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This study explores active Brownian rods in simple shear flow, examining the influence of self-
propulsion (Pes), rotary diffusion (Per), and translational diffusion (Pe⊥). We observe these rods
accumulating near walls, aligning with the flow direction, with more pronounced effects at higher
Pes and Pe⊥, and lower Per. Furthermore, we examine the impact of particle extra stress in
simple shear flows, observing shear banding and rheological changes. These findings enhance our
understanding of complex effect created by active particles.

I. INTRODUCTION

Several biological processes depend on the mobility of active self-propelled particles and their interactions with solid
boundaries. Numerous studies have looked into the mobility of biological particles in confined spaces experimentally [1–
4] and numerically [5–7]. The accumulation of active particles on channel walls has been observed. In their additional
analysis of the hydrodynamic interactions, Kaya and Koser [8] demonstrated that Escherichia coli cells undergo
modified Jeffery orbits near walls [9]. Understanding the upstream migration phenomenon requires knowing this
specific information. A greater understanding of this phenomena was offered by more recent study by Kaya and Koser
[10], who carefully investigated Escherichia coli motility near a surface as a function of the local shear rate. Swimming
dynamics and near-wall aggregation have been the main topics of most confinement-based experimental research. To
explain how collective motion emerged in semi-dilute suspensions, Saintillan and Shelley developed a group of models
[11, 12] to explain how collective motion emerged in semi-dilute suspensions.In these models, the particle positions and
orientations are represented by a distribution function that is based on a conservation equation.The fluxes brought on
by diffusive, advective, rotating, and self-propelled processes are all taken into consideration by these models. They
examined the stability of aligned suspensions and showed that they are consistently unstable to fluctuations, a finding
that confirms earlier hypotheses by Simha and Ramaswamy [13]. They also demonstrated that an instability for the
particle stress occurs when isotropic suspensions are taken into account. An active particle impose a net force dipole
on the surrounding fluid [5, 12] as it moves forward due to the balance between the propulsive force and viscous drag
on its body. This force dipole can take either a positive or a negative sign depending on how the particle drives itself
through the fluid: a pusher particle will produce a negative dipole while a puller particle will produce a positive dipole.
Hatwalne et al. [14], who generalized liquid crystal kinetic equations to represent the rheology of active suspensions,
discovered that for pushers the effective viscosity would decrease and for pullers it would increase. Ishikawa and Pedley
[15] then carried out simulations of Stokesian dynamics of suspensions of spherical ’squirmers’ that swim as a result
of a specified slip velocity on their surface. They discovered that swimming had no influence on effective viscosity in
the dilute limit. A result of the spherical shape, which generates an isotropic distribution of orientation. Haines et
al. [16] demonstrated through analytical calculations that swimming does definitely cause a change in viscosity if the
orientation distribution is considered to be anisotropic. Additionally, they saw a reduction in the viscosity of pusher
suspensions. Saintillan [17] discovered that tail-actuated swimmers significantly reduce the fluid’s effective shear
viscosity and that the rheology is characterized by much higher normal stress differences than for passive suspensions.
Recent research has found that bacterial suspensions exhibit counter-intuitive behavior when subjected to external
shear, including regimes of apparent superfluidity [18, 19]. By demonstrating a novel concentration-shear coupled
mechanism, Vennamneni et al. [20] show how fluctuations in bacterial suspensions can grow and eventually reach



2

banded steady states. In stark contrast to the passive complex fluids [21–23] and active fluids [24, 25] studied earlier,
the proposed mechanism is shown to result in shear bands, with concentration inhomogeneities, in the dilute regime.
Previously, shear banding was only observed or predicted in the semi-dilute and concentrated regimes.
Here we explore the effect of the active particles extra stress contribution in the simple shear flow. After the intro-
duction, the theoretical modeling and the flow problem for active rods are derived in Sec. II. Then, before conclusion
Sec. III presents the numerical results in simple shear flow including the effects of rotary and translational Peclet
numbers, in addition to the effect of extra stress generated by active particles.

II. HYPOTHESIS

Consider a suspension of active particles that resemble Brownian rods and have length L and width d. The active
rods are rigid, neutrally buoyant, and mono-dispersed. The suspension is taken into account in the regime of diluted
concentration. Active rods are polar, meaning that their heads and tails aren’t exactly the same. Each rod is described
by a position vector rc and an orientation unit vector p.

