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NEW RESULTS ON RELAXATION AND HOMOGENIZATION OF
UNBOUNDED SINGULAR INTEGRALS

OMAR ANZA HAFSA, MOHAMED LAMINE LEGHMIZI,
AND JEAN-PHILIPPE MANDALLENA

Abstract. In this paper, we extend our study of the relaxation and homogenization of un-
bounded singular integral functionals, previously developed in [AHLM11, AHCM17] where
we examined the case of integrands whose quasiconvexification has polynomial growth. Here,
we focus on the more general case where the quasiconvexification has convex growth. The
distinguishing feature of this study is that such a singularity on the integrands is compatible
with the fundamental constraint of hyperelasticity which says that compressing a volume
of matter to a point requires an infinite amount of energy. However, our framework is not
consistent with the constraint of noninterpenetration of matter.
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(Jean-Philippe Mandallena) Université de N̂ımes, Laboratoire MIPA, Site des Carmes, Place
Gabriel Péri, 30021 N̂ımes, France.

E-mail addresses: omar.anza-hafsa@unimes.fr, leghmizi.mohamedlamine@univ-medea.dz,

jean-philippe.mandallena@unimes.fr.
Key words and phrases. Relaxation, homogenization, Γ-convergence, unbounded singular integrand, ru-

usc property, convex growth, determinant-type constraints, hyperelasticity.
Corresponding author: Jean-Philippe Mandallena (jean-philippe.mandallena@unimes.fr).

1



2 NEW RESULTS ON RELAXATION AND HOMOGENIZATION OF UNBOUNDED SINGULAR INTEGRALS

1. Introduction

In this paper we consider unbounded singular integral functionals of the form:

Fpϕq :“

ż

O

F px,∇ϕpxqq dx,

where F : Rd ˆMmˆd ! r0,8s is a Borel measurable function representing the hyperelastic
energy of a periodic composite material, O Ă Rd is a bounded open set representing the
reference configuration of the material and ϕ : O ! Rm denotes the deformation field. The
distinguishing feature here is that F can take infinite values. This paper aims to study relax-
ation and homogenization, via Γ-convergence (see Definition 2.7), of such unbounded singular
integrals. In the scalar case, i.e. when m “ 1, unbounded relaxation and homogenization
problems were intensively studied by Carbone and De Arcangelis (see [CDA02] and the ref-
erence therein). Here, we focus on the vectorial case with applications to hyperelasticity in
mind.

In previous papers [AHLM11, AHCM17], we proved that under certain conditions, if the
Dacorogna relaxation formula [Dac82] for F , i.e. the quasiconvexification ZF of F , see (1.5),
has polynomial growth, then the relaxation F of F, see (2.1), has an integral representation:

Fpϕq “

ż

O

F px,∇ϕpxqqdx (1.1)

with F : Rd ˆMmˆd ! r0,8s given by F “ ZF . In the present paper, we consider the more
general case where ZF has convex growth. Under this condition, we generalize our previous
relaxation result by proving that (1.1) holds with

F “ zQZF ,

where zQZF is defined through the composition of the operations given by the formulas (1.4),
(1.5), (1.6) (see Theorem 2.5). We also demonstrate (see Corollary 2.6) that our result is
consistent with the fundamental constraint of hyperelasticity which states that compressing
a volume of matter to a point requires an infinite amount of energy, i.e.

F px, ξq ! 8 as detξ ! 0. (1.2)

It turns out that we can also extend our work on homogenization developed in [AHLM11,
AHCM17]. Considering unbounded singular integral functionals of the form:

Fεpϕq :“

ż

O

F
´x

ε
,∇ϕpxq

¯

dx,

where F : Rd ˆMmˆd ! r0,8s is 1-periodic and ε ą 0 characterizes the periodicity scale, we
proved in [AHLM11, AHCM17] that under certain conditions, if ZF has polynomial growth,
then homogenization holds, i.e.

Γ- lim
ε!0

Fεpϕq “

ż

O

Fhom p∇ϕpxqq dx (1.3)

with Fhom :Mmˆd ! r0,8s given by the Braides-Müller formula [Bra85, Mül87], i.e. Fhom “

H F with H F given by (1.7). By using this new relaxation theorem (Theorem 2.5), we can
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generalize our previous homogenization result to the more general case where ZF has convex
growth by proving that (1.3) holds with

Fhom “
{H zQZF

where
{H zQZF is defined through the composition of the operations given by the formulas

(1.4), (1.5), (1.6) and (1.7) (see Theorem 2.11). We also demonstrate (see Corollary 2.12)
that our result is consistent with (1.2).

The plan of the paper is as follows. Section 2 presents the main results. We begin in
§2.1 with the statement of a new relaxation theorem (see Theorem 2.5) for unbounded
singular integral functionals whose the integrands have a quasiconvexification with convex
growth. This theorem is applicable to a new class of integrands (see (2.7), (2.8) and (2.9))
which are compatible with the fundamental constraint of hyperelasticity which asserts that
compressing a volume of matter to a point requires an infinite energy (see Corollary 2.6). To
prove Theorem 2.5, we utilize a known relaxation theorem (see Theorem 2.1) for unbounded
integrands with convex growth. As mentioned, this theorem is applicable to integrands of
the type (2.3) (see Corollary 2.2). After relaxation, in §2.2 we present a new homogenization
theorem (see Theorem 2.11) for unbounded singular integral functionals whose the integrands
have a quasiconvexication with convex growth. The proof of this theorem relies on both the
relaxation theorem, Theorem 2.5, and a known homogenization theorem (see Theorem 2.9)
for unbounded integrands with convex growth. Theorem 2.11 can be applied to the new class
of integrands introduced in §2.1. Finally, in Section 3, we prove our main results, Theorems
2.5 and 2.11, in §3.1 and §3.2 respectively. For the convenience of the reader, auxiliary known
results needed for these proofs are compiled in the appendix.

Notation. Throughout the paper we will use the following notation.

‚ Given d P N˚, O Ă Rd denotes a bounded open set.
‚ The Lebesgue measure on Rd is denoted by Ld and for each Borel set A Ă Rd, the
measure of A with respect to Ld is denoted by LdpAq.

‚ For every x P Rd and every ρ ą 0, we set Qρpxq :“ ρ
2
s ´ 1, 1rd`x “

‰

x ´
ρ
2
, x `

ρ
2

“d
,

which is the open cube centered at x and of side ρ.
‚ Given p ą 1 and m P N˚, the space of p-Lebesgue functions from O to Rm is denoted
by LppO;Rmq.

‚ The space of p1, pq-Sobolev functions from O to Rm is denoted by W 1,ppO;Rmq and
we set W 1,p

0 pO;Rmq :“ tϕ P W 1,ppO;Rmq : ϕ “ 0 on BOu.
‚ The space of continuous piecewise affine functions from O to Rm is denoted by
AffpO;Rmq and we set Aff0pO;Rmq :“ tϕ P AffpO;Rmq : ϕ “ 0 on BOu.

