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NEW RESULTS ON RELAXATION AND HOMOGENIZATION OF
UNBOUNDED SINGULAR INTEGRALS

OMAR ANZA HAFSA, MOHAMED LAMINE LEGHMIZI,
AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. In this paper, we extend our study of the relaxation and homogenization of un-
bounded singular integral functionals, previously developed in [AHLMI11l [AHCMT7] where
we examined the case of integrands whose quasiconvexification has polynomial growth. Here,
we focus on the more general case where the quasiconvexification has convex growth. The
distinguishing feature of this study is that such a singularity on the integrands is compatible
with the fundamental constraint of hyperelasticity which says that compressing a volume
of matter to a point requires an infinite amount of energy. However, our framework is not
consistent with the constraint of noninterpenetration of matter.
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2 NEW RESULTS ON RELAXATION AND HOMOGENIZATION OF UNBOUNDED SINGULAR INTEGRALS

1. INTRODUCTION

In this paper we consider unbounded singular integral functionals of the form:
F(0) = | F Vo) ds,
o)

where F': R? x M™*¢ — [0, o0] is a Borel measurable function representing the hyperelastic
energy of a periodic composite material, O < R? is a bounded open set representing the
reference configuration of the material and ¢ : O — R denotes the deformation field. The
distinguishing feature here is that F' can take infinite values. This paper aims to study relax-
ation and homogenization, via I'-convergence (see Deﬁnition, of such unbounded singular
integrals. In the scalar case, i.e. when m = 1, unbounded relaxation and homogenization
problems were intensively studied by Carbone and De Arcangelis (see [CDA02] and the ref-
erence therein). Here, we focus on the vectorial case with applications to hyperelasticity in
mind.

In previous papers [AHLMI11, [AHCMI7], we proved that under certain conditions, if the
Dacorogna relaxation formula [Dac82] for F, i.e. the quasiconvexification ZF of F, see (|1.5]),
has polynomial growth, then the relaxation # of & see ([2.1)), has an integral representation:

F(6) — fo Tz, Vo(x))dz (1.1)

with F': R? x M™*¢ — [0, 0] given by F' = ZF. In the present paper, we consider the more
general case where ZF' has convex growth. Under this condition, we generalize our previous
relaxation result by proving that (1.1]) holds with

F = QzF,

where Q/:Z?W is defined through the composition of the operations given by the formulas ({1.4)),
(1.5), (1.6) (see Theorem . We also demonstrate (see Corollary that our result is

consistent with the fundamental constraint of hyperelasticity which states that compressing
a volume of matter to a point requires an infinite amount of energy, i.e.

F(z,£) — oo as det§ — 0. (1.2)

It turns out that we can also extend our work on homogenization developed in [AHLMI1),
AHCM17]. Considering unbounded singular integral functionals of the form:

7o) = | F(2.90(0)

where F' : RY x M™*¢ — [0, o0] is 1-periodic and € > 0 characterizes the periodicity scale, we
proved in [AHLMII, [AHCMIT] that under certain conditions, if ZF' has polynomial growth,
then homogenization holds, i.e.
[-lim #.(¢) = J From (Vo(z)) dx (1.3)
o

e—0

with Fiom : M™*4 — [0, 0] given by the Braides-Miiller formula [Bra85, Miil87], i.e. Fiom =
HEF with #F given by (1.7)). By using this new relaxation theorem (Theorem , we can
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generalize our previous homogenization result to the more general case where ZF' has convex

growth by proving that ([1.3)) holds with

—_—

Fhom:}[@

where H EZ?’ is defined through the composition of the operations given by the formulas

(1.4), (1.5), (1.6) and (1.7)) (see Theorem [2.11). We also demonstrate (see Corollary [2.12)
that our result is consistent with ((1.2)).

The plan of the paper is as follows. Section [2| presents the main results. We begin in
with the statement of a new relaxation theorem (see Theorem for unbounded
singular integral functionals whose the integrands have a quasiconvexification with convex
growth. This theorem is applicable to a new class of integrands (see , and )
which are compatible with the fundamental constraint of hyperelasticity which asserts that
compressing a volume of matter to a point requires an infinite energy (see Corollary . To
prove Theorem we utilize a known relaxation theorem (see Theorem for unbounded
integrands with convex growth. As mentioned, this theorem is applicable to integrands of
the type (see Corollary . After relaxation, in we present a new homogenization
theorem (see Theorem for unbounded singular integral functionals whose the integrands
have a quasiconvexication with convex growth. The proof of this theorem relies on both the
relaxation theorem, Theorem and a known homogenization theorem (see Theorem [2.9)
for unbounded integrands with convex growth. Theorem [2.11can be applied to the new class
of integrands introduced in §2.1] Finally, in Section [3] we prove our main results, Theorems
and[2.11] in and respectively. For the convenience of the reader, auxiliary known

results needed for these proofs are compiled in the appendix.