A. Kinetic model equation

A probability distribution function Ψ(rc,p, t) can be used to characterize a suspension of active Brownian particles.
It represents the probability that particles will be present at position rc and orientation p at time t. A single-particle
Smoluchowski equation can be derived in a diluted state as

∂Ψ

∂t
= −∇x · (ṙcΨ)−∇p · (ṗΨ) . (1)

The evolution of the position of an active Brownian particle with respect to time , ṙc, is [11]

ṙc = u + Vsp−Dt · ∇x log Ψ, (2)

where Vs is the particle velocity. The evolution of its orientation with respect to time, ṗ, can be written as

ṗ = ṗj −Dr∇p log Ψ, (3)

where ṗj is the Jeffery’s equation and it is given by [9]

ṗj = −1

2
ω · p +

λ

2
(γ̇ · p− γ̇ : ppp) . (4)

Dr and Dt are the rotary diffusion coefficient and translational diffusion tensor , respectively. The latter for non-
spherical, rigid particles is defined by Dt = D‖pp +D⊥ (δ − pp), where D‖ and D⊥ are constants that characterize
the diffusion parallel and perpendicular to the particle axis [26]. u is the external flow velocity vector at location rc.
∇p and ∇x denote the gradient operators in configurational and spatial spaces, respectively. ω, γ̇, and δ are the
vorticity, strain rate, and identity tensors, respectively. λ is a constant form factor as a function of the particle aspect
ratio ar = L/d, in the case of rods, λ = 1. Hence, the expanded version of Eq. 1, by taking into account the fluid
incompressibility condition, is

DΨ

Dt
= −∇x · (VspΨ) +∇x · (Dt · ∇xΨ)−∇p · (ṗjΨ) +Dr∇2

pΨ, (5)

where D(...)
Dt = ∂(...)

∂t +u·∇x(...) is the material derivative operator, and ∇2
p is the Laplacian operator in configurational

domain. In what follows, we derive an equivalent evolution equation based on the second-order moment of Ψ.

B. Flow problem

The problem is governed by the continuity and Cauchy momentum equations in the limit of creeping flow

∇x · u = 0, (6)
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−η0∇2
xu +∇xP = ∇x ·Σ. (7)

In the above equations, ∇2
x is the Laplacian operator in the spatial space, η0 is the dynamic viscosity of the Newtonian

suspending fluid, P denotes the pressure and Σ represents the extra stress tensor. Indeed, the presence of active
particles in a Newtonian medium develops extra stress contributions, which are obtained by configurational averages
of force dipoles exerted by the particle on the fluid. In the case of interest, the dipole arises from several contributions,
including hydrodynamic stress, Brownian stresses, and the permanent dipole due to self-propulsion. The extra stress
is calculated following the work of saintillan et al. [17].

Σ = Σs + ΣB + ΣF . (8)

The first contribution is resulting from the particle swimming and can be expressed as

Σs = σ0(A2 −A2 : δδ/3), (9)

where σ0 is the dipole or stresslet strength, which depends on the swimming mechanism. It is a constant and can be
used to measure the particle activity. It should be noted that depending on the type of swimmer, σ0 can be either
positive or negative. For example, it can be demonstrated that σ0 < 0 for most swimming bacteria (such as Escherichia
coli and Bacillus subtilis) and σ0 > 0 for head-actuated swimmers or pullers, such as the alga Chlamydomonas
Reinhardtii [11].
The second contribution is due to the fact that particles are Brownian. It is

ΣB = kBT (3A2 −A2 : δδ), (10)

where kB and T are the Boltzmann constant and the absolute temperature, respectively. The third contribution
comes from the inextensibility of the particles and is expressed as

ΣF = σF [(A4 − δA2/3) : γ̇] , (11)

where σF = πη0/6 log (2ar) from slender body theory.
Substituting Eqs. 9, 10 and 11 into Eq. 8 gives the detailed expression of the particle extra stress

Σ = (σ0 + 3kBT )(A2 −A2 : δδ/3) + σF [(A4 − δA2/3) : γ̇] (12)