‚ The space of m ˆ d matrices is denoted by Mmˆd.
‚ Given any Borel measurable F : Rd ˆMmˆd ! r0,8s, the radial extension of F is

denoted by pF : Rd ˆMmˆd ! r0,8s and is defined by

pF px, ξq :“ lim
t!1´

F px, tξq. (1.4)
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‚ The quasiconvexification of F is denoted by ZF : Rd ˆMmˆd ! r0,8s and is defined
by

ZF px, ξq :“ inf

"
ż

s0,1rd

F px, ξ ` ∇φpyqqdy : φ P W 1,8
0 ps0, 1r

d;Rm
q

*

. (1.5)

‚ The generalized quasiconvexification of F is denoted by QF : Rd ˆMmˆd ! r0,8s

and is defined by

QF px, ξq :“ lim
ρ!0

inf

#

´

ż

Qρpxq

F py, ξ ` ∇φpyqqdy : φ P W 1,p
0 pQρpxq;Rm

q

+

. (1.6)

‚ The homogenization of F is denoted by H F :Mmˆd ! r0,8s and is defined by

H F pξq :“ inf
kě1

inf

"

´

ż

s0,krd

F px, ξ ` ∇φpxqqdx : φ P W 1,p
0 ps0, kr

d;Rm
q

*

. (1.7)

2. Main results

From now on, m, d ě 1 are two integers, p ą 1 is a real number and O Ă Rd is a bounded
open set with Lipschitz boundary.

2.1. Relaxation of unbounded singular integrals. Let F : Rd ˆMmˆd ! r0,8s be a
Borel measurable function and let F : W 1,ppO;Rmq ! r0,8s be defined by

Fpϕq :“

ż

O

F px,∇ϕpxqqdx,

let F : W 1,ppO;Rmq ! r0,8s be the relaxed functional given by

Fpϕq :“ inf

"

lim
n!8

Fpϕnq : ϕn ! ϕ in Lp
pO;Rm

q

*

(2.1)

and let G : Mmˆd ! r0,8s be a Borel measurable function. In what follows, we consider
the following hypotheses:

(A1) G is convex;
(A2) 0 P intpGq where G :“ tξ P Mmˆd : Gpξq ă 8u denotes the effective domain of G;
(A3) G is p-coercive, i.e. there exists C ą 0 such that for every ξ P Mmˆd,

Gpξq ě C|ξ|
p;

(A4) F has G-growth, i.e. there exist α, β ą 0 such that for every px, ξq P Rd ˆMmˆd,

αGpξq ď F px, ξq ď βp1 ` Gpξqq;

(A5) F is radially uniformly upper semicontinuous (ru-usc), i.e. there exists a ą 0 such
that

lim
t!1´

∆a
F ptq ď 0

with ∆a
F : r0, 1s !s ´ 8,8s defined by

∆a
F ptq :“ sup

xPRd

sup
ξPFx

F px, tξq ´ F px, ξq

a ` F px, ξq
,
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where Fx “
␣

ξ P Mmˆd : F px, ξq ă 8
(

denotes the effective domain of F px, ¨q.

We begin with the following integral representation result. For a proof we refer to [AHM24,
Corollary 5.1] (see also [AHM18, Theorem 2.7] and [AHM23, Corollary 4.9]).

Theorem 2.1. Assume that p ą d and (A1)–(A5) hold. Then

Fpϕq “

ż

O

yQF px,∇ϕpxqqdx for all ϕ P W 1,p
pO;Rm

q. (2.2)

Moreover, we have

yQF px, ξq “

#

lim
t!1´

QF px, tξq if px, ξq P Rd ˆ G
8 otherwise.

Classically, Theorem 2.1 can be applied to unbounded functions F : Rd ˆMmˆd ! r0,8s of
the form:

F px, ξq “ rF px, ξq ` rGpξq (2.3)

with rF : Rd ˆMmˆd ! r0,8r and rG :Mmˆd ! r0,8s satisfying the following assumptions:

(rA1) rG is convex;

(rA2) 0 P intprGq where rG :“ tξ P Mmˆd : rGpξq ă 8u denotes the effective domain of rG;

(rA3) rF has p-growth, i.e. there exist µ, ν ą 0 such that for every px, ξq P Rd ˆMmˆd,

µ|ξ|
p

ď rF px, ξq ď νp1 ` |ξ|
p
q;

(rA4) there exists L ą 0 such that for every x P Rd and every ξ1, ξ2 P Mmˆd,
ˇ

ˇ

ˇ

rF px, ξ1q ´ rF px, ξ2q
ˇ

ˇ

ˇ
ď L |ξ1 ´ ξ2|

`

1 ` |ξ1|
p´1

` |ξ2|
p´1

˘

.

More precisely, as a consequence of Theorem 2.1, we have the following result.

Corollary 2.2. Assume that p ą d. Under (rA1)–(rA4), if F is given by (2.3) then (2.2)
holds.

Proof of Corollary 2.2. It suffices to prove that F given by (2.3) satisfies (A1)–(A5) and
to apply Theorem 2.1.

First of all, by (rA3) we see that (A4) is verified with α “ mintµ, 1u, β “ maxtν, 1u and

Gpξq “ |ξ|p ` rGpξq where the effective domain G of G is equal to rG. Hence (A3) holds and

(A1) and (A2) follow from (rA1) and (rA2) respectively.

So, it remains to establish (A5), i.e. F is ru-usc. Fix any t Ps0, 1r, any x P Rd and any ξ P rG.

Using (rA4) with ξ1 “ tξ and ξ2 “ ξ and taking the left inequality in (rA3) into account, we
obtain

rF px, tξq ´ rF px, ξq ď L1
p1 ´ tqp1 ` rF px, ξqq (2.4)

with L1 :“ Lmaxt1, 3
µ

u. On the other hand, as, by (rA1), rG is convex we have

rGptξq ´ rGpξq ď t rGpξq ` p1 ´ tq rGp0q ´ rGpξq ď p1 ´ tq rGp0q,

and consequently
rGptξq ´ rGpξq ď p1 ´ tq rGp0qp1 ` rGpξqq. (2.5)
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From (2.4) and (2.5) we deduce that

F px, tξq ´ F px, ξq ď maxtL1, rGp0qup1 ´ tqp2 ` F px, ξqq.

