Ultrafast Laser Processing of Nanostructured Patterns for the Control of Cell Adhesion and Migration on Titanium Alloy - Archive ouverte HAL
Article Dans Une Revue Nanomaterials Année : 2020

Ultrafast Laser Processing of Nanostructured Patterns for the Control of Cell Adhesion and Migration on Titanium Alloy

Antoine Klos
Xxx Sedao
Tatiana Itina
Clémentine Helfenstein-Didier
Christophe Donnet
Sylvie Peyroche
  • Fonction : Auteur
Laurence Vico
Alain Guignandon

Résumé

Femtosecond laser texturing is a promising surface functionalization technology to improve the integration and durability of dental and orthopedic implants. Four different surface topographies were obtained on titanium-6aluminum-4vanadium plates by varying laser processing parameters and strategies: surfaces presenting nanostructures such as laser-induced periodic surface structures (LIPSS) and ‘spikes’, associated or not with more complex multiscale geometries combining micro-pits, nanostructures and stretches of polished areas. After sterilization by heat treatment, LIPSS and spikes were characterized to be highly hydrophobic, whereas the original polished surfaces remained hydrophilic. Human mesenchymal stem cells (hMSCs) grown on simple nanostructured surfaces were found to spread less with an increased motility (velocity, acceleration, tortuosity), while on the complex surfaces, hMSCs decreased their migration when approaching the micro-pits and preferentially positioned their nucleus inside them. Moreover, focal adhesions of hMSCs were notably located on polished zones rather than on neighboring nanostructured areas where the protein adsorption was lower. All these observations indicated that hMSCs were spatially controlled and mechanically strained by the laser-induced topographies. The nanoscale structures influence surface wettability and protein adsorption and thus influence focal adhesions formation and finally induce shape-based mechanical constraints on cells, known to promote osteogenic differentiation.

Dates et versions

hal-04804825 , version 1 (26-11-2024)

Identifiants

Citer

Antoine Klos, Xxx Sedao, Tatiana Itina, Clémentine Helfenstein-Didier, Christophe Donnet, et al.. Ultrafast Laser Processing of Nanostructured Patterns for the Control of Cell Adhesion and Migration on Titanium Alloy. Nanomaterials, 2020, 10 (5), pp.864. ⟨10.3390/nano10050864⟩. ⟨hal-04804825⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More