C. Dimensionless formulation of the problem

Choosing the active rod length L as the characteristic length and the characteristic strain rate γ̇ = Uavg/L, where
Uavg is the average flow velocity, and the dimensionless concentration c∗ = c

n , where n is the mean number number
density. The dimensionless form of FP equation (Eq. 5) is

DΨ

Dτ
= −Pes∇∗x · (pΨ) +∇∗x ·

{[
1

Pe‖
pp +

1

Pe⊥
(δ − pp)

]
· ∇∗xΨ

}
−∇p · (ṗjΨ) +

1

Per
∇2

pΨ, (13)

where the dimensionless number Pes = V s
Lγ̇ denotes the active rod’s relative velocity to the flow velocity. This

dimensionless value can shed light on how active rods react to the shear flow that is being applied.
The dimensionless of the continuity equation is

∇∗x · u∗ = 0, (14)

The dimensionless form of the Cauchy equation can be written as

∇∗xP ∗ −∇∗2x u∗ = ∇∗x ·
{
c∗
[
Np

(
A∗4 −

1

3
δA∗2

)
: γ̇∗ + (Nb +Ns) (3A∗2 − δ)

]}
. (15)

As a result, the dimensionless form of the stress tensor is

Σ∗ = c∗
[
Np

(
A4 −

1

3
δA2

)
: γ̇∗ + (Nb +Ns) (3A∗2 − δ)

]
, (16)

where Np = πnL3

6log(ar)
is the particle coupling coefficient, Nb = nkBT

η0γ̇
is the Brownian coupling coefficient and Ns = nσ0

η0γ̇

is the self propulsion coupling coefficient.
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III. NUMERICAL RESULTS

We employ the finite volume method to investigate two flow problems, solving the problem defined in Eqs. 13, 14
and 15 . The indices 1 and 2 represent the flow direction and the velocity gradient direction, respectively. In a simple
shear flow and Poiseuille flow, they are indicated with x and y, respectively.

A. Simple shear flow

A squared 2D channel with side length H undergoes a simple shear flow between opposing moving walls. Here, the
aspect ratio is defined as H/L = 106. To emulate an infinite flow channel, periodic flow conditions with ∆P = 0 are
employed (refer to Fig. 1). The initial conditions for the conformation tensor are set as Aii = 1/3 and Aij = 0 for
i 6= j. The initial concentration is homogeneous and equals to one.

FIG. 1: Dimensionless velocity magnitude in the squared channel, of side H, for simple shear flow with periodic BC.

1. Effect of self-propulsion

We examine three distinct regimes based on the active rods self propulsion Peclet number (Pes) and the diffusion
Peclet numbers (Per and Pe⊥). The first regime (Pes < Per, P e⊥) explores scenarios where the directed motion due
to self-propulsion is relatively weak. The second regime (Pes = Per = Pe⊥) corresponds to cases where there is a
competition between active motion and diffusion. Lastly, the third regime (Pes > Per, P e⊥), investigates situations
where active motion dominates over diffusion. The Peclet numbers in this case are fixed to Pe⊥ = Per = 10 while
the value of Pes equals 0, 5, 10 and 15. In this section, no active rods extra stresses is taken into consideration and
the flow problem is developed from Eq. 15.
In simple shear flows, active rods exhibit significant transverse migration, a behavior distinct from that of Brownian-
passive rods (Pes = 0). Notable aggregation of active rods near the mobile walls is observed (see Fig. 2a). The
intensity of active rod clustering in regions of higher flow velocity correlates directly with the magnitude of the self-
propulsion Peclet number. As depicted in Fig.2b, an increase in the self-propulsion Peclet number (Pes) prompts
enhanced alignment of active rods along the flow direction at the center of the channel. Conversely, active rods near
the channel walls display diminished alignment. This observation highlights the correlation between selfpropulsion
velocity and alignment dynamics, illustrating a tendency for stronger alignment in regions of low concentration and
weaker alignment towards the high concentration regions. Figure 2c illustrates that A12/c exhibits a positive value
near the walls and a negative value at the channel center. Conversely, Figure 2d indicates that n2/c shares the
same sign as y/H, with its maximum absolute values observed at the walls and zero at the center. This observation
suggests that near the walls, active rods align with the flow direction while displaying nematic order oriented towards
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the walls. In contrast, at the channel center, active rods align opposite to the flow direction, also displaying nematic
order towards the walls.

