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eLife Assessment
The paper reports the important discovery that the mouse dorsal inferior colliculus, an audi-
tory midbrain area, encodes sound location. The evidence supporting the claims is solid, being 
supported by both optical and electrophysiological recordings. The observations described should 
be of interest to auditory researchers studying the neural mechanisms of sound localization and the 
role of noise correlations in population coding.

Abstract Sound location coding has been extensively studied at the central nucleus of the 
mammalian inferior colliculus (CNIC), supporting a population code. However, this population 
code has not been extensively characterized on the single-trial level with simultaneous recordings 
or at other anatomical regions like the dorsal cortex of inferior colliculus (DCIC), which is relevant 
for learning-induced experience dependent plasticity. To address these knowledge gaps, here we 
made in two complementary ways large-scale recordings of DCIC populations from awake mice in 
response to sounds delivered from 13 different frontal horizontal locations (azimuths): volumetric 
two-photon calcium imaging with ~700 cells simultaneously recorded at a relatively low temporal 
resolution, and high-density single-unit extracellular recordings with ~20 cells simultaneously 
recorded at a high temporal resolution. Independent of the method, the recorded DCIC popula-
tion responses revealed substantial trial-to-trial variation (neuronal noise) which was significantly 
correlated across pairs of neurons (noise correlations) in the passively listening condition. Never-
theless, decoding analysis supported that these noisy response patterns encode sound location on 
the single-trial basis, reaching errors that match the discrimination ability of mice. The detected 
noise correlations contributed to minimize the error of the DCIC population code of sound 
azimuth. Altogether these findings point out that DCIC can encode sound location in a similar 
format to what has been proposed for CNIC, opening exciting questions about how noise correla-
tions could shape this code in the context of cortico-collicular input and experience-dependent 
plasticity.
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Introduction
Locating a sound source facilitates essential behaviors such as foraging, mating and predator avoid-
ance, thanks to the omni-directionality and long reach of the auditory system (King et al., 2001)⁠. In 
vertebrates, sound localization relies on both binaural cues such as interaural level and time differences 
(ILD, ITD; Knudsen and Konishi, 1979)⁠ and monaural cues including spectral notches (SN; Kulkarni 
and Colburn, 1998)⁠. These sound localization cues are processed independently at brainstem nuclei 
in the ascending auditory pathway and integrated altogether for the first time at the inferior colliculus 
(IC; Adams, 1979; Brunso-Bechtold et al., 1981; Gourévitch and Portfors, 2018; Grothe et al., 
2010)⁠. This makes the IC a crucial early relay of the ascending auditory pathway to study how a 
primary neural representation of auditory space is formed (Gourévitch and Portfors, 2018; Grothe 
et  al., 2010)⁠. Furthermore, the IC is also targeted by cortico-fugal interactions involved in higher 
order functions concerning sound localization information like experience-dependent plasticity (Bajo 
et al., 2019; Bajo et al., 2010; Bajo and King, 2012)⁠, supporting that IC plays a complex part in the 
sound localization processing network, contributing from primary representation to shaping behavior.

Previous studies involving extracellular recordings from the mammalian IC revealed that average 
responses from IC neurons were tuned to multiple sound location cues, evidencing the integration of 
such cues at IC (Chase and Young, 2005)⁠. However, the amount of sound location information carried 
by individual neurons throughout the auditory pathway is limited and quite variable, suggesting that 
the sound location information is distributed into a population code for auditory space (Clarey et al., 
1995; Day and Delgutte, 2016; Groh et al., 2003; Panniello et al., 2018)⁠. Fundamental work by Day 
and Delgutte, 2013 supports that sound location in the horizontal plane (azimuth) is represented at 
the mammalian IC by the activity patterns of populations of neurons that display average response 
tuning to azimuth, while ruling out other possibilities such as a topological code, an opposing two 
channel model or a population vector code (Georgopoulos et  al., 1986; Georgopoulos et  al., 
1982)⁠. Nevertheless, this knowledge stems from prospective IC population activity patterns that were 
approximated by pooling non-simultaneous extracellular recordings and relied on extensive resam-
pling of the pooled recordings to increase the number of ‘virtual’ trials analyzed. Therefore, it remains 
an open question whether the actual activity patterns occurring in the IC of awake animals during 
single-trials can encode sound location given emerging properties such as correlated neuronal noise 
(Averbeck et al., 2006; Kohn et al., 2016; Sadeghi et al., 2019)⁠. Trial-to-trial response variability 
(neuronal noise) and neuronal noise correlation can have a profound impact on the neural representa-
tions of sensory information, but this can only be determined through simultaneous large-scale record-
ings (Averbeck et al., 2006; Kohn et al., 2016)⁠. Finally, traditional microelectrode recordings were 
mostly performed at a relatively deep anatomical subdivision of IC (central nucleus, CNIC), usually not 
targeting superficial regions (dorsal cortex, DCIC; external cortex, ECIC; Chase and Young, 2008; 
Chase and Young, 2005; Day and Delgutte, 2013; Guo et al., 2016; Lesica et al., 2010; Schnupp 
and King, 1997)⁠. To overcome these limitations and explore the importance of trial-to-trial response 
variability, noise correlation and dorsal IC populations on sound location coding, we monitored DCIC 
population response patterns on the single-trial basis and interrogated the population code for sound 
location at the DCIC from passively listening awake mice.

Recent technical developments, including multichannel silicon probes (Jun et al., 2017)⁠ and fast 
volumetric Ca2+ imaging (Prevedel et al., 2016; Stringer et al., 2019; Weisenburger et al., 2019)⁠ 
enable routine simultaneous recordings from large numbers of neurons in vivo. Beyond their high 
throughput, volumetric methods are also a promising approach to precisely interrogate the topo-
logical distribution of neurons sensitive to sound azimuth, which has been reported to be random at 
CNIC (Day and Delgutte, 2013)⁠, but is understudied at DCIC. In this work, we implemented scanned 
temporal focusing two-photon microscopy (sTeFo 2 P; Prevedel et al., 2016)⁠, an advanced volumetric 
Ca2+ imaging modality, to simultaneously record the activity of unprecedentedly large DCIC popula-
tions. Here, we refer to DCIC as the dorsomedial IC region covering CNIC (Zhou and Shore, 2006)⁠. 
Our approach produced direct evidence supporting that the response patterns from mammalian 
DCIC populations effectively encode sound location on the single-trial basis in spite of their variability 
across trials. We also detected the occurrence of substantial noise correlations which can contribute 
to reducing the error of this population code. Furthermore, we complemented our imaging results 
with electrophysiological recordings with neuropixels probes (Jun et al., 2017)⁠, reaching conclusions 
that were generally aligned across imaging and electrophysiological experiments. Altogether, our 
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findings point to a functional role of DCIC in sound location coding following a similar population 
coding mechanism to what has been proposed for CNIC (Day and Delgutte, 2013)⁠. While CNIC 
is the main ascending relay carrying sound location information from brainstem auditory nuclei to 
the cortex through the auditory thalamus (Adams, 1979; Brunso-Bechtold et al., 1981; Gourévitch 
and Portfors, 2018)⁠⁠, DCIC is a higher order relay receiving profuse descending corticofugal inputs 
influencing auditory information processing including sound location (Bajo et al., 2019; Bajo et al., 
2010; Bajo and King, 2012; Lesicko et al., 2022; Winer et al., 2002)⁠. This knowledge sets forth 
exciting possibilities about the mechanisms by which cortico-collicular interactions involving DCIC 
and perhaps noise correlations affect relevant processes relying on sound location information like 
experience-dependent plasticity (Bajo et al., 2019; Bajo et al., 2010; Bajo and King, 2012)⁠.

