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Abstract  29 

Plastic pollution and ongoing climatic changes exert considerable pressure on coastal 30 

ecosystems. Unravelling the combined effects of these two threats is essential to management 31 

and conservation actions to reduce the overall environmental risks. We assessed the capacity of 32 

a coastal ecosystem engineer, the blue mussel Mytilus edulis, to cope with various levels of 33 

aerial heat stress (20, 25, 30 and 35°C) after an exposure to substances leached from beached 34 

and virgin low-density polyethylene pellets. Our results revealed a significant interaction 35 

between temperature and plastic leachates on mussel survival rates. Specifically, microplastic 36 

leachates had no effect on mussel survival at 20, 25 and 30°C. In turn, mussel survival rates 37 

significantly decreased at 35°C, and this decrease was even more significant following an 38 

exposure to leachates from beached pellets; these pellets had higher concentration of additives 39 
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compared to the virgin ones, potentially causing a bioenergetic imbalance. Our results stress 40 

the importance of adopting integrated approaches combining the effects of multiple 41 

environmental threats on key marine species to understand and mitigate their potential 42 

synergistic effects on ecosystem dynamics and resilience in the face of the changing 43 

environment. 44 
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 47 

1. Introduction 48 

Plastics and their associated chemicals have become a global concern from both scientific and 49 

societal perspectives. The ever-increasing plastic production and poor waste management has 50 

led to a permanent contamination of the biosphere by plastic items [1–3]. Coastal systems are 51 

some of the most heavily plastic-polluted ecosystems [4,5]. Plastics may pose a serious threat 52 

to organisms not only through physical damages [6,7], but also through the far less studied 53 

consequences of their chemical content [8,9]. Plastic debris may noticeably act as vectors for 54 

numerous chemical compounds that can be hazardous depending on the nature of the chemicals 55 

and their concentrations [10,11], which can vary during plastic lifetime. Virgin plastics are 56 

essentially composed of plastic polymers to which a range of additives are incorporated during 57 

their manufacture in order to improve their performances [12], with e.g. phthalates making up 58 

10 to 60% of the PVC weight [13]. Then, when released in the environment, a range of 59 

environmental contaminants, potentially more toxic than additives (e.g. heavy metals, 60 

pesticides), may be adsorbed on plastic particle surface and accumulate [14,15], at 61 

concentrations up to 6 orders of magnitude higher than in the environment [16] and then be 62 

desorbed [8]. These sorption/desorption phenomena noticeably increases as particle size 63 

decreases [17]. As such, plastics in general and microplastics in particular (i.e. particles smaller 64 
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than 5 mm) may act both as a sink and a source of contaminants, exposing organisms to complex 65 

and potentially toxic cocktails of chemical compounds [8,9,18].  66 

As climate change progresses, the effects of extreme weather conditions, including the 67 

increased frequency, intensity, and duration of heat stress, are expected to become more 68 

pronounced [19–21]. In intertidal ecosystems, these events are particularly stressful,  e.g. the 69 

body temperature variation experienced by mussel specimens between emersion and immersion 70 

can exceed 20°C (e.g. [22,23]), and can cause damages and mass mortality episodes, especially 71 

in marine invertebrates such as mussels [22,24–26]. Noticeably, the temperature tolerance of 72 

organisms is dependent on their health status, which can further be compromised by the 73 

presence of contaminants in seawater [27–29]. Even though plastic pollution and heat stress de 74 

facto frequently coincide, only a handful of studies have explored their combined repercussions. 75 

These essentially include adverse effects on survival, physiological processes, and cellular 76 

functions [30–33] though exceptions exist [34–36]. Despite the plethora of studies that assessed 77 

the effects of microplastic leachates on various aspects of the biology and ecology of marine 78 

organisms [8], to the best of our knowledge the combined impact of plastic leachates and heat 79 

stress has not been addressed. Given the potentially high impact of these two stressors on 80 

intertidal ecosystems, the objective of this study was to assess the impact of microplastic 81 

leachates on the ability of a key intertidal ecosystem engineer [37], the blue mussel Mytilus 82 

edulis, to survive to aerial heat stress. Leachate solutions were consistently prepared from low-83 

density polyethylene pellets that were either virgin (i.e. raw commercially available pellets) or 84 

found stranded on the beach, and aerial heat stress was simulated at 4 different temperatures 85 

(i.e. 20, 25, 30 or 35°C). We hypothesised that plastic leachate exposure alters the mussel ability 86 

to withstand an aerial heat stress event and that leachates from beached pellets will have a more 87 

deleterious impact than virgin ones because they have the potential to accumulate additional 88 

toxicants when dispersed in the environment. 89 
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 90 

2. Material and Methods  91 

a)  Study organisms 92 

A total of 720 specimens of the blue mussel Mytilus edulis (3 to 4 cm in shell length) were 93 

collected in September 2022 from the intertidal rocky shore at Pointe aux Oies (Wimereux, 94 