Passing to the supremum on x and ξ we obtain

sup
xPRd

sup
ξPrG

F px, tξq ´ F px, ξq

2 ` F px, ξq
ď maxtL1, rGp0qup1 ´ tq,

and, noticing that for any x P Rd the effective domain of F px, ¨q, Fx, is equal to rG and
rGp0q ă 8 by (rA2), we conclude that

lim
t!1´

∆2
F ptq :“ lim

t!1´
sup
xPRd

sup
ξPFx

F px, tξq ´ F px, ξq

2 ` F px, ξq
ď 0,

which proves that F is ru-usc with a “ 2, and the proof is complete. ■

Theorem 2.1 can be improved to incorporate determinant-type constraints (see Theorem 2.5
and corollary 2.6). To do this, let Λ be the class of λ P L8pRd; r0,8rq satisfying the following
property:

(P) for every bounded open subset U Ă Rd with LdpBUq “ 0 and every δ Ps0, δ0s with
δ0 ą 0, there exists a compact Kδ Ă U such that

$

&

%

LdpBKδq “ 0
LdpUzKδq ă δ
λ|Kδ

is continuous

with U denoting the closure of U .

Remark 2.3. (i) If λ is continuous then (P) is verified with Kδ “ U .
(ii) If λ is continuous Ld-a.e., i.e. LdpN :“ tx P RN : λ is not continuous at xuq “ 0,

and if limδ!0L
dpVδq :“ tx P U : distpx,Nq ă δuq “ 0 and LdpBVδq “ 0, then (P) is

verified with Kδ “ UzVδ.
(iii) If (P) holds then λ is continuous Ld-a.e. (for a proof, see [AHCM17, Lemma 2.5]).

In what follows, we consider the following complementary hypotheses:

(B0) O is is strongly star-shaped1;
(B1) G is open;
(B2) there exists λ P Λ such that for every px1, x2q P Rd ˆRd and every ξ P Mmˆd,

F px1, ξq ď |λpx1q ´ λpx2q|p1 ` F px2, ξqq ` F px2, ξq;

(B3) ZF has G-growth, i.e. there exist α, β ą 0 such that for every px, ξq P Rd ˆMmˆd,

αGpξq ď ZF px, ξq ď βp1 ` Gpξqq.

Remark 2.4. (i) If G is continuous then (B1) holds.
(ii) If F satisfies (B2) then Fx1 “ Fx2 for all px1, x2q P Rd ˆRd, where Fx1 and Fx2 denote

the effective domain of F px1, ¨q and F px2, ¨q respectively.

1An open set O Ă Rd is said to be strongly star-shaped if there exists x0 P O such that tp´x0 ` Oq Ă

´x0 ` O for all t Ps0, 1r.
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(iii) If F satisfies (B2) and if λ is continuous at x P Rd then F p¨, ξq is continuous at x for
all ξ P Mmˆd. More generally, if (B2) holds and if λ|K is continuous for K Ă Rd then
F p¨, ξq|K is continuous for all ξ P Mmˆd.

(iv) If F satisfies (B2) then for every px1, x2q P Rd ˆRd and every ξ P Mmˆd,

ZF px1, ξq ď |λpx1q ´ λpx2q|p1 ` ZF px2, ξqq ` ZF px2, ξq.

Hence, if (B2) holds and if λ|K is continuous forK Ă Rd then ZF p¨, ξq|K is continuous
for all ξ P Mmˆd and ZFx1 “ ZFx2 for all px1, x2q P Rd ˆRd, where, for any x P Rd,
ZFx denotes the effective domain of ZF px, ¨q, i.e. ZFx :“ tξ P Mmˆd : ZF px, ξq ă 8u.

(v) As a consequence of (ii)–(iii), if F satisfies (B2) then, for each ξ P Mmˆd, F p¨, ξq and
ZF p¨, ξq are continuous a.e. because λ is continuous a.e. (see Remark 2.3-(iii)).

Here is the first main result of the paper.

Theorem 2.5. Assume that p ą d and (A1)–(A3), (A5) and (B0)–(B3) hold. Then

Fpϕq “

ż

O

zQZF px,∇ϕpxqqdx for all ϕ P W 1,p
pO;Rm

q. (2.6)

Moreover, we have

zQZF px, ξq “

#

lim
t!1´

QZF px, tξq if px, ξq P Rd ˆ G
8 otherwise.

Theorem 2.5 can be applied to unbounded singular functions F : Rd ˆMdˆd ! r0,8s of the
form:

F px, ξq “ rF px, ξq ` rGpξq ` apxqHpdetξq. (2.7)

The functions a : Rd ! r0,8r and H : R! r0,8s satisfy the following conditions:

(C1) a P Λ and there exists η ą 0 such that a ě η;
(C2) H is Borel measurable and there exist γ, δ ą 0 such that Hpsq ď δ for all |s| ě γ;
(C3) Rzt0u Ă H, where H denotes the effective domain of H;
(C4) there exists κ ą 0 such that for every t Ps0, 1s and every s P H, Hptdsq ď 1

tκ
Hpsq.

The fonction rG :Mmˆd ! r0,8r is of the form

rGpξq “ rg
`

|ξ|
2
˘

(2.8)

with rg : r0,8r! r0,8r verifying the following conditions:

pra1q the function rg is convex and nondecreasing;
pra2q there exist γ1, γ2 ě 0 such that for every ps1, s2q P r0,8rˆr0,8r,

rgps1 ` s2q ď γ1rgps1qrgps2q ` γ2
`

rgps1q ` rgps2q
˘

.

The function rF : Rd ˆ Mmˆd ! r0,8r satisfies (rA3)–(rA4) and the following additional
condition:

(rA5) for every px1, x2q P Rd ˆRd and every ξ P Mmˆd,

rF px1, ξq ď |apx1q ´ apx2q|p1 ` rF px2, ξqq ` rF px2, ξq.
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For example, the conditions pra1q–pra2q are satisfied with rgpsq “ es by taking γ1 “ 1 and
γ2 “ 0, and the conditions (C2)–(C4) are verified with

Hpsq “

$

&

%

1

|s|
if s “ 0

8 if s “ 0.
(2.9)

Note that F as in (2.7) with H given by (2.9) is compatible with the singular behavior
F px, ξq ! 8 as detξ ! 0. However, such a F is not consistent with the noninterpenetration
of the matter.

As a consequence of Theorem 2.5, we have the following result.

Corollary 2.6. Assume that m “ d and p ą d. Under (B0), (rA3)–(rA5), pra1q–pra2q and
(C1)–(C4), if F is given by (2.7) then (2.6) holds.

Proof of Corollary 2.6. It suffices to prove that F given by (2.7) satisfies (A1)–(A3), (A5)
and (B1)–(B3), and to apply Theorem 2.5.

Define G :Mdˆd ! r0,8r by

Gpξq :“ |ξ|
p

` rGpξq. (2.10)

Taking (2.8) and pra1q into account, as rG is finite it is clear that (A1)–(A3) and (B1) are
verified.

From (C1) and (rA5) it is easily seen that (B2) holds with λ “ max
␣

1, 1
η

(

a.