(a) Effect of the The self-propulsion Peclet number, Pes, on
the concentration distribution, c, along the y direction.

(b) Effect of the self-propulsion Peclet number, Pes, on the
orientation component, A11/c, along the y direction.

(c) Effect of the self-propulsion Peclet number, Pes, on the
orientation component, A12/c, along the y direction

(d) Effect of the self-propulsion Peclet number, Pes, on the
nematic order, n2/c, along the y direction.

FIG. 2: Showing the effect of the self-propulsion Peclet number, Pes = 0, 5, 10 and 15,(a) on the concentration
distribution, c, (b) on the orientation component, A11/c, (c) on the orientation component, A12/c, (d) on the nematic
order, n2/c, along the y direction at steady state, in simple shear flow.

2. Effect of rotary diffusion

With fixed values of Pes = 5 and Pe⊥ = 10, we focus on the impact of rotary diffusion on the migration behavior of
active rods. As shown in Fig. 3a, a decrease in the rotary Peclet number (Per) corresponds to a stronger tendency
for active rods to accumulate at the walls. This observation implies that, even in the case of active rods, isotropic
active rods have more tendency to migrate across streamlines than the aligned ones [27]. Fig. 3b demonstrates that
active rods display a nematic ordering directed toward the walls, with varying degrees of alignment corresponding
to different rotary Peclet values. Remarkably, as the rotary Peclet number (Per) decreases, the nematic order (n2)
becomes increasingly prominent.
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(a) Effect of the rotary diffusion, Per, on the concentration
distribution, c, along the y direction.

(b) Effect of the rotary diffusion, Per, on the nematic order,
n2/c, along the y direction.

FIG. 3: Showing the effect of the rotary diffusion, Per = 1, 10, 100 and 1000, (a) on the concentration distribution, c,
(b) on the nematic order, n2/c, along the y direction at steady state, in simple shear flow.

3. Effect of translational diffusion

For passive rods subjected to simple shear flow, translational diffusion exerts negligible influence on both rod migration
and orientation. However, distinct behaviors emerge for active rods experiencing simple shear flows. To elucidate
the influence of translational Peclet numbers on the system, other Peclet numbers are held constant at Per = 10
and Pes = 5. At higher translational Peclet numbers, active rods tend to aggregate near the walls, whereas as the
translational Peclet number decreases, the distribution of active rods becomes more uniform along the channel (refer
to Fig. 4a). Regarding active rod orientations, under high Peclet numbers, active rods predominantly align in the flow
direction at the channel center, while exhibiting a nearly isotropic arrangement near the high-concentration walls.
A decrease in the Peclet number results in a diminished gradient of active rod orientation along the y direction, as
shown in Fig. 4b. For active rods, when self-propulsion predominates at high Pe⊥, there is an accumulation of active
rods near the walls, accompanied by a high degree of alignment in the flow direction. As Pe⊥ decreases further,
translational diffusion becomes dominant, leading the system back to a homogeneous state. Figs. 4c and 4d shows
that active rods exhibit a distinct orientation toward the walls within the vicinity of the walls. However, as one moves
towards the center of the channel, the orientation of active rods is more randomized. As translational diffusion exerts
a growing influence, active rods appear to lose any preferential alignment along the flow direction. This transition
towards a more uniform distribution of active rod orientations underscores the counteractive role of diffusion against
alignment tendencies induced by the active flow.
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(a) Effect of the translational diffusion, Pe⊥, on the concen-
tration distribution, c, along the y direction.

(b) Effect of the translational diffusion, Pe⊥, on the orientation
component, A11/c, along the y direction.

(c) Effect of the translational diffusion, Pe⊥, on the orientation
component, A12/c, along the y direction.

(d) Effect of the translational diffusion, Pe⊥, on the nematic
order, n2/c, along the y direction.

FIG. 4: Showing the effect of the translational diffusion, Pe⊥ = 0.1, 1 and 10, (a) on the concentration distribution,
c, (b) on the orientation component, A11/c, (c) on the orientation component, A11/c, (d) the nematic order, n2/c,
along the y direction at steady state, in simple shear flow.

