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Abstract
By their paternal transmission, Y- chromosomal haplotypes are sensitive markers of 
population history and male- mediated introgression. Previous studies identified bial-
lelic single- nucleotide variants in the SRY, ZFY and DDX3Y genes, which in domestic 
goats identified four major Y- chromosomal haplotypes, Y1A, Y1B, Y2A and Y2B, with 
a marked geographical partitioning. Here, we extracted goat Y- chromosomal variants 
from whole- genome sequences of 386 domestic goats (75 breeds) and seven wild goat 
species, which were generated by the VarGoats goat genome project. Phylogenetic 
analyses indicated domestic haplogroups corresponding to Y1B, Y2A and Y2B, respec-
tively, whereas Y1A is split into Y1AA and Y1AB. All five haplogroups were detected 
in 26 ancient DNA samples from southeast Europe or Asia. Haplotypes from present- 
day bezoars are not shared with domestic goats and are attached to deep nodes of the 
trees and networks. Haplogroup distributions for 186 domestic breeds indicate an-
cient paternal population bottlenecks and expansions during migrations into northern 
Europe, eastern and southern Asia, and Africa south of the Sahara. In addition, sharing 
of haplogroups indicates male- mediated introgressions, most notably an early gene 
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1  |  INTRODUC TION

Goat (Capra hircus), sheep (Ovis aries), cattle (Bos taurus) and pigs (Sus 
scrofa) are four major livestock species, which after their domestica-
tion in southwest Asia about 10,000 years ago (Larson & Fuller, 2014; 
Stiner et al., 2022) spread to all inhabited continents. Because of 
their relatively small size, sheep and goats were the earliest domes-
ticates, but have become less important than cattle and pigs as sup-
pliers of food. However, sheep and goat are suitable for extensive 
management by smallholders or hobby breeders with goats being 
favoured in conditions of poverty (Peacock, 2005). Although the 
high- quality goat cashmere wool and mohair fibres do not attain the 
volume of sheep wool, the demand for goat milk and cheese has in-
creased considerably since the 1960s (Dubeuf et al., 2004; Miller & 
Lu, 2019). In the last four decades, this has doubled the global num-
ber of goats to around one billion (Utaaker et al., 2021), approaching 
the numbers for sheep and cattle (Hegde, 2019).

As for other livestock, genetic isolation, adaptation and selection 
have created numerous local goat populations, whereas a restricted 
number of high- performing breeds play a major role in agricultural 
production. The genetic diversity of goat breeds has been stud-
ied extensively (Ajmone- Marsan et al., 2014; Amills et al., 2017; 
Deniskova et al., 2021; Zheng et al., 2020). This demonstrated for 
autosomal DNA a geographical partitioning of the diversity (Colli 
et al., 2018), which is in sharp contrast to similar studies of sheep 
(Belabdi et al., 2019; Ciani et al., 2020; Kijas et al., 2012), but has 
been confirmed based on similarities of ancient and modern DNA 
samples from the same regions (Cai et al., 2020; Daly et al., 2018, 
2021). However, the goat Y- chromosome as a marker for paternal 
lineages has not yet been studied at a worldwide scale.

Because of an absence of recombination, the male- specific part 
of the mammalian Y- chromosome is by far the longest haplotype 
that is stably transmitted across generations (Hughes et al., 2015). 
In many species, males have a relatively small male effective pop-
ulation size, which makes Y- chromosomal variants highly informa-
tive markers for paternal origin that generally show a much stronger 
phylogeographical differentiation than mitochondrial or autosomal 
variants. This is now widely exploited in population- genetic stud-
ies of humans (Batini & Jobling, 2017; Jobling & Tyler- Smith, 2017; 
Kivisild, 2017), cattle (Edwards et al., 2011; Ganguly et al., 2020; 

Xia et al., 2019), horse (Felkel et al., 2019a; Wallner et al., 2017; 
Wutke et al., 2018), water buffalo (Zhang et al., 2016), sheep (Deng 
et al., 2020; Meadows & Kijas, 2009; Zhang et al., 2014), camel 
(Felkel et al., 2019b), llamas and alpacas (Marín et al., 2017), pigs 
(Choi et al., 2020; Guirao- Rico et al., 2018) and dogs (Natanaelsson 
et al., 2006; Oetjens et al., 2018).