Results
Simultaneous recordings of DCIC population activity
Since the abundance and distribution of sound localization sensitive neurons at DCIC is not fully 
characterized, in a first instance we implemented sTeFo-2P for volumetric Ca2+ imaging to simulta-
neously record the activity from samples of DCIC neurons as large as technically possible. Moreover, 
TeFo-based methods have been shown to be more resilient to highly scattering (optically opaque) 
tissues such as the IC (Dana and Shoham, 2012)⁠. Adeno-associated viral vector (AAV) transduced IC 
neurons expressing jRGECO1a (Figure 1A) were imaged through a cranial window in awake head-
fixed mice, passively listening to 500 ms-long broad-band noise stimuli (20–40 kHz band-passed white 
noise) delivered by a motorized speaker every 5  s located at one of 13 different frontal azimuth 
angles in a random order covering the frontal hemifield in 15° steps (Figure 1B). We performed volu-
metric Ca2+ imaging (4 Hz volume rate) simultaneously sampling the activity of up to 2535 (643±427, 
median ±median absolute deviation, n=12 mice) regions-of-interest (ROIs) that had a shape and size 
consistent with an IC neuronal soma (12–30 µm diameter, Figure 1—figure supplement 1A; Schof-
ield and Beebe, 2019), within a 470 x 470 × 500 µm volume from the right IC unilaterally, covering 
most of the dorso-ventral span of the anterior DCIC (Figure 1A–C) and perhaps reaching the upper 
surface of CNIC below DCIC at more posterior locations (Paxinos and Franklin, 2001)⁠. Since sTeFo 
2 P trades off spatial resolution for acquisition speed to produce volume rates compatible with the 
kinetics of Ca2+ sensors (voxel size: 3.7 x 3.7 × 15 µm; Prevedel et al., 2016)⁠, we could not resolve 
fine spatial features of neurons such as dendrites or synaptic structures like spines in our images to 
unequivocally identify the segmented ROIs as individual neurons (Figure 1—figure supplement 1A). 
For this reason, we refer to these ROIs as ‘Units’, in an analogous fashion to extracellular electrode 
recordings studies. To compensate for the relatively slow decay time of the Ca2+ indicator signal and 
non-linearities in the summation of Ca2+ events, we evaluated the spike probabilities associated to the 
neuronal Ca2+ signals (Deneux et al., 2016; Figure 1D, Figure 1—figure supplement 1B). The spike 
probability estimation does not involve predicting precise spike timings (Deneux et al., 2016; Huang 
et al., 2021; Pachitariu et al., 2018; Rupprecht et al., 2021; Vanwalleghem et al., 2020)⁠. Hence, we 
do not make any observation or interpretation of spike probabilities in relation to the fine temporal 
structure of neuronal spiking. Instead, we treated the spike probabilities as a measure proportional 
to the spike count evaluated within the time interval set by our volumetric imaging rate (4 Hz). Taking 
into account that the main carrier of sound location information is IC neuron firing rate (Chase and 
Young, 2008)⁠, we defined the evoked DCIC population responses as the total (summed) spike prob-
ability of each imaged unit during the sound stimulation epoch (500ms). In this way, we systematically 
collected the simultaneous response patterns of DCIC populations to every azimuth trial.

The DCIC populations simultaneously imaged from passively listening awake mice displayed 
spontaneous activity that was not time-locked to the stimulation (on-going activity) and sound-
evoked response patterns that varied markedly across trials, as did the overall, average response of 
the complete imaged population (Figure 1E). By monitoring face movements videographically, we 
observed that the overall average population activity shows significant correlation to facial move-
ments, specifically of the snout region (Figure 1—figure supplement 2A—C). On the other hand, the 
correlation between the recorded activity from the individual units imaged and face movements was 
generally low with narrow distributions centered at 0 (Figure 1—figure supplement 2D), pointing out 
that correlation to face movement is more evident at the population level.

https://doi.org/10.7554/eLife.97598
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Figure 1. Simultaneous recording of DCIC population responses to sound azimuth through sTeFo-2P Ca2+ imaging and neuropixels probes. 
(A) Representative histological section showing AAV transduced jRGECO1a expression across IC. Middle panel inset: Contrast enhanced commissure 
region of the slice to visualize commissural projections from jRGECO1a expressing IC neurons. Bottom panel: Dotted lines delimit anatomical IC 
regions according to Paxinos and Franklin, 2001; dashed lines delimit approximate area targeted for imaging. Scale bar: 200 μm. DCIC: dorsal 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.97598
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To further corroborate our volumetric imaging data, we recorded DCIC population activity elec-
trophysiologically through single-unit recordings with neuropixels probes in passively listening mice 
stimulated with 200 ms-long broad-band noise stimuli (15–50 kHz band-passed white noise) delivered 
by a motorized speaker every 3 s from 13 different frontal azimuth angles in a random order covering 
the frontal hemifield in 15° steps (Figure 1F–H). The higher time resolution from the electrophysiolog-
ical approach (30 kHz acquisition rate) allowed us to deliver more frequent trials with shorter stimuli to 
effectively collect more trials following the same head fixation paradigm as the one used for imaging 
(see Materials and methods). The electrophysiology setup also produced lower background noise 
sound pressure level (SPL, 35.96 dB R.M.S.) in comparison to the sTeFo scope (44.83 dB R.M.S.), which 
enabled the use of a broader band stimulus favoring sound location cues at appropriate levels above 
background noise (at least 10 dB R.M.S., see Materials and methods). We simultaneously recorded up 
to 43 (21±9, median ±median absolute deviation, n=4 mice) spike sorted and manually curated DCIC 
single-units (Figure 1—figure supplement 1C—E). We defined sound evoked responses from elec-
trophysiologically recorded single-units as the spike count observed during sound stimulus presenta-
tion (Chase and Young, 2008; Day and Delgutte, 2016; Day and Delgutte, 2013)⁠. We determined 
which recording channels from the probe were located within DCIC both histologically with respect to 
the reference atlas (Paxinos and Franklin, 2001;⁠ Figure 1F) and functionally by analyzing the arrange-
ment of sound frequency sensitive units along the shank of the probe. We detected sound frequency 
sensitive single-units as units that displayed significant response dependency to sound frequency (pure 
tone stimuli) through χ2 tests. The detected frequency dependent single-units displayed Gaussian 
tuning with clear peak best frequencies (Figure 1—figure supplement 1F, G). The observed relation-
ship between frequency-dependent DCIC unit best frequency and recording depth was not tonotopi-
cally arranged like in CNIC, which is consistent with DCIC location (Barnstedt et al., 2015; Wong and 
Borst, 2019;⁠ Figure 1—figure supplement 1H). The simultaneous, electrophysiologically recorded 
DCIC population activity from awake passively listening mice also displayed spontaneous on-going 
activity, which reflected in the overall average response of the complete recorded population, and 
sound-evoked response patterns that varied markedly across trials (Figure 1I). In this section, we used 
the word ‘noise’ to refer to the sound stimuli used, the recording setup background sound levels or 
recording noise in the acquired signals. To avoid confusion, from now on the word ‘noise’ will be used 
in the context of neuronal noise, which is the trial-to-trial variation in neuronal responses unrelated to 
stimuli, unless otherwise noted.

Decoding sound azimuth from single-trial DCIC population responses
The observed variability in our imaging and electrophysiological data raised the following question: To 
what extent do the single-trial responses of the DCIC units carry information about stimulus azimuth? 
Since the number of DCIC neurons needed to effectively encode sound azimuth is not known, we first 
evaluated how accurately stimulus azimuth can be predicted from the high-throughput single-trial 

cortex from inferior colliculus. CNIC: Central nucleus from inferior colliculus. ECIC: External cortex from inferior colliculus. Com.: Commissure from 
inferior colliculus. (B) Schematic representation of the experimental design, incorporating sTeFo 2 P for Ca2+ imaging. (C) Neuropil-corrected and 
denoised jRGECO1a signals extracted from a representative full dataset. Extracted signals are arranged from dorsal (top) to ventral (bottom) ROI 
position across the DCIC volume imaged. (D) Representative neuropil corrected and denoised jRGECO1a traces (blue) with their corresponding spike 
probability traces (gray) and stimulation epochs (color-coded based on stimulus azimuth angle according to (B)) super-imposed. (E) Representative 
simultaneous recording of a DCIC population from an awake, passively listening mouse, displaying spontaneous, on-going activity (not synchronized 
to stimulation, arrowheads) and variable sound-evoked response patterns (during sound stimuli). Top trace is the population average response. Sound 
stimulation epochs are color-coded based on azimuth. (F) Representative histological section showing DiI labeled neuropixels electrode tract across IC. 
Dotted lines delimit anatomical IC regions according to Paxinos and Franklin, 2001. Scale bar: 500 μm. (G) Same as (B) but representing integration 
with electrophysiological recording of DCIC population activity with a neuropixels probe. (H) Representative high pass filtered (>300 Hz) voltage 
traces simultaneously recorded from 100 channels spanning across DCIC in a neuropixels probe shank during an experiment displaying clear unit 
waveforms captured across neighbouring channels. (I) Same as (E) but showing a representative raster plot of the spike sorted DCIC single-unit activity 
simultaneously recorded during an experiment.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Examples of extracted signals for imaging and electrophysiology, together with sound frequency tuning at DCIC.

Figure supplement 2. Relationship between DCIC on-going activity and face movements.