Notation. Throughout the paper we will use the following notation.

e Given d € N*, O c R? denotes a bounded open set.

e The Lebesgue measure on R? is denoted by Z? and for each Borel set A = R?, the
measure of A with respect to Z? is denoted by Z%(A).

e For every z € R? and every p > 0, we set Q,(z) := £] — 1, 1[%+z = |z — £,z + 4]
which is the open cube centered at x and of side p.

e Given p > 1 and m € IN*, the space of p-Lebesgue functions from O to R™ is denoted
by LP(O;R™).

e The space of (1,p)-Sobolev functions from O to R™ is denoted by W?(O; R™) and
we set Wy P(O; R™) := {p € WP(O;R™) : ¢ = 0 on 90}.

e The space of continuous piecewise affine functions from O to R™ is denoted by
Aff(O; R™) and we set Affo(O; R™) := {¢ € Aff(O; R™) : ¢ = 0 on 00}.

e The space of m x d matrices is denoted by M™*<,

e Given any Borel measurable F : R4 x M™*¢ — [0, 0], the radial extension of F is
denoted by F : R¢ x IM™*d — [0, 0] and is defined by

d
)

F(z,€) := lim F(x, t€). (1.4)

t—1—



4 NEW RESULTS ON RELAXATION AND HOMOGENIZATION OF UNBOUNDED SINGULAR INTEGRALS

e The quasiconvexification of F' is denoted by ZF : RY x M™*¢ — [0, c0] and is defined
by

ZF(x,€) := inf {J]o . F(z,& + Vo(y)dy : o € Wy (]0, 1[4 ]Rm)} . (1.5)

e The generalized quasiconvexification of F' is denoted by QF : R? x M™*¢ — [0, 0]
and is defined by

QF(x,€) := lim inf {J[Q ( )F(y,é +Veo(y))dy : p € Wyt (Q,(x); Rm)} : (1.6)

p—0

e The homogenization of F is denoted by #F : M™*¢ — [0, c0] and is defined by

HFE (&) := inf inf {J[]o HdF(x,{ + Vo(z))dz : p e WyP(]0, k[% Rm)} . (1.7)

k=1

2. MAIN RESULTS

From now on, m,d > 1 are two integers, p > 1 is a real number and O < R? is a bounded
open set with Lipschitz boundary.

2.1. Relaxation of unbounded singular integrals. Let F' : RY x M™*¢ — [0, 0] be a
Borel measurable function and let & : W1?(0O; R™) — [0, 0] be defined by

F(0):= | Pl Vo(a))ds.
o)
let F : WHP(O; R™) — [0, 0] be the relaxed functional given by
F(¢) := inf { lim F(¢,) : ¢ — ¢ in LP(O; ]Rm)} (2.1)

n—oo

and let G : M™*¢ — [0, ] be a Borel measurable function. In what follows, we consider
the following hypotheses:
(A1) G is convex;
(Ay) 0 € int(G) where G := {€ e M™*? : G(§) < 0} denotes the effective domain of G;
(A3) G is p-coercive, i.e. there exists C' > 0 such that for every ¢ € M™*¢,

G(§) = ClEl;
(A4) F has G-growth, i.e. there exist o, 8 > 0 such that for every (z,&) € RY x M™*4,
aG(&) < F(z,§) < B(1 + G(§));

(As) F is radially uniformly upper semicontinuous (ru-usc), i.e. there exists a > 0 such
that o
lim A%(t) <0

t—1—
with A% : [0,1] —] — o0, 0] defined by
F(l‘,t&) — F(ZE,f)
A%(t) := sup su ,
F( ) meIFIlDd EEFIi a + F(I‘,g)
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where F, = {€ € M™*¢: F(z,€) < o0} denotes the effective domain of F(z,).

We begin with the following integral representation result. For a proof we refer to [AHM24,
Corollary 5.1] (see also [AHMI8, Theorem 2.7] and [AHM23|, Corollary 4.9]).

Theorem 2.1. Assume that p > d and hold. Then
F(¢) = J QF (z, V(x))dx for all ¢ € W'P(O; R™). (2.2)
o

Moreover, we have

Tw.6) - { lim QF(v,t) if (v,€) € R? x G
o0

otherwise.

Classically, Theorem can be applied to unbounded functions F : R¢ x M™*?¢ — [0, co] of
the form: N N
F(x,§) = F(z,8) + G(S) (2.3)
with F : RY x M™*d — [0, o[ and G Mmxd [0, 0] satisfying the following assumptions:
(A,) G is convex;
(A;) 0 € int(G) where G := {€ € M™<¢: G(£) < o0} denotes the effective domain of G;
(Kg) F has p-growth, i.e. there exist u,v > 0 such that for every (z,&) € RY x M™*4,

HlélP < F(a, &) < w(1+[€P);
(K4) there exists L > 0 such that for every z € R? and every &, & € IM™*9,

F(,6) - Fla,&)] < LI — &l (L+ |6 + 1677

More precisely, as a consequence of Theorem 2.1 we have the following result.

Corollary 2.2. Assume that p > d. Under if Fis given by (2.3)) then (2.2)
holds.

Proof of Corollary [2.2] It suffices to prove that F' given by (2.3) satisfies [(A;) and
to apply Theorem

First of all, by we see that is verified with @ = min{y, 1}, 8 = max{v, 1} and
G(&) = [EP + G (€) where the effective domain G of G is equal to G. Hence holds and
and follow from |(A;)| and |[(A,)| respectively.