A preliminary analysis of the Y- chromosomal diversity in 
European and Turkish goats defined the three haplotypes, Y1A, Y1B 
and Y2, which had a strong geographical differentiation (Lenstra & 
Econogene Consortium, 2005). The same haplotypes were found 
in goats from Portugal and North Africa (Pereira et al., 2009), 
Turkey (Çinar Kul et al., 2015), eastern and southern Asia (Tabata 
et al., 2018, 2019; Waki et al., 2015), and Switzerland and Spain 
(Vidal et al., 2017), with the additional haplotypes Y2B in east Asia, 
Y2C in Turkish Hair and Kilis goats, and Y1B2 as well as Y1C mainly 
in Switzerland (Table S1). However, these haplotypes are based on 
a low number of single nucleotide polymorphisms (SNPs) in or near 
DDX3Y, SRY and ZFY and genotyping in a limited number of domestic 
goat breeds. Thus, it is not clear if the haplotypes represent major 
haplogroups or local variants or if other major haplogroups exist. 
Nor does it inform us on the Y- chromosomal variants that existed in 
earlier domestic goats or in their wild ancestor, the bezoar (Capra ae-
gagrus; Amills et al., 2017). Whole- genome sequencing (WGS), how-
ever, has confirmed the differentiation of the Y1 and Y2 haplogroups 
(Xiao et al., 2021; Zheng et al., 2020).

In this study, we used WGS data for a large panel of goat breeds 
(Denoyelle et al., 2021) to systematically characterize the SNP- 
level variation in the single- copy male- specific part of the caprine 
Y- chromosome. In addition, we determined the Y- chromosomal 
haplogroups in goats originating from several European, Asian or 
African countries, in ancient goat DNA samples and in the wild be-
zoar (Alberto et al., 2018; Cai et al., 2020; Daly et al., 2018, 2021; 
Zhang et al., 2014; Zheng et al., 2020). We sought to answer the 
following questions: (i) How are the WGS- based haplogroups related 
to the previously reported haplotypes? (ii) How are the domestic pa-
ternal lineages related to those of bezoars from Iran and Anatolia, 
respectively? (iii) How strong is the phylogeographical structure of 
the caprine male lineages? (iv) What does the pattern of diversity 
tell us about Neolithic and later migrations? (v) Can we also infer 
other gene flows between or within continents? Answering these 

flow from Asian goats into Madagascar and the crossbreeding that in the 19th century 
resulted in the popular Boer and Anglo- Nubian breeds. More recent introgressions 
are those from European goats into the native Korean goat population and from Boer 
goat into Uganda, Kenya, Tanzania, Malawi and Zimbabwe. This study illustrates the 
power of the Y- chromosomal variants for reconstructing the history of domestic spe-
cies with a wide geographical range.

K E Y W O R D S
domestication, goat, haplogroup, introgression, migration, phylogeography, Y- chromosome
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questions will contribute to our understanding of the genetic back-
ground of the domestic goat, which is relevant for breed manage-
ment and conservation.

2  |  MATERIAL S AND METHODS

2.1  |  WGS data, filtering and phylogenetic analysis

We selected as source of the SNPs four scaffolds that together cover 
1,567,760 bp of the male- specific part of the caprine Y- chromosome. 
These are unplaced in the ARS1 assembly but for a large part closely 
match a recent Y- chromosomal contig of the Saanen_v1 assembly 
(Table S2; Li et al., 2021) and contain the single- copy Y- chromosomal 
genes SRY, DDX3Y and ZFY and the SNPs that define the major hap-
lotypes Y1A, Y1B, Y2A and Y2B (Çinar Kul et al., 2015; Lenstra & 
Econogene Consortium, 2005; Waki et al., 2015; see Table S1). The 
genes USP9Y, UTY, DDX3Y and ZFY are proximate near one of the 
ends of the male- specific Y- chromosomal region and well separated 
from SRY (Li et al., 2021). The selected contigs have a low overall 
level of apparent heterozygosity, indicating a high frequency of 
hemizygous markers (Table S2).

In a preliminary study (https://www.biorx iv.org/conte nt/biorx 
iv/early/ 2020/02/17/2020.02.17.952051.full.pdf), we used WGS 
data from the Sequence Read Archive (SRA) for 70 mainly Asian 
and Moroccan male goats (Alberto et al., 2018; Zheng et al., 2020; 
Table S3). We extracted the genotypes of 5356 SNPs as described 
(Zheng et al., 2020), which after filtering yielded 2350 SNPs without 
female-  of male- heterozygous scores, <5% missing scores/SNP and 
a minor allele frequency (MAF) >0.02.

For a more comprehensive global coverage, we used processed 
and mapped WGS data for 1372 goats generated by the VarGoats 
project (Denoyelle et al., 2021, www.goatg enome.org/vargo ats.
html). These include published data available via the SRA, 61 of 
which have also been used in the preliminary study. A VCF file of 
65,556 variants in the sequences covered by the four selected Y- 
chromosomal contigs (Table S2) was generated by using the gatk 
HaplotypeCaller in the GVCF mode and the goat ARS1 whole ge-
nome sequence. After import into plink (version 1.90 beta) variants 
and samples were filtered by the following consecutive steps:

1. After removal of indels, 54,032 Y- chromosomal SNPs were 
retained.

2. From the 948 female goats, 670 were selected with scores of <1% 
for the 54,032 Y- chromosomal SNPs in order to minimize scores 
due to contamination with male DNA.

3. In total, 17,228 SNPs were scored in at least one of the 670 fe-
males and were removed.

4. From the 36,804 remaining male- specific SNPs, 7263 SNPs had 
≥1 heterozygous score and 506 were monomorphic in 424 male 
goats, keeping 29,035 hemizygous SNPs.