Figure 1 continued

https://doi.org/10.7554/eLife.97598
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DCIC population response patterns volumetrically imaged, without taking resampling strategies or 
pooling recorded responses across animals or recording sessions as in previous electrophysiolog-
ical and imaging studies (Day and Delgutte, 2013; Jazayeri and Movshon, 2006; Panniello et al., 
2018)⁠. We performed cross-validated, multi-class classification of the single-trial population responses 
(decoding, Figure 2A) using a naive Bayes classifier to evaluate the prediction errors as the abso-
lute difference between the stimulus azimuth and the predicted azimuth (Figure 2A). We chose this 
classification algorithm over others due to its generally good performance with limited available 
data. We visualized the cross-validated prediction error distribution in cumulative plots where the 
observed prediction errors were compared to the distribution of errors for random azimuth sampling 
(Figure 2B). When decoding all simultaneously recorded units, the observed classifier output was 
not significantly better (shifted towards smaller prediction errors) than the chance level distribution 
(Figure 2B). The classifier also failed to decode complete DCIC population responses recorded with 
neuropixels probes (Figure 3A). Other classifiers performed similarly (Figure 2—figure supplement 
1A). Given the high dimensionality of our datasets (number of simultaneously recorded units) and the 
relatively low number of azimuth presentations collected (10–20 repetitions of each), we reasoned that 
the classification failure could be due to overfitting rather than to a lack of azimuth information in the 
dataset. Thus, we tested if reducing the dimension of the dataset helps avoid overfitting. Specifically, 
we used the same decoder after dimensionality reduction through principal component analysis (PCA) 
with both PCA and classifier fit being cross-validated (Figure 2C). For both our imaging and electro-
physiological datasets, we observed that decoding based on subsets of first principal components 
(PCs) produced absolute cross-validated single-trial prediction error distributions significantly better 
than the chance level distribution (Figure 2D and E, Figure 3B–D); and that using larger numbers of 
PCs for model fitting and decoding decreased the performance (Figure 2D and E, Figure 3C and 
D). Altogether, these results support that DCIC population responses indeed carry stimulus azimuth 
information which can be effectively decoded on a single-trial basis; and that the failure of decoding 
from the full population was merely due to overfitting.

Sound azimuth information is carried redundantly by specific DCIC 
units
The decoded PCs consist of linear combinations of the responses from the units in the imaged or 
recorded DCIC population. Then the following questions arise: To what extent is the sound azimuth 
information distributed across the DCIC populations? Is it fully distributed across most units or specific 
to some of them, such as azimuth tuned neurons?

Since the abundance or distribution of azimuth-sensitive units across DCIC is not fully known, we 
firstly asked if any fraction of the volumetrically imaged DCIC units carried more azimuth information 
in their responses than other simultaneously imaged units in the volume. We calculated the signal-to-
noise ratio for the responses of each imaged unit (‘neuronal’ S/N, nS/N), defined as the ratio between 
the mean (signal) and the standard deviation (noise) of the responses to the azimuth trials evoking 
maximal responses (best azimuth). Imaged DCIC units generally showed a relatively low nS/N during 
sound stimulations (<1, Figure  4A). Nevertheless, this nS/N was significantly larger than the one 
registered in the absence of sound stimulation (on-going activity from the periods between sound 
stimuli, Figures 1D and 4A), indicating that sound responses across the sampled units were often 
noisy. However, the broad distribution of nS/N also suggested that a sparse population of neurons 
responded more robustly. Next, we evaluated azimuth tuning to delimit subpopulations with higher 
azimuth selectivity. Using non-parametric one-way ANOVA (Kruskal-Wallis test), we identified the 
imaged units whose median responses changed significantly based on stimulus azimuth, which we 
defined as azimuth tuned units (Figure 4B). The units with significant azimuth tuning represented only 
8 ± 3% (median ±median absolute deviation, n=12 mice) of the DCIC units simultaneously-imaged in 
one session (mouse; Figure 4C). This is not significantly different from the false positive detection rate 
of our ANOVA tests (α=0.05, Figure 4C). Given that a large number of trials showed no response at all 
in many units, it is possible that the large trial-to-trial variability in the imaged DCIC responses made it 
difficult to detect response specificity based on differences in median activity. We thus employed more 
sensitive χ2 tests to determine the statistical dependence between the recorded DCIC responses 
and presented stimulus azimuth. We then ranked the units in our simultaneously imaged samples 
based on the p-value of the χ2 tests (Figure 4D) to delimit subsamples of DCIC units showing the 

https://doi.org/10.7554/eLife.97598
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Figure 2. Decoding imaged single-trial DCIC population responses to sound azimuth. (A) Schematic representation of the decoding strategy using 
multi-class classification on the recorded simultaneous population responses. (B) Cumulative distribution plots of the absolute cross-validated single-
trial prediction errors obtained using naive Bayes classification (blue) and chance level distribution associated with our stimulation paradigm obtained 
by considering all possible prediction errors for the 13 azimuths tested (gray). K.S.: Kolmogorov-Smirnov test, n.s.: (p>0.05). (C) Schematic representation 
of the decoding strategy using the first PCs of the recorded population responses. Inset: % of explained variance obtained using PCA for dimensionality 
reduction on the complete population responses. Median (blue line) and median absolute deviation (shaded blue area) are plotted for (n=12 mice/
imaging sessions). (D) Same as (B) but for decoding different numbers of first PCs from the recorded complete population responses. (E) Significance 
of classification performance with respect to chance level for different numbers of first PCs, determined via Kolmogorov-Smirnov tests with Sidak 
correction for multiple comparisons. Arrowhead indicates model loss of performance associated with fitting more parameters for a larger feature space 
(# PCs) with the same dataset size (# trials collected).

Figure 2 continued on next page
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strongest azimuth-dependent responses. The units with significant response dependency to stimulus 
azimuth (p<0.05) represented 32 ± 6% (median ±median absolute deviation, n=12 mice) of the units 
simultaneously imaged in one session (mouse, Figure 4E). Even the top ranked units typically did not 
respond in many trials; nevertheless, their evoked responses showed a tendency to be more selective 
towards contralateral or central stimulus azimuths (Figure 4D left inset). The nS/N of top ranked units 
was also significantly larger than the one registered in the absence of sound stimulation, but these 
units did not display a major improvement in nS/N with respect to the complete population of imaged 

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Alternative decoding models tested.

Figure 2 continued
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Figure 3. Decoding neuropixels recorded single-trial DCIC population responses to sound azimuth. (A) Cumulative distribution plots of the absolute 
cross-validated single-trial prediction errors obtained decoding the complete simultaneously recorded population responses with neuropixels probes 
across mice (blue) and chance level distribution associated with our stimulation paradigm (gray). K.S.: Kolmogorov-Smirnov test, n.s.: (p>0.05). (B) % 
of observed variance explained across PC number for the complete population responses recorded with neuropixels. Median (blue line) and median 
absolute deviation (shaded blue area) are plotted for n=4 mice. (C) Same as (A) but for decoding different numbers of first PCs. (D) Significance of 
decoding performance shown in (C) with respect to chance level for different numbers of first PCs, determined via Kolmogorov-Smirnov tests with Sidak 
correction for multiple comparisons. Shaded areas show the corresponding median decoding errors to the points within the area.
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Figure 4. Sound azimuth information is carried by specific units from the imaged DCIC populations. (A) Histogram 
of the nS/N ratios from the recorded units across mice during sound stimulation or during the inter trial periods 
without sound stimulation (on going). (B) Representative stimulus azimuth tuning curves from units with significant 
median response tuning detected using non-parametric one-way ANOVA (Kruskal-Wallis test). Median and 

Figure 4 continued on next page
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units, indicating that despite their response dependency to stimulus azimuth their responses are also 
noisy (Figure 4A and D right inset).

To test if the single-trial response patterns from simultaneously imaged units with top response 
dependency to stimulus azimuth carry enough information to generate better azimuth predictions than 
the ones observed with the complete samples (Figure 2), we evaluated the prediction errors obtained 
by decoding them. In doing so, we cross-validated both unit ranking based on response dependency 
(feature selection) and decoder fit (Figure 4F). From this point on, we will refer to groups of units 
showing maximum response dependency to stimulus azimuth as ‘top ranked units’. To evaluate the 
minimum number of top ranked units necessary to generate stimulus azimuth predictions significantly 
better than the chance level, we decoded different sized subsamples of these units. We found that the 
single-trial response patterns of at least the 7 top ranked units produced stimulus azimuth prediction 
errors that were significantly smaller than chance level (p=6 x 10–4, Kolmogorov-Smirnov with Sidak) 
using Bayes classification (naive approximation, for computation efficiency; Figure 4G). Increasing 
the number of top ranked units decoded did not bring major improvements in decoder performance 
(plateau), up to a point where performance dropped, due to classifier overfitting likely caused by the 
relatively small number of collected trials per class (Figure 4G, bottom). If we consider the median 
of the prediction error distribution as an overall measure of decoding performance, the single-trial 
response patterns from subsamples of at least the 7 top ranked units produced median decoding 
errors that coincidentally matched the reported azimuth discrimination ability of mice (Figure 4G, 
minimum audible angle = 31°; Lauer et al., 2011)⁠.