So, it remains to establish , i.e. Fisru-usc. Fix any t €]0,1[, any 2 € R? and any £ € G.
Using with & = t€ and & = ¢ and taking the left inequality in m into account, we
obtain

F(z,t€) — F(z,&) < L'(1 - t)(1 + F(x,€)) (2.4)
with L' := L max{1, %} On the other hand, as, by [(A;), G is convex we have
G(t€) = G(&) < tG(&) + (1 - )G (0) = G(¢) < (1-H)G(0),

and consequently

~

G(t€) = G(€) < (1 = HG0)(1 + G(€))- (2.5)
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From ([2.4) and (2.5 we deduce that
Fla,t6) = F(r,€) < max{L, G(0)}(1 - )2+ F(x,)).
Passing to the supremum on z and £ we obtain

sup sup F($at€) _ F([L’,f)
zeR? ¢eG 2+ F(ZL‘, 5)

< max{L,G(0)}(1 — ¢),

and, noticing that for any x € R? the effective domain of F(z,-), F,, is equal to G and
G(0) < o0 by |(A,)|, we conclude that

F(Z‘,tf) _F<x7£) <

lim A%(t) := lim sup sup <0,

t—1— =17 peRd &eFy, 2+ F($’ 5)
which proves that F' is ru-usc with a = 2, and the proof is complete. B
Theorem can be improved to incorporate determinant-type constraints (see Theorem
and corollary[2.6). To do this, let A be the class of A € L®(R% [0, o) satisfying the following
property:
(P) for every bounded open subset U = R? with Z(0U) = 0 and every 4 €]0,do] with
09 > 0, there exists a compact K5 < U such that
Qd(ﬁ_K(;) =0
< d(U \K 5) <0
Ak, is continuous

with U denoting the closure of U.

Remark 2.3. (i) If A is continuous then is verified with K; = U.

(i) If X is continuous F%a.e., i.e. L4N := {z € RN : X is not continuous at x}) = 0,
and if lims_o Z%(Vs) := {z € U : dist(z, N) < 6}) = 0 and Z%(0V;) = 0, then [(P)]is
verified with K5 = U\ V.

(iii) If holds then X is continuous #%a.e. (for a proof, see [AHCMIT7, Lemma 2.5]).

In what follows, we consider the following complementary hypotheses:
(Bo) O is is strongly star-shaped]}
(B1) G is open;
(By) there exists A € A such that for every (z1,7,) € R? x R? and every £ € M™*¢,
F(21,) < A1) = Ma)l(1 + Fa, ©) + F(e, )
(B3) ZF has G-growth, i.e. there exist o, 8 > 0 such that for every (z,¢) € RY x M™*4,
aG(§) < 2F(z,§) < B(1 + G(Q)).

Remark 2.4. (i) If G is continuous then |(By)| holds.
(i) If F satisfies then F,, = IF,, for all (z;,75) € RY x R, where F,, and F,, denote
the effective domain of F(z1,-) and F(z,, ) respectively.

1An open set O « R? is said to be strongly star-shaped if there exists zo € O such that t(—xzo +0)
—zo + O for all ¢ €]0, 1[.
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(iii) If F satisfies and if \ is continuous at x € R? then F(-,€) is continuous at z for
all £ e M™*?. More generally, if holds and if \|x is continuous for K < R? then
F(-,8)|k is continuous for all £ € M™*4,

(iv) If F satisfies then for every (z1,73) € R x R? and every £ e M™*¢,

ZF(21,€) < [Mx1) = M) |(1 + 2F(22,8)) + ZF (22, 6).

Hence, if holds and if \|x is continuous for K = R® then ZF (-, £)|x is continuous
for all £ € M™*¢ and ZF,, = ZF,, for all (z1,2,) € R? x RY, where, for any x € R¢,
ZIF, denotes the effective domain of ZF(x, ), i.e. ZF, := {£ e M™*?: ZF(x,¢) < o0}.
(v) As a consequence of (ii)—(iii), if F' satisfies then, for each £ € M™% F(-,£) and
ZF (-, €) are continuous a.e. because A is continuous a.e. (see Remark [2.3}(iii)).

Here is the first main result of the paper.

Theorem 2.5. Assume that p > d and [(A1)H(As3)], [(As)] and [(Bo)] hold. Then

F(6) — L QZF (2, Vo(x))dx for all ¢ € WP(0: R™). (2.6)

Moreover, we have

. . d 7~
@(l’,é) _ { tligl_ QZF(.Z’,tg) Zf (l’,f) eR'"xG

0 otherwise.

Theorem 2.5 can be applied to unbounded singular functions £ : R? x M%*? — [0, 0] of the
form:

F(2,€) = F(w,€) + G(€) + a(x) H(deté). (2.7)
The functions a : R — [0, 0 and H : R — [0, o] satisfy the following conditions:

(C1) a € A and there exists n > 0 such that a > n;

(Cy) H is Borel measurable and there exist v, > 0 such that H(s) < ¢ for all |s| = 7;
(C3) R\{0} < H, where H denotes the effective domain of H;

(C4) there exists k£ > 0 such that for every ¢ €]0,1] and every s € H, H(t%s) < 5+ H(s).

The fonction G : M™*? — [0, oo[ is of the form
G(€) =7 (I) (2.8)
with g : [0, 00[— [0, oo[ verifying the following conditions:

(2;) the function § is convex and nondecreasing;
(8y) there exist v1,v2 = 0 such that for every (s1, s2) € [0, 0o[ %[0, oo],

g(s1+ 52) < MG(51)G(s2) +72(g(s1) + G(s2)).
The function F : R? x M™*? — [0,00[ satisfies and the following additional

condition:
(1&5) for every (z1,79) € R? x R and every £ € M™*%,

F(1,€) < la(z1) — awo)|(1 + Faz,€)) + F(xs,€).
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For example, the conditions |(a;)H(as)| are satisfied with g(s) = e® by taking 71 = 1 and
(C2)H(Ca)

v = 0, and the conditions 4)| are verified with
1 if 540
— if s
H(s) = { s (2.9
oo if s =0.

Note that F' as in (2.7) with H given by ([2.9)) is compatible with the singular behavior
F(x,&) — o0 as deté — 0. However, such a F' is not consistent with the noninterpenetration
of the matter.