5. From the 380 domestic male samples, 354 with a call rate of 
>95% were kept. From the 34 wild goats, two Italian ibexes and 

four Iranian bezoars had call rates of only 90.7%– 94.4%, but this 
did not appear to affect their phylogenetic positions or the cor-
responding bootstrapping values (see below), so these were re-
tained in the data set.

6. From the 29,035 SNPs, 12,540 had a call rate of <99% in the 388 
male goats (354 domestic and 34 wild) and were discarded.

7. From the remaining 16,495 SNPs, 552 SNPs had an MAF in the 
354 male domestic goats of >1% and from the other 15,943, 9977 
SNPs had a at least one score in wild goats, totalling 10,529 SNPs 
representing male- specific Y- chromosomal variation in domestic 
and/or wild goats, which differentiate 27 wild and 80 domestic 
haplotypes.

8. Finally, two domestic goats with unknown breed origins were dis-
carded, resulting in a final panel of 386 (352 domestic and 34 wild) 
goats.

Allele- sharing distances between individuals were calcu-
lated using plink or mega7 (Tamura et al., 2011), and visualized in 
neighbour- joining (NJ) trees by using the program splitstree4 (Huson 
& Bryant, 2006). For calculating bootstrapping values in an NJ tree 
of the 80 domestic and 20 bezoar haplotypes and as an outgroup 
one markhor, we selected 2867 SNPs with MAF >5% and used the 
program mega7. The topology of this tree was essentially identical to 
a tree of genotypes of the 10,529 SNP panel for the same samples.

For construction of median- joining networks (Bandelt 
et al., 1999), we selected 286 male goats and 27 bezoars, omitting 
other wild goats as well as transboundary breeds outside their re-
gion of origin and balancing the breed representation by analysing 
≤18 individuals per breed. With the number of polymorphic SNPs 
thus reduced to 1734, the program popart (Leigh & Bryant, 2015; 
http://popart.otago.ac.nz) generated a network of 91 haplotypes 
(Table S4).

In addition to the SNPs previously by dideoxy sequencing (Çinar 
Kul et al., 2015; Lenstra & Econogene Consortium, 2005; Vidal 
et al., 2017; Waki et al., 2015), we identified other diagnostic SNPs 
in the VarGoats data set on the basis of an FST genetic distance (plink 
version 1.9 – fst) of 1.0 between males with a given haplogroup and 
all other males. Several Y- chromosomal diagnostic SNPs have been 
incorporated in the Goat_IGGC_65K_v2 bead array (Table S1).

2.2  |  Haplogroups distribution in 186 goat breeds

We differentiated the major Y- chromosomal haplogroups Y1AA, 
Y1AB, Y1B, Y2A and Y2B for 2212 domestic goats from 186 breeds 
by combining data from several sources as detailed per breed in 
Table S5:

1. From the goat panel collected for the Econogene project (Lenstra 
& Econogene Consortium, 2005), DNA samples of 353 male 
goats from 38 European or southwestern Asian breeds were 
analysed by PCR (polymerase chain reaction) amplification 
and dideoxy- sequencing of DDX3Y, SRY and ZFY segments as 

https://www.biorxiv.org/content/biorxiv/early/2020/02/17/2020.02.17.952051.full.pdf
https://www.biorxiv.org/content/biorxiv/early/2020/02/17/2020.02.17.952051.full.pdf
http://www.goatgenome.org/vargoats.html
http://www.goatgenome.org/vargoats.html
http://popart.otago.ac.nz
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described previously for bovine samples (Edwards et al., 2011; 
Nijman et al., 2008) using goat- specific primers (Table S6).

2. We used published data from five Portuguese breeds or from 
Moroccan goats (Pereira et al., 2009), 12 Asian breeds or national 
populations (Waki et al., 2015, Tabata et al., 2018, 2019, com-
bined with unpublished data), eight Turkish breeds (Çinar Kul et 
al., 2015), and 26 Spanish and Swiss breeds (Vidal et al., 2017).

3. Haplogroup assignments for 354 domestic male goats in the 
VarGoats data set were derived from their positions in the phy-
logenetic trees (Figure 1b; Figure S2), which were fully consistent 

with the alleles of the diagnostic SNPs (Table S1). This implies that 
they represent the variation that corresponds to the basal branch 
of the respective haplogroups in the phylogenetic trees or net-
works (Figures 1b and 2). Haplogroups for VarGoats male goat 
with a call rate of <95% were inferred from the alleles of diagnos-
tic SNPs (Table S1).

4. In total, 368 DNA samples from several sources, including 
the AdaptMap panel (Colli et al., 2018) were genotyped by the 
KASP assay (Kompetitive allele specific PCR assay) for SNPs 
NW_017189563.1 g.T280306>A and NW_017189885.1 g.