To further characterize the identified top ranked units, we studied how they are distributed across 
the imaged DCIC volume, which was positioned roughly at the center from the surface of the mouse 
dorsal IC (Figure 1A and B). By comparing the positions of top ranked units to those of the complete 
samples of simultaneously imaged units across mice, we observed that the top ranked units (~32% 
from the complete DCIC populations imaged) are scattered across the imaged volumes following the 
same distributions across the anatomical axes of the complete imaged populations (Figure 4—figure 

absolute median deviation are plotted. The imaging depth from the corresponding units is displayed in gray. 
Azimuth selectivity is color-coded based on Figure 1B. (C) Percentage of the simultaneously recorded units across 
mice that showed significant median response tuning, compared to false positive detection rate (α=0.05, chance 
level). (D) Response dependency to stimulus azimuth, determined via χ2 tests (see Materials and methods), for 
simultaneously recorded units ranked in descending order of significance. Left inset: Representative responses 
from the top ranked 7 units with significant response dependency to stimulus azimuth. Response amplitudes are 
displayed with a continuous trace for visualization purposes, the displayed response order was sorted as a function 
of stimulus azimuth and does not represent the experimental stimulus delivery order (random). Right inset: Same 
as (A) but for the subset of units displaying response dependency to stimulus azimuth. (E) Percentage of the 
simultaneously recorded units across mice that showed significant response dependency to stimulus azimuth, 
compared to false positive detection rate (α=0.05, chance level). (F) Schematic representation of the decoding 
strategy using the top ranked units from the recorded population responses. (G) Top: Cumulative distribution 
plot of the absolute cross-validated single-trial prediction errors obtained with a Bayes classifier (N. Bayes, 
naive approximation for computation efficiency). The number of top ranked units considered for decoding their 
simultaneously recorded single-trial population response patterns is color coded from cyan (4 top ranked units) to 
purple (10 top ranked units) and the chance level distribution associated to our stimulation paradigm, obtained 
by considering all possible prediction errors for the 13 azimuths tested, is displayed in gray. Bottom: Significance 
of classification performance with respect to chance level for 4–30 decoded top ranked units, determined via 
Kolmogorov-Smirnov tests with Sidak correction for multiple comparisons. Arrowhead indicates model loss of 
performance associated with fitting more parameters for a larger feature space (# units) with the same dataset size 
(# trials collected).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Top ranked units are scattered throughout the imaged DCIC volumes.

(A) Histogram plots of the distribution of top ranked unit position in the imaged volume across each anatomical 
axis (20 μm bins) obtained from all imaged mice, either for the complete sample of units (purple) or the subsample 
of top ranked units (~32% of all the units imaged per mice, blue). K.S.: Kolmogorov-Smirnov test. (B) Scatter plots 
of the centroid position throughout the anatomical axes in the imaged volume from the detected top ranked units 
across mice.

Figure 4 continued
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supplement 1). This observation suggests that the subpopulations of top ranked DCIC units associ-
ated with the population code of sound azimuth scatter across the DCIC without following a specific 
spatial pattern. We observed a tendency for a small shift towards positive correlations in the correla-
tion coefficient distribution between snout movement and the imaged activity of individual top ranked 
units, however this distribution was narrow and centered close to 0 (Figure 1—figure supplement 
2E).

The observed broad distribution across DCIC and the relatively small number of top ranked 
units necessary to decode stimulus azimuth supports the characterization of this subpopulation with 
neuropixels data. Top ranked units detected in our neuropixels datasets also displayed response selec-
tivity towards contralateral and central azimuths and did not respond in many trials (Figure 5A and 
B). The nS/N of the DCIC single-units recorded with neuropixels was again significantly larger than 
the one registered without sound stimulation, with a distribution tailing above 1. Top ranked units 
displayed a further shift towards higher nS/N with respect to the complete population of neuropixels 
recorded DCIC single-units. Still the medians of these nS/N distributions was below 1, supporting that 
DCIC single-unit responses are noisy (Figure 5C). Top ranked units detected with neuropixels record-
ings represented 40 ± 2% (median ±median absolute deviation, n=4 mice) of the units simultaneously 
recorded in an experiment (mouse, Figure 5D).

Interestingly, the nS/N distributions of neuropixels recorded DCIC single-units in response to pure 
tone stimuli were similar to those observed for broadband stimulus azimuth (Figure 1—figure supple-
ment 1I, Figure 5C), suggesting that the observed nS/N levels in our imaging and electrophysiolog-
ical recordings might be a property of the DCIC network (and not due to the recording method’s 
sensitivity) which is noisy independently of the stimulus presented, at least in the passively listening 
condition. The percentage of sound frequency dependent units was 42 ± 15% (median ±median abso-
lute deviation, n=4 mice, Figure 5D). Out of the DCIC single-units from our neuropixels recordings, 
19 ± 6% (median ±median absolute deviation, n=4 mice, Figure 5D) displayed significant response 
dependency to both broadband stimulus azimuth and pure tone stimulus frequency, pointing out that 
not all DCIC azimuth-dependent units are sensitive to sound frequency and vice versa. To explore a 
possible relationship between the best frequency and azimuth sensitivity of these units in the context 
of the duplex theory (Rayleigh, 1907)⁠, we evaluated the correlation between their best frequency 
and the significance level of their response dependency to azimuth (-log(p value) of the χ2 test). This 
correlation was low (R=0.03, 17 single-units from 4 mice), but we could observe that the clear majority 
of these units had best frequencies above ~10 kHz, where the main sound location cues used by mice 
are carried (Lauer et al., 2011;⁠ Figure 5E).

Decoding analysis (Figure 4F) of the population response patterns from azimuth dependent top 
ranked units simultaneously recorded with neuropixels probes showed that the 4 top ranked units are 
the smallest subsample necessary to produce a significant decoding performance that coincidentally 
matches the discrimination ability of mice (31° (Lauer et al., 2011;⁠ Figure 5F and G)). Altogether, the 
close resemblance of the results obtained through volumetric imaging and electrophysiologically with 
neuropixels support that, even though noisy DCIC single-units can encode sound location individually 
with low performance (Figure 5F and G, first top ranked unit), a population code consisting of the 
simultaneous response patterns from small subsets of top ranked units occurs at DCIC, achieving 
more effective encoding errors.

Noise correlations and their contribution to the population code of 
sound azimuth at DCIC
We next investigated the occurrence of correlated variation in the trial-to-trial responses to each 
stimulus azimuth from pairs of simultaneously imaged or electrophysiologically recorded top ranked 
units as the occurrence of such neuronal noise correlations, which have been previously reported to 
occur at mammalian IC populations (Sadeghi et al., 2019), can influence the accuracy of the DCIC 
population code for sound azimuth (Averbeck et  al., 2006; Kohn et  al., 2016;⁠ Figure  6A). We 
evaluated the Kendall Tau as an unbiased, non-parametric pairwise correlation coefficient for the 
neuronal noise from all possible pairs of simultaneously recorded DCIC units across trial repetitions for 
each stimulus azimuth. Using cross-validated hierarchical clustering of the simultaneously imaged or 
neuropixels recorded top ranked units based on noise correlation, we observed no clear groups (clus-
ters, subpopulations) of highly noise correlated units across the trial repetitions from each stimulus 

https://doi.org/10.7554/eLife.97598
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Figure 5. Neuropixels recordings support observations drawn from sTeFo 2 P Ca2+ imaging experiments. (A) Representative responses to stimulus 
azimuth of a top ranked unit recorded with neuropixels. Top panels show the peri-stimulus time histograms and the bottom panels show the 
corresponding spike raster plots across trials. (B) Left: Schematic representation of a neuropixels probe shank highlighting in different colors the 
position from channels where representative top ranked single-units were detected across DCIC (approximated histologically, same units as displayed in 

Figure 5 continued on next page
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azimuth (Figure 6B and C). However, the pairwise noise correlation coefficients observed across data-
sets (mice) showed a distribution that was significantly shifted towards positive values with respect to 
chance level, calculated from the same datasets subjected to randomization of each unit’s responses 
across trial repetitions for each stimulus azimuth (decorrelated, Figure 6A–C). Nevertheless, this shift 
was much smaller for ipsilateral and central azimuths in our neuropixels data (Figure  6B and C). 
Altogether these observations suggest that pairs of the DCIC top ranked units associated with the 
population code for sound azimuth display positive noise correlations with a likelihood that is higher 
than chance.

To characterize how the observed positive noise correlations could affect the representation of 
stimulus azimuth by DCIC top ranked unit population responses, we compared the decoding perfor-
mance obtained by classifying the single-trial response patterns from top ranked units in the modeled 
decorrelated datasets versus the acquired data (with noise correlations). With the intention to char-
acterize this with a conservative approach that would be less likely to find a contribution of noise 
correlations as it assumes response independence, we relied on the naive Bayes classifier for decoding 
throughout the study. Using this classifier, we observed that the modeled decorrelated datasets 
produced stimulus azimuth prediction error distributions that were significantly shifted towards higher 
decoding errors (Figure 6B and C) and, in our imaging datasets, were not significantly different from 
chance level (Figure 6B). Altogether, these results suggest that the detected noise correlations in 
our simultaneously acquired datasets can help reduce the error of the IC population code for sound 
azimuth. We observed a similar, but not significant tendency with another classifier that does not 
assume response independence (KNN classifier), although overall producing larger decoding errors 
than the Bayes classifier (Figure 2—figure supplement 1B).

