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Abstract
The validity of the instanton analysis approach is tested numerically in the case of the diffraction-

amplification problem ∂zψ − i
2m∂

2
x2ψ = g|S|2 ψ for lnU � 1, where U = |ψ(0, L)|2. Here, S(x, z)

is a complex Gaussian random field, z and x respectively are the axial and transverse coordinates,

with 0 ≤ z ≤ L, and both m 6= 0 and g > 0 are real parameters. We consider a class of S, called

the ‘one-max class’, for which we devise a specific biased sampling procedure. As an application,

p(U), the probability distribution of U , is obtained down to values less than 10−2270 in the far right

tail. We find that the agreement of our numerical results with the instanton analysis predictions

in Mounaix (2023 J. Phys. A: Math. Theor. 56 305001) is remarkable. Both the predicted

algebraic tail of p(U) and concentration of the realizations of S onto the leading instanton are

clearly confirmed, which validates the instanton analysis numerically in the large lnU limit for S

in the one-max class.
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I. INTRODUCTION

In a recent work [1], the instanton analysis approach [2–4] was used to determine the

tail of p(U), the probability distribution of U = |ψ(0, L)|2, for lnU � 1, ψ(x, z) being the

solution to the diffraction-amplification problem1: ∂zψ(x, z)− i
2m
∂2
x2ψ(x, z) = g|S(x, z)|2ψ(x, z),

0 ≤ z ≤ L, x ∈ Λ ⊂ R, and ψ(x, 0) = 1.
(1)

Here, z and x respectively denote the axial and transverse coordinates in a domain of length

L and (one-dimensional) cross-section Λ. For technical convenience, we will take for Λ the

circle of length `. The boundary condition at z = 0 is taken to be a constant for simplicity.

Both m 6= 0 and g > 0 are real parameters and S(x, z) is a transversally homogeneous

complex Gaussian noise with zero mean and normalization L−1
∫ L

0
〈|S(x, z)|2〉 dz = 1.

From the instanton analysis of the corresponding Martin-Siggia-Rose action, it was found

in [1] that S concentrates onto long filamentary instantons, Sinst, as lnU → +∞. These fila-

mentary instantons run along specific non-random paths, denoted by xinst(·), that maximize

the largest eigenvalue µ1[x(·)] of the covariance operator Tx(·) defined by

(Tx(·)f)(z) =

∫ L

0

C(x(z)− x(z′), z, z′) f(z′) dz′, f(z) ∈ L2([0, L]), (2)

where C(x − x′, z, z′) = 〈S(x, z)S(x′, z′)∗〉. In equation (2), x(·) is a continuous path in

Λ satisfying x(L) = 0, and for the class of S considered in [1], every maximizing path

xinst(·) is also continuous with xinst(L) = 0 (see [1] for details). In the most common case

of ‘single-filament instantons’ for which there is only one maximizing path, and assuming a

non-degenerate µ1[xinst(·)], one has S(x, z) ∼ Sinst(x, z) (lnU → +∞) with

Sinst(x, z) =
c1

µmax

∫ L

0

C(x− xinst(z
′), z, z′)φ1(z′) dz′, (3)

where µmax is short for µ1[xinst(·)], φ1 is the fundamental eigenfunction of Txinst(·), and c1 is

a complex Gaussian random variable with 〈c1〉 = 〈c2
1〉 = 0 and 〈|c1|2〉 = µmax. The tail of

p(U) for lnU � 1 can then be deduced from the statistics of Sinst as given in equation (3).

1 This problem is of interest in, e.g., laser-plasma interaction and nonlinear optics in which ψ is the complex
time-envelope of the scattered light electric field, g and S being proportional to the average laser intensity
and the complex time-envelope of the laser electric field, respectively [5].
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The result is a leading algebraic tail ∝ U−ζ with ζ = (1 + 1/2µmaxg), modulated by a slow

varying amplitude (slower than algebraic) [1].

In the absence of a mathematically rigorous proof, the need for checking the validity of

these analytical results numerically cannot be overlooked. To this end, it is essential to have

a good sampling of the realizations of S for which lnU � 1. Unfortunately, such realizations

are extremely rare events, far beyond the reach of any direct sampling with a reasonable

sample size. For instance, for the same Gaussian field S and parameters as in section 5 of [1]

and in the simple diffraction-free limit, m−1 = 0, in which U can be computed exactly, it can

be checked that p(lnU ≥ 103) = O(10−100). It is thus clearly unrealistic to expect that the

asymptotic analytical results can be tested by direct numerical simulations. To gain access

to the asymptotic regime and check the validity of the instanton analysis we need a specific

approach. One possible strategy is to bias the underlying distribution of S towards the

outcomes of interest. In the case of nonlinear equations with additive noise, this has been

successfully achieved by means of the ‘importance sampling algorithm’ [6] frequently used

in rare event physics (see e.g. [7–9] and references therein). For the diffraction-amplification

problem (1) with S admitting a single and non-degenerate instanton, like in equation (3) (see

the appendix), it turns out that a different, somewhat simpler, method can be devised, based

on the existence of a nonlinear fit to numerical data giving a highly accurate approximation

of U as a function of S, when lnU is large. It is then possible to determine the extreme

upper tail of p(U) and the corresponding realizations of S from numerical simulations.

Development of the biased sampling procedure and its application to check the validity of

the instanton analysis in the case of problem (1) is the subject of the present work.

Before entering the details of the calculations, it is useful to summarize our main results.