France; 50°47’08.3"N, 1°36’03.9"E) along the French coast of the eastern English Channel. 95 

Prior to the experiments, mussels were acclimated in the laboratory for 24 h in 85 L tanks filled 96 

with oxygen saturated natural seawater [38] representative of in situ conditions (T = 20°C; 97 

S = 33).  98 

b)  Microplastics and leachate solution preparation 99 

Microplastic leachate solutions (MPL) were prepared from either (i) commercially available 100 

(Materialix Ltd., London, United Kingdom) low-density spheroidal polyethylene pellets (with 101 

typical longest and shortest axes respectively 4.14 ± 0.21 mm and 1.89 ± 0.10 mm in length; 102 

V-MPL treatment) or (ii) cylindrical beached pellets (typically 4.04 ± 0.56 mm in width and 103 

3.03 ± 0.82 mm in height; B-MPL treatment) collected from the high-tide mark sediment 104 

surface of the nearby beach (Ambleteuse, France; 50°80'61.9"N 1°60'31.34"E). Beached pellets 105 

were consistently identified as low-density polyethylene using Fourier transform infrared 106 

(FTIR) analysis with an Aldrich FTIR database search set at 97.5% correlation setting. GC-107 

HRMS analyses showed that virgin pellets were composed of 5 additives, including 4 108 

plasticisers and 1 antioxidant. In contrast, beached pellets contained 7 additives, 4 plasticisers 109 

and 3 antioxidants and in a quantity typically 2 to 4-fold higher than in virgin pellets. For more 110 

details about the polymer and chemical content identification and the method used, see 111 

Supplementary Material, S1. 112 

Each type of pellets was mixed with natural aerated seawater for 24h [38–41] at 20°C at a 113 
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concentration of 10 g of pellets per litre (ca. 400 pellets per litre, or equivalently 20 mL of 114 

pellets per litre; [39]). After 24 h, the experiment was performed using the solution alone (i.e. 115 

without any pellets). A control solution (Control) was prepared by incubating aerated seawater 116 

for 24 h at 20°C. Consistent oxygen saturation and seawater renewal were ensured for each 117 

treatment during every immersion cycle. 118 

c) Experimental design 119 

The experiment was designed to mimic the temperature experienced by M. edulis during a 120 

typical tidal cycle at the sampling site (i.e. 6 h immersion/emersion with a sea surface and air 121 

temperature of 20°C; see SOMLIT 2022 data for Wimereux in September; 122 

https://www.somlit.fr/visualisation-des-donnees/), with a one-off emersion heat stress event 123 

representative of observed air temperature at the study site during the summer 2022 (25, 30 and 124 

35°C; air temperature record = 39.6°C [42]). A previous study conducted at our study site, using 125 

robomussels, revealed that mussel body temperatures occasionally exceeded 35°C, reaching a 126 

maximum recorded temperature of 41.7°C, while the seawater temperature remained around 127 

15°C, resulting in a delta temperature of over 20°C [22]. 128 

Specifically, the 72-hour experiment consisted of 6 successive immersion-emersion cycles 129 

that were conducted (i) under naturally occurring seawater and air temperatures at our study 130 

site in September (i.e. 20°C) as a control, and (ii) under a 6-hour aerial heat stress event of 25, 131 

30 or 35°C after one immersion-emersion-immersion cycle at 20°C and followed by 4 132 

immersion-emersion recovery events at 20°C (Fig. 1). 133 

  134 



 6 

 135 

Figure 1: Schematic diagram of the immersion-emersion experiments. Mussels were immerged (blue rectangles) 136 

during 6 hours in Control, Virgin microplastic leachate (V-MPL) or Beached microplastic leachate (B-MPL) 137 

solutions and emerged (white rectangles) during 6 hours consistently at an aerial temperature of 20°C (control 138 

temperature) except during the second emersion (grey rectangle) where the mussels were exposed to a low (25°C), 139 

moderate (30°C) or high (35°C) aerial heat stress event. The numbers indicate the time in hours after the beginning 140 

of the microplastic leachate stress (normal font) or after the thermal stress (italic font). 141 

 142 

For each experimental treatment (Temperature  Solution), 20 mussels were used in 143 

triplicates (i.e. N = 60 mussels for each of the 12 experimental trials). During the immersion 144 

phase, the mussels were incubated in a 1.5 L glass jar containing 1 L of Control, V-MPL, or B-145 

MPL solutions. Immersions lasted for 6 hours at a temperature of 20 °C (Fig. 1). The emersion 146 

consisted in placing the mussels on natural seawater saturated paper towels in sealed 1.5 L glass 147 

jars to maintain around 95% relative humidity to avoid desiccation or evaporation [22]. For the 148 

aerial heat stress, the jars were placed in incubators (MIR-154, Panasonic, Japan; temperature 149 

resolution ± 0.3 °C) heated either at 20, 25, 30 or 35°C for 6 h (Fig. 1). Relative humidity and 150 

air temperature experienced by mussels inside the jars were monitored using Hygro Buttons 23 151 