Discussion
By performing fast volumetric Ca2+ imaging through sTeFo-2P microscopy (Prevedel et al., 2016)⁠ 
and single-unit recordings with neuropixel probes (Jun et al., 2017)⁠, here we tackled the technical 
challenge to simultaneously record the activity of a large number of DCIC units in response to sound 
azimuth. We show that sTeFo-2P effectively achieved high throughput sampling across large imaging 
depths in a highly light-scattering tissue such as the mouse IC (Figure 1), showcasing the capability of 
sTeFo-2P for interrogating neuronal population activity over large volumes. Despite the advantages 
of volumetric sTeFo-2P, it also has limitations. In particular, large-scale volumetric imaging has a low 
temporal resolution, reaching sampling rates of 4 volumes per second, and requires the use of an 
indirect method of monitoring neuronal activity via Ca2+ sensors. The low temporal resolution effec-
tively produces a low-pass filtering of neuronal activity, misrepresenting peak responses. Furthermore, 
indirectly inferring neuronal spiking responses from Ca2+ sensor signals can cause further informa-
tion loss. Nevertheless, the main observations drawn from sTeFo 2 P imaged population response 
patterns could be validated via single-unit recordings with new generation multichannel silicon probes 
(neuropixels), which have excellent temporal resolution but markedly lower throughput. This supports 
that the sTeFo imaging datasets still carried sufficient information about stimulus azimuth (Figures 2 
and 4), showcasing how sTeFo 2 P opens new possibilities for future studies requiring high-throughput 
recordings of simultaneous population activity, especially considering the advantages brought by 

Figure 1—figure supplement 1C—E). Right Representative azimuth tuning curves from three DCIC top ranked single-units recorded with neuropixels, 
plot colors correspond to position in the shank schematic. Mean and standard deviation are plotted. (C) Neuronal signal to noise level (nS/N) histograms 
from neuropixels recorded DCIC single-units in the absence of sound stimuli (on going activity, gray) and in response to the best azimuth trials, for all 
collected single-units (blue) and the top ranked single-unit subset (red). (D) Percentages of sound azimuth dependent units (top ranked units), sound 
frequency dependent units and both azimuth and frequency dependent units across mice. Median value across mice is represented by a horizontal 
line. (E) Relationship between azimuth sensitivity and best frequency of DCIC sound frequency and azimuth dependent single-units across mice. Data 
from n=4 mice, point color corresponds to the same mouse. X axis scale is logarithmic. (F) Cumulative distribution plots of the absolute cross-validated 
single-trial prediction errors obtained by decoding the responses from different numbers of top ranked units simultaneously recorded with neuropixels 
probes across mice and chance level distribution associated with our stimulation paradigm (gray). (G) Significance of decoding performance shown in 
(F) with respect to chance level for different numbers of top ranked units decoded, determined via Kolmogorov-Smirnov tests with Sidak correction for 
multiple comparisons. Shaded areas show the corresponding median decoding errors to the points within the area. Sample sizes (number of mice) is 
informed at the top of the graph for each point.

Figure 5 continued
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Figure 6. Noise correlations in DCIC population activity contribute to encode sound azimuth. (A) Simplified 
schematic representation of the possible effects from (positive) noise correlations on the response separability of 
a theoretical population consisting of 2 units, and within class randomization strategy to model decorrelated 
datasets lacking noise correlations. (B, C) Left top: Representative correlation matrices of pairwise correlations 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.97598


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Boffi et al. eLife 2024;13:RP97598. DOI: https://doi.org/10.7554/eLife.97598 � 15 of 25

further technical improvements such as multiplexing or larger fields of view (Clough et al., 2021; 
Demas et al., 2021; Ota et al., 2021; Weisenburger et al., 2019)⁠ and 3P excitation (Weisenburger 
et al., 2017)⁠.

The imaged or electrophysiologically recorded population activity datasets here described 
support with simultaneous recordings that the single-trial response patterns from subsets of neurons 
with response dependency to stimulus azimuth (top ranked units) constitute a population code for 
sound azimuth at the DCIC of awake, passively listening mice (Figures 4–5). This finding comple-
ments previous studies analyzing pooled, non-simultaneous extracellular recordings from the CNIC 
of passively listening animals (Day et al., 2012; Day and Delgutte, 2016; Day and Delgutte, 2013)⁠, 
which could have potentially exciting implications, as DCIC represents a higher order relay of the 
auditory pathway, with respect to CNIC, and receives more profuse descending corticofugal inputs 
involved in sound location experience-dependent plasticity (Bajo et  al., 2019; Bajo et  al., 2010; 
Lesicko et  al., 2022; Winer et  al., 2002)⁠. Concretely, we show that sound location coding does 
indeed occur at DCIC on the single-trial basis, and that this follows a comparable mechanism to the 
characterized population code at CNIC (Day and Delgutte, 2013)⁠. However, it remains to be deter-
mined if indeed the DCIC network is physiologically capable of Bayesian decoding computations. 
Interestingly, the small number of DCIC top ranked units necessary to effectively decode stimulus 
azimuth suggests that sound azimuth information is redundantly distributed across DCIC top ranked 
units, which points out that mechanisms beyond coding efficiency could be relevant for this popula-
tion code.

While the decoding error observed from our DCIC datasets obtained in passively listening, 
untrained mice coincidentally matches the discrimination ability of highly trained, motivated mice 
(Lauer et al., 2011), a relationship between decoding error and psychophysical performance remains 
to be determined. Interestingly, a primary sensory representations should theoretically be even more 
precise than the behavioral performance as reported in the visual system (Stringer et  al., 2021)⁠. 
One possible explanation could be that the population code of sound azimuth at DCIC is likely not a 
primary representation, as DCIC is reported to be involved in higher order functions including expe-
rience dependent plasticity, is influenced by auditory cortex (Bajo et al., 2019; Bajo et al., 2010; 
Bajo and King, 2012)⁠ and is associated to non-auditory processes (Gruters and Groh, 2012; Wong 
and Borst, 2019)⁠. In this respect, we observed a correlation between the recorded DCIC popula-
tion activity and snout movements, suggesting that non-auditory processes are likely influencing the 
recorded responses (Figure 1—figure supplement 2). On the other hand, our observations were 
drawn from unilateral datasets from a single IC. It has been reported that the population responses of 
a single IC (unilateral recordings from CNIC) can produce a complete representation of sound location 
throughout the frontal hemifield (Day and Delgutte, 2016; Day and Delgutte, 2013)⁠. Our obser-
vations support this notion, showing that unilateral subpopulations of top ranked DCIC units carry 
enough information to generate a representation of the complete frontal hemifield that is accurate 
enough to match the discrimination ability of mice (Lauer et al., 2011)⁠. Discrepancies with respect to 
unilateral lesion studies (Day and Delgutte, 2013; Jenkins and Masterton, 1982)⁠, suggesting that 
one IC would carry information about the contralateral hemifield only, could be explained by the loss 
of commissural interactions between both ICs that contribute to sound location processing (Orton 
et  al., 2016)⁠. In this respect, we observed that the jRGECO1a-labeled neurons we imaged could 
project contralaterally (Figure 1A, inset), suggesting that the imaged DCIC populations would be 

between the responses of top ranked units detected in simultaneous recordings during sound stimuli for 
representative azimuths. The simultaneously imaged units are sorted in the correlation matrices based on cross 
validated hierarchical clustering (see Materials and methods). Left bottom: Distribution histograms for the pairwise 
correlation coefficients (Kendall tau) from pairs of simultaneously recorded top ranked units across mice (blue) 
compared to the chance level distribution obtained through randomization of the temporal structure of each unit’s 
activity to break correlations (purple). Vertical dashed lines show the medians of these distributions. *: p<0.05, ***: 
p<0.0001, Kolmogorov-Smirnov with Sidak. Right: Cumulative distribution plots of the absolute cross-validated 
single-trial prediction errors obtained using a Bayes classifier (naive approximation for computation efficiency) to 
decode the single-trial response patterns from the 6 (neuropixels) or 7 (sTeFo 2 P imaging) top ranked units in the 
simultaneously acquired datasets across mice (cyan), modeled decorrelated datasets (orange) and the chance level 
distribution associated with our stimulation paradigm (gray).

Figure 6 continued
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involved in commissural interactions. This is particularly interesting in the context of the opposing two 
channel model of sound location coding proposed for the mammalian auditory brainstem (Grothe 
et al., 2010; Park et al., 2004)⁠, which was ruled out for azimuth coding at the rabbit CNIC (Day 
and Delgutte, 2013)⁠, but could still be relevant for understanding DCIC population coding of sound 
location. Thus, we cannot rule out that the actual accuracy of the DCIC population code for sound 
azimuth, on the single-trial basis, would only be reached if we considered bilateral DCIC record-
ings. These open questions about the transformations undergone by the neural code for sound loca-
tion across the relays of the auditory pathway and the influence of bilateral interactions are exciting 
subjects for future study.