• Let TC denote the covariance operator defined by

(TCf)(x, z) =

∫ L

0

∫
Λ

C(x− x′, z, z′) f(x′, z′) dx′dz′, f(x, z) ∈ L2(Λ× [0, L]). (4)

Write r‖, and r⊥ the L2-norms of the components of T−1/2
C S parallel and perpendicular

to any given direction in L2 close enough to the one maximizing U at fixed ‖T−1/2
C S‖2,

which is unique for the class of S we consider (see Section IIIA). By analyzing a

large number of numerical solutions to equation (1), we identify the existence of an

implicit equation relating U , r‖, and r⊥ when lnU is large and all the other quantities
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characterizing T−1/2
C S are fixed. The reason why T−1/2

C S appears rather than S will be

made clear at the end of section II and above equation (16). More specifically, writing

r‖ =
√
η cos θ and r⊥ =

√
η sin θ, with 0 ≤ θ ≤ π/2 and η > 0, we check that our

numerical data satisfy

cos θ −
(

log10 U

aη − b

)α
= 0, (5)

with very good accuracy for 1820 ≤ log10 U ≤ 2030 and 1000 ≤ η ≤ 1100, where

a = 1.86428, b = 25.7163, and α ∼ 0.5 is a random exponent depending on the

quantities characterizing T−1/2
C S other than θ and η.

• From this result, we derive the expression of the conditional probability distribution

p(U, θ|Σorv) valid for log10 U � 1, where Σorv stands for all the random variables

characterizing T−1/2
C S other than θ and η (‘orv’ is short for ‘other random variables’).

For a given U with log10 U � 1, we then obtain (i) p(U |Σorv) by integrating p(U, θ|Σorv)

numerically over 0 ≤ θ ≤ π/2, and (ii) p(θ|U,Σorv) as p(U, θ|Σorv)/p(U |Σorv).

• We draw the realizations of S given U with log10 U � 1 according to the procedure

defined by: (a) draw Σorv; (b) derive p(θ|U,Σorv); (c) draw θ from p(θ|U,Σorv) instead

of from its unconditional probability distribution; and (d) use the resulting T−1/2
C S in

S = T
1/2
C (T

−1/2
C S) to get S.

• We estimate p(U) as the sample mean of p(U |Σorv) over realizations of Σorv for different

values of U with log10 U � 1 and we compare the results with the predictions of the

instanton analysis. Let D denote the L2-distance between S/‖S‖2 and Sinst/‖Sinst‖2.

For a given U with log10 U � 1, we estimate p(D|U) as a sample mean over realizations

of Σorv and θ (see equation (23) and below). Finally, we plot |S|2/‖S‖2
2 for different

realizations of S with particular values of D as well as the sample mean of |S|2/‖S‖2
2

over realizations of S with close values of D, and we compare the results with the

theoretical instanton profile.

The outline of the paper is as follows. The Gaussian field S that we consider is specified

in section II, where we also recall some results of [1] needed in the sequel. Section III gives

preliminary numerical results used in section IV. Finally, in section IV we define our biased

sampling procedure and use it to test the instanton analysis of problem (1) numerically, in

the limit of a large lnU and for the class of S considered.
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II. MODEL AND DEFINITIONS

Since the present work is the continuation of the numerical study initiated in [1], section 5,

we consider the same Gaussian field S(x, z). Namely, we take

S(x, z) =
50∑

n=−50

′
sn
√
ςn exp i

[
2πn

`
x+

(
2πn

`

)2
z

2

]
, (6)

where
∑ ′

n means
∑

n 6=0. Here, the sns are independent and identically distributed (i.i.d.)

complex Gaussian random variables with 〈sn〉 = 〈snsm〉 = 0 and 〈sns∗m〉 = δnm. The spectral

density ςn normalized to
∑ ′ 50

n=−50 ςn = 1 is given by the Gaussian spectrum

ςn ∝ exp

[
−
(πn
`

)2
]
. (7)

Equation (6) is reminiscent of models of spatially smoothed laser beams [10], where S is a

solution to the paraxial wave equation

∂zS(x, z) +
i

2
∂2
x2S(x, z) = 0, (8)

with boundary condition S(x, 0) =
∑ ′ 50

n=−50 sn
√
ςn exp(2iπnx/`). The n = 0 mode is ex-

cluded from the Fourier representation (6) to ensure that the space average `−1
∫

Λ
S(x, z) dx

is zero for all z and every realization of S, as expected for the electric field of a smoothed

laser beam.

For each realization of S on a cylinder of length L = 10 and circumference ` = 20, we solve

equation (1) by using a symmetrized z-split method [11] which propagates the diffraction

term, (i/2m)∂2
x2ψ(x, z), in Fourier space and the amplification term, g|S(x, z)|2ψ(x, z), in

real space. We take m = 0.7, and g = 0.5. For S in equation (6) with Gaussian spectrum (7)

and the given values of L and `, it is shown in [1] that:

(i) there is a single instanton, Sinst, which is a single-filament instanton of the form (3)

in which xinst(·) ≡ 0, µmax = 4.34984, and

C(x, z, z′) = C(x, z − z′) =
50∑

n=−50

′
ςn exp i

[
2πn

`
x+

(
2πn

`

)2
z − z′

2

]
; (9)

(ii) the convolution representation of Sinst in equation (3) with xinst(·) ≡ 0 and C in

equation (9) is equivalent to the Fourier representation

Sinst(x, z) =
50∑

n=−50

′
sn
√
ςn exp i

[
2πn

`
x+

(
2πn

`

)2
z

2

]
, (10)
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where s (with components sn) is an eigenvector of the 100× 100 positive definite Hermitian

matrix

Mnm =
√
ςnςm

∫ L

0

exp i

[(
2π

`

)2

(m2 − n2)
z

2

]
dz, (n,m 6= 0), (11)

associated with the eigenvalue µmax. (Note that M and Txinst(·)≡0 have the same eigenvalues

with the same degeneracies [12]). The sns in equation (10) are correlated complex Gaussian

random variables with 〈sn〉 = 〈snsm〉 = 0 and 〈sns∗m〉 = e
(1)
n e

(1) ∗
m , where e(1) (with components

e
(1)
n ) is the normalized fundamental eigenvector of M (see [1], section 4.1, for details).