As a consequence of Theorem [2.5, we have the following result.

Corollary 2.6. Assume that m = d and p > d. Under [(Bo)l. [(As)H(As) |E)H(E)| and
(CH(Cy)|, if F is given by then holds.

Proof of Corollary [2.6] It suffices to prove that F' given by (22.7) satisfies [(A;)H(A3)} [(As)]

and [(B1)H(B3)] and to apply Theorem [2.5
Define G : M%*¢ — [0, oo[ by

G(&) = [ + G (¢). (2.10)
Taking (2.8)) and into account, as G is finite it is clear that [(A;)H(As)| and |(B;)| are
verified.
From |(C;)| and |(A5)| it is easily seen that [(By)[holds with A = max {1, %}a.
Noticing that by |(C))l a € L*(R% [0, o0[), from |(As)| and |(C,)| we see that F satisfies the
following condition:
(Adet) for every (z,€) € R4 x IM?*4,

if |deté| = v then F(z,€) < 6(1 + G(§)).

where v > 0 is given by and 0 := max{v + d|al|p =, 1}.
Let us prove [(Bs)l Fix any x € R? and any ¢ € IM?*?. First of all, from the left inequality
in |(As)| we see that ZF(z,§) > aG(§) with a = min{g, 1}. On the other hand, since G is

finite, so is G, and so from we see that if |det&| = v then ZF(x,§) < F(z,§) < .
Suppose now that |deté| < . Then, by Lemma|A.11] there exists ¢ € Wy'*(]0, 1[%; R?) such

that |det(¢ + V(y))| = v for Z%-a.a. y €]0,1[%, and using |(Adet)

and |(51) (52)| we have

2R6) < | Fe.g+ Volw)dy

- f 3(1 + G(€ + V(y)))dy
o, 1[4

< 31+ 2206 + IVole) + 123 CIEP) + (uF2IEPR) +72)3(2Veli) | < .

Thus zF(z,£) < oo for all £ € M%*? ie. ZF(z,-) is finite. From Proposition (b) we

deduce that ZF(z,-) is rank-one convex, and consequently ZF(x,-) < KRF(x,-). Taking
(2.8)), (2.10) and |(A4et)| into account, from Lemmal& (and Remark [A.10)) we conclude that




NEW RESULTS ON RELAXATION AND HOMOGENIZATION OF UNBOUNDED SINGULAR INTEGRALS 9

for every (z,€) € R x M4, zF(z,€) < B(1+G(€)) with 8 > 0 given by Lemma[A.9] which
proves |(Bs)|

Let us prove . Fix any t €]0, 1], any # € R? and any ¢ € M?*? such that det¢ € H. Using
with & = t€ and & = £ and taking the left inequality in into account, we obtain

F(x,t€) — F(x,6) < L'(1 = )(1 + F(x,¢)) (2.11)

with L' := L max{l, %} On the other hand, as, by [(8;)| G is convex we have

G(te) — G(&) < tG(&) + (1 — )G (0) — G(€) < (1 - 1)G(0),

and consequently

~

G(t€) = G(&) < (1= HG(0)(1 + G(£)): (2.12)
Moreover, by we have

h(det(£€)) — h(deté) = h(t*dete) — h(det) < (ti _ 1) (14 h(deté)) (2.13)
with & > 0 given by [[Cy)} From (2.11)), and we deduce that
F(z,1€) — F(z,€) < max {L’(l —1,GO)0 1), 5 - 1} (34 F(,€)).
Passing to the supremum on z and € we obtain
Fla, i) — Fla.§) max{[/(l — 1), G(0)(1 — 1), ~ — } |

t,‘"\?

sup sup
reRd {edetH 3+ F($, g)

Where detH := {¢ € M%?: det¢ € H}. Noticing that for any z € R* the effective of F(z,"),
F., is equal to detH, we conclude that

F($,t§)—F<$,£) <0

lim A2.(¢) := lim sup su
Jm A () 1 e 3+ F(x,€)

which proves that F' is ru-usc with a = 3, i.e. [(A5)| holds, and the proof is complete. B

2.2. Homogenization of unbounded singular integrals. Let F : RY x M™*?¢ — [0, o]
be a Borel measurable function satisfying the following assumption:
(Ag) F is l-periodic, i.e. F(x + ¢;,&) = F(x,€) for all £ e M™*? and all i € {1,--- ,d},
where (e, ,eq) is the standard basis of R¢,

and, for each ¢ > 0, let . : WHP(O; R™) — [0, 0] be defined by

Fe(0) := Jo F (g, qu(x)) dx.

We aim to compute the [-limit of {F.}.-o as ¢ — 0 with respect to the LP(O;R™)-
convergence. Here is the definition of the I-limit. (For more details on this concept we
refer to [DM93] BD98| Bra02].)
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Definition 2.7. Let I'(LP)-lim_ o %, T'(LP)-lim. o F : W'P(O;R™) — [0,%0] be respec-
tively defined by:

D(LP)- i %(6) := inf {n_m%@s) 6 5 ¢} ;

e—0 e—0

D(LP)-Tim %.(6) := inf {E%(@) Lo 2 gb} .

e—0
Let Fuom : WHP(O; R™) — [0, 0]. We say that {F.}.~¢ ['(LP)-converges to Fnom as € — 0,
and we write Fpom = ['(LP)-lim._o F., if the following two inequalities hold:

ghom < F(Lp)‘h_mgea

e—0
[(LP)-1im F < From.
Let us mention the following property of the I'-liminf and I'-limsup that we will use in the
proof of Theorem [2.11]

Proposition 2.8. The I'-liminf and the T'-limsup are stable under the substitution of F.
with its relaxed functional F ., i.e.

