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Abstract12

We introduce a DeGroot-based model for opinion dynamics in social networks. A community of13

agents is represented as a weighted directed graph whose edges indicate how much agents influence14

one another. The model is formalized using labeled transition systems, henceforth called opinion15

transition systems (OTS), whose states represent the agents’ opinions and whose actions are the16

edges of the influence graph. If a transition labeled (i, j) is performed, agent j updates their opinion17

taking into account the opinion of agent i and the influence i has over j. We study (convergence18

to) opinion consensus among the agents of strongly-connected graphs with influence values in the19

interval (0, 1). We show that consensus cannot be guaranteed under the standard strong fairness20

assumption on transition systems. We derive that consensus is guaranteed under a stronger notion21

from the literature of concurrent systems; bounded fairness. We argue that bounded-fairness is22

too strong of a notion for consensus as it almost surely rules out random runs and it is not a23

constructive liveness property. We introduce a weaker fairness notion, called m-bounded fairness,24

and show that it guarantees consensus. The new notion includes almost surely all random runs and25

it is a constructive liveness property. Finally, we consider OTS with dynamic influence and show26

convergence to consensus holds under m-bounded fairness if the influence changes within a fixed27

interval [L, U ] with 0 < L < U < 1. We illustrate OTS with examples and simulations, offering28

insights into opinion formation under fairness and dynamic influence.29
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1 Introduction38

Social networks have a strong impact on opinion formation, often resulting in polarization.39

Broadly, the dynamics of opinion formation in social networks involve users expressing their40

opinions, being exposed to the opinions of others, and potentially adapting their own views41

based on these interactions. Modeling these dynamics enables us to glean insights into how42

opinions form and spread within social networks.43
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22:2 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

The models of social learning aim to capture opinion dynamics in social networks [36].44

The DeGroot model [14] is one of the most prominent formalisms for social learning and45

opinion formation dynamics, and it remains a continuous focus of study in social network46

theory [21]. A given community is represented as a weighted directed graph, known as the47

influence graph, whose edges indicate how much individuals (agents) influence one another.48

Each agent has an opinion represented as a value in [0, 1], indicating the strength of their49

agreement with an underlying proposition (e.g., “AI poses a threat to humanity”). Agents50

repetitively revise their opinions by averaging them with those of their contacts, taking into51

account the influence each contact holds. (There is empirical evidence validating the opinion52

formation through averaging of the model in controlled sociological experiments, e.g., [10].) A53

fundamental theoretical result of the model states that the agents will converge to consensus54

if the influence graph is strongly connected and the agents have non-zero self-influence (puppet55

freedom) [21]. The significance of this result lies in the fact that consensus is a central56

problem in social learning. Indeed, the inability to reach consensus is a sign of a polarized57

community.58

Nevertheless, the DeGroot model makes at least two assumptions that could be overly59

constraining within social network contexts. Firstly, it assumes that all the agents update60

their opinions simultaneously (full synchrony), and secondly, it assumes that the influence of61

agents remains the same throughout opinion evolution (static influence). These assumptions62

may hold in some controlled scenarios and render the model tractable but in many real-world63

scenarios individuals do not update their opinions simultaneously [29]. Instead, opinion64

updating often occurs asynchronously, with different agents updating their opinions at65

different times. Furthermore, individuals may gain or lose influence through various factors,66

such as expressing contrarian or extreme opinions [20].67

In this paper, we introduce an asynchronous DeGroot-based model with dynamic influence68

to reason about opinion formation, building upon notions from concurrency theory. The69

model is presented by means of labeled transition systems, here called opinion transition70

systems (OTS). The states of an OTS represent the agents’ opinions, and the actions (labels)71

are the edges of the influence graph. All actions are always enabled. If a transition labeled72

with an edge (i, j) is chosen, agent j updates their opinion by averaging it with the opinion73

of agent i weighted by the influence that this agent carries over j. A run of an OTS is an74

infinite sequence of (chosen) transitions.75

We shall focus on the problem of convergence to opinion consensus in runs of the OTS,76

assuming strong connectivity of the influence graph and puppet freedom. For consensus to77

make sense, all agents should have the chance to update their opinions. Therefore, we need78

to make fairness assumptions about the runs. In concurrency theory, this means requiring79

