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Particle size effects on critical strength of granular soils through numerical and 
laboratory testing 

Efectos de tamaño de partícula en la resistencia al corte critica de suelos granulares mediante 
ensayos numéricos y de laboratorio. 
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ABSTRACT: The critical shear strength characterization of waste rock (WR) is crucial for assessing the stability of waste rock piles. 
However, laboratory testing is challenging due to the broad grain size distribution (GSD) that ranges from silts to oversized rock clasts. 
The maximum grain size in a sample is restricted by the size of the equipment and the recommendations by international standards. 
This implies that WR materials require their GSD to be altered using grading scaling techniques to fit into standard testing cells. The 
common geotechnical practice for scaling is based on the aspect ratio a = D/dmax, where D is the diameter of the sample and dmax the 
maximum grain diameter. However, different standards disagree on the minimum a to ensure a representative sample, ranging from a 
= 5 to 20. The main objective of this paper is to study the effects of a on the critical shear strength of granular materials through 
numerical triaxial tests in the frame of the discrete-element method (DEM) and laboratory triaxial tests on WR material. The samples 
used have a values varying from 5 to 20 and GSD of uniformity coefficients ranging from Cu = 1 to 2.2. The results show that the 
numerical and physical samples exhibit stable critical strength for a ≥ 12, regardless their initial grading. These results demonstrate the 
advantages of numerically testing materials that are challenging to fit into standard devices and suggest that international standards 
should be revisited to include the significant effects of a.   

KEYWORDS: shear strength, DEM, mine waste rock, size effect. 

1 INTRODUCTION.  

Waste rocks (WR) are the valueless portion extracted to 
mine the ore, and their grain size distribution (GSD) includes a 
variety of particles, from silts up to clasts with more than 1 m in 
diameter (Bard et al., 2012; Ovalle et al., 2020). WR form waste 
rock piles which are recognized as one of the highest man-made 
geo-structures (Valenzuela et al., 2008). However, WR piles 
present high environmental risks and uncertain mechanical 
stability. To ensure the latter, extensive laboratory testing should 
be carried out to provide mechanical WR characterization (Linero 
et al., 2007, 2020; Ovalle et al., 2023). Due to the coarse rock 
clasts, the GSD must be altered according to the testing device 
available. Two small-scaling techniques are the most used: parallel 
grading (Marachi et al, 1972) and scalping (Zeller & Wulliman, 
1957). In parallel grading, the shape of the GSD curve is preserved 
by scaling down both maximum (!!"# ) and minimum (!!$% ) 
particle sizes. In scalping, the material coarser than a size !!"# is 
removed and a new GSD curve is generated by truncating the 
original one. Small-scaling methods are expected to provide 
representative results on the basis that critical shear strength does 
not depend on the GSD, as widely shown via experimental and 
numerical studies (Li et al., 2013; Yang and Luo, 2017; Azéma et 
al., 2017; Amirpour et al., 2019; Cantor et al., 2020). However, the 
scaling methods require that particle roughness and characteristic 

particle shape remain relatively constant in small-scaled samples 
(Ovalle and Dano, 2020; Carrasco et al., 2022, 2023). 

Typically, triaxial or direct shear tests are used to 
measure the shear strength, applying !!"# restrictions according 
to international testing standards (Cantor and Ovalle, 2023; 
Girumugisha et al., 2024). For triaxial tests, considering the sample 
aspect ratio " = $/!!"# , where D is the sample diameter, the 
values recommended are 5, 6 and 20, after British (BS 1377), 
American (ASTM D7181) and Japanese (JGS 0520) testing 
standards, respectively. Disagreement between the standards 
shows that the effects of " and GSD on the mechanical behavior 
are still poorly understood. 

The main objective of this paper is to study the effects 
of "  on the critical shear strength of granular materials. The 
recommended limits of " imposed by international standards are 
tested through triaxial numerical tests, in the frame of the discrete-
element method (DEM), and triaxial laboratory tests on WR 
materials. 
 