[(LP)-lim F = ['(LP)-lim &, and T'(LP)-lim &, = F(LP)_@E,

e—0 e—0 e—0 £—
where, for each € >0, F.(¢) :=inf { lim, ., F.(d,) : ¢ — ¢ in LP(O;R™)}.

We begin with the following homogenization result. For a proof we refer to [AHMZ15|
Theorem 1.1] (see also [AHMII]).

Theorem 2.9. Assume p > d and (Ag)| hold. Then, Fpom = T'(LP)-lim._o F. with
From given by

Fhom (@) = Jo }/[F(ng(x))dx for all p € WHP(O; R™). (2.14)

Moreover, we have

lim HE(tE) iféeG
t—1—

o0 otherwise.

HF(€) = {

According to the proof of Corollary 2.2} the following result is a straightforward consequence
of Theorem 2.9

Corollary 2.10. Assume that p > d and F given by (2.3)) verifies and the fol-
lowing additional assumption:

(Ag) F is 1-periodic.
Then, Fnom = I'(LP)-lim. o F. with Fnom given by (2.14)).

The following theorem, which is the second main result of the paper, improves Theorem
and allows to incorporate determinant-type constraints (see Corollary [2.12)).
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Theorem 2.11. Assume p > d and |(A1)H(A3), [(A5)H(Ag)| and |(Bo)H(Bs3)| hold. Then,
From = L'(LP)-lim,_o F. with Fpom given by

Frnom () = f HQBF (Vo(x))dx for all ¢ € WP(O; R™). (2.15)
o
Moreover, we have
@(5) _ { tliIP— HQZF(t,) 1fEeG
o0 otherwise.

As a consequence of Theorem [2.11] we obtain the following result that applies to integrands F’
of the form ({2.7)) which are compatible with the singular behavior F'(x,§) — oo as det§ — 0.

Corollary 2.12. Assume that m = d, p > d and F given by (2.7) verifies|(Bo), [(As)H(Ag
[(21)H(@2)| and [(C1)H(Cy)l. Then, Fnom = I'(LP)-lim._o F. with Fnom given by (2.15)).

The proof of Corollary follows the same lines as Corollary [2.6] applying Theorem [2.11
instead of Theorem [2.5]

3. PROOF OF THE MAIN RESULTS

3.1. Proof of the unbounded singular relaxation theorem. Let z% : W'P(O; R™) —
[0, 0] be defined by

ZF (9) :zf ZF(z,Vo(x))dx (3.1)
o
and let zF : W'P(0O; R™) — [0, 0] be the relaxed functional given by
zF (¢) := inf { lim 2% (¢,) : ¢p — ¢ in LP(O; Rm)} : (3.2)
n—o0

We begin with the following result which asserts that (under some conditions) the relaxed
functional in (2.1)) is equal to the relaxed functional in (3.2]).

Proposition 3.1. If|(A,)| and [(Bo)H(Bs)| hold then F = zF.

Proof of Proposition [3.1]. First of all, it is easy to see that ZF < F. So, it remains to
prove that & < ZF for which it is sufficient to show that for every ¢ € WhH?(O; R™),

F () < JO ZF (x,Vo(zx))dz. (3.3)

To do this, we need the following lemma whose proof can be found in [AHCMI17, Lemma
3.9].

Lemma 3.2. Under

if ¢ € AF(O; R™) then F(¢) < f ZF (2,V¢(x)) dx.
@]
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Let ¢ € WHP(O; R™). Without loss of generality we can assume that §, ZF (z, Vo(z)) dz <
0. Then, by [(Bs)]

fo G(Vo(r))dr < oo, (3.4)
and so

Vo(x) € G for F%a.a. e O. (3.5)

According to [(A1)]and [Bo)H(B1)} by Lemmal[A.1] there exists {¢,,}, = Aff(O; R™) satisfying
(D1)H(D3)| and, up to a subsequence,

hI%; Vo, (x) — Vo(z)| = 0 for L4%a.a. xeO. (3.6)

From [(Bj)| we see that for every x e O, ZF, = G, where ZIF, := {£ e M™*4: ZF (z,€) < o0}
denotes the effective domain of ZF(z,-). By |(B;){and Proposition ( ) it follows that for
every € O, ZF(z,-) in continuous on G and consequently, by using and |(D3) m

li_I)Iolo |ZF (2, Vo, (z)) — ZF(x,V¢(x))| = 0 for X%a.a. z € O. (3.7)

Moreover, from the right inequality in | it is easy to see that for every n > 1 and every
Borel sets E < O,

fE 2F (2, Von(x))dz < SLUE) + 5 L G(Vo(@))dz + BIG(Vba) — GV o)

which shows that {ZF (-, V¢, )}, is uniformly integrable when combined with (3.4)) and |(D5 )}
Recalling (3.7)), from Vitali’s theorem we deduce that

lim | zF(z,Vo,(z))dx = Jo ZF(x,Vo(x))dx (3.8)

n—:o0 10}

On the other hand, by Lemma [3.2) we have

F(¢,) < JO ZF (2,V¢,(z)) dx for all n > 1. (3.9)
Letting n — o0 in and using we obtain
h_r{.log(qﬁn) < fo ZF (x,V(x))d. (3.10)
By [D1)} ¢n — ¢ in LP(O;R™), hence
F(9) < lim F(¢n) (3.11)

because F is lower semicontinuous with respect to the LP(O;R™)-convergence, and ([3.3))

follows by combining ({3.10|) with - |
We can now prove Theorem [2.5]
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Proof of Theorem [2.5. According to |(B3)| we see that is verified with ZF instead of
F. By Lemma we can assert that |(As)| is satisfied with ZF instead of F. Since
(A3)|are also fulfilled we can applied Theorem to ZzF defined in (3.1]). Consequently, we
deduce that

2 (6) — L QZF (z, Vo(x))dz for all € WHP(0: R™).