Figure 1 shows the contour plots of |Sinst|2 and the autocorrelation profile |C|2 (also

referred to as ‘hot spot profile’ in the laser-matter interaction literature [10]).
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FIG. 1: (a) Contour plot of |Sinst(x, z)|2 for Sinst(x, z) in equation (10). (b) Contour plot of the

autocorrelation profile (or ‘hot spot profile’) |C(x, z−L/2)|2 for C(x, z−z′) in equation (9). (Color

scale legend : 1 corresponds to the maximum of the plotted function.)

Define Ŝinst = Sinst/‖Sinst‖2 and Ŝ = S/‖S‖2 where ‖·‖2 denotes the L2-norm on Λ×[0, L].

Write S‖ =
(
Ŝinst, Ŝ

)
Ŝinst the component of Ŝ along Sinst. We measure the departure of the

realizations of S from the instanton through the L2-distance

D = ‖Ŝ − S‖‖2 =

√
1− |(Ŝ, Ŝinst)|2. (12)

Using the Fourier representations (6) and (10) in which we write s (with components sn) as

s = ‖s‖ ŝ and s = ‖s‖ ŝ with ŝ = ei arg(c1)e(1), where ‖ · ‖ is the usual Euclidean norm and
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where we have used s = µ
−1/2
max c1e

(1) (see the first equation (52) in [1]), one gets

D =

√√√√1− |
∑ ′

n ςnŝne
(1) ∗
n |2(∑ ′

n ςn|ŝn|2
) (∑ ′

n ςn|e
(1)
n |2

) , (13)

which is the counterpart of the equation (66) in [1] for fixed y = 0 2.

From equations (4), (6), and (9) it can be checked that the sns are also the components

of T−1/2
C S in the orthonormal function basis (1/

√
`L) exp i[2πnx/` + (2πn/`)2z/2], which

trivially defines an isomorphism between the T−1/2
C S-space with L2-inner product and the

s-space with usual dot product. As we will see shortly, for S given by equation (6) our

results come out naturally in terms of s, and therefore T−1/2
C S, which explains why it is

T
−1/2
C S that appears in the summary at the end of section I, rather than S.

We now have everything we need to move on to the presentation of our biased sampling

method and its application to check the validity of the results obtained in [1]. This is the

subject of the next two sections.

III. PRELIMINARY RESULTS

The problem is to sample large values of log10 U . To this end, we need a biased sampling

of the realizations of S or, equivalently, of the random vector s. The relationship between

U and s is extremely intricate and no simple general expression of the form U = U(s) can

be written explicitly. All we can say at this stage is that a large log10 U implies a large ‖s‖,

while the converse is not true3. So, sampling large ‖s‖’s alone is not sufficient.

According to instanton analysis, the larger log10 U the more s tends to align with e(1).

Testing the instanton analysis in the large log10 U regime therefore requires as a prerequisite

to be able to control the direction of s, which can be achieved by a change of variables

making the direction and amplitude of s explicit.

Write N the number of terms in the sum on the right-hand side of equation (6) (N = 100).

A given realization of S corresponds to a given realization of the (complex) N -dimensional

vector s with coordinates sn, and conversely. Let û be a given N -dimensional (complex) unit

2 Note the typo on the right-hand side of equation (66) in [1]: in the denominator, it should read ŝn and
ŝn = ei arg(c1)e

(1)
n instead of sn and sn.

3 A realization of s with a large ‖s‖ can yield a large log10 |ψ(x, L)|2 � 1 at some x away from zero and
log10 U = log10 |ψ(0, L)|2 = O(1) even though ‖s‖ is large.
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vector, not necessarily equal to e(1). Define s‖ = (s · û∗) û = r‖e
iϕû and s⊥ = s−s‖ = r⊥ ŝ⊥

with r⊥ = ‖s⊥‖. Switching to polar coordinates r‖ =
√
η cos θ and r⊥ =

√
η sin θ, with

η = ‖s‖2 and 0 ≤ θ ≤ π/2, we characterize the realizations of S by the new variables θ, η,

ϕ, and ŝ⊥. The polar angle θ measures how close the direction of s is to that of û: θ = 0

means that s is aligned with û (s⊥ = 0), whereas θ = π/2 means that s is orthogonal to û

(s‖ = 0).

The statistical properties of the new variables are deduced from the ones of the sns. Since

the sns are i.i.d. standard complex Gaussian random variables, the projection of s onto any

given direction is also a standard complex Gaussian random variable independent of the

projections onto the orthogonal directions. This applies in particular to s‖ = (s · û∗) and

the components of s⊥. After some straightforward algebra, one finds that the probability

distribution functions (pdf) of θ and η are respectively given by

f(θ) = 2(N − 1) (sin θ)2N−3 cos θ 10≤θ≤π/2, (14)

and

h(η) = Γ(N)−1 ηN−1e−η 10≤η. (15)

The random phase ϕ and tip of ŝ⊥ (i.e. the direction of s⊥) are uniformly distributed over

[0, 2π) and the sphere ‖s⊥‖ = 1, respectively.