(a)

F I G U R E  1  Neighbour- joining tree of allele- sharing distances calculated on the basis of hemizygous male- specific SNPs extracted from 
the VarGoats WGSs. (a) Fourteen wild goats and five domestic goats; 10,529 SNPs. The wild, bezoar and five domestic haplogroups are 
indicated. (b) in total, 101 different haplotypes in 352 male domestic goats and 27 male bezoars and (not shown) markhor as an outgroup; 
2867 SNPs (MAF >5%). Individual codes consist of (i) country codes, first two letters: AZ, Azerbaijan; BD, Bangladesh; CH, Switzerland; 
CN, China, DK, Denmark; ET, Ethiopia; FI, Finland; FR, France; IE, Ireland; IL, Israel; IR, Iran; IS, Iceland; IT, Italy; KE, Kenya; KO, Korea; 
MG, Madagascar; ML, Mali; MO, Morocco; MZ, Mozambique; NL, Netherlands; NZ, New Zealand; PK, Pakistan; RU, Russia; SD, Sudan, TR, 
Turkey; TJ, Tadjikistan; TZ, Tanzania; UZ, Uzbekistan; ZA, South Africa; ZW, Zimbabwe). (ii) species code, 3rd– 4th letter: CA (Capra aegagrus), 
bezoar; CC (Capra caucasica, Capra cylindricornis), west and east Caucasian tur, respectively; CF (Capra falconeri), markhor; CH (Capra hircus), 
domestic goat; CI (Capra ibex) alpine ibex; CN (Capra nubiana), Nubian ibex; CS (Capra sibirica), Siberian ibex. (iii) codes for domestic breeds 
(three letters), or bezoar populations (four letters): See Figure 3. (iv) sample number. Numbers near the nodes indicate bootstrapping values 
(%) after carrying out 100 bootstrap replicates. Y0, CaY1, CaY1AA, CaY2 and CaY2B indicate bezoar haplotypes
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A11686>G, carried out at the Van Haeringen Laboratory 
(Wageningen, Netherlands).These SNPs differentiate Y1 vs. Y2 
and Y1A vs. Y1B, respectively.

5. For 31 breeds, genotypes of diagnostic SNPs (Table S1) were 
obtained by megablast searching of SRA entries with queries of 
40– 50 bp overlapping the SNPs. SRA data for pools of individuals 
were only used if this allowed an unambiguous identification of 
the haplogroup composition.
For samples collected by Vidal et al. (2017) and Çinar Kul 

et al. (2015) and for samples analysed by KASP before genomic data 
became available, Y1AA and Y1AB have been both scored as the 
Y1A haplotype. Several of these samples did not contain Y1A or be-
longed to breeds for which additional data are available (Table S5). 
However, for 17 breeds we only have the Y1A (Y1AA + Y1AB) fre-
quency. Likewise, Vidal et al. (2017) and the KASP assays did not dif-
ferentiate Y2A and Y2B. Since the VarGoats and Econogene panels 
with comprehensive coverage of Europe and Africa did not contain 
a single Y2B- carrying goat, we assigned Y2 scores in other European 
and African goats to Y2A.

2.3  |  Haplotypes of ancient DNA samples

Daly et al. (2021) assigned ancient DNA (aDNA) samples from south-
west Asia and southeast Europe to the domestic Y- chromosomal 
haplogroups on the basis of their positions in a phylogenetic tree. Cai 
et al. (2020) and Zheng et al. (2020) described eight Chinese aDNA 
samples and one medieval sample from the northern Caucasian region. 
Sample YJL2G (coverage 13.4×) clustered with the Y1AB haplogroup, 
but the coverage of the others ranged from 0.013 to 0.118×. This re-
sulted in insufficient overlap with the 10,529 male- specific hemizy-
gous SNPs in domestic goats (see above). Therefore, we relaxed our 
filtering and allowed SNPs scoring in up to 1% of the females. We ex-
cluded SNPs with male heterozygote scores only if these occurred in a 
panel of individuals with call rates >95% representing the 80 different 
domestic haplotypes (see above) but removing two individuals with a 
high heterozygosity. This resulted in 5593 SNPs, 1018 of which were 
also scored in the low- coverage aDNA samples. The combined phylo-
genetic signals (Table S7) showed for sample GTM6G a high proportion 
of inconsistent scores, presumably due to contamination, but allowed 
plausible haplogroup assignment for samples KA1G, SMG1, SMG7, 
SMG11 and YJL2G and a tentative assignment for BG3 (Table S7).

3  |  RESULTS

3.1  |  Phylogeny of Y- chromosomal haplogroups

A phylogenetic tree of the wild and domestic goats (Figure 1a) shows 
an intermingling of bezoars and the domestic goat. From the other 
wild goat species, the markhor is the closest relative of the bezoar 
and the domestic goat.