Furthermore, by Proposition , we have & = 2%, which implies (2.6). B

3.2. Proof of the unbounded singular homogenization theorem. Here we prove The-
orem [2.11} From now on, for each € > 0, let F. : RY x M™*¢ — [0, o] be defined by

F(z,€) = F (gg) . (3.12)

Proof of Theorem [2.11]. The proof is divided into two steps: first, we apply the new
relaxation theorem, Theorem to every F., and then we conclude via the known homog-
enization theorem, Theorem

Step 1: applying Theorem to every F,. Fix any ¢ > 0. Since [(A;)[{(As)| and |(Bo)H(B,)| are
verified and are independent of the integrand F, to apply Theorem to F., it is sufficient
to prove that |(As)|and |(B2)H(B3)[ hold with F. instead of F.

Fix any ¢t € [0,1], any z € R? and any & € F. ,, where F., denotes the effective domain of
Fo(x,-). AsF., =F= by (3.12), and F' is ru-usc with a > 0, we can assert that

F.(z,t8) — Fe(x,§)  F (5,86 — F (%,¢) F(y,t¢) — F(y,¢)

= po < sup sup
a+F6(x7€) a+F(27£) yeRd CeFy G+F(y7<)

Hence, for every t € [0, 1],

— A%(1).

Fe(m’ tf) - FE<.T, 5)
A% (t) = sup su < A%L(T).
FE( ) reIPI;EGFeI,)z G+F€($7£) F( )

But, since F is ru-usc with a > 0, lim;_;- A%(¢) < 0, and consequently lim,_;- A% (¢) <0,
which shows that F; is ru-usc with a > 0, i.e. holds with F; instead of F'.
By assumption, there exists A € A such that
F(y1, €)<|A(y1) = My2) (14 F (y2, €)) + F(y2,€) for all (y1,3,6) € RIxRIXM™ . (3.13)
Setting A\.(-) := A() where, without loss of generality, ¢ €]0,1[, and taking (3.12) into
account, from (3.13) we see that for every (z1,75) € R x R? and every £ € M™*4,
Fa(xlaf) < |Aa(x1) - )‘a<m2)|<1 + Fe(l‘%g)) + Fe(x%g)'

We claim that A\. € A. Indeed, first of all it is clear that A\. € L*(R% [0,00[). On the other
hand, let U = R¢ be a bounded open set with Z4oU) =0 and let § > 0. As X\ € A, there

exists a compact [~(5 c %U such that
1 (0Rs) =0
2 (T0\Ks) < (3.14)

Al is continuous.
K;
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Set Ky := 5l~((5. Then, Kj is compact, K5 < U and from (3.14]) we have

P4 (0Ks) = et (afgs) —0

1 (O\Ks) = 2 (TU\K; ) < e < 5

Alry = A (2) |.&, is continuous,

which means that is satisfied with A. in place of A, and proves the claim. Thus, |(B,)]
holds with F. instead of F.

By assumption there exist o, > 0 such that

aG(€) < zF(y,€) < B(1 + G(€)) for all (y,&) e R x M™*<. (3.15)
Fix any (z,€) € R x M™*?. By definition of ZF in ((1.5) it is easily seen that
x
ZF.(2,€) = ZF (g,g) . (3.16)

From (3.15)) and (3.16)) we deduce that for every (z,&) € RY x IM™*4,

aG(§) < ZF.(z,€) < B(1 + G(E)),
which shows that holds with F. instead of F.
Consequently, by applying Theorem to F., we conclude that for every € > 0,

F.(¢) = L QG F.(z,Vo(x))dr = L Q@F (g qu(x)) dx for all ¢ € W(O;R™). (3.17)

Step 2: end of the proof by applying Theorem 2.9 By Proposition 2.8] ['(LF)-lim,_, % =
[(LP)-lim_ o %. and ['(LP)-lim._o % = ['(LP)- ma_@ F.. So, the proof will be completed
by showmg that
(P 1m 7.) (0) = f HQZF (Vé(x))dz for all 6 WP(O:R™).  (3.18)
0

e—0

For this, we are going to apply Theorem [2.9 to EZTT Let G : M™? — [0, 0] denote the

——

lower semicontinuous envelope of G. To apply Theorem [2.9| to to QZF, it suffices to show
that [(A; I—I As)| hold with G instead of G, holds with (G QZF) instead of (G, F) and

(As DH( Ag)| hold with QZF instead of F'.
First of all, since hold for G, it is clear that hold for G as well.

On the other hand, since F' is ru-usc, by successively using the stability results for ru-usc

from Lemmas E and [A.5(a), we can assert that QzF is ru-usc, ie. m holds with
QZF instead of F

Moreover as F'is 1-periodic it is easily seen that QZF is also 1-periodic, i.e. Aﬁ holds with
QZF instead of F'.