Noticing that by (C1), a P L8pRd; r0,8rq, from (rA3) and (C2) we see that F satisfies the
following condition:

(rAdet) for every px, ξq P Rd ˆMdˆd,

if |detξ| ě γ then F px, ξq ď rδp1 ` Gpξqq.

where γ ą 0 is given by (C2) and rδ :“ maxtν ` δ}a}L8 , 1u.

Let us prove (B3). Fix any x P Rd and any ξ P Mdˆd. First of all, from the left inequality

in (rA3) we see that ZF px, ξq ě αGpξq with α “ mintµ, 1u. On the other hand, since rG is

finite, so is G, and so from (rAdet) we see that if |detξ| ě γ then ZF px, ξq ď F px, ξq ă 8.
Suppose now that |detξ| ă γ. Then, by Lemma A.11, there exists φ P W 1,8

0 ps0, 1rd;Rdq such

that
ˇ

ˇdetpξ ` ∇φpyqq
ˇ

ˇ “ γ for Ld-a.a. y Ps0, 1rd, and using (rAdet) and pra1q–pra2q we have

ZF px, ξq ď

ż

s0,1rd

F px, ξ ` ∇φpyqqdy

ď

ż

s0,1rd

rδp1 ` Gpξ ` ∇φpyqqqdy

ď rδ
”

1 ` 2pp|ξ|
p

` }∇φ}
p
L8q ` γ2rgp2|ξ|

2
q ` pγ1rgp2|ξ|

2
q ` γ2qrgp2}∇φ}

2
L8q

ı

ă 8.

Thus ZF px, ξq ă 8 for all ξ P Mdˆd, i.e. ZF px, ¨q is finite. From Proposition A.2(b) we
deduce that ZF px, ¨q is rank-one convex, and consequently ZF px, ¨q ď R F px, ¨q. Taking

(2.8), (2.10) and (rAdet) into account, from Lemma A.9 (and Remark A.10) we conclude that
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for every px, ξq P Rd ˆMdˆd, ZF px, ξq ď βp1`Gpξqq with β ą 0 given by Lemma A.9, which
proves (B3).

Let us prove (A5). Fix any t Ps0, 1s, any x P Rd and any ξ P Mdˆd such that detξ P H. Using

(rA4) with ξ1 “ tξ and ξ2 “ ξ and taking the left inequality in (rA3) into account, we obtain

rF px, tξq ´ rF px, ξq ď L1
p1 ´ tqp1 ` rF px, ξqq (2.11)

with L1 :“ Lmaxt1, 3
µ

u. On the other hand, as, by pra1q, rG is convex we have

rGptξq ´ rGpξq ď t rGpξq ` p1 ´ tq rGp0q ´ rGpξq ď p1 ´ tq rGp0q,

and consequently
rGptξq ´ rGpξq ď p1 ´ tq rGp0qp1 ` rGpξqq. (2.12)

Moreover, by (C3)–(C4) we have

hpdetptξqq ´ hpdetξq “ hptddetξq ´ hpdetξq ď

ˆ

1

tκ
´ 1

˙

p1 ` hpdetξqq (2.13)

with κ ą 0 given by (C4). From (2.11), (2.12) and (2.13) we deduce that

F px, tξq ´ F px, ξq ď max

"

L1
p1 ´ tq, rGp0qp1 ´ tq,

1

tκ
´ 1

*

p3 ` F px, ξqq.

Passing to the supremum on x and ξ we obtain

sup
xPRd

sup
ξPdetH

F px, tξq ´ F px, ξq

3 ` F px, ξq
ď max

"

L1
p1 ´ tq, rGp0qp1 ´ tq,

1

tκ
´ 1

*

,

Where detH :“
␣

ξ P Mdˆd : detξ P H
(

. Noticing that for any x P Rd the effective of F px, ¨q,
Fx, is equal to detH, we conclude that

lim
t!1´

∆3
F ptq :“ lim

t!1´
sup
xPRd

sup
ξPFx

F px, tξq ´ F px, ξq

3 ` F px, ξq
ď 0,

which proves that F is ru-usc with a “ 3, i.e. (A5) holds, and the proof is complete. ■

2.2. Homogenization of unbounded singular integrals. Let F : Rd ˆMmˆd ! r0,8s

be a Borel measurable function satisfying the following assumption:

(A6) F is 1-periodic, i.e. F px ` ei, ξq “ F px, ξq for all ξ P Mmˆd and all i P t1, ¨ ¨ ¨ , du,
where pe1, ¨ ¨ ¨ , edq is the standard basis of Rd,

and, for each ε ą 0, let Fε : W
1,ppO;Rmq ! r0,8s be defined by

Fεpϕq :“

ż

O

F
´x

ε
,∇ϕpxq

¯

dx.

We aim to compute the Γ-limit of tFεuεą0 as ε ! 0 with respect to the LppO;Rmq-
convergence. Here is the definition of the Γ-limit. (For more details on this concept we
refer to [DM93, BD98, Bra02].)
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Definition 2.7. Let ΓpLpq- limε!0Fε, ΓpLpq- limε!0Fε : W 1,ppO;Rmq ! r0,8s be respec-
tively defined by:

ΓpLp
q- lim

ε!0
Fεpϕq :“ inf

"

lim
ε!0

Fεpϕεq : ϕε
Lp

! ϕ

*

;

ΓpLp
q- lim

ε!0
Fεpϕq :“ inf

!

lim
ε!0

Fεpϕεq : ϕε
Lp

! ϕ
)

.

Let Fhom : W 1,ppO;Rmq ! r0,8s. We say that tFεuεą0 ΓpLpq-converges to Fhom as ε ! 0,
and we write Fhom “ ΓpLpq-limε!0Fε, if the following two inequalities hold:

Fhom ď ΓpLp
q- lim

ε!0
Fε;

ΓpLp
q- lim

ε!0
Fε ď Fhom.

Let us mention the following property of the Γ-liminf and Γ-limsup that we will use in the
proof of Theorem 2.11.

Proposition 2.8. The Γ-liminf and the Γ-limsup are stable under the substitution of Fε

with its relaxed functional Fε, i.e.

ΓpLp
q- lim

ε!0
Fε “ ΓpLp

q- lim
ε!0

Fε and ΓpLp
q- lim

ε!0
Fε “ ΓpLp

q- lim
ε!0

Fε,

where, for each ε ą 0, Fεpϕq :“ inf
␣

limn!8 Fεpϕnq : ϕn ! ϕ in LppO;Rmq
(

.

We begin with the following homogenization result. For a proof we refer to [AHMZ15,
Theorem 1.1] (see also [AHM11]).

Theorem 2.9. Assume p ą d and (A1)–(A6) hold. Then, Fhom “ ΓpLpq-limε!0Fε with
Fhom given by

Fhompϕq “

ż

O

yH F p∇ϕpxqqdx for all ϕ P W 1,p
pO;Rm

q. (2.14)

Moreover, we have

yH F pξq “

#

lim
t!1´

H F ptξq if ξ P G
8 otherwise.