We found 107 different haplotypes in our panel of 352 domestic 
goats and 27 bezoars with markhor as an outgroup. A phylogenetic 
tree (Figure 1b) shows haplogroups that correspond to the haplo-
types Y1B, Y2A (Lenstra & Econogene Consortium, 2005) and Y2B 
(Waki et al., 2015) whereas the Y1A haplotypes are split into hap-
logroups Y1AA and Y1AB. This is confirmed in a data set of mainly 
Asian and Moroccan goats (Figure S1). All domestic haplotypes dif-
fer from the Iranian or Anatolian bezoar haplotypes, which also dif-
fer from each other. The bezoar haplotypes are associated with the 
domestic Y1AA or Y2B clusters (CaY1AA and CaY2B, respectively), 
are linked to the Y1 or Y2 roots (CaY1 and CaY2) or are outside the 
domestic cluster (Y0).

Figure S2 shows subtrees containing all 352 domestic goats. This 
figure also indicates goats with the previously proposed local hap-
lotypes (Vidal et al., 2017; this study, Table S1): Y1AB2 (this study), 
Y1B2 and Y1C. Y1B2 is represented by Swiss, French and Dutch 
goats. Our goat panel does not contain goats with the Y2C diagnos-
tic allele (Çinar Kul et al., 2015).

The phylogenetic relationships of domestic and bezoar haplo-
types are confirmed by a median- joining network (MJN, Figure 2). 
Both the NJ tree and the MJN allow a few interesting observa-
tions to be made: (i) a close relationship of Y1B sequences from 
Switzerland and Korean Native goats, suggesting recent crossbreed-
ing; (ii) likewise, a close relationship of Y1AA sequences from Central 
as well as South Asia, from South African Boer goats and from other 
Y1AA goats in southern and eastern Africa; and (iii) a clear diver-
gence of the Malagasy Y2A haplotypes from the African continental 
haplotypes.

3.2  |  Geographical distribution of haplogroups

Figures 2 and 3 show the haplogroup distributions in 80 breeds from 
Europe, Asia and Africa. Interestingly, there is clear difference be-
tween the ancient and modern DNA samples. All five haplogroups 
were detected in four ancient goat samples from southeastern 
Europe and 17 from southwestern Asia (Daly et al., 2018, 2021; 
Figure 3a; Table S5). In contrast, we observe a strong geographical 
differentiation of domestic goats:

1. Haplogroup Y1B is predominant in central and northern Europe, 
but outside Europe and North Africa it has only been found 
in one Ugandan Karamonja goat, in the Korean native breed 
and in exported Saanen populations.

2. In northern and central Europe Y2A is only found in a single 
French des Fossés sample and together with Y1AA in the cross-
bred Anglo- Nubian. It is the predominant haplogroup in Spain, 
Anatolia and Africa south of the Sahara, but it is not found in 
China or Southeast Asia except in about 20% of the goats in the 
Philippines and Sulawesi. Remarkably, most Y2A haplotypes on 
Madagascar are more closely related to Asian than to continental- 
African Y2A haplotypes.
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3. Y2B is absent in Europe, continental Africa and west Asia, but is a 
major haplotype in east and southeast Asia. It is also observed in 
one Malagasy Diana sheep.

4. Y1AA in Europe is only represented by three haplotypes in 
the local Ciocara breed and the Montecristo island population 
(Somenzi et al., 2022). The Italian haplotypes are outside the clus-
ter of closely related south Asian and southeast African Y1AA 
haplotypes (Figure 2; Figure S2).

5. The available data suggest a contrast of Y1AB dominating in 
northern China and Y1AA with Y2B in the south.

4  |  DISCUSSION

One of the benefits of the current availability of WGS data sets is the 
access to an abundance of sequence variants, which allow a compar-
ison of individuals or populations for several purposes. This is espe-
cially useful for the analysis of Y- chromosomal diversity, which was 
previously restricted by the availability of Y- chromosomal markers. 
The male- specific part of the Y- chromosome constitutes the long-
est haplotype in the mammalian genome and may serve as a marker 
for mammalian paternal lineages. Here, we combined the data set of 

the VarGoats project with published data and genotyped diagnostic 
SNPs in male goat samples from several sources.

The Y- chromosomal phylogeny of wild and domestic goats is in 
agreement with the Y- chromosomal tree on the basis of AMELY and 
ZFY gene fragments (Pidancier et al., 2006) and with a phylogeny 
of WGS sequences (Grossen et al., 2020; Cai et al., unpublished). 
Mitochondrial DNA (mtDNA) trees confirm the close relationship 
of markhor (Capra falconeri) with bezoar and domestic goat, but do 
not show the separation of these species and the other wild goats. 
In addition, mtDNA sequences of some, but not all East Caucasian 
turs (Capra cylindricornis) cluster with the mtDNA sequences of 
markhor, bezoar and domestic goat, illustrating a separate history 
of maternal and paternal lineages in cross- fertile species (Chen 
et al., 2018; Marín et al., 2017; O'Connell et al., 2014; Zhang 
et al., 2016, 2020).