A. Closeness rule

The class of S we consider is defined by the condition that, for fixed η � 1, there is only

one direction of s that globally maximizes log10 U(η, ŝ). Call this direction ‘the maximizing

direction’ and the class of S ‘the one-max class’. It is shown in the appendix that S as

given by the equations (6) and (7) and, more generally, any S admitting a single and

non-degenerate instanton, belongs to this class. For a given û, there are two possibilities:

either û is the maximizing direction or it is not. The way we distinguish between these two

possibilities is based on the following reasoning. If û is the maximizing direction, then all the

directions other than û contribute negligibly to the amplification compared with û (in the

large η limit we consider), and the computed log10 U depends negligibly on the perpendicular

components ŝ⊥. In addition, at θ = 0, s is aligned with û (s⊥ = 0) and log10 U reaches

its maximum, i.e., log10 Uθ=0 = maxθ log10 Uθ for all realizations of ŝ⊥. By contraposition,
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if the computed log10 U is found to be sensitive to ŝ⊥ or if there is a realization of ŝ⊥ for

which log10 Uθ=0 < maxθ log10 Uθ, then û is not the maximizing direction. Conversely, if û is

not the maximizing direction, then log10 U does not reach its maximum at θ = 0 and there

are realizations of ŝ⊥ for which log10 Uθ=0 < maxθ log10 Uθ. In addition, for θ > 0, there are

realizations of ŝ⊥ with a non negligible component along the maximizing direction, which

makes the computed log10 U sensitive to ŝ⊥. Observing one of these two characteristics

in the behavior of log10 U is sufficient to conclude that û is not the maximizing direction.

By contraposition, if the computed log10 U is observed to depend negligibly on ŝ⊥ and if

log10 Uθ=0 = maxθ log10 Uθ for each realization of ŝ⊥, then û is the maximizing direction.

For our purposes, we do not need to know whether û is exactly the maximizing direction,

but rather whether it is close enough to the maximizing direction, so that a good sampling of

ŝ around û ensures a good sampling of ŝ around the nearby maximizing direction, thereby

providing access to large values of log10 U (for η � 1). This does not change the reasoning

above which leads to the following ‘closeness rule’ that we will use for deciding whether û

is close to the maximizing direction.

Closeness rule: for η � 1, û is close to the maximizing direction iff log10 U for ŝ around û

is observed to depend very little on ŝ⊥ and log10 Uθ=0 = maxθ log10 Uθ for all the sampled

realizations of ŝ⊥ to within a negligible fraction of them.

The point is that by applying this rule to numerical outcomes, we can check whether û

is close to the maximizing direction numerically without having to compare the values of

log10 U for different û’s. It is worth noticing that the closeness rule applies to any S in the

one-max class, whatever the maximizing direction. It is not necessary to know it beforehand.

For this class of S, the closeness rule does not presuppose any knowledge of the instanton

solution to be tested.

B. Setting a reference direction û

It is instructive to compare the values of log10 U and the compliance with the closeness

rule for various reference directions û. We have made this comparison for û = e(1) and the

orthogonal directions û = e(q≥2), where e(q) is the normalized eigenvector of M associated

with the qth largest eigenvalue µq (1 ≤ q ≤ N). (For the Gaussian spectrum (7), we have
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checked numerically that none of the µqs is degenerate.) Figure 2 shows scatter plots of θ and

numerically computed log10 U for a given realization of ϕ and ŝ⊥, fixed η = 1060, and 103

ascending values of θ regularly spaced by ∆θ = 0.263 10−3 starting from θ = 0. Figures 2(a)

and (b) correspond to û = e(1) and û = e(2), respectively (with µ1 = µmax = 4.34984 and

µ2 = 2.0126). It is clear that for a given η � 1, log10 U is significantly smaller in the case

û = e(2) (figure 2(b)) than for û = e(1) (figure 2(a)). To have comparable values of log10 U

we need a larger η for û = e(2) than for û = e(1). To be more precise, for û = e(2) we

have checked that data with log10 U & 1820 — the smallest value in figure 2(a) — require

η & 1760. For instance, it can be seen in figure 3 that it takes η ' 1880 to bring the data for

û = e(2) in the same range of log10 U as for û = e(1) in figure 2(a). Given the fast decreasing

tail of h(η) in equation (15), an important consequence of this result is that among data

falling in the same (log10 U, θ) region as in figure 2(a), the proportion of realizations of ŝ

biased towards e(2) is completely negligible compared to that of realizations biased towards

e(1), typically by a factor less than h(1760)/h(1060) = O(10−282). We have checked that the

proportion of realizations of ŝ biased towards e(q≥3) is by far even smaller. From these first

results, we can already conclude that the maximizing direction is not orthogonal to e(1). To

go further we will use the closeness rule.
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FIG. 2: Scatter plots of θ and log10 U for a given realization of ϕ and ŝ⊥, fixed η = 1060, and two

different (orthogonal) reference directions: (a) û = e(1) and (b) û = e(2).
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Figure 3 shows the same kind of scatter plots as in the figure 2 for û = e(1) with η = 1060

and û = e(2) with larger η = 1880, each for two different realizations of ϕ and ŝ⊥. For better

legibility, only 50 of the 103 points actually computed are shown. Both figures 2 and 3 show

that for a given realization of ϕ and ŝ⊥, the data collapse on a single well-defined curve in

the (log10 U, θ) plane. For û = e(2), it is clear that (i) log10 Uθ=0 < maxθ log10 Uθ and (ii) a

change in the realization of ŝ⊥ visibly affects the curve (see up and down green triangles in

figure 3), which means that the contribution of s⊥ to the amplification is not negligible in

this case. We have observed the same behavior for û = e(q≥3) with an even more pronounced

sensitivity to ŝ⊥. Furthermore, as q increases, a dispersion of the data around the curve

in the (log10 U, θ) plane becomes visible and increases with q. These results do not meet

the closeness rule, which implies that none of the orthogonal directions e(q≥2) is close to the

maximizing direction, in agreement with the discussion of figure 2.
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FIG. 3: Scatter plots of θ and log10 U for two different realizations of ϕ and ŝ⊥, each represented

by a specific marker. Large and small red circles are for û = e(1) with η = 1060, up and down green

triangles correspond to û = e(2) with η = 1880. (For better legibility, only 50 of the 103 points

actually computed are shown.)