Both our imaging and neuropixels datasets show that the responses from DCIC neurons are noisy, 
independently of the recording methodology or stimulus (Figures 4 and 5, Figure 1—figure supple-
ment 1), and that this neuronal noise is often positively correlated across simultaneously recorded 
pairs of top ranked units, which are involved in the population code of sound azimuth (Figure 6). 
Interestingly, these noise correlations can contribute to reducing the error of the DCIC population 
code for sound azimuth (Figure 6). In low dimensional samples of ~two neurons this could only be 
justified by concomitant negative signal correlations with positively correlated noise (middle scenario 
in Figure 5A). However, the recorded top ranked units typically showed contralateral sensitivity, which 
means generally positive signal correlation instead. Nevertheless, in larger samples this relationship 
between signal and noise correlations seems to be more complex, supporting that these assump-
tions do not necessarily apply in a complex multidimensional representation like the population code 
here studied, where empirical determination of the impact of noise correlations are more informative 
(Montijn et al., 2016)⁠⁠. Noise correlations have been reported to occur at the mammalian CNIC and 
have a role in sound categorization (Sadeghi et al., 2019)⁠, however their influence on the population 
code for sound location remained unexplored (Day et al., 2012; Day and Delgutte, 2016; Day and 
Delgutte, 2013)⁠. Thus, our data supports that response sensitivity to azimuth might not be the only 
feature of IC neurons carrying information about stimulus azimuth, as considered in previous studies 
(Chase and Young, 2008; Chase and Young, 2005; Day et al., 2012; Day and Delgutte, 2016; Day 
and Delgutte, 2013)⁠, but noise correlations across the population responses could also be a relevant 
factor. This implication might extend to other brain regions relevant for sound location coding or 
perhaps also to different sensory modalities.

It is worth mentioning that many discrepancies exist in the labeling and segmentation boundaries 
of the anatomical subdivisions of IC between the most commonly used mouse brain reference atlases 
(Chon et al., 2019)⁠, like the Franklin-Paxinos atlas (Paxinos and Franklin, 2001)⁠ and the Allen atlas (​
atlas.brain-map.org), which can lead to conflicting interpretations of experimental data (Bjerke et al., 
2018)⁠. These differences could arise due to different criteria employed by the expert neuroanatomists 
to segment anatomical subdivisions (histological stainings or magnetic resonance imaging) different 
tissue preparation (PFA fixed vs. fresh frozen) or intrinsic variability in the colonies of the animals 
employed (Chon et al., 2019)⁠. Here, we adopted the IC segmentation boundaries and labels from 
the Franklin-Paxinos atlas, due to the extensive previous research employing it and the fact that we 
followed a compatible tissue preparation procedure for determining the anatomical location of our 
imaged volumes and electrode tracts (PFA fixed tissue slices). Recent efforts implementing the widely 
used segmentation and labeling from the Franklin-Paxinos atlas into the Allen common coordinate 
framework are a step in the right direction to circumvent this issue (Chon et al., 2019)⁠. Taking this into 
consideration, we report that DCIC top ranked units scatter across the imaged volume with no speci-
ficity in their location across the anatomical axes (Figure 6). Interestingly, in vivo imaging studies report 
that the mouse dorsal IC processes sound frequency information topographically (tonotopy), showing 
a distinct tonotopic arrangement of neurons across the rostromedial-caudolateral and dorso-ventral 
axes (Barnstedt et  al., 2015; Wong and Borst, 2019)⁠. Beyond the mouse model, a hypothetical 
functional relationship between the distribution of sound location encoding DCIC neuronal subpopu-
lations and DCIC tonotopic gradients of sound frequency tuning could shed light into how the DCIC 
subpopulation code of sound azimuth relates to the duplex theory of sound location (Rayleigh, 1907)⁠. 
Nevertheless, we observed that not all DCIC azimuth-sensitive units show pure tone sound frequency 
sensitivity, whereas a fraction of units showing both azimuth and sound frequency sensitivity displayed 
selectivity for high sound frequencies >10 kHz, making this argument only relevant to perhaps the 
latter subset of DCIC neurons. Technical improvements realizing larger fields of view to interrogate 
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the wide-stretching tonotopic DCIC map in simultaneous recordings would be key to further explore 
this relationship (Demas et al., 2021; Ota et al., 2021)⁠.

In conclusion, our simultaneous recordings from passively listening mice directly support that popu-
lation response patterns from a subset of DCIC noisy neurons effectively encode sound location on 
the single-trial basis with an error that matches the discrimination ability of trained mice (Lauer et al., 
2011)⁠. Specifically, we report that azimuth information is redundantly distributed across the subset 
of DCIC azimuth-sensitive units (top ranked units), which rely not only on response dependency to 
sound location but also on noise-correlations to accurately encode this information and are randomly 
scattered across DCIC. An important open question remains about the behavioral relevance of this 
code and the noise correlations. We hope that this study paves the way to explore this question in 
detail, together with the wealth of knowledge available about cortico-collicular interactions involved 
in experience-dependent plasticity in the context of sound localization (Bajo et al., 2019; Bajo et al., 
2010)⁠.

Materials and methods
Animals and ethics statement
This work was performed in compliance to the European Communities Council Directive (2010/63/EU) 
to minimize animal pain and discomfort. EMBL’s committee for animal welfare and institutional animal 
care and use (IACUC) approved all experimental procedures under protocol number 2019-04-15RP. 
Experiments were performed on 7–16 week-old CBA/j mice obtained from Charles River Laboratories 
and housed in groups of 1–5 in makrolon type 2 L cages on ventilated racks at room temperature and 
50% humidity with a 12 hr light cycle. Food and water were available ad libitum. Experimental subjects 
consisted of 12 mice for imaging and 4 mice for electrophysiological recordings.

Surgical procedures
For microscopy
Cranial window surgeries were performed on 7–8 week-old mice of either sex following procedures 
published elsewhere (Boffi et al., 2018)⁠. Briefly, anesthesia consisted of a mixture of 40 µl fentanyl 
(0.1 mg/ml; Janssen), 160 µl midazolam (5 mg/ml; Hameln), and 60 µl medetomidin (1 mg/ml; Pfizer), 
dosed in 5 µl/g body weight and injected i.p. Hair removal cream was used to remove the fur over 
the scalp of anesthetized mice and eye ointment was applied (Bepanthen, Bayer). 1% xylocain (Astra-
Zeneca) was injected as preincisional anesthesia under the scalp. Prepared mice were then placed 
in a stereotaxic apparatus (David Kopf Instruments, model 963) with their bodies on a heating pad 
(37 °C). The scalp was surgically removed to expose the dorsal cranium. The periosteum was removed 
with fine forceps and scissors to prepare the surface for cranial window implantation and stereo-
taxic delivery of viral vectors. Post-surgical pain relief was provided (Metacam, Boehringer Ingelheim) 
through s.c. injections (0.1 mg/ml, dosed 10 μl/g body weight).

The Ca2+ indicator jRGECO1a (Dana et al., 2016)⁠ was expressed in IC neurons through transduc-
tion with AAV vectors (Addgene #100854-AAV1), which were stereotaxically delivered as follows. A 
4 mm diameter circular craniectomy centered over IC (~1 mm posterior to lambda (34)⁠) was produced 
using a dental drill (Microtorque, Harvard Apparatus) with care to avoid bleeding and damage of the 
dura, which was not removed and left intact. Stereotaxic injections were performed at the right IC 
(from bregma: –5.2 mm AP, 0.5 mm ML) with pulled glass pipettes lowered to depths of 300, 400, and 
500 μm, at a rate of ~4 μl/hr using a 10 ml syringe (to generate pressure) coupled o the glass needle 
through a silicon tubing via a luer three-way T valve. ~300 nl were injected per site. After injection, the 
craniectomy was sealed with a round 4 mm coverslip (~170 μm thick, disinfected with 70% ethanol), 
with a drop of saline between the glass and the dura, and dental acrylic cement (Hager Werken Cyano 
Fast and Paladur acrylic powder). A head fixation bar was also cemented. The open skin wound was 
also closed with acrylic cement. At the end of the surgery anesthesia was antagonized with a subcu-
taneous injection of a mixture of 120 µl sterile saline, 800 µl flumazenil (0.1 mg/ml; Fresenius Kabi), 
and 60 µl atipamezole (5 mg/ml; Pfizer) dosed in 10 µl/g body weight. Mice were single housed after 
surgery to minimize the chance of cage mates compromising each others implantations and were 
allowed to recover for at least 4 weeks before imaging, providing time for Ca2+ indicator expression 
and for the inflammation associated with this surgery to resolve (Holtmaat et al., 2009)⁠.