On the basis of WGS data, Zheng et al. (2020) and Xiao et al. (2021) 
reproduced the divergence of the domestic Y1 and Y2 haplogroups 
previously found on the basis of SNPs within or near Y- chromosomal 
genes (Lenstra & Econogene Consortium, 2005). Here we report a 
further differentiation of haplogroups, resulting in a phylogeny sup-
ported by a largely independent preliminary data set (Figure S1) and 
two phylogenetic algorithms. We found that the major haplogroups 

F I G U R E  2  Median- joining network of 286 male domestic goats and 27 bezoars, omitting transboundary breeds outside their region of 
origin and balancing the breed representation by reducing the sample size of ALP and SAA to 18 individuals. This panel has 1734 SNPs with 
MAF >0.01, and 91 different haplotypes (Table S4)
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correspond to haplotypes defined by SNPs (Çinar Kul et al., 2015; 
Lenstra & Econogene Consortium, 2005; Pereira et al., 2009; Tabata 
et al., 2018, 2019; Vidal et al., 2017; Waki et al., 2015), but Y1A hap-
lotypes belong to either haplogroup Y1AA or Y1AB.

The phylogeny also indicates that these haplogroups diverged 
after the split of the markhor and the cluster of the wild bezoar and 
domestic goats. The domestic goats and the two bezoar populations 
from Anatolia and Iran do not share haplotypes, whereas the bezoar 
haplotypes are attached to deep nodes in the tree of mainly domes-
tic haplotypes. This suggests an absence of male gene flow between 
the bezoar populations and between the bezoar and domestic goats 
from the same region. Thus, domestic goats, which possibly were de-
rived from bezoar populations not sampled in this study, maintained 
their paternal lineages during migration from the Fertile Crescent via 

Anatolia to Europe, despite indications of management of wild goats 
in central Anatolia (Stiner et al., 2022).

Geographical plots of domestic haplogroup frequencies 
show a considerable spatial differentiation, which resonates with 
the strong phylogeography displayed by autosomal SNPs (Colli 
et al., 2018), but is in clear contrast to the weak phylogenetic struc-
ture displayed by the major mtDNA haplogroups (Colli et al., 2018; 
Luikart et al., 2001; Naderi et al., 2007, 2008; Zhao, Zhong, 
et al., 2014; Zhao, Zhao, et al., 2014). Remarkably, Y- chromosomal 
haplotypes from all five haplogroups have been found in aDNA 
samples from Southwest Asia and Southeast Europe. The locations 
of ancient Y1AA, Y1B and Y2B samples are well outside the range 
of the corresponding domestic haplogroups (Figure 3). This indi-
cates that during the Neolithic and later worldwide migrations a 

F I G U R E  3   (Continued)
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series of bottlenecks and expansions in the domestic male lineage 
created a strong geographical differentiation of the haplogroup 
distribution (Figure 4):

1. The dominance of haplogroup Y1B in central and northern Europe 
may very well reflect population bottlenecks during the Neolithic 
introduction of agriculture via the Danube route (Cymbron et 
al., 2005; Rivollat et al., 2015; Tresset & Vigne, 2007)

2. Y2A and Y1AA are almost the only haplogroups in Africa south 
of the Sahara. The two African Y1AA haplotypes are related 
to those of Asia, indicating that only Y2A expanded during the 
first introduction of domesticated goats in central and southern 
Africa

3. Y2B has been found in two Neolithic Iranian samples whereas re-
lated CaYB2 haplotypes are present in Iranian and Anatolian be-
zoars. However, as a result of population bottlenecks during the 
global spread of domestic goats, Y2B now occurs only in Asia east 
of the Indus River and in one goat from Madagascar (see below).

4. Y1AA was found in Neolithic samples in southeast Europe, but 
now has a low frequency in Europe. In Asia it expanded together 
with Y2B and later came to South Africa when Asian goats were 
used to breed the Boer goat (see below).

5. Y1AB is the most frequent haplogroup in north China. The dis-
tributions of Y1AB and Y1AA/Y2B in East Asia correspond 
to ranges of the north Chinese cashmere goats and the small 
Southeast Asian “katjang” type, respectively (Porter et al., 2016). 

(c)

(d)

F I G U R E  3   (Continued)
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This obviously reflects the large difference in climate between 
northern and southern China, which determined a similar distri-
bution of taurine and indicine cattle. These two types of cattle are 
considered to have entered China via a northern and southern mi-
gration route, respectively (Chen et al., 2018; Zhang et al., 2020), 
supporting the separate eastern expansions of the Y1AB and 
Y1AA/Y2B goats, respectively.
Exceptions to these geographical patterns follow from close re-

lationships between haplotypes from different continents, which 

are probably explained by later major introgressions. Interestingly, 
in the phylogenetic trees and networks (Figure 2; Figure S2) the Y2A 
haplotypes on Madagascar are closely related to Asian haplotypes 
and one Diana goat from northern Madagascar even has an east-
ern Asian Y2B haplotype. However, autosomal DNA shows that the 
Malagasy goats are more closely related to the southern and eastern 
African continental goats (Colli et al., 2018; Denoyelle et al., 2021). 
This parallels a recent finding that Malagasy cattle combine Indian 
and admixed African zebu ancestry (Magnier et al., 2022). The 

