoptera) using the fundamental frequency of their flight as a variable (Kawakita & 432 

Ichikawa, 2019). Li et. al (2005) managed to classify five species of mosquitoes based on 433 

their sounds, with a success rate of 73%. Similarly, Yin et al., (2023) successfully 434 

detected and classified several mosquito species with wingbeat sounds using 435 

computational techniques. Folliot et al. (2022) also monitored pollination by insects and 436 

tree use by woodpecker with acoustics methods and artificial intelligence. Other studies 437 

which did not rely on wingbeat sounds but on measuring wingbeat frequency with laser 438 

sensors have also demonstrated a good potential of this related parameter for taxonomic 439 

identification of insect pests (Moore & Miller, 2002; Potamitis & Rigakis, 2015).  440 

According to our results, acoustic classification of bees based on their wingbeat 441 

sounds entities seem to be possible in some cases, but might be hindered by species 442 

overlap. The wingbeat sounds are weak and hence their recording is challenging. Our 443 

findings showed that improving signal-to-noise ratio of audio samples may further 444 

increase the accuracy of the automated classification. The design of techniques to better 445 

capture such sounds in the field and increasing the sample size of training dataset for 446 

statistical classifiers will likely contribute to the efforts of developing new methods for 447 

monitor pollinating species in a non-intrusively and efficient way (Høye et al., 2021). It 448 

is also important to highlight that our study, which aimed to distinguish Apis mellifera 449 

from other wild bee species, employed handcrafted features due to the availability of 450 

samples. While our Random Forest-based models demonstrated commendable 451 

classification performance, we acknowledge the existence of more advanced methods, 452 

particularly the use of deep learning models for classifying bee species based on wingbeat 453 

sounds (Truong et al., 2023; Ferreira et al., 2023). These advanced methods have 454 

demonstrated highly accurate classification results, especially when provided with a 455 

larger dataset. 456 



Next steps should also be oriented towards: (i) the documentation of acoustic 457 

diversity of these sounds, including a fine analysis of their determinants, which 458 

overcomes the current lack of knowledge, (ii) the creation of sound libraries that support 459 

the future development of species classification algorithms, and (iii) the test of alternative 460 

machine learning techniques for the automated analysis of wingbeat sounds of flying 461 

insects. 462 
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