(Proges-Plus, resolution 0.5°C and 1%) at 5 min interval (Supplementary Materials, S2).  152 

 153 

d)  Endpoint and Statistical analyses  154 

After each immersion and emersion, the status of each mussel was visually checked. Opened 155 

mussels that did not respond to foot probing, i.e. no valve closure, were discarded and recorded 156 

0       6        12          18       24         30     36           42              48        54         60        66      72

0             6                  12          18         24        30         36                  42        48 
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as dead [22,43–45].  157 

 To study the effects of the factors ‘Temperature’, ‘Solution’ and their interaction 158 

‘Temperature  Solution’, data were analysed using a 2-way ANOVA with Solution (Control, 159 

V-MPL, B-MPL) and Temperature (20°C, 25°C, 30°C, 35°C) as fixed factors and percentage 160 

of survived mussels at the end of the experiment as the dependent factor. Significant effects 161 

were examined using Tukey-HSD post-hoc test. The data met the assumption required for the 162 

ANOVAs; homogeneity of variances and dispersion of the residuals were checked using the 163 

package ‘DHARMa’ (see Supplementary Materials, S3; [46]). 164 

Lethal times at 50% of mortality (LT50; in hours) and their lower and upper fiducial 165 

confidence limits (CL) for each solutions at 35°C — the only temperature where a significant 166 

mortality was recorded — were estimated using a binomial generalised linear model with a 167 

probit link function using the package ‘ecotox’ [47–50]. The data met the assumption required 168 

for the generalised linear model; homogeneity of variances and dispersion of the residuals were 169 

checked using the package ‘DHARMa’ (see Supplementary Materials, S4; [46]). To determine 170 

the existence of differences between the LT50 at 35°C of each treatment, a ratio test was used 171 

[49]. Exact p values are given in Supplementary Materials S5, S6 and S8. All statistical analyses 172 

were performed using the R Core Team software (2022). 173 

 174 

3. Results 175 

a)  Survival rates  176 

Survival rates (mean ± SD) significantly decreased only after an aerial heat stress exposure at 177 

35°C for all solutions, i.e. Control (48.3 ± 14.4%), V-MPL (53.3 ± 7.6 %) and B-MPL (26.7 ± 178 

7.6%); Temperature  Solution, p < 0.01; Tukey test: p < 0.001; S5, S6; Fig. 2). Specifically, 179 

at 35°C, significantly more mussels —5 on average— died when exposed to B-MPL compared 180 

to those exposed to V-MPL and Control seawater (Temperature  Solution, p < 0.01; S6, Tukey 181 
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test: p < 0.01 and p < 0.05, respectively; Fig. 2). No significant differences in mussel mortality 182 

were found between V-MPL and Control seawater treatments at any of the aerial heat stress 183 

temperature tested (Temperature  Solution, p < 0.01; S6; Tukey’s test: p > 0.05; Fig. 2).  184 

 185 

     186 

Figure 2: Survival rates (%; mean ± Standard Deviation) of Mytilus edulis at the end of the 72 h experiment after 187 

an exposure to control seawater (light grey), virgin (grey) and beached (black) microplastic leachate solutions 188 

combined with an aerial heat stress event at different temperatures. Letters depict significant differences among 189 

Temperature × Solution treatments (p < 0.05; Two-way ANOVA, Tukey post-hoc comparison). For details about 190 

the exact p-values, please refer to the Supplementary Materials S5, S6. 191 

 192 

 193 

b)  Lethal time after a 35°C aerial heat stress 194 

Solution
a a a

a
a a a a a

b b

c
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When exposed to a 35°C aerial heat stress, the LT50 (CL) of mussels exposed to control 195 

seawater, i.e. 69.5 h (64.4 – 78.0 h), was not significantly different from the LT50 recorded 196 

following exposure to V-MPL, i.e. 71.1 h (67.3 – 77.0 h; ratio test: p > 0.05, S7, S8). In contrast, 197 

mussels exposed to B-MPL were less resistant to a 35°C aerial heat stress, as LT50 was reached 198 

in significantly less time, i.e. 59.4 h (57.2 – 62.0 h), than the other two treatments (ratio test: p 199 

< 0.001, S7, S8). 200 

4. Discussion 201 

We provide the first evidence of the combined effect of temperature and plastic leachates on 202 

the survival rate of the keystone ecosystem engineer, Mytilus edulis. At temperatures ranging 203 

from 20 to 30°C, the presence of leachates, either from virgin or beached microplastics, did not 204 

affect the mortality rates of M. edulis. In sharp contrast, under conditions of high thermal stress 205 