2 METHODOLOGIES 
 
2.1 Numerical DEM triaxial testing 
Drained triaxial 3D simulations on spheres are carried out using 
the simulation platform LMGC90, developed at the University of 
Montpellier, France. LMGC90 uses the non-smooth discrete-
element approach known as contact dynamics (Dubois & Jean, 
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2006), which is capable of simulating interactions between rigid 
grains of varied shapes and sizes. The density of the solid material 
and the inter-particle friction coefficient are set to & = 2000	*+/
,& and -' = 0.4, respectively. 
 A rigid wall box of width 0 = 0.1	,  and ratio 
2/0 = 2 is modeled, where 2 is the box’s height. It is worth 
noting that this configuration is similar to a true triaxial test 
(Hambly, 1969), therefore different from the stress field generated 
by flexible membranes in standard triaxial testing. This 
configuration was simply chosen due to lower computational cost. 
A series of a are chosen to cover the values recommended by 
testing standards: " = [5, 6, 8, 10, 12, 15, 17.5, 20]. The GSD is 
characterized by the parameter :( =	!!"#/!!$% , and the 
following values are modeled: :( =	 [1.0, 1.1, 1.8, 4] , which 
correspond to ;) = !*+/!,+ =	 [1.0, 1.1, 1.4, 2.2] , respectively. 
Thus, !!"#  is given by the "  value chosen and !!$%  by a 
given :( . The GSDs are shown in Fig. 1, where (a) presents 
different ;)  values for a given a, and (b) shows eight parallel 
curves for a given ;) = 1.4, corresponding to the eight values of 
a proposed. 32 different samples are simulated in total. As an 
example, Fig. 2 presents screenshots of two samples, for 
combinations of small and large values for " and Cu.  
 

 
Figure 1. GSD of the numerical samples: (a) four !!  simulated for 

each a; (b) parallel GSDs with !! = 1.4 covering a wide range of a. 

 
The numerical triaxial tests are performed in two stages. 

First, the samples are compressed with a constant stress <+ =
10	*=>, applied through rigid walls. To avoid stress gradients and 
boundary effects, the friction coefficient between the walls and the 
particles is null. This stage is carried out until the variation of the 
void ratio is less than 0.1%. The second stage is the triaxial 
shearing, which is undertaken by applying a constant velocity ?- 
on the top and bottom walls of the box, keeping constant the 
confining pressure through lateral rigid walls. The value of the 
velocity is calculated based on the inertial number @ = !!"#(?-/
2+)/C&/<+ 	≪ 	1 (GDR MiDi, 2004), where 2+ is the height of 
the sample after isotropic compression. The inertial number is 
fixed for all the samples at @ = 10./ , to ensure a quasi-static 
shearing regime. Finally, the tests were finished when the 
deformation of the sample reached 60% of 2+. 
 

2.2 Physical triaxial testing 
 

A material called WR1 was collected from a hard rock 
mine. The material has a specific gravity of Gs= 2.75 and a uniaxial 

compression strength of UCS = 128 MPa. Mineralogy of WR1 is 
mainly composed of silicates (quartz and albite). Fig. 3a presents 
the GSD of the field material (!!"# = 75	,,), as well as scalped 
samples of WR1 down to !!"# from 19 to 5 mm. The material 
classifies as a well-graded gravel with silt and sand (GW-GM). 
Additionally, a second set of samples (WR2, shown in Fig. 3b) is 
prepared from WR1, after removing all the fines (<0.08 mm) and 
particles coarser than 19 mm. The scalping technique is also 
applied to prepare small-scaled samples of WR2, as shown in Fig. 
3b. Each sample is tested on triaxial specimens of diameter D = 
150 mm, which allowed to accommodate different aspect ratios α, 
from 6 to 30.  
 

 
Figure 2. Examples of two samples tested: (a) (', !!) = [5, 1.0]; (b)	

(', !!) = [15, 2.2].	
 

Characteristic particle shape of the WR material is 
characterized through width to length sphericity E01  = particle 
width/particle length, and roundness :	 = ∑(G$/H)/G$%, where G$ 
is the radius of circles fitting the particle’s concave corners, H the 
number of the fitted circles, and G$%  the radius of the largest 
inscribed circle (Zheng and Hryciw, 2015). The results show that 
characteristic particle shapes are relatively constant over the whole 
range of particle sizes, with R = 0.3 to 0.4 and E01 = 0.7, which 
classify as subangular particles with low sphericity. 
 

 

 

Figure 3. GSD of WR materials scalped for testing: (a) WR1 and (b) 

WR2. 
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Triaxial tests under consolidated drained conditions 
were performed on cylindrical dry specimens of D = 150 mm and 
H = 300 mm. A total of 18 tests are carried out on WR1 samples, 
and 15 on WR2. Loose samples are prepared without compaction 
by simply pouring the material into 10 distinct layers of 
homogeneous materials. Approximately 1.0 kg per layer is used. 
Dry densities obtained are different since the GSD varied between 
scalped samples. Dry densities of WR1 and WR2 varied between 
17.83 – 18.95 kN/m3, and 18.57 – 18.95 kN/m3, respectively. An 
isotropic consolidation stage was performed by maintaining a 
desired confinement stress, varying between 45 to 210 kPa. 