https://doi.org/10.7554/eLife.97598
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For electrophysiology
Acute craniectomy surgeries were performed on 7–15 week-old mice of either sex following proce-
dures published elsewhere (Boffi et al., 2018)⁠. Briefly, anesthesia was induced with 5% isoflurane 
(Baxter) in O2, and maintained at 1.5–2% with a flow rate of 0.4–0.6 LPM. Hair removal cream was 
used to remove the fur over the scalp, eye ointment was applied (Bepanthen, Bayer) and 1% xylocain 
(AstraZeneca) was injected under the scalp as preincisional anesthesia. Mice were set in the stereo-
taxic apparatus with their bodies on a heating pad (37 °C) and their scalp and periosteum removed to 
expose the dorsal cranium. A custom made head bar was cemented to the exposed cranium, sealing 
the skin wound, with UV cured dental acrylic to reduce curing time (Loctite 4305 LC). A ~4 mm diam-
eter circular craniectomy centered over IC (~1 mm posterior to lambda Paxinos and Franklin, 2001⁠) 
was produced using a dental drill (Microtorque, Harvard Apparatus) with care to avoid bleeding and 
damage of the dura. The surface of the brain was kept moist at all times with sterile cortex buffer 
(mM: NaCl 125, KCl 5, Glucose 10, Hepes 10, CaCl2 2, MgCl2 2, pH 7.4). The dura was carefully ripped 
open at a small site over DCIC for electrode insertion, through an incision made with a sterile G27 
needle. The dura was not completely removed and the rest was left intact. Post-surgical pain relief 
was provided (Metacam, Boehringer Ingelheim) through s.c. injections (0.1  mg/ml, dosed 10  μl/g 
body weight).

Craniectomy surgeries typically lasted 30 min since the induction of anesthesia, after which the 
mouse was allowed to recover headfixed at the recording setup (same as for Ca2+ imaging, see below). 
Typically ~5 min after isoflurane removal the mice displayed awake behaviors like whisking, blinking, 
grooming, and body movements. The craniectomy was kept submerged in a well of cortex buffer 
throughout the experiment. We began recording at least 40 min after the mouse showed signs of 
being fully awake. During this period, the neuropixel probe was inserted into the DCIC at 10 μm/s 
rate using a micromanipulatior (Sutter MPC-385 system, coupled to a Sensapex uMp-NPH Neuropixel 
1.0 probe holder). After insertion, neuropixel probes were allowed to settle in the tissue for 10 min. 
The metal headbar was left exposed to the cortex buffer close to the edge of the craniectomy and 
was used as reference.

sTeFo-2P microscopy
We built a bespoke scanned temporal focusing (sTeFo) 2 photon microscope for fast volumetric in 
vivo Ca2+ imaging of large IC neuronal populations from awake mice. Technical details and detailed 
working principle are extensively described elsewhere (Prevedel et al., 2016)⁠. The main difference 
with respect to the microscope design published by Prevedel et al., 2016 was a higher repetition 
laser (10 MHz, FemtoTrain, Spectra Physics). Laser power while scanning was kept below 191 mW, 
measured after the objective, to avoid heating the brain tissue excessively (Prevedel et al., 2016)⁠. 
470 μm2 fields of view were imaged at 128 px2 resolution and spaced in 15 μm z steps to cover 570 μm 
in depth (38 z steps) at a volume rate of 4.01 Hz. Artifacts produced by objective piezo z drive flyback 
were excluded from analysis.

In a typical imaging session, cranial window implanted mice were briefly (<1 min) anesthetized with 
5% isoflurane in O2 for quick head fixation at a custom stage, slightly restraining their bodies inside 
a 5 cm diameter acrylic tube, and positioned under our custom 2P microscope. Mice fully recovered 
from the brief isoflurane anesthesia, showing a clear blinking reflex, whisking and sniffing behaviors 
and normal body posture and movements, immediately after head fixation. In our experimental condi-
tions, mice were imaged in sessions of up to 25 min since beyond this time we started observing some 
signs of distress or discomfort. Thus, we avoided longer recording times at the expense of collecting 
larger trial numbers, in strong adherence of animal welfare and ethics policy. A pilot group of mice 
were habituated to the head fixed condition in daily 20 min sessions for 3 days; however, we did not 
observe a marked contrast in the behavior of habituated versus unhabituated mice beyond our rela-
tively short 25-min imaging sessions. In consequence imaging sessions never surpassed a maximum 
of 25 min, after which the mouse was returned to its home cage. Typically, mice were imaged a total 
of 2–11 times (sessions), one to three times a week. Datasets here analyzed and reported come from 
the imaging session in which we observed maximal calcium sensor signal (peak AAV expression) and 
maximum number of detected units. Volumetric imaging data was visualized and rendered using FIJI 
(Schindelin et al., 2012)⁠. Motion correction was performed using NoRMCorre (Pnevmatikakis and 
Giovannucci, 2017)⁠ on individual imaging planes from the volumetric datasets. We used the CaImAn 

https://doi.org/10.7554/eLife.97598
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package (Giovannucci et al., 2019) for automatic ROI segmentation through constrained non nega-
tive matrix factorization and selected ROIs (Units) showing clear Ca transients consistent with neuronal 
activity, and IC neuron somatic shape and size (Schofield and Beebe, 2019). jRGECO1a signal from 
the segmented ROIs was extracted, denoised and neuropil corrected from each individual imaging 
plane using CaImAn (Giovannucci et al., 2019)⁠. Spike probabilities were estimated using MLSpike 
(Deneux et al., 2016)⁠.

Extracellular electrophysiological recordings
We performed acute extracellular single-unit recordings using the Neuropixles (Jun et al., 2017)⁠ 1.0 
system (PRB_1_4_0480_1, PXIe_1000, HST_1000, IMEC). Reference and ground pads on the band 
connector of the probe were bridged and grounded. The probe shank was coated before recordings 
by dipping 10 times every 5 s in DiI (V22885, Thermo Fisher) for post hoc histological assessment of 
electrode tracks. Recordings were performed using SpikeGLX software (https://billkarsh.github.io/​
SpikeGLX/). Mice were recorded for ~25 min after successful electrode insertion (see surgical proce-
dures), after which they were placed in an empty cage, and their behavior monitored for 10–15 min. 
We only considered recordings from mice that displayed normal behaviors (locomotion, exploration, 
sniffing, whisking), with no clear signs of pain or discomfort (freezing, shivering, raised fur) at this 
stage. Mice were sacrificed after this with CO2 for transcardial perfusion and tissue preparation to 
trace electrode tracks (see below). After retrieval, neuropixels probes were cleaned through immer-
sion in 1% Tergazime (Z742918, Merck) for some minutes, followed by washes in distilled water and 
reused multiple times. Recordings were preprocessed for spike sorting with CatGT (https://billkarsh.​
github.io/SpikeGLX/#catgt) for high pass filtering, common average referencing of the demultiplexed 
channels and file concatenation. Spike sorting with drift correction was performed using kilosort 2.5 
(Pachitariu et  al., 2020). The output of kilosort was manually curated using Phy (Rossant, 2021, 
https://github.com/cortex-lab/phy), selecting only single-units with somatic AP waveforms with good 
waveform consistency (amplitude) across spikes, showing few or no refractory period violations (2ms 
refractory period violation time window) in their correlogram plots and firing a minimum of 150 times 
in 20 min of recording. Stimulus times collected as digital channel inputs and recorded clock signals 
from the neuropixles headstage were temporaly aligned to a reference clock with Tprime (https://​
billkarsh.github.io/SpikeGLX/#tprime).

Sound stimulation
A custom sound-attenuating chamber was incorporated to the microscope/electrophysiology setup, 
allowing only the objective or cables to access the inside, to attenuate room and microscope scanner 
noise reaching the mouse. All possible sound reflecting surfaces were lined with 1-cm or 0.5-cm-thick 
foam to preserve free-field conditions. SPL was measured using a free-field prepolarized measure-
ment microphone (PCB Piezotronics, 378C01, with signal conditioner 482A21) placed on the setup 
stage in the position of the head of the mouse. For imaging experiments, background R.M.S. SPL 
measurements during imaging without sound stimuli delivery was (20–40 kHz) 44.83 dB (79.5 dB total 
SPL summed across the band). Sound stimulus (20–40 kHz) R.M.S. SPL during imaging was 56.83 dB 
(96.2 dB total SPL summed across the band), ensuring that SPL was at least 10 dB above background 
SPL for sound stimuli to be salient. Background R.M.S. SPL during imaging across the mouse hearing 
range (2.5–80 kHz) was 44.53 dB.