According to the proof of Corollary 2.2, the following result is a straightforward consequence
of Theorem 2.9.

Corollary 2.10. Assume that p ą d and F given by (2.3) verifies (rA1)–(rA4) and the fol-
lowing additional assumption:

(rA6) rF is 1-periodic.

Then, Fhom “ ΓpLpq-limε!0Fε with Fhom given by (2.14).

The following theorem, which is the second main result of the paper, improves Theorem 2.9
and allows to incorporate determinant-type constraints (see Corollary 2.12).
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Theorem 2.11. Assume p ą d and (A1)–(A3), (A5)–(A6) and (B0)–(B3) hold. Then,
Fhom “ ΓpLpq-limε!0Fε with Fhom given by

Fhompϕq “

ż

O

{H zQZF p∇ϕpxqqdx for all ϕ P W 1,p
pO;Rm

q. (2.15)

Moreover, we have

{H zQZF pξq “

#

lim
t!1´

H zQZF ptξq if ξ P G
8 otherwise.

As a consequence of Theorem 2.11 we obtain the following result that applies to integrands F
of the form (2.7) which are compatible with the singular behavior F px, ξq ! 8 as detξ ! 0.

Corollary 2.12. Assume that m “ d, p ą d and F given by (2.7) verifies (B0), (rA3)–(rA6),
pra1q–pra2q and (C1)–(C4). Then, Fhom “ ΓpLpq-limε!0Fε with Fhom given by (2.15).

The proof of Corollary 2.12 follows the same lines as Corollary 2.6, applying Theorem 2.11
instead of Theorem 2.5.

3. Proof of the main results

3.1. Proof of the unbounded singular relaxation theorem. Let ZF : W 1,ppO;Rmq !
r0,8s be defined by

ZFpϕq :“

ż

O

ZF px,∇ϕpxqqdx (3.1)

and let ZF : W 1,ppO;Rmq ! r0,8s be the relaxed functional given by

ZFpϕq :“ inf

"

lim
n!8

ZFpϕnq : ϕn ! ϕ in Lp
pO;Rm

q

*

. (3.2)

We begin with the following result which asserts that (under some conditions) the relaxed
functional in (2.1) is equal to the relaxed functional in (3.2).

Proposition 3.1. If (A1) and (B0)–(B3) hold then F “ ZF.

Proof of Proposition 3.1. First of all, it is easy to see that ZF ď F. So, it remains to
prove that F ď ZF for which it is sufficient to show that for every ϕ P W 1,ppO;Rmq,

Fpϕq ď

ż

O

ZF px,∇ϕpxqq dx. (3.3)

To do this, we need the following lemma whose proof can be found in [AHCM17, Lemma
3.9].

Lemma 3.2. Under (B2),

if ϕ P AffpO;Rm
q then Fpϕq ď

ż

O

ZF px,∇ϕpxqq dx.
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Let ϕ P W 1,ppO;Rmq. Without loss of generality we can assume that
ş

O
ZF px,∇ϕpxqq dx ă

8. Then, by (B3),
ż

O

Gp∇ϕpxqqdx ă 8, (3.4)

and so

∇ϕpxq P G for Ld-a.a. x P O. (3.5)

According to (A1) and (B0)–(B1), by Lemma A.1 there exists tϕnun Ă AffpO;Rmq satisfying
(D1)–(D3) and, up to a subsequence,

lim
n!8

|∇ϕnpxq ´ ∇ϕpxq| “ 0 for Ld-a.a. x P O. (3.6)

From (B3) we see that for every x P O, ZFx “ G, where ZFx :“ tξ P Mmˆd : ZF px, ξq ă 8u

denotes the effective domain of ZF px, ¨q. By (B1) and Proposition A.2-(c) it follows that for
every x P O, ZF px, ¨q in continuous on G, and consequently, by using (3.5) and (D3),

lim
n!8

|ZF px,∇ϕnpxqq ´ ZF px,∇ϕpxqq| “ 0 for Ld-a.a. x P O. (3.7)

Moreover, from the right inequality in (B3), it is easy to see that for every n ě 1 and every
Borel sets E Ă O,

ż

E

ZF px,∇ϕnpxqqdx ď βLd
pEq ` β

ż

E

Gp∇ϕpxqqdx ` β}Gp∇ϕnq ´ Gp∇ϕq}L1pOq,

which shows that tZF p¨,∇ϕnqun is uniformly integrable when combined with (3.4) and (D2).
Recalling (3.7), from Vitali’s theorem we deduce that

lim
n!8

ż

O

ZF px,∇ϕnpxqqdx “

ż

O

ZF px,∇ϕpxqqdx (3.8)

On the other hand, by Lemma 3.2 we have

Fpϕnq ď

ż

O

ZF px,∇ϕnpxqq dx for all n ě 1. (3.9)

Letting n ! 8 in (3.9) and using (3.8) we obtain

lim
n!8

Fpϕnq ď

ż

O

ZF px,∇ϕpxqq dx. (3.10)

By (D1), ϕn ! ϕ in LppO;Rmq, hence

Fpϕq ď lim
n!8

Fpϕnq (3.11)

because F is lower semicontinuous with respect to the LppO;Rmq-convergence, and (3.3)
follows by combining (3.10) with (3.11). ■

We can now prove Theorem 2.5.
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Proof of Theorem 2.5. According to (B3) we see that (A4) is verified with ZF instead of
F . By Lemma A.6 we can assert that (A5) is satisfied with ZF instead of F . Since (A1)–
(A3) are also fulfilled we can applied Theorem 2.1 to ZF defined in (3.1). Consequently, we
deduce that

ZFpϕq “

ż

O

zQZF px,∇ϕpxqqdx for all ϕ P W 1,p
pO;Rm

q.

Furthermore, by Proposition 3.1, we have F “ ZF, which implies (2.6). ■

3.2. Proof of the unbounded singular homogenization theorem. Here we prove The-
orem 2.11. From now on, for each ε ą 0, let Fε : R

d ˆMmˆd ! r0,8s be defined by

Fεpx, ξq :“ F
´x

ε
, ξ
¯

. (3.12)

Proof of Theorem 2.11. The proof is divided into two steps: first, we apply the new
relaxation theorem, Theorem 2.5, to every Fε, and then we conclude via the known homog-
enization theorem, Theorem 2.9.

Step 1: applying Theorem 2.5 to every Fε. Fix any ε ą 0. Since (A1)–(A3) and (B0)–(B1) are
verified and are independent of the integrand F , to apply Theorem 2.5 to Fε, it is sufficient
to prove that (A5) and (B2)–(B3) hold with Fε instead of F .