In contrast, for û = e(1) we observe that (i) log10 Uθ=0 is indistinguishable from

maxθ log10 Uθ (see also figures 2 and 4) and (ii) the curve depends very little on ŝ⊥ (small

and large red circles in figure 3). We have checked that the same was always true for several

different subsamples of realizations of ŝ⊥. It can then be concluded from the closeness rule

that e(1) is close to the maximizing direction, so that sampling large η’s and ŝ around e(1)
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simultaneously will yield a good sampling of the large values of log10 U . Thus, it is legitimate

to take û = e(1) as a reference direction, which will be the case from now on.

The fact that the numerical results for û = e(1) meet the closeness rule and validate e(1)

as being close to the maximizing direction is a necessary but not sufficient condition for the

validity of the instanton analysis. It remains to find out how to use this result to achieve

a good sampling of the large values of log10 U from which numerical results and analytical

predictions can be compared. This is the subject of the sections III C and IV.

Notational remark: it may be useful to briefly come back to the notations used in sections I

and III. As explained at the end of section II, s and s are respectively isomorphic to T−1/2
C S

and T−1/2
C Sinst. Consequently, r‖ and r⊥ are also the L2-norms of the components of T−1/2

C S

parallel and perpendicular to T−1/2
C Sinst (in the L2 sense) which is close to the maximizing

direction, as written in section I. The quantities characterizing T−1/2
C S other than θ and η,

denoted by Σorv in section I, are the random variable ϕ and vector ŝ⊥.

C. Highly accurate approximation of lnU(s) � 1 and applications

In figure 4 we show scatter plots of θ and log10 U for a given realization of ϕ and ŝ⊥, and

four different values of η (see caption for details). Solid lines correspond to the nonlinear fit

θ = cos−1

(
log10 U

aη − b

)α(s)

, (16)

where a = 1.86428, b = 25.7163, and α(s) is a realization dependent exponent. Data points

and nonlinear fits match remarkably well. We have checked on 102 realizations of ϕ and ŝ⊥,

10 values of η between 1010 and 1100, and 103 values of θ like in figure 2 (which represents a

total of 106 different realizations of S), that for each ϕ, ŝ⊥, and η, the 103 data points and the

nonlinear fit are practically indistinguishable over the whole range 1820 ≤ log10 U ≤ 2030.

Numerical results also show that (i) no systematic (monotonic) variation of α(s) with η

at fixed ϕ and ŝ⊥ is observed in the range of η considered, and (ii) the relative dispersion

of α(s) for different values of η at fixed ϕ and ŝ⊥ is one order of magnitude less than for

different realizations of ϕ and ŝ⊥ at fixed η : ∆α(s)/〈α(s)〉 = 10−3 and 10−2, respectively.

Thus, with a good accuracy level, it is not unreasonable to ignore the dependence of α(s)

on η and write α(s) = α(ϕ, ŝ⊥). We have checked by replacing α(s) in equation (16) with

values obtained for different η and the same realization of ϕ and ŝ⊥, all other things being
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equal, that the error made in the nonlinear fit is indeed imperceptible.
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FIG. 4: Scatter plots of θ and log10 U for a given realization of ϕ and ŝ⊥, and four different values

of η (down red triangles). Solid lines are plots of the nonlinear fit (16) for the corresponding η and

numerically computed α(s). Parameter values are (η, α(s)) = (1020, 0.52569), (1040, 0.524924),

(1060, 0.524862), and (1080, 0.525024), from left to right. (In each plot, only 50 of the 103 points

actually computed are shown.)

We now use these results to write p(U) and conditional probability P (A|U), where A is

a set of realizations of s, in forms suitable to numerical estimates in the asymptotic regime

log10 U � 1. Write U(s) = |ψs(0, L)|2, ψs(x, z) being the solution to equation (1) for a

given S (hence s). Our numerical results show that inverting equation (16) gives a highly

accurate approximation of U(s) when log10 U � 1. Replacing U(s) with this approximation

in the exact expression p(U) = 〈δ(U − U(s))〉s, where 〈·〉s denotes the average over the

realizations of s, and integrating out η, one obtains

p(U) =
1

ln 10

1

U

〈∫ +∞

0

∫ π/2

0

δ
[
log10 U − (cos θ)1/α(ϕ,ŝ⊥)(aη − b)

]
f(θ)h(η) dθdη

〉
ϕ,ŝ⊥

=
1

ln 10

1

U

〈∫ π/2

0

f(θ)

a (cos θ)1/α(ϕ,ŝ⊥)
h

(
log10 U

a (cos θ)1/α(ϕ,ŝ⊥)
+
b

a

)
dθ

〉
ϕ,ŝ⊥

=

〈∫ π/2

0

p(U, θ|ϕ, ŝ⊥) dθ

〉
ϕ,ŝ⊥

, (17)

with

p(U, θ|ϕ, ŝ⊥) =
1

ln 10

f(θ)

Ua (cos θ)1/α(ϕ,ŝ⊥)
h

(
log10 U

a (cos θ)1/α(ϕ,ŝ⊥)
+
b

a

)
. (18)
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The expression for p(A, U) is similar to equation (17) with integrand 1s∈A p(U, θ|ϕ, ŝ⊥),

where s =
√
η cos θ eiϕe(1) +

√
η sin θ ŝ⊥ with η = a−1(b + log10 U/(cos θ)1/α(ϕ,ŝ⊥)). Dividing

this expression by p(U) one obtains

P (A|U) =

〈
wα(ϕ,ŝ⊥)(U)

∫ π/2

0

1s∈A p(θ|U,ϕ, ŝ⊥) dθ

〉
ϕ,ŝ⊥

, (19)

with

p(θ|U,ϕ, ŝ⊥) =
p(U, θ|ϕ, ŝ⊥)

p(U |ϕ, ŝ⊥)
, (20)

and

wα(ϕ,ŝ⊥)(U) =
p(U |ϕ, ŝ⊥)

p(U)
. (21)

In equations (20) and (21), p(U |ϕ, ŝ⊥) is obtained by integrating equation (18) numerically

over 0 ≤ θ ≤ π/2 (for fixed U and a given realization of ϕ and ŝ⊥). Equations (17) to (21)

give the expressions of p(U) and P (A|U) valid for log10 U � 1.