(35°C), and in agreement with previous studies [22,51], there was a significant decline in 206 

survival rates for all treatments, especially when mussels were exposed to leachates from 207 

beached microplastics. These results raise concern, given that thermal events with mussel body 208 

temperature reaching more than 35°C during summer emersion at the study site occurred ca. 209 

11 times over their 84-day time series [22], a scenario expected to intensify under future climate 210 

projections [20]. Sub-lethal synergistic effect of temperature and contaminant, e.g. [52–56], 211 

including plastics, e.g. [31,57–59], have previously been documented in mussels under 212 

conditions of immersion. This present work, however, provides the first evidence of an 213 

enhanced thermal mortality through an exposure to microplastic leachates. 214 

The adverse synergistic effect observed here is likely due to a bioenergetic imbalance, i.e. 215 

the energy costs exceed the available energy supply. Leachates originating from various plastics 216 

such as car tire rubber, polypropylene, polyethylene terephthalate, polystyrene, polyvinyl 217 

chloride, and noticeably even bioplastics are capable of harming mussel cells by interfering 218 

with processes like lysosomal function, neurotransmission, oxidative stress and antioxidant 219 
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defences; see [60,61] for details on leachates composition. Under low and moderate thermal 220 

stress conditions, the detoxification and repair cost may be low enough to supply basal 221 

maintenance [29,62]. In turn, at high temperatures, the mussel heat shock response cost and cell 222 

damages caused by aerial heat stress [63] are added to those of plastic leachates. In this context, 223 

our results suggest that the processes used to counteract the cellular damage caused by these 224 

combined stressors may become too costly and create a bioenergetic deficit, leading to high 225 

mortality [29,62].  226 

Noticeably, M. edulis survival rates following a 35°C aerial heat stress varied depending on 227 

the pellet’s history, with beached microplastic leachates (from pellets collected in the 228 

environment and used at a locally realistic concentration [64]) being significantly more harmful 229 

than virgin microplastic leachates (from commercially available pellets). The more severe 230 

effect of B-MPL compared to V-MPL has previously been shown in Perna perna mussel 231 

embryo [41] and also in a wide range of other species, e.g. in sea urchins (Paracentrotus lividus 232 

[65,66]), jellyfish [65], gastropods [64] and even in dune plants [67], although exceptions exist 233 

such as in zebrafish [65], copepods and another sea urchin (Lytechinus variegatus [68,69]). 234 

The strongest effect observed for beached microplastic leachates compared to virgin ones 235 

after the high aerial heat stress is likely related to the pellet chemical content. Indeed, virgin 236 

pellets contained less additives, which were 2- to 4-fold less concentrated than in beached ones. 237 

The additives characterised were mainly phthalate plasticisers (i.e. Dimethyl phthalate, DMP; 238 

Diethyl phthalate, DEP; Di-n-butyl phthalate, DBP and Diisobutyl phthalate, DIBP) and 239 

Bisphenol S antioxidant, which are known to have various detrimental effects on marine 240 

invertebrates, for reviews see [70–72]. In addition, due to their permanence in the natural 241 

environment, beached pellets are also likely to be loaded with a harmful cocktail of 242 

environmental contaminants such as Persistent Organic Pollutants and heavy metals [73,74]. 243 

This is in sharp contrast with virgin pellets which are essentially composed of functional 244 
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additives (e.g. flame retardants, plasticisers, colorants [75]). Although mussel survival rates 245 

were noticeably not affected at low temperatures when combined with either type of plastic 246 

leachates, this does not rule out the existence of sublethal effects such as behaviour, growth and 247 

reproduction which are likely to have longer term detrimental effects on the biology, ecology 248 

and ultimately survival [62]. The resolution of these specific issues lies beyond the scope of the 249 

present work, but warrants the need for further studies. 250 

 251 

5. Conclusion 252 

Thermal stress and plastic pollution are prominent challenges in the Anthropocene. In the 253 

context of the anticipated rise in frequency, severity, and duration of extreme heat events [20], 254 

coupled with the growing production of plastic and the subsequent accumulation of plastic 255 

waste in the environment [76], our results raise concerns and highlight the critical need for 256 

multi-stress studies to fully comprehend the impacts of these stressors on organisms. In turn, 257 

increase in temperature has been shown to enhance the leaching of plastic associated chemical 258 

compounds [77–79], and hence their potential toxicity, highlighting the need for further studies 259 

to understand the fate of plastic-associated chemicals in warming ecosystems. Considering the 260 

engineering role of the species used in this study, the combined impact of environmentally 261 

realistic temperature [22],  as well as the type and concentration of plastic pellet [64], could 262 

pose a significant threat not only to the species itself but also to the overall ecosystem that relies 263 

on these species for sustenance.  264 

 265 
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