4. Effect of particles extra stress

We conducted an investigation into the influence of particle stress within a simple shear flow context. Specifically,
we maintained fixed Peclet numbers of Per = Pe⊥ = 10 and a constant coupling coefficient of Np = 0. Our study
involved examining values of Pes ranging from 0 to 15. Unlike scenarios involving passive rods, where particle stress
has minimal effect on the simple shear flow, our findings revealed distinct alterations in the behavior of active particles
in response to such stress. Our focus lies in comprehensively exploring the impact of Pes on the rheological dynamics
exhibited by the system.

• Pusher rods

For pusher active rods, the additional stress induced by the rod is positive, denoted by Nb + Ns = 10. The
behavior is elucidated in Fig. 5, which showcases variations in velocity profiles at steady state for different Pes
values. Analyzing solely one half of the simple shear flow profile, the findings reveal the occurrence of a reverse
flow directed opposite to the moving wall. The system predicts shear banding, indicative of shear deformation.
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These results align well with the observations of Vennamneni et al. [20], who noted shear bands accompanied
by concentration inhomogeneities in the dilute regime.

FIG. 5: Effect of the self-propulsion Peclet number, Pes, on the velocity profile at steady state, initially simple shear
flow, for Nb = 10.

Figure 6a elucidates the influence of the self-propulsion Peclet number on the evolution of shear viscosity
concerning strain. Notably, the outcomes highlight a direct correspondence between shear viscosity values and
Pes. The decline in shear viscosity with increasing Pes is attributed to intricate interactions between active
rods and the surrounding fluid. Consequently, pushers tend to reduce suspension viscosity.

Figure 6b demonstrates the effect of the self-propulsion Peclet number on the evolution of normal stress dif-
ferences concerning deformation at the moving wall. With increasing self-propulsion Peclet number (Pes), the
values of normal stress differences also rise. As Pes increases, so does the intensity of self-propulsion, leading to
heightened activity and more robust active rod-fluid interactions. Consequently, the suspension exhibits greater
resistance to deformation. Essentially, the energetic motion of active rods contributes to increased resistance to
flow, resulting in elevated viscosity values and heightened stress contributions. In this context, the orientation
and concentration distributions qualitatively resemble the findings in Section III A 1.

(a) Effect of self-propulsion Peclet number, Pes, on the evolu-
tion of the shear viscosity with respect to deformation.

(b) Effect of self-propulsion Peclet number, Pes, on the evolu-
tion of the normal stresses difference with respect to deforma-
tion.

FIG. 6: Showing the effect of the self-propulsion Peclet number, Pes, on the rheological properties (a) shear viscosity,
η, (b) the normal stress differences, N1, with respect to the deformation, γ, in simple shear flow.
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• Puller rods

For puller active rods, the additional stress induced by the rod is negative, denoted by Nb+Ns = −10. Illustrated
in Fig. 7, is the influence of particle extra stress and varying Pes values on the velocity profiles at steady state.
The figure demonstrates a slight deviation from the conventional linear profile observed in standard simple
shear flow. Notably, higher Pes values correspond to accelerated flow rates. Moreover, it depicts shear banding,
contrary to the case of pushers, with less deformation.

FIG. 7: Effect of self-propulsion Peclet number, Pes, on the velocity profile at steady state, initially simple shear
flow, for Nb = 10.

(a) Effect of self-propulsion Peclet number, Pes, on the evolu-
tion of the shear viscosity with respect to deformation.

(b) Effect of self-propulsion Peclet number, Pes, on the evolu-
tion of the normal stresses difference with respect to deforma-
tion.

FIG. 8: Showing the effect of the self-propulsion Peclet number, Pes, on the rheological properties (a) shear viscosity,
η, (b) the normal stress differences, N1, with respect to the deformation, γ, in simple shear flow.

In the case of puller active rods, the presence of active suspension leads to an increase in the shear viscosity of the
suspended flow, as depicted in Fig. 8a. Additionally, there is a concurrent increase in the normal stress differences,
as illustrated in Fig. 8b. These findings corroborate the observations of Matilla et al. [28], who reported that pushers
tend to decrease suspension viscosity while pullers enhance it.