IV. BIASED SAMPLING AND NUMERICAL VALIDATION OF INSTANTON

ANALYSIS

Let {ϕ, ŝ⊥} denote the same sample of 102 independent realizations of ϕ and ŝ⊥ as the

one we used to check the validity of the nonlinear fit in equation (16). Figure 5 shows plots

of p(θ|U,ϕ, ŝ⊥) for three different realizations in {ϕ, ŝ⊥} and log10 U = 1890. Curves (a),

(b), and (c) correspond to the realizations of {ϕ, ŝ⊥} yielding the smallest, middle, and

largest values of p(U |ϕ, ŝ⊥), respectively. Diamonds correspond to p(θ|U) computed as the

sample mean of p(θ|U,ϕ, ŝ⊥) for the realizations in {ϕ, ŝ⊥}.

For a given log10 U � 1 and realizations of ϕ and ŝ⊥ in {ϕ, ŝ⊥}, the statistically significant

realizations of S are those for which θ is in the bulk of p(θ|U,ϕ, ŝ⊥). Figure 5 and similar

results obtained for different values of U with 1820 ≤ log10 U ≤ 1940 show that a good

sampling of the corresponding significant values of θ, requires probing the whole range

0.25 ≤ θ ≤ 0.38. Since the equation (14) yields P (0.25 ≤ θ ≤ 0.38) = 5.2 10−86, it is

clear that having θ in that range is an extremely rare event, virtually impossible to sample

directly by drawing θ from f(θ). By contrast, it can easily be achieved by drawing θ from

p(θ|U,ϕ, ŝ⊥) rather than from f(θ). This is what defines our biased sampling procedure

which consists of the following four steps:
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FIG. 5: Plots of p(θ|U,ϕ, ŝ⊥) for fixed log10 U = 1890 and three particular realizations in {ϕ, ŝ⊥}

corresponding to the smallest (a), middle (b), and largest (c) values of p(U |ϕ, ŝ⊥). Plot of p(θ|U)

for the same value of log10 U = 1890 (diamonds).

(A) draw ϕ and ŝ⊥ from the uniform distributions over [0, 2π) and the sphere ‖s⊥‖ = 1,

respectively;

(B) compute α(ϕ, ŝ⊥) by making the graph of the function in equation (16) fit the data

in the (log10 U, θ) region of interest, for some fixed η. (We have checked that for

1820 ≤ log10 U ≤ 2030, η can be chosen arbitrarily between 1010 and 1100;)

(C) use the result in equation (18) to get p(U, θ|ϕ, ŝ⊥). For fixed U (with log10 U � 1),

integrate the result numerically over 0 ≤ θ ≤ π/2 to get p(U |ϕ, ŝ⊥). Then, draw θ

from p(θ|U,ϕ, ŝ⊥) in equation (20) and set η by inverting equation (16);

(D) the outcome defines a realization of s =
√
η cos θ eiϕe(1) +

√
η sin θ ŝ⊥ which, once

injected onto the right-hand side of equation (6), gives a realization of S(x, z).

From the data for p(U |ϕ, ŝ⊥) obtained as explained in step (C) for each realization in

{ϕ, ŝ⊥} and fixed U , we have estimated p(U) as the sample mean

p(U) =
1

card{ϕ, ŝ⊥}
∑

(ϕ,ŝ⊥)∈{ϕ,ŝ⊥}

p(U |ϕ, ŝ⊥). (22)

Figure 6 shows the results in the (log10 U, log10 p(U)) plane for five different values of U

with log10 U between 1840 and 1940. Black dots correspond to p(U). The dispersion of
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FIG. 6: log10 p(U) a a function of log10 U from 1850 to 1930 by steps of 20, with p(U) given by

equation (22) (black dots). Smallest and largest p(U |ϕ, ŝ⊥) in the sample are indicated by the ends

of vertical bars. Plot of log10 p(U) = −ζ log10 U +Const with ζ = (1 + 1/2µmaxg) = 1.22989 given

by instanton analysis and Const = −8.41526 adjusted to get the best fit to numerical data (solid

line). Inset: enlargement of the same plot near log10 U = 1890.

p(U |ϕ, ŝ⊥) around p(U) is indicated by vertical bars the ends of which correspond to the

smallest and largest values of p(U |ϕ, ŝ⊥) in the sample. The error bars corresponding to the

standard deviation of the sample mean (22) are found to be eight times shorter, in the case of

figure 6 (not shown). Instanton analysis predicts a leading algebraic tail of p(U) ∝ U−ζ with

ζ = (1 + 1/2µmaxg) = 1.22989. The solid line is the plot of log10 p(U) = −ζ log10 U + Const,

where Const = −8.41526 has been adjusted to get the best fit to the data. We observe

an almost perfect alignment of numerical data along a straight line with slope −ζ, which

validates the result of instanton analysis numerically in the considered range of log10 U . Note

also the extremely small value of p(U) < 10−2270 which confirms, if need be, the absolute

impossibility of sampling the extreme upper tail of p(U) directly, without a specific bias

procedure.