Finally, by assumption there exist a, 5 > 0 such that
aG(€) < BF(2,€) < AL+ G(9)) for all (2,€) € R x M™.
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Hence, by using Lemma [A.5{(d),
aG(€) < Q2F (x,€) < B(1+ G(&)) for all (z,€) e R x M™,
which means that holds with (G, EZ\F) instead of (G, F).
Consequently, follows by applying Theorem to @7 , and the proof is complete. Il

APPENDIX. AUXILIARY RESULTS

A.1. Approximation by continuous piecewise affine functions. The following lemma
can be found in [Mil87, Lemma 3.6(b)] (see also [ETT74, Chapitre X, §2.3, pp. 288-293] and
[AHMI11 §3.3]).

Lemma A.1. Let O < R? be a bounded open set with Lipschitz boundary and let G :
M™>d — [0, oo]. [f holds then for every ¢ € WI?(O; R™) such that

L G(Vo(z))dx < oo,

there exists {¢p}, < Aff(O; R™) such that:
(D1) nlgrolo |on — Ollwrromrm) = 0;
(D) i [G(V6,) = G(V6) 10) = O
(D3) Vo (z) € G for alln > 1 and L%-a.a. v € O.

A.2. Properties of ZF. The following result is due to Fonseca (see [Fon88, lemma 2.16,
Theorem 2.17 and Proposition 2.3]).

Proposition A.2. Let F' : R? x M™? — [0,00] be a Borel measurable function. The
function ZF satisfies the following properties.

(a) For every bounded open set U = R® with |0U| = 0 and every (z,£) € RY x M™*4,
ZF(z,§) = inf {J[ F(z,& + Vo(y)dy : o € Wy (U; Rm)} =: Zy F(z,§).
U

More precisely, zyF < ZF for all bounded open set U < R¢, and Z2F < zyF for all
bounded open set U = R? with |0U| = 0.

(b) For every x € R, ZF(x,-) is rank-one convex in int(ZF,), where ZIF, denotes the
effective domain of ZF(z,-), i.e. ZF, := {£ e M™*?: ZzF(z,£) < w0},

(c) For every x € R, ZF(x,-) is continuous on int(ZF,).

(d) For every bounded open set U = R? with [0U| = 0, every (z,£) € R x M™*? and
every ¢ € Affo(U; R™),

ZF(x,€) < J[UZF(QJ,§ + Vo(y))dy.

Remark A.3. Propositionis also valid with “ZF” instead of “ZF” (see [AHMO09, Propo-
sition 2.3]) where ZF : R x M™*¢ — [0, o0] is given by

2F(2,€) — inf {L Fla,€ + Vo(y))dy : ¢ € Affo(Y: Rm)} |
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In particular, Proposition (d) can be rewritten as Z[ZF] = ZF.

A.3. Stability properties of ru-usc functions. We begin by recalling the definition of a
radially uniformly upper semicontinuous (ru-usc) function. Let F : R? x M™*?¢ — [0, 0] be
a Borel measurable function.

Definition A.4. We say that I is ru-usc if there exists a > 0 such that
lim A%(t) <0

t—1—

with A% :[0,1] —] — o0, 0] defined by

a L F(Q’J,t&) B F($a€)
B T a0

where F, denotes the effective domain of F(z,-).
Let F: R% x M™*¢ — [0, %] be defined by
F(z,€) = lim F(,1€).

t—1—

)

The operation F' +— F is stable undeAr ru-usc. More precisely, we have the following result,
which makes clear the properties of F' (see [AHM11 Theorem 3.5] for a proof).

Lemma A.5. If F is ru-usc and if tF, < int(F,) for all x € R? and all t €]0, 1[, then:

(a) F is ru-usc;
(b) For every (x,€) € RY x M™*¢,
~ lim F(x,t€) i F,
o0 otherwise.

If moreover, for every x € R, F(x,-) is lsc on int(F,) then:

F(z,8) if € € int(FFy,)

(c) F(z,6) ={ lm Fz,t€) i & e,
o0 otherwise;

(d) for every x € RY, F(x,-) is the lsc envelope of F(x,-).
Let ZzF : R? x M™*? — [0, ] be defined by

2P, =i f [ Flegs Tpt)dys o e W oaf5 R |
10,14
The following lemma states that the operation F' — ZF is stable under ru-usc (see [AHM11],
Proposition 3.6] for a proof).
Lemma A.6. If F is ru-usc then ZF' is ru-usc.

Let QF : RY x M™*4 — [0, 0] by

p—0

QF(x,€) := lim inf {][Q ( )F(y,é +Vo(y))dy : p € Wyt (Q,(x); Rm)} :
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The following lemma asserts the stability of the operation F' +— QF under ru-usc (see
[AHM23| Corollary 2.22] for a proof).

Lemma A.7. If F is ru-usc then QF' is ru-usc.

Let #HF : M™*¢ — [0, 0] be defined by
HF() := inf inf {:f F(z,& + Vo(z))dz : o € WyP(]0, k[ ]Rm)} :
k1 10,k[
As with the three operations mentioned above, the operation F' — # F'is stable under ru-usc
(see [AHM11), Proposition 3.7] for a proof).
Lemma A.8. If F is ru-usc then HF is ru-usc.

A.4. A variant of Ben Belgacem’s lemma. In what follows d < m and given & € M™*¢,
0<v(§) <+ <vy(§) denote the singular values of €. Set
d

v(§) = Hvi(§)~

i=1
The following lemma is a variant of the result by Ben Belgacem [BB96] (see also [AHMI12,
Theorem 3.20]).