For both pusher and puller active rods, the influence of Pes on concentration, orientation, and nematic order align
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qualitatively with those discussed in Section III A 1. Specifically, with increasing Pes, active rods tend to accumulate
more near the walls and align more strongly in the flow direction, with nematic order towards the walls.

IV. CONCLUSION

In conclusion, this work explores the rheology of active rod suspensions in simple shear flow, including simple shear
flow. The study examines the dynamics of active rods including active rod migrations, orientations and the nematic
order in addition to effect of active rod-fluid coupling in simple shear flow, through numerical simulations based on
the volume method with taking into consideration an anisotropic translational diffusion.
The active rods are more aligned with the flow direction than the passive rods, favoring accumulation near the channel
walls. However, compared to aligned active rods, randomly aligned active rods with low rotational Peclet numbers
Per have a stronger propensity to orient in the direction of the walls. The action of the active rods is demonstrated
to be hindered by translational diffusion, and for low translational Peclet numbers Peperp, the system resumes acting
as in the case of the passive rods.
In simple shear flow, the presence of active rods causes shear banding, a divergence from the typical linear velocity
profile. Rheological characteristics, viscosity, and normal stress differences alter when active rods’ relative velocities
and Peclet numbers increase. Additional research and testing are needed to validate and expand upon these findings.
Future work will concentrate on studying the 3D cases in addition of expanding the rheological studies into more
complex fluids.

V. SECOND-ORDER MOMENT OF Ψ

The second-order moment of Ψ, A2, contains information on the local concentration and orientation of particles and
is defined as

A2 =
1

V

∫
p

∫
rc

ppΨdrcdp. (17)

The trace of A2 is the concentration field c, which represents the mean number density in the suspension, it is the
zeroth-order moment of Ψ

c =
1

V

∫
p

∫
rc

Ψdrcdp. (18)

The first order moment of Ψ, n, represents the nematic order of the particles and it is defined as

n =
1

V

∫
p

∫
rc

pΨdrcdp, (19)

The third-order moment of Ψ, A3, is defined as

A3 =
1

V

∫
p

∫
rc

pppΨdrcdp, (20)

while the fourth-order moment of Ψ, A4, is defined as

A4 =
1

V

∫
p

∫
rc

ppppΨdrcdp. (21)

The evolution equation of the concentration of the active particles in a suspending fluid is

Dc

Dt
= D⊥∇2

xc+ (D‖ −D⊥)∇x∇xA2 + Vs∇x · (cn) (22)

V represents the volume, which is large enough to contain a statistically significant number of particles but smaller
than the characteristic length scale of the macroscopic properties of the system under consideration. In the case of
active particles, the odd-order tensors do not equal zeros due to the non-symmetric shapes of the particles. Since the
active particles are not symmetric, unlike the passive particles, the orientation component A12/c is not enough to give
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FIG. 9: Representation shows the meaning of the nematic order of a asymmetric particle.

information about the polarisation of the particle. Fig. 9 shows the different polarisation of the particle depending
on the signs of A12 and n2.
The evolution of A2 is obtained by premultiplying Eq. ?? with the tensor pp/V and integrating it over the spatial
and configurational spaces.

DA2

Dt
=− 1

2
(ω ·A2 −A2 · ω) +

λ

2
(γ̇ ·A2 + A2 · γ̇ − 2A4 : γ̇)

+ 2Dr (cδ − αA2) +D⊥∇2
xA2 +

(
D‖ −D⊥

)
∇x∇x : A4 + Vs∇x ·A3.

(23)

α equals 2 in 2D and 3 in 3D. It can be noticed that the time evolution of the tensor A2 depends on higher-order
moments of Ψ. Hence, the problem requires a closure approximation. The last term in Eq. 23 is the Hessian operator
and the last two terms of Eq. 23 implicitly show the coupling between the local concentration and the local orientation
of Brownian particles. Unfortunately, unlike the case of passive particles, the closure approximations found in the
literature do not work for non-symmetric particles. So the problem here requires closure approximations for solving
A4 and A3 as a function of A2.

The derived macro-model enables one to solve a set of partial differential equations (PDEs) rather than a full 6D
Fokker-Planck equation (Eq. ??), to be discussed below, simplifying drastically the problem.
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