The question then arises of the realizations of S behind the results in figure 6. According

to the instanton analysis in [1], these realizations should be instanton realizations with

the same profile as in figure 1(a). For a given U , the way S differs from the instanton

can be characterized by the conditional pdf p(D|U), where D is the L2-distance defined in

equation (13). For each element of {ϕ, ŝ⊥} and fixed U , we drew 104 independent realizations
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FIG. 7: p(D|U) for fixed log10 U = 1890 estimated from a biased sample of 106 realizations of S

drawn according to the biased sampling procedure defined in steps (A) to (D) (see the text for

details). The median of p(D|U) is at D = 0.122457 (dashed line). Inset: p(D) estimated from an

unbiased sample of 105 realizations of S.

of θ — denoted in the following by {θ|ϕ, ŝ⊥} — as explained in step (C). For definiteness,

we took log10 U = 1890 at the center of the range considered in figure 6. There are 102

subsamples {θ|ϕ, ŝ⊥} of 104 elements each, representing a total of 106 different realizations

of s. For each s, we have used the equation (13) to compute the corresponding value of D.

We have then estimated P (D ≤ δ|U) in equation (19) with A = {s|D ≤ δ} as the sample

mean

P (D ≤ δ|U) =
1

card{ϕ, ŝ⊥}
∑

(ϕ,ŝ⊥)∈{ϕ,ŝ⊥}

wα(ϕ,ŝ⊥)(U)

card{θ|ϕ, ŝ⊥}
∑

θ∈{θ|ϕ,ŝ⊥}

1D≤δ, (23)

from which p(D|U) is obtained by (numerical) derivation with respect to δ at δ = D. Figure 7

shows the result for log10 U = 1890. For comparison, we show in inset the pdf of D obtained

from an unbiased sample of 105 realizations of S. The vertical dashed line indicates the

median of p(D|U) atD = D̃ = 0.122457. (The median, mean and maximum of p(D|U) are all

at D̃, to within numerical accuracy.) It can be seen that the realizations of S conditioned to

a large log10 U � 1 are significantly closer to the instanton than unconditioned realizations:

0.08 < D < 0.16 and 0.6 < D ≤ 1, respectively, in the case of figure 7. This is in agreement

with the instanton analysis in [1] which predicts D→ 0 in probability, as log10 U → +∞.

In figure 8, we show |Ŝ(x, z)|2 = |S(x, z)|2/‖S‖2
2 for two realizations of S with D ' 0.08
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FIG. 8: Contour plots of |Ŝ(x, z)|2 for two realizations of S with D ' 0.08 (a) and D ' 0.16 (b).

and D ' 0.16, on both sides of the bulk of p(D|U). Figure 9(a) shows the same quantity

for a realization with D ' D̃, right at the center of the bulk of p(D|U). The results in

figures 8(a), 8(b), and 9(a) are very similar and typical of the realizations generated by the

biased sampling procedure for log10 U = 1890. These realizations are the superposition of

an elongated cigar-shaped component along x = 0 and fluctuations of comparatively small

amplitude. Fluctuations can be smoothed out by averaging realizations of |Ŝ|2 close together

along the D axis, bringing out the underlying cigar-shaped component. To this end, we have

constructed five subsamples {S}D=δ of 102 realizations of S selected by picking in the total

(biased) sample the 50 realizations with largest values of D ≤ δ and the 50 realizations with

smallest values of D > δ, for δ = 0.1, 0.11, D̃ (= 0.122457), 0.13, and 0.14. Then, we have

computed the sample means of |Ŝ(x, z)|2 for the realizations in each {S}D=δ. In figure 9(b),

we show the result for δ = D̃. (The smallest and largest values of D for S in {S}D=D̃ are

0.122403 and 0.122504, respectively.) We have obtained identical results for the five different

values of δ we have considered.

The close resemblance between figures 9(b) and 1(a) is obvious and the dominant cigar-

shaped component of |Ŝ|2 along x = 0 visible in figures 8(a), 8(b), and 9(a) can clearly be

identified as the theoretical instanton profile. These results, together with the small values

of D observed in figure 7, show that the realizations of S conditioned on a large but finite

log10 U (here, log10 U = 1890) are low-noise instanton realizations. This is in agreement
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FIG. 9: (a) Contour plot of |Ŝ(x, z)|2 for a realization of S with D ' D̃. (b) Contour plot of the

sample mean of |Ŝ(x, z)|2 for the 102 realizations in {S}D=D̃ (with 0.122403 ≤ D ≤ 0.122504).

with the instanton analysis in [1] which predicts noiseless instanton realizations in the limit

log10 U → +∞.

The numerical results in figures 6 to 9 show remarkable agreement with the analytical

predictions of instanton analysis. Data points for log10 p(U) and log10 U line up almost

perfectly along the predicted algebraic tail log10 p(U) ' −ζ log10 U with ζ = (1 + 1/2µmaxg)

(figure 6), and the corresponding realizations of S are observed to be heavily biased towards

the predicted instanton realizations (figures 7 to 9). In conclusion, we can say that our results

provide a convincing numerical validation of the instanton analysis in the large amplification

regime log10 U � 1.

V. SUMMARY AND DISCUSSION

In this paper, we have numerically tested the validity of the instanton analysis approach to

study the diffraction-amplification problem (1) in the large amplification regime lnU � 1,

where U = |ψ(0, L)|2, ψ(x, z) being the solution to equation (1). By analyzing a large

number of numerical solutions to equation (1) with S in the ‘one-max class’ defined at the

beginning of Section IIIA, we have identified a nonlinear fit to numerical data from which

a highly accurate approximation of U as a function of S can be obtained, when lnU is large
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(equation (16)). We have then used this result to devise a sampling procedure of S giving

access to large values of lnU .

As a first application, we have obtained p(U) numerically over a large range of U with

lnU � 1, down to probability density less than 10−2270 in the tail. We have found a near-

perfect agreement with the algebraic tail of p(U) theoretically predicted by the instanton

analysis in [1] (figure 6). Then, we have determined the conditional probability distribution

of D given U for a large lnU , where D is the L2-distance measuring the departure of S

from the theoretical instanton normalized such that 0 ≤ D ≤ 1. We have found that

the realizations of S in the far right tail of p(U) are significantly closer to the instanton

than unconditioned realizations: 0.08 < D < 0.16 and 0.6 < D ≤ 1 respectively, in the

case of figure 7. As a confirmation of this result, plots of |S|2/‖S‖2
2 clearly show that the

realizations of S in the far right tail of p(U) are low-noise instanton realizations around

the predicted, noiseless, theoretical instanton, with residual noise due to lnU being finite

(figures 8 and 9). To summarize, our numerical results validate the instanton analysis of the

diffraction-amplification problem (1) in the large lnU limit for S in the one-max class.