Electrophysiological experiments were performed at the same setup, without the microscope 
running. For broadband stimuli applied in our electrophysiological experiments, background R.M.S. 
SPL (15–50  kHz) was 35.96  dB (89.9  dB total SPL summed across the band). Broadband stimulus 
(15–50 kHz) R.M.S. SPL was 62.5 dB (102 dB total SPL summed across the band). Pure tone stimuli 
consisted on 4–48 kHz tones, making 3.5 octaves split into steps of 4. Peak SPL of the pure tone 
stimuli was calibrated to 65±3 dB. R.M.S. background noise across the 4–48 kHz band was 35.1 dB. 
Background R.M.S. SPL across the mouse hearing range (2.5–80 kHz) was 34.68 dB.

Broadband sound stimuli consisted of band-passed frozen noise. Stimulus duration was 500ms for 
imaging experiments and 200ms for electrophysiological experiments, including 10ms up and down 
ramps. Sound stimuli were delivered through an electrostatic speaker (Tucker Davis Technologies, ES1 
coupled to a ED1 speaker driver) mounted on an arm at an 8.5 cm distance away from the head of 
the mouse, which was mounted on a NEMA17 bipolar stepper motor (26 Ncm, 1.8 deg/step) placed 
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under the head of the mouse to position the speaker around the frontal hemifield. The motor was 
controlled using an Arduino UNO microcontroller, running GRBL v0.9 (Skogsrud and Jeon, 2016) and 
coupled with the Arduino CNC Shield V3.10 (https://blog.protoneer.co.nz/arduino-cnc-controller/) 
running A4988 motor drivers. To control and program speaker positioning, we used the universal 
G-code sender (https://winder.github.io/ugs_website/). Synchronization of speaker positioning and 
sound stimulus delivery to data acquisition was done through a second Arduino UNO board receiving 
a scan start TTL from the microscope to trigger stimulation programs or by recording the sound 
delivery TTL signal with a DAQ board (National Instruments, PXIe-6341) through a digital channel in 
SpikeGLX. Pure tone stimuli were presented with the speaker parked at 0° azimuth, in front of the 
mouse.

Audio stimuli (including 10ms up and down ramps) were synthesized using MATLAB (0.5 MHz 
sampling rate). Sound delivery was performed using a DAQ board (National Instruments, PXIe-6341) 
interfaced to MATLAB using the DAQmx wrapper from scanimage (https://vidriotechnologies.com/​
scanimage/).

A typical stimulation protocol consisted of a series of presentations of a sound stimulus in which 
azimuth angles varied randomly from 13 different frontal positions (frontal 180° split into 15° steps). 
For imaging experiments, stimuli were presented every 5 s and each azimuth angle was presented on 
average 14 times per session. Minimum number of same-azimuth trials collected was 8. For electro-
physiological experiments, firstly pure tone stimuli were applied every 2 s in pseudo-random order 
to obtain 10 trial repetitions (14 sound frequencies, 140 trials), and after that broadband stimulus 
azimuth trials were applied every 3 s (to allow the motor to complete speaker movements) in pseudo-
random order to obtain 20 trial repetitions (13 azimuths, 260 trials).

Histology
At the end of the experiment mice were transcardially perfused with phosphate-buffered saline (PBS) 
followed by 4% paraformaldehyde at room temperature to fixate the brain. The perfused brain was 
dissected and post-fixed in 4% paraformaldehyde for 24  hr at 4  °C. After post-fixation, brains were 
washed with PBS saline and stored at 4   °C. 100-μm-thick free-floating vibratome (Leica VT1200) 
coronal sections were cut at room temperature, mounted on slides using Vectashield with DAPI 
(H-1200–10, Vector Laboratories) and imaged in a NIKON Ti-E epifluorescence microscope equipped 
with a LUMENCOR SPECTRA X module for illumination, standard DAPI and mCherry filter cubes, and 
a ​pco.​edge 4.2 CL sCMOS camera; using a CFI P-Apo 4 x Lambda/ 0.20/20,00 objective. Images of 
brain slices were aligned to the mouse brain reference atlas manually following anatomical landmarks.

Face movement videography
Videos from one side of the mouse face, ipsilateral to the imaged IC, were recorded with an IR sensi-
tive camera equipped with a CMOS OV2710 sensor, IR LEDs for illumination, a 25mm M12 objective 
(ELP, USBFHD05MT-KL36IR), using a sampling rate of 30 fps at 720 p resolution. Video acquisition 
was synchronized to the microscope acquisition start. Video image analysis based on intensity change 
between successive frames was performed following a similar approach as described by Wong and 
Borst, 2019 using FIJI (Schindelin et al., 2012)⁠ and custom MATLAB scripts. For correlations between 
face movements and imaged neuronal activity, the Pearson correlation coefficient was used.

Statistical analyses
Each mouse was considered a replicate. Datasets obtained in one imaging/recording session from 
each mouse, consisting of ~200 azimuth trials were analyzed. We did not perform any form of data 
augmentation through resampling with restitution of the recorded responses to virtually increase 
the number of trials (Day and Delgutte, 2013)⁠. Statistical analyses were performed using MATLAB 
(2023a,b) functions and custom scripts. For hypothesis testing, a p-value <0.05 was considered signif-
icant. Sidak’s correction of p values was used for multiple comparisons. nS/N ratios were evaluated as 
the inverse of the coefficient of variation of the recorded responses of each cell across azimuth trials.

For our imaging data, since many units failed to respond across many trials, we did not perform 
baseline spike probability subtraction as this frequently led to negative spike probabilities that were 
hard to interpret. For our neuropixels experiments, we generally did not perform baseline firing 
subtraction from the responses as the average baseline firing in the 200ms before stimuli was quite 
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low and close to 0 (Figure 1—figure supplement 1F, Figure 5A). Nevertheless, we did subtract base-
line firing for the determination of the nS/N (Figure 5C), as the on going activity varied extensively 
across the recordings (in the absence of sound stimulation, Figure 1I) and this could lead to nS/N 
values that were artificially high. On going activity was estimated as the spike count determined in 
200ms time windows during the inter trial periods (2.8 s, no sound stimulation), 1 s before each stim-
ulation trial. ‘Baseline on-going firing’ was determined as the spike count 200ms previous to that. For 
fairness of comparisons, we also subtracted baseline firing determined during the 200ms pre response 
for nS/N determination from the sound stimulated condition.

One sided Kruskal-Wallis tests were performed to determine median response tuning to stimulus 
azimuth, with 12  degrees of freedom (13 tested azimuths). Two sample Kolmogorov-Smirnov and 
Wilcoxon rank sum tests were two sided. To find units with single-trial responses that were statistically 
dependent on stimulus azimuth (feature selection) we performed χ2 independency tests using the 
function fscchi2 from the statistics and machine learning toolbox from MATLAB with default param-
eters, which binned the responses into 10 bins. Cross validated sorting of noise correlation matrices 
was obtained by performing hierarchical clustering on half of the trials recorded based on pairwise 
neuronal noise correlations (using the Kendall tau as a non parametric correlation coefficient) as a 
distance metric, and plotting the pairwise correlation coefficient matrix registered for the other half of 
the trials, sorting the units based on the clustering. IC population response classification (decoding) 
was performed using the naive Bayes classifier algorithm implemented in MATLAB, using the fitcnb 
function from the statistics and machine learning toolbox. For the latter function, model fit involved 
Bayesian hyperparameter optimization for all eligible parameters. This MATLAB function performs 
3 steps: 1) Estimation of the densities of the units’ responses (predictors) within each class (stimulus 
azimuth) through kernel smoothing density estimation. Uniform, Epanechnikov, Gaussian or triangular 
smoothing kernels and Kernel smoothing window width were set through hyperparameter optimiza-
tion. 2) Use the Bayes rule to estimate the posterior probability P^ for all possible azimuth classes k = 
1, ... , 13 (–90° to 90° in 15° steps) as:

	﻿‍

P̂(Y = K | X1...XP) =
π(Y = k)

p∏
j=1

P(Xj | Y = k)

13∑
k=1

π(Y = k)
p∏

j=i
P(Xj | Y = k)

,

‍�

where Y is the possible azimuth class being evaluated, X1,...,Xp are the simultaneously acquired 
responses from the units in a population of size p during a single azimuth trial, π(Y = k) is the prior 
probability that the azimuth class is k, determined as the relative frequencies of each azimuth class in 
the training dataset. (3) Determine the azimuth class of a single-trial response pattern as the class with 
maximum posterior probability (maximum a posteriori decision rule).

For dimensionality reduction, feature selection and classification (decoding) a ‘leave one out’ cross-
validation strategy was implemented for the whole process, in which dimensionality reduction (PCA) 
or feature selection (top ranked cell selection, if applicable) was performed and then the models were 
fitted to the population responses collected in all trials except one (for each imaging session) and the 
one population response left out was decoded as is or using the selected features (best cells) or using 
the PCA loadings matrix to calculate PC scores, and fitted model. This procedure was iterated until all 
population responses simultaneously recorded in an experiment (mouse) were decoded.

Materials and correspondence
Datasets and code supporting this study are available from https://www.ebi.ac.uk/biostudies/
bioimages/studies/S-BIAD1064.
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