Fix any t P r0, 1s, any x P Rd and any ξ P Fε,x, where Fε,x denotes the effective domain of
Fεpx, ¨q. As Fε,x “ Fx

ε
by (3.12), and F is ru-usc with a ą 0, we can assert that

Fεpx, tξq ´ Fεpx, ξq

a ` Fεpx, ξq
“

F
`

x
ε
, tξ

˘

´ F
`

x
ε
, ξ
˘

a ` F
`

x
ε
, ξ
˘ ď sup

yPRd

sup
ζPFy

F py, tζq ´ F py, ζq

a ` F py, ζq
“ ∆a

F ptq.

Hence, for every t P r0, 1s,

∆a
Fε

ptq “ sup
xPRd

sup
ξPFε,x

Fεpx, tξq ´ Fεpx, ξq

a ` Fεpx, ξq
ď ∆a

F ptq.

But, since F is ru-usc with a ą 0, limt!1´ ∆a
F ptq ď 0, and consequently limt!1´ ∆a

Fε
ptq ď 0,

which shows that Fε is ru-usc with a ą 0, i.e. (A5) holds with Fε instead of F .

By assumption, there exists λ P Λ such that

F py1, ξqď|λpy1q´λpy2q|p1`F py2, ξqq`F py2, ξq for all py1, y2, ξq P Rd
ˆRd

ˆMmˆd. (3.13)

Setting λεp¨q :“ λ
`

¨

ε

˘

where, without loss of generality, ε Ps0, 1r, and taking (3.12) into

account, from (3.13) we see that for every px1, x2q P Rd ˆRd and every ξ P Mmˆd,

Fεpx1, ξq ď |λεpx1q ´ λεpx2q|p1 ` Fεpx2, ξqq ` Fεpx2, ξq.

We claim that λε P Λ. Indeed, first of all it is clear that λε P L8pRd; r0,8rq. On the other
hand, let U Ă Rd be a bounded open set with LdpBUq “ 0 and let δ ą 0. As λ P Λ, there

exists a compact rKδ Ă 1
ε
U such that

$

’

’

&

’

’

%

Ld
´

B rKδ

¯

“ 0

Ld
´

1
ε
Uz rKδ

¯

ă δ

λ|
rKδ

is continuous.

(3.14)
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Set Kδ :“ ε rKδ. Then, Kδ is compact, Kδ Ă U and from (3.14) we have
$

’

’

&

’

’

%

Ld pBKδq “ εdLd
´

B rKδ

¯

“ 0

Ld
`

UzKδ

˘

“ εdLd
´

1
ε
Uz rKδ

¯

ă εdδ ă δ

λε|Kδ
“ λ

`

¨

ε

˘

|ε rKδ
is continuous,

which means that (P) is satisfied with λε in place of λ, and proves the claim. Thus, (B2)
holds with Fε instead of F .

By assumption there exist α, β ą 0 such that

αGpξq ď ZF py, ξq ď βp1 ` Gpξqq for all py, ξq P Rd
ˆMmˆd. (3.15)

Fix any px, ξq P Rd ˆMmˆd. By definition of ZF in (1.5) it is easily seen that

ZFεpx, ξq “ ZF
´x

ε
, ξ
¯

. (3.16)

From (3.15) and (3.16) we deduce that for every px, ξq P Rd ˆMmˆd,

αGpξq ď ZFεpx, ξq ď βp1 ` Gpξqq,

which shows that (B3) holds with Fε instead of F .

Consequently, by applying Theorem 2.5 to Fε, we conclude that for every ε ą 0,

Fεpϕq “

ż

O

zQZFεpx,∇ϕpxqqdx “

ż

O

zQZF
´x

ε
,∇ϕpxq

¯

dx for all ϕ P W 1,p
pO;Rm

q. (3.17)

Step 2: end of the proof by applying Theorem 2.9. By Proposition 2.8, ΓpLpq- limε!0Fε “

ΓpLpq- limε!0Fε and ΓpLpq- limε!0Fε “ ΓpLpq- limε!0Fε. So, the proof will be completed
by showing that

´

ΓpLp
q- lim

ε!0
Fε

¯

pϕq “

ż

O

{H zQZF p∇ϕpxqqdx for all ϕ P W 1,p
pO;Rm

q. (3.18)

For this, we are going to apply Theorem 2.9 to zQZF . Let G : Mmˆd ! r0,8s denote the

lower semicontinuous envelope of G. To apply Theorem 2.9 to zQZF , it suffices to show

that (A1)–(A3) hold with G instead of G, (A4) holds with pG,zQZF q instead of pG,F q and

(A5)–(A6) hold with zQZF instead of F .

First of all, since (A1)–(A3) hold for G, it is clear that (A1)–(A3) hold for G as well.

On the other hand, since F is ru-usc, by successively using the stability results for ru-usc

from Lemmas A.6, A.7, and A.5(a), we can assert that zQZF is ru-usc, i.e. (A5) holds with
zQZF instead of F .

Moreover, as F is 1-periodic it is easily seen that zQZF is also 1-periodic, i.e. (A6) holds with
zQZF instead of F .

Finally, by assumption there exist α, β ą 0 such that

αGpξq ď ZF px, ξq ď βp1 ` Gpξqq for all px, ξq P Rd
ˆMmˆd.
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Hence, by using Lemma A.5(d),

αGpξq ď zQZF px, ξq ď βp1 ` Gpξqq for all px, ξq P Rd
ˆMmˆd,

which means that (A4) holds with pG,zQZF q instead of pG,F q.

Consequently, (3.18) follows by applying Theorem 2.9 to zQZF , and the proof is complete. ■

Appendix. Auxiliary results

A.1. Approximation by continuous piecewise affine functions. The following lemma
can be found in [Mül87, Lemma 3.6(b)] (see also [ET74, Chapitre X, §2.3, pp. 288-293] and
[AHM11, §3.3]).

Lemma A.1. Let O Ă Rd be a bounded open set with Lipschitz boundary and let G :
Mmˆd ! r0,8s. If (B0) holds then for every ϕ P W 1,ppO;Rmq such that

ż

O

Gp∇ϕpxqqdx ă 8,

there exists tϕnun Ă AffpO;Rmq such that:

(D1) lim
n!8

}ϕn ´ ϕ}W 1,ppO;Rmq “ 0;

(D2) lim
n!8

}Gp∇ϕnq ´ Gp∇ϕq}L1pOq “ 0;

(D3) ∇ϕnpxq P G for all n ě 1 and Ld-a.a. x P O.

A.2. Properties of ZF . The following result is due to Fonseca (see [Fon88, lemma 2.16,
Theorem 2.17 and Proposition 2.3]).

Proposition A.2. Let F : Rd ˆ Mmˆd ! r0,8s be a Borel measurable function. The
function ZF satisfies the following properties.