In conclusion we briefly discuss the possibility of using more standard sampling methods

to deal with the same problem. What makes our approach particularly efficient (compared

with standard ones) is that we do not have to know the maximizing direction prior to

testing whether any given direction is close to it or not. All we need is to look at how

lnU depends on s around the tested direction (here, the instanton direction). This saves a

considerable amount of time as we do not have to set off in search of where the maximizing

direction is on the 2N -dimensional unit sphere (with N = 100 for S in equation (6)).

Either the observed behavior of lnU indicates that the instanton direction is close to the

maximizing direction, and we can move on to the biased sampling procedure around the

instanton direction, as explained in Section IV, or it does not and the instanton solution

must be rejected. By contrast, a standard algorithm like in, e.g., [7–9] involves probing the

2N -dimensional unit sphere until it converges to the maximizing direction, which requires

massive numerical simulations. For each ŝ probed, problem (1) with the corresponding S

must be solved numerically, and a great many ŝ’s are likely to be probed before converging

to the maximizing direction. (Unless prior knowledge of the instanton to be tested is used

to pick a starting direction not too far from the maximizing one.)

On the other hand, more standard approaches can in principle give access to large values
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of lnU in cases where no analytical prediction is available, unlike the method presented here.

They may therefore be used when instanton analysis is too difficult (if not impossible) to

carry out. In such cases, the landscape of lnU(η, ŝ) to be explored is a priori totally unknown,

which can pose tricky problems the solution of which is likely to make the algorithm even

more numerically demanding. In this respect, other general sampling algorithms like, e.g.,

subset simulation [13, 14], may also be of interest as possible alternatives to important

sampling algorithms.

To the best of the author’s knowledge, general iterative algorithms for sampling rare event

sets have never been used so far to deal with stochastic amplifiers in the large amplification

limit. Unless there are hidden fundamental reasons preventing such use, it would open up a

very interesting new field to explore. This will be the subject of a future work.
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Appendix A: A sufficient condition for S to belong to the one-max class

The class of S considered in the paper is defined by the condition that, in the large η

limit, there is only one direction of s that globally maximizes lnU(η, ŝ). In this appendix,

we give a sufficient condition ensuring that a given S do belong to this class.

For any spectral density ςn (not necessarily Gaussian), we take

S(x, z) =

N/2∑
n=−N/2

′
sn
√
ςn e2iπnx/`Φn(z), (A1)

which generalizes the equation (6), where N is an even integer and the Φn’s are continuous

function of 0 ≤ z ≤ L. Let B(0, L) denote the set of all the continuous paths in Λ satisfying

x(L) = 0 and define M [x(·)] the N ×N positive definite matrix with components

Mnm[x(·)] =
√
ςnςm

∫ L

0

e2iπ(m−n)x(z)/`Φn(z)∗Φm(z) dz, (A2)
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in which x(·) ∈ B(0, L). Writing the solution to the equation (1) formally as a Feynman-Kac

integral over B(0, L) and using the equations (A1) and (A2), one gets

ψ(0, L) =

∫
x(·)∈B(0,L)

e
∫ L
0 [ im2 ẋ(τ)2+g|S(x(τ),τ)|2] dτDx

=

∫
x(·)∈B(0,L)

e
∫ L
0 [ im2 ẋ(τ)2+gη ŝ†M [x(·)]ŝ] dτDx. (A3)

In the large η limit, the amplification of ψ is dominated by the most amplified paths, and

one has

|ψ(0, L)|2 � exp

[
2gη sup

x(·)∈B(0,L)

ŝ†M [x(·)]ŝ

]
, (A4)

where the symbol � means asymptotic logarithmic equivalence; i.e., the ratio of the loga-

rithms of the two sides tends to 1 as η → +∞. Writing µ1[x(·)] the largest eigenvalue of

M [x(·)], it follows immediately from the equation (A4) that

max
ŝ

lnU(η, ŝ) = max
ŝ

ln |ψ(0, L)|2

∼ 2gη max
ŝ

sup
x(·)∈B(0,L)

ŝ†M [x(·)]ŝ (A5)

= 2gη sup
x(·)∈B(0,L)

µ1[x(·)] (η → +∞),

the maximum being reached at ŝ along the fundamental eigenvectors of M [xinst(·)], where

xinst is a path of B(0, L) maximizing µ1[x(·)]. We recall that for the S’s considered in [1],

all the paths maximizing µ1[x(·)] are in B(0, L) and there is a finite number of such paths.

The interested reader will find a mathematically rigorous demonstration of (A5) in [12].

If none of the µ1[xinst(·)]’s is degenerate and all the corresponding normalized eigenvectors

are equal, then S admits a single and non-degenerate instanton (by definition). In this case,

there is only one direction ŝ at which the maximum of lnU(η, ŝ) in (A5) is reached. Namely,

the direction of the fundamental eigenvector common to all the µ1[xinst(·)]’s. Therefore,

admitting a single and non-degenerate instanton is a sufficient condition for S to belong to

the one-max class. It is shown in [1] that for S given by the equations (6) and (7), there

is only one path, xinst(·) ≡ 0, that maximizes µ1[x(·)], and the corresponding eigenvalue

µ1[xinst(·) ≡ 0] is non-degenerate. Thus, S in equations (6) and (7) admits a single and

non-degenerate instanton, hence it belongs to the one-max class.
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