F I G U R E  3  Haplogroup distributions for 186 breeds (2212 goats), 26 aDNA samples and 31 bezoars. (a) Ancient DNA samples and 
bezoars; (b) European breeds; (c) Asian breeds; (d) African breeds. Breed or bezoar population codes: ABA, Abaza; ABR, Abergelle; ALG, 
Algarve; ALP, alpine; ANB, Anglo- Nubian; AND, Androy; ANK, angora; APP, Appenzell; ARB, Arabia; ARG, Argentata dell'Etna; ARR, arran; 
ARW, Arapawa; BAG, Bagot; BAL, Balearic; BBL, black Bengal; BCD, British composite dairy; BEE, Beetal black Pakistan; BEY, Bermeya; 
Bhutan; BIO, Bionda dell'Amadello; BLA, Blanca Andaluzza; BLB, Bilbery; BLO, Blobe; BOE, Boer; BRI, Barbari (Bari); BRV, Bravia; BUK, 
polish fawn Coloured; BUL, Balaka- Ulongwe; BZAl, Algorz bezoar; BAAz, Azerbaijan bezoar; BZFa, Fars bezoar; BZMa; Markazi bezoar; BZTr, 
Anatolian bezoar; BZZa, Zagros bezoar; CAG, Capra Grigia; CAM, Cambodjan; CAP, Capore; CBR, Chengdu Brown; CCG, Ciociara; CDM, 
Chaidamu Qinhai; CHE, Cheviot; CHM, Chongmin (Shanghai); CHQ, Charnequeira; CHV, Cheviot; COR, Corsican; CPC, Changtangi Pashmira 
cashmere; CRO, Croatian spotted; CRP, Carpathian; Da'er, Sichuan; DAM, Damani; DDZ, Dedza; DIA, Diana; DJA, Djallonke; DKL, Danish 
landrace; DPG, Dutch pied goat; DRZ, Dreznica; DSA, Dutch Saanen; DUA, Du'an; DUK, Dukati; DUL, Dutch Nordic goat; ESF, Esfahan; FIN, 
Finnish; FLR, Florida; FSS, de Fossés; FUE, Fuenteventura; GLL, Galla; GAR, Garganica; GDR, Guadarrama; GIR, Girgentata; GMO, Grigia 
Molisana; GRG, Greek; GRS, Grisons striped; GUA, Guadeloupe creole; GUE, Guéra; GUM; GUR, Gürcü; GUM, Gumez; HAI, hair (Anatolian 
black); HAS, Hasi; HMN, Haimen (Jiangsu); HNM, Honamli; ICL, Icelandic; IMC, Inner Mongolia cashmere; IND, Indian; IRA, Iran; IRQ, Iraq; 
IST, Istrian; JAT, Jatall; JBL, Jintang black; JSA, Japanese Saanen; KCC, Kacchan; KEF, Keffa; KHA, Khazakhstani; KIG, Kigezi; KLS, Kilis; 
KMO, Karamonja; KMR, Kamorr; KNG, Korean native; KSA, Korean Saanen; LAN, Landim; LAO, Laos; LBA, Lori- Bakhtiari; lCL, Icelandic; 
LGL, Longlin; LIL, Lilongwe; LIQ, Liqenasi; LOR, Lorraine; MAC, Machen black; MAK, Makatia; MAT, Mati; MAU, Maure; MEN, Menabe; MGL, 
Mongolian; MLG, Malagueña; MLI, Mali; MLT, Maltese; MLW, Malawi; MLY, Malya; MNT, Montecristo; MOR, Moroccan; MSH, Mashona; 
MTB, Matebele; MUB, Mubende; MUG, Murciano Granadina; MUL, Mulranny; MUZ, Muzhake; MYA, Myanmar; MZA, M'Zabite; NAC, 
Nacki; NCG, Norwegian coastal; NDG, Norwegian dairy; NDK, Naine de Kabylie; NDZ, Norduz; NEP, Nepalese; NGD, Nganda; NJI, Nanjiang 
yellow; ORO, Orobica; PCG, Peacock; PAT, Pateri; PAW, pare- white; PER, Percy Island; PEU, Peulh; PHI, Pilippine; PIZ, Pinzgauer; PRW, pare- 
white; PTV, Poitevin; PVC, Provençale; PYR, Pyrenean; PYY, Payoya; QIN, Qin; QHI, Qinhai; RAN, rangeland; RAO, Henan Raoshan white; 
RAS, Rasquera; ROV, rove; RSK, Nigerian Maradi (red Sokoto); SAA, Saanen; SAR, Sarda; SAV, Savoye; SCA, Shaanbei cashmere; SDN, Sudan; 
SEA, small east African; SEB, Sebei; SER, Serrana; SGB, St Gallen booted; SHI, Shjiba; SHL, Shahel; SHN, Nigerian Sahel; SKO, Skopelos; SNJ, 
Sanja; SOF, Sofia; SOU, southwest; SRP, Serpentina; SSG, Steirische Schecken; SSU, South Sulawesi; SWE, Swedish landrace (Jämtland); 
TAS, Tauernschecken; TED, Teddi; TER, Teramo; THA, Thari; TIB, Tibetan; TNF, Tinerfena; TOG, Toggenburg; TWZ, Thuringian Forest; VAG, 
Valais Blackneck; VAG, Valais Blackneck; VAL, Valdostana; VIE, Vietnamese; VRT, Verata; VZC, Verzasca; WAD, west African dwarf; XJI, 
Xinjiang; XUH, Xuhuai; YBL, Youzhou black skin; YIM, Shandong Yimeng white; YIW, Yichang white; ZAR, Zaraiba