(a) For every bounded open set U Ă Rd with |BU | “ 0 and every px, ξq P Rd ˆMmˆd,

ZF px, ξq “ inf

"

´

ż

U

F px, ξ ` ∇φpyqqdy : φ P W 1,8
0 pU ;Rm

q

*

“: ZUF px, ξq.

More precisely, ZUF ď ZF for all bounded open set U Ă Rd, and ZF ď ZUF for all
bounded open set U Ă Rd with |BU | “ 0.

(b) For every x P Rd, ZF px, ¨q is rank-one convex in intpZFxq, where ZFx denotes the
effective domain of ZF px, ¨q, i.e. ZFx :“ tξ P Mmˆd : ZF px, ξq ă 8u.

(c) For every x P Rd, ZF px, ¨q is continuous on intpZFxq.
(d) For every bounded open set U Ă Rd with |BU | “ 0, every px, ξq P Rd ˆMmˆd and

every φ P Aff0pU ;Rmq,

ZF px, ξq ď ´

ż

U

ZF px, ξ ` ∇φpyqqdy.

Remark A.3. Proposition A.2 is also valid with “pZF” instead of “ZF” (see [AHM09, Propo-
sition 2.3]) where pZF : Rd ˆMmˆd ! r0,8s is given by

pZF px, ξq :“ inf

"
ż

Y

F px, ξ ` ∇φpyqqdy : φ P Aff0pY ;Rm
q

*

.
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In particular, Proposition A.2(d) can be rewritten as pZrZF s “ ZF .

A.3. Stability properties of ru-usc functions. We begin by recalling the definition of a
radially uniformly upper semicontinuous (ru-usc) function. Let F : Rd ˆMmˆd ! r0,8s be
a Borel measurable function.

Definition A.4. We say that F is ru-usc if there exists a ą 0 such that

lim
t!1´

∆a
F ptq ď 0

with ∆a
F : r0, 1s !s ´ 8,8s defined by

∆a
F ptq :“ sup

xPRd

sup
ξPFx

F px, tξq ´ F px, ξq

a ` F px, ξq
,

where Fx denotes the effective domain of F px, ¨q.

Let pF : Rd ˆMmˆd ! r0,8s be defined by

pF px, ξq :“ lim
t!1´

F px, tξq.

The operation F 7! pF is stable under ru-usc. More precisely, we have the following result,

which makes clear the properties of pF (see [AHM11, Theorem 3.5] for a proof).

Lemma A.5. If F is ru-usc and if tFx Ă intpFxq for all x P Rd and all t Ps0, 1r, then:

(a) pF is ru-usc;
(b) For every px, ξq P Rd ˆMmˆd,

pF px, ξq “

#

lim
t!1´

F px, tξq if ξ P Fx

8 otherwise.

If moreover, for every x P Rd, F px, ¨q is lsc on intpFxq then:

(c) pF px, ξq “

$

&

%

F px, ξq if ξ P intpFxq

lim
t!1´

F px, tξq if ξ P BFx

8 otherwise;

(d) for every x P Rd, pF px, ¨q is the lsc envelope of F px, ¨q.

Let ZF : Rd ˆMmˆd ! r0,8s be defined by

ZF px, ξq :“ inf

"
ż

s0,1rd

F px, ξ ` ∇φpyqqdy : φ P W 1,8
0 ps0, 1r

d;Rm
q

*

.

The following lemma states that the operation F 7! ZF is stable under ru-usc (see [AHM11,
Proposition 3.6] for a proof).

Lemma A.6. If F is ru-usc then ZF is ru-usc.

Let QF : Rd ˆMmˆd ! r0,8s by

QF px, ξq :“ lim
ρ!0

inf

#

´

ż

Qρpxq

F py, ξ ` ∇φpyqqdy : φ P W 1,p
0 pQρpxq;Rm

q

+

.
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The following lemma asserts the stability of the operation F 7! QF under ru-usc (see
[AHM23, Corollary 2.22] for a proof).

Lemma A.7. If F is ru-usc then QF is ru-usc.

Let H F :Mmˆd ! r0,8s be defined by

H F pξq :“ inf
kě1

inf

"

´

ż

s0,krd

F px, ξ ` ∇φpxqqdx : φ P W 1,p
0 ps0, kr

d;Rm
q

*

.

As with the three operations mentioned above, the operation F 7! H F is stable under ru-usc
(see [AHM11, Proposition 3.7] for a proof).

Lemma A.8. If F is ru-usc then H F is ru-usc.

A.4. A variant of Ben Belgacem’s lemma. In what follows d ď m and given ξ P Mmˆd,
0 ď v1pξq ď ¨ ¨ ¨ ď vdpξq denote the singular values of ξ. Set

vpξq :“
d
ź

i“1

vipξq.

The following lemma is a variant of the result by Ben Belgacem [BB96] (see also [AHM12,
Theorem 3.20]).

Lemma A.9. Let G :Mmˆd ! r0,8r be defined by

Gpξq :“ |ξ|
p

` rg
`

|ξ|
2
˘

(A.1)

with p ą 1 and rg : r0,8r! r0,8r verifying pra1q–pra2q. Let F : Mmˆd ! r0,8s be a Borel

measurable function. Assume that there exist γ, rδ ą 0 such that for every ξ P Mmˆd,

vpξq ě γ implies F pξq ď rδp1 ` Gpξqq. (A.2)

Then, there exists β ą 0 such that for every ξ P Mmˆd,

R F pξq ď βp1 ` Gpξqq,

where R F denotes the rank-one convex envelope of F .

Proof of Lemma A.9. Without loss of generality we can assume that γ ě 1, and it is
sufficient to prove that R F pξq ď βp1 ` |ξ|pq for all ξ P Mmˆd such that vpξq ă γ.

Let ξ P Mmˆd be such that vpξq ă γ. Let P P Opmq be such that

ξ “ PJU,

where U :“
a

ξTξ and J “ pJijq P Mmˆd with Jij “ 0 if i “ j and Jii “ 1, where Opmq is
the group of m ˆ m orthogonal matrices. Let Q P SOpdq be such that

U “ QTdiagpv1pξq, ¨ ¨ ¨ , vdpξqqQ,

where SOpdq is the group of d ˆ d orthogonal matrices with determinant equal to 1. Then
$

’

&

’

%

ξ “ PJQTdiagpv1pξq, ¨ ¨ ¨ , vdpξqqQ

|ξ|
2

“

d
ÿ

i“1

v2i pξq.
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As vpξq ă γ there exists 1 ď i1 ď ¨ ¨ ¨ ď ik ď d, with k P t1, ¨ ¨ ¨ , du, such that vi1pξq ă