Lemma A.9. Let G : M™*?¢ — [0, [ be defined by
G(&) = [¢]P + g (1¢?) (A1)

with p > 1 and § : [0,0[— [0, 00| verifying . Let F : M™*4 — [0,0] be a Borel
measurable function. Assume that there exist v, > 0 such that for every & € M™*?,

~

v(€) = 7y implies F(€) < 0(1 + G(E)). (A.2)
Then, there exists 3 > 0 such that for every & € M™*4,
RF(€) < B(1+ G(6)),

where RE denotes the rank-one convexr envelope of F.

Proof of Lemma [A.9. Without loss of generality we can assume that v > 1, and it is
sufficient to prove that R F(£) < B(1 + |£|P) for all £ € M™% such that v(£) < 7.

Let £ e M™*? be such that v(£) < v. Let P € Q(m) be such that
¢ = PJU,

where U := /¢T¢ and J = (J;;) € M™*? with J;; = 0if i + j and J; = 1, where O(m) is
the group of m x m orthogonal matrices. Let () € SO(d) be such that

U= QTdiag(vl(f), T ,Ud(§)>Q,
where SO(d) is the group of d x d orthogonal matrices with determinant equal to 1. Then

5 = PJC?leag(/Ul(f)> e 7Ud(€))Q
€ = 2. vi(©).
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As v(§) < 7y there exists 1 < iy < -+ < i < d, with k£ € {1,--- ,d}, such that v, (§) <
v, L0, (6) < v (and UZ(S) > ~ for all i ¢ {21, - ,ik}). For every j € {1,--- k}, let
t; €]0,1[ be such that v;,(§) = (1 —t;)(—~) + ;7. Then

) =
diag(v1(§), -+, vi (§), -+ va(§)) = (1 —ta)diag(vi(§), -+, —a, -+, va())
+ tldiag(vl<§>7 BN C P ,vd(ﬁ)),

and so & = (1 —#1)& + & with

51_ = P‘]Qlea‘g(U1<£>7 R R )Ud(é.))@
gfr = PJQlea’g(Ul<£)7 y Vst 7'Ud(£))Q
rank (& — &) = 1.

Moreover, we have

diag<vl(€)v T 7vi2<§)7 T 7Ud(§)) = (1 - tQ)diag<vl(€)v T T 7Ud<€>>
+t2diag(vl(£)7 Ty 7Ud<€))a

hence & = (1 — )&~ + o€, " with

527’7 = PJQleag(U1<§)7 T, Ty 7Ud(§))Q
g;,Jr — PJQTdiag(v1(§), e Y Y, 7yd(§))Q
rank (5;7 — §;+) 1

In the same manner, we obtain & = (1 —t3)& " + t2&5 " with

{ 52 = PJQleag(Ul( ) S0 R Rt C 7vd(€))Q

= PJQ diag(vi(€), - 7, -+, 7, va(€)Q
rank (f;_ — §;+) 1.

We continue in this fashion, obtaining a finite sequence {5;};5? n C M™*4 where &,

denotes the set of all maps o : {1,---,j} — {—, +}, with the following properties:
o & = PJQ diag(v1(§), - o(L)y,- - a()y, -+, val€));
o if 0(j) + 0'(j) and o(l) = o’(l) for all L € {1,--- ,j — 1} then rank (£ —&7') =1
o if 0(1) % o/(1) then & = (1 — ,)&7 + 1,£7;

o if o'(j +1) + 0"(j + 1) and o'(l) = o"(l) = o(l) for all [ € {1,---,j}, then {7 =
(1— tj"l‘l)é.;-/‘rl + tj+1§}711‘
It follows that:
o if o(1) 4 0’(1) then RF(£) < RF(E]) + RF(E7);

o if o’(j+ 1)+ 0"(j+1)and o'(l) = 0"(I) = o(l) for all L € {1, ,j}, then RF(£7) <
RF( j+1) + RW( g+1)
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From the above we conclude that
RE(E) < Y| RF(E).
O'E@k

On the other hand, we have

U(ég) = ‘det(dla’g(vl(€>7 T 70-(1)77 T 7O-<k)77 T 7Ud(£>))‘
= ] w©)
it {in -ig}
hence v(£7) = 74 = v for all o € &;. Using (A.1)-(A.2) we deduce that

RF(E) < Y, 5 (L+1gP + 5 (I717)

O'E@k

Moreover, we have

€72 = |diag(vi(€), -+ o(L)y, -, a(k)y, -, val€))[]
- B+ ) v(©)
z’¢{i1,---,z‘k}
< dy+ g

and so |€7]P < 25d%~P + 2% |¢[P. Consequently, by using [(3;)H(3s
k

RE(E) < ) 5 (1+ 28k +25eP + g(dr?) + (nd(d?) + 1)3(€17))

UE@k

< B+ G(9)
with 3 = 299max {1+ 22d29P + 1§(dy?), 22, 1 (dy?) + 2}, and the proof is complete. W

Remark A.10. When m = d, it is easy to check that v(§) = |deté] for all £ € M99, Conse-
quently, if F' satisifies then R F has convex growth.

A.5. A useful result concerning the determinant. The following lemma is a special
case of a theorem due to Dacorogna and Ribeiro [DR04, Theorem 1.3] (see also [Dac08§),
Theorem 10.29, pp. 462]).

Lemma A.11. Let s, < s, and & € M4 with deté €]sy, s5[. There exists o € Wy ™(]0, 1[4 R?)
such that det(€ + V(y)) € {s1, 2} for L%-a.a. y €]0, 1[¢.
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