F I G U R E  4  Bottlenecks, migrations 
and introgressions of domestic goat. 
This figure does not indicate export of 
transboundary breeds
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Malagasy language has an Austronesian origin, which testifies to 
the colonization of Madagascar by immigrants from southeastern 
Asia about 500 CE. Thus, it is likely that these immigrants brought 
Austronesian goats, cattle and possibly also other livestock from 
their region of origin to Madagascar.

Other introgressions are more recent. The exceptional Y1AA and 
Y2A in the English Anglo- Nubian is explained by the documented im-
port during the 19th century of Indian and African goats to England. 
These served on the ships as sources of milk and meat, but surviving 
males were crossed with English goats, which resulted in the emer-
gence of a popular transboundary breed.

The worldwide popular Boer goat also is of mixed origin (Porter 
et al., 2016; Vidal et al., 2017) and carries exclusively Y1AA haplo-
types. This breed is considered to be a crossbred of local African 
and Indian goats, possibly mediated by incrossing of Anglo- Nubian 
males (Porter et al., 2016). The crossbred origin is consistent with 
the results of Colli et al. (2018): a separate phylogenetic position 
of the Boer relative the other African and Asian goats and a K = 3 
pattern of model- based clustering showing African and west Asian 
ancestry. The Indian ancestry is entirely in agreement with a close 
clustering of the Boer and Pakistani Y1AA haplotypes (Figures 1b 
and 2).

Subsequently, the Boer became itself a source of introgression. 
The same Y1AA haplotypes are closely related to Y1AA haplotypes 
in local breeds in Uganda, Malawi, Mozambique and Zimbabwe. In 
these countries crossbreeding with Boer goats from Africa is pop-
ular because of its excellent meat production (Banda et al., 1993; 
Garrine, 2007; Lu, 2011; Onzima et al., 2018). Therefore, it is most 
likely that the Y1AA haplotype in eastern and southern African 
goats originates from the Boer goat.

There were three out- of- range findings of Y1B, in the Ugandan 
Karamonja, in the Korean native goat and in the indigenous goats 
kept on Chongmin Island in Shanghai. Because of the popular-
ity of Swiss dairy goats in both Uganda (NAADS, 2005) and Korea 
(Kim et al., 2019), crossbreeding again is the most likely explana-
tion. Although European admixture in the Chongmin goats (Gao 
et al., 2020) has not been reported, the exotic occurrence of Y chro-
mosomal variants appears to be a direct and sensitive indicator of 
admixture events. These need to be complemented with quantitative 
admixture tests, such as model- based clustering, the f3 and f4 test or, 
ideally, identification of introgressed segments across the genome.

The latter approach may also lead to clues regarding the phe-
notypic consequences of introgression via the identification of the 
admixed genes (Chen et al., 2018; Lv et al., 2014; Wang et al., 2015; 
Zheng et al., 2020). A more direct link with Y- chromosomal varia-
tion would be provided if this can be linked to male phenotypic 
traits, but even in human genetics this has scarcely be investigated 
(Matsunaga et al., 2021; Yang et al., 2018; Zhang et al., 2021). Breeds 
in which different Y- chromosomal haplogroups occur may allow us 
to study an association of haplogroups with typically male traits such 
as male fertility and dominance behaviour. It would be interesting 
to see if Y- chromosomal variants can be related to climate or other 

environmental features, because this would imply that the geo-
graphical differentiation of the Y- chromosomal variation is driven by 
regional adaptation.

Most introgressions described in this study contribute to the 
expansion of popular breeds at the expense of the original local 
breeds. On the one hand, depending on the extent of gene flow this 
may decrease the diversity of the genetic resources; on the other 
hand, it does not necessarily disrupt the environmental adaptation, 
arguably one of the most important components of the phenotypic 
repertoire. If properly managed, admixture of productive breeds 
may also contribute to the sustainable conservation of local popu-
lations and illustrates that genetic diversity has never been a static 
phenomenon.

We conclude that the Y- chromosomal variation of goats reveals 
bottlenecks, expansions and introgressions, illustrating the power of 
Y- chromosomal markers for inferring the genetic origin of mamma-
lian populations.
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