γ, ¨ ¨ ¨ , vikpξq ă γ (and vipξq ě γ for all i R ti1, ¨ ¨ ¨ , iku). For every j P t1, ¨ ¨ ¨ , ku, let
tj Ps0, 1r be such that vijpξq “ p1 ´ tjqp´γq ` tjγ. Then

diagpv1pξq, ¨ ¨ ¨ , vi1pξq, ¨ ¨ ¨ , vdpξqq “ p1 ´ t1qdiagpv1pξq, ¨ ¨ ¨ ,´α, ¨ ¨ ¨ , vdpξqq

` t1diagpv1pξq, ¨ ¨ ¨ , α, ¨ ¨ ¨ , vdpξqq,

and so ξ “ p1 ´ t1qξ
´
1 ` t1ξ

`
1 with

$

&

%

ξ´
1 :“ PJQTdiagpv1pξq, ¨ ¨ ¨ ,´γ, ¨ ¨ ¨ , vdpξqqQ
ξ`
1 :“ PJQTdiagpv1pξq, ¨ ¨ ¨ , γ, ¨ ¨ ¨ , vdpξqqQ
rank

`

ξ´
1 ´ ξ`

1

˘

“ 1.

Moreover, we have

diagpv1pξq, ¨ ¨ ¨ ,´γ, ¨ ¨ ¨ , vi2pξq, ¨ ¨ ¨ , vdpξqq “ p1 ´ t2qdiagpv1pξq, ¨ ¨ ¨ ,´γ, ¨ ¨ ¨ ,´γ, ¨ ¨ ¨ , vdpξqq

`t2diagpv1pξq, ¨ ¨ ¨ ,´γ, ¨ ¨ ¨ , γ, ¨ ¨ ¨ , vdpξqq,

hence ξ´
1 “ p1 ´ t2qξ´,´

2 ` t2ξ
´,`
2 with

$

&

%

ξ´,´
2 :“ PJQTdiagpv1pξq, ¨ ¨ ¨ ,´γ, ¨ ¨ ¨ ,´γ, ¨ ¨ ¨ , vdpξqqQ
ξ´,`
2 :“ PJQTdiagpv1pξq, ¨ ¨ ¨ ,´γ, ¨ ¨ ¨ , γ, ¨ ¨ ¨ , vdpξqqQ
rank

`

ξ´,´
2 ´ ξ´,`

2

˘

“ 1.

In the same manner, we obtain ξ`
1 “ p1 ´ t2qξ`,´

2 ` t2ξ
`,`
2 with

$

&

%

ξ`,´
2 :“ PJQTdiagpv1pξq, ¨ ¨ ¨ , γ, ¨ ¨ ¨ ,´γ, ¨ ¨ ¨ , vdpξqqQ
ξ`,`
2 :“ PJQTdiagpv1pξq, ¨ ¨ ¨ , γ, ¨ ¨ ¨ , γ, ¨ ¨ ¨ , vdpξqqQ
rank

`

ξ`,´
2 ´ ξ`,`

2

˘

“ 1.

We continue in this fashion, obtaining a finite sequence tξσj u
σPSj

jPt1,¨¨¨ ,ku
Ă Mmˆd, where Sj

denotes the set of all maps σ : t1, ¨ ¨ ¨ , ju ! t´,`u, with the following properties:

‚ ξσj “ PJQTdiagpv1pξq, ¨ ¨ ¨ , σp1qγ, ¨ ¨ ¨ , σpjqγ, ¨ ¨ ¨ , vdpξqq;

‚ if σpjq “ σ1pjq and σplq “ σ1plq for all l P t1, ¨ ¨ ¨ , j ´ 1u then rank
`

ξσj ´ ξσ
1

j

˘

“ 1;

‚ if σp1q “ σ1p1q then ξ “ p1 ´ t1qξ
σ
1 ` t1ξ

σ1

1 ;

‚ if σ1pj ` 1q “ σ2pj ` 1q and σ1plq “ σ2plq “ σplq for all l P t1, ¨ ¨ ¨ , ju, then ξσj “

p1 ´ tj`1qξσ
1

j`1 ` tj`1ξ
σ2

j`1.

It follows that:

‚ if σp1q “ σ1p1q then R F pξq ď R F pξσ1 q ` R F pξσ
1

1 q;

‚ if σ1pj ` 1q “ σ2pj ` 1q and σ1plq “ σ2plq “ σplq for all l P t1, ¨ ¨ ¨ , ju, then R F pξσj q ď

R F pξσ
1

j`1q ` R W pξσ
2

j`1q.
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From the above we conclude that

R F pξq ď
ÿ

σPSk

R F pξσk q.

On the other hand, we have

vpξσk q “
ˇ

ˇdetpdiagpv1pξq, ¨ ¨ ¨ , σp1qγ, ¨ ¨ ¨ , σpkqγ, ¨ ¨ ¨ , vdpξqqq
ˇ

ˇ

“ γk
ź

iRti1,¨¨¨iku

vipξq,

hence vpξσk q ě γd ě γ for all σ P Sk. Using (A.1)–(A.2) we deduce that

R F pξq ď
ÿ

σPSk

rδ
`

1 ` |ξσk |
p

` rg
`

|ξσk |
2
˘˘

.

Moreover, we have

|ξσk |
2

“
ˇ

ˇdiagpv1pξq, ¨ ¨ ¨ , σp1qγ, ¨ ¨ ¨ , σpkqγ, ¨ ¨ ¨ , vdpξqq
ˇ

ˇ

2

“ kγ2
`

ÿ

iRti1,¨¨¨ ,iku

v2i pξq

ď dγ2
` |ξ|

2,

and so |ξσk |p ď 2
p
2d

p
2γp ` 2

p
2 |ξ|p. Consequently, by using pra1q–pra2q,

R F pξq ď
ÿ

σPSk

rδ
´

1 ` 2
p
2d

p
2γp

` 2
p
2 |ξ|

p
` γ2rgpdγ2

q ` pγ1rgpdγ2
q ` γ2qrgp|ξ|

2
q

¯

ď βp1 ` Gpξqq

with β “ 2drδmax
␣

1 ` 2
p
2d

p
2γp ` γ2rgpdγ2q, 2

p
2 , γ1rgpdγ2q ` γ2

(

, and the proof is complete. ■

Remark A.10. When m “ d, it is easy to check that vpξq “ |detξ| for all ξ P Mdˆd. Conse-

quently, if F satisifies (rAdet) then R F has convex growth.

A.5. A useful result concerning the determinant. The following lemma is a special
case of a theorem due to Dacorogna and Ribeiro [DR04, Theorem 1.3] (see also [Dac08,
Theorem 10.29, pp. 462]).

Lemma A.11. Let s1 ă s2 and ξ P Mdˆd with detξ Pss1, s2r. There exists φ P W 1,8
0 ps0, 1rd;Rdq

such that detpξ ` ∇φpyqq P ts1, s2u for Ld-a.a. y Ps0, 1rd.
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