 
3 RESULTS 
 
3.1 Numerical results 
 
The discrete-element approach for simulations allows us to 
determine the inter-granular forces and stresses, which are useful 
to estimate the deviatoric stress I = <, − <&  and the mean 
pressure K = (<, + 2<&)/3 during triaxial shearing. This is based 
on the construction of a granular stress tensor computed through 
contact forces and particle positions (Ouadfadel and Rothenburg, 
2001; Radjaï and Dubois, 2011).  
 In Fig. 4, the evolution of I/K  and volumetric 
deformation (N2 ) are shown for all cases with ;) = 	2.2  as a 
function of vertical deformation N, . A clear peak of I/K  is 
reached around 10 % of deformation, and the specimen shows 
dilatant behavior followed by a critical state. Fig. 5 illustrates that, 
regardless of the GSD, the values of critical state friction angle O34 
stabilize only if " ≥ 	12. Moreover, better graded samples (;) =
	1.4 − 2.2	) result in steady values of O34 at " ≥ 	8. Laboratory 
triaxial tests also indicate that the critical shear strength is stable 
only if " ≥ 	12. 
 

 
Figure 4. Normalized shear strength I/K and volumetric 

deformation N2 as a function of the vertical deformation N, 
for samples with ;) = 2.2 

 

 
Figure 5. Critical friction angle O34 as a function of a 

 
3.2 Physical experimental results 

 
Fig. 6 shows the stress ratios I/K against N, for all the triaxial 
tests. For each material, tests are grouped by confining pressure 
<&. As expected on loose samples, all tests exhibit hardening and 
reached their maximum strength around N,=10%, which remains 
almost constant up to N,=15 %. Loose samples of WR1 present 
slight dilation at low <& of 45 and 80 kPa, which vanishes to fully 
contractive behavior for <&≥ 150 kPa. 
 

 

 
Figure 6. Normalized shear strength q/p results and volumetric 

deformation of the tested WRs, as a function of vertical 
deformation N, 
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Figure 7.  Critical friction angle comparison at different 
confinement pressure. (a) and (b) correspond with the two 

tested materials. 
 

All I/K values reached at large vertical strain in Fig. 
5 tend to similar values, which is consistent with several reported 
experimental results indicating that critical strength does not 
depend on PSD. However, the effect of α cannot be clearly 
identified in the figure. Therefore, Fig. 7 presents the critical 
friction angle (O34) for all tests as a function of α, where dashed 
lines represent the mean O34 for each confining pressure <&. For 
comparison, O34 is assumed to be the mobilized shear strength at 
N,=15 % and calculated according to the Mohr-Coulomb failure 
criterion for non-cohesive materials. Samples tested at <&= 150 
kPa exhibit mean O34  of 36° and 38° for WR1 and WR2, 
respectively. It can be observed that, for a given <&, O34 is stable 
for α between 12 and 30 but presents dispersion (of about 3°) at α 
< 12. To highlight the scatter of O34  on all samples, Fig. 8 
illustrates the ratio O34/O34(67,8)	 , where O34(67,8)	 is the O34 
at α = 12, with both values obtained at the same <&. It can easily 
be noticed that the dispersion of O34 attains 10% at α < 12, and 
gradually vanishes to < 3% beyond this threshold value. 

 

 
Figure 8. Normalized critical friction angle O34/O34(67,8)	as 

a function of α. 
 

4 CONCLUSIONS 

A systematic study of numerical and physical experiments was 
presented to explore the effects of sample size on the critical shear 
strength of granular materials. Through triaxial test DEM 
simulations, it can be observed that the values of O34  stabilize 
when the sample scale " ≥ 	12, regardless of the GSD. However, 
for better-graded samples,	O34 reaches steady values as early as 
" = 	8. Laboratory triaxial tests also indicate that the critical shear 
strength is stable only if " ≥ 	12, with significant dispersions for 
smaller a. These sample scales are bigger than what is indicated in 
widely used testing standards. Therefore, aspect ratio 
recommendations may not always ensure representative material 
characterization. This behavior may come from the formation of 
column-like structures mainly formed by the coarse fraction of the 
material (Cantor & Ovalle, 2023). Nonetheless, more extensive 
numerical and experimental testing is still needed to evaluate 
introducing new considerations in the testing standards. 
 
It is important to note that while numerical work is not necessarily 
capable of replicating the complex soil behavior, it allows for an 
efficient study of specific mechanisms and effects, such as sample 
size assessments, under well-controlled conditions. Moreover, the 
parameters studied with DEM simulations in this work can be 
further analyzed to reveal the micro-mechanical sources of sample 
size effects, allowing for a better understanding of the mechanical 
behavior of granular soils.  
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