that some actions be performed sufficiently often.80

We first show that contrary to the DeGroot model, consensus cannot be guaranteed for81

runs of OTS even under the standard strong fairness assumption (i.e., that each action occurs82

infinitely often in the run) [22, 27]. This highlights the impact of asynchronous behavior on83

opinion formation.84

We then consider the well-known notion of bounded fairness in the literature on verification85

of concurrent systems [16]. This notion requires that every action must be performed not86

just eventually but within some bounded period of time. We show that bounded-fairness87

guarantees convergence to consensus. This also gives us insight into opinion formation88

through averaging, i.e., preventing unbounded delays of actions (opinion updates) is sufficient89

for convergence to consensus.90

Nevertheless, bounded fairness does not have some properties one may wish in a fairness91
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notion. In particular, it is not a constructive liveness property in the sense of [34, 33].92

Roughly speaking, a fairness notion is a constructive liveness property if, while it may require93

that a particular action is taken sufficiently often, it should not prevent any other action94

from being taken sufficiently often. Indeed, we will show that preventing unbounded delays95

implies preventing some actions from occurring sufficiently often.96

Furthermore, bounded-fairness is not random inclusive. A fairness notion is random97

inclusive if any random run (i.e., a run where each action is chosen independently with98

non-zero probability) is almost surely fair under the notion. We find this property relevant99

because we wish to apply our results to other asynchronous randomized models whose runs100

are random and whose opinion dynamics can be captured as an OTS.101

We therefore introduce a new weaker fairness notion, called m-bounded fairness, and show102

that it guarantees consensus. The new notion is shown to be a constructive liveness property103

and random inclusive. We also show that consensus is guaranteed under m-bounded fairness104

even if we allow for dynamic influence as long as all the changes of influence are within a105

fixed interval [L, U ] with 0 < L < U < 1.106

All in all, we believe that asynchronous opinion updates and dynamic influence provide107

us with a model more faithful to reality than the original DeGroot model. The fairness108

assumptions and consensus results presented in this paper show that the model is also109

tractable and that it brings new insights into opinion formation in social networks. To the110

best of our knowledge, this is the first work using fairness notions from concurrency theory111

in the context of opinion dynamics in social networks.112

Furthermore, since m-bounded fairness is random inclusive, our result extends with113

dynamic influence the consensus result in [17] for distributed averaging with randomized114

gossip algorithms. Distributed averaging is a central problem in other application areas, such115

as decentralized computation, sensor networks and clock synchronization.116

Organization. The paper is organized as follows: In Section 2, we introduce OTS and117

the consensus problem. Initially, to isolate the challenges of asynchronous communication in118

achieving consensus, we assume static influence. In Section 3, we identify counter-examples,119

graph conditions, and fairness notions for consensus to give some insight into opinion dynamics.120

In Section 4, we introduce a new notion of fairness and state our first consensus theorem.121

Finally, in Section 5, we add dynamic influence and give the second consensus theorem.122

The detailed proofs are included in a related technical report [7]. The Python code123

used to produce OTS examples and simulations in this paper can be found in the following124

repository: https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models.125

2 The Model126

In the standard DeGroot model [14], agents update their opinion synchronously in the127

following sense: at each time unit, all the agents (individuals) update simultaneously their128

current opinion by listening to the current opinion values of those who influence them. This129

notion of updating may be unrealistic in some social network scenarios, as individuals may130

listen to (or read) others’ opinions at different points in time.131

In this section, we introduce an opinion model where individuals update their beliefs132

asynchronously; one agent at a time updates their opinion by listening to the opinion of one133

of their influencers.134
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22:4 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

2.1 Opinion Transition Systems135

In social learning models, a community is typically represented as a directed weighted136

graph with edges between individuals (agents) representing the direction and strength of the137

influence that one has over the other. This graph is referred to as the Influence Graph.138

▶ Definition 1 (Influence Graph). An influence graph is a directed weighted graph G = (A, E, I)139

with A = {1, . . . , n}, n > 1, the vertices, E ⊆ A2 − IdA the edges (where IdA is the identity140

relation on A) and I : E → (0, 1] the weight function.141

The vertices in A represent n agents of a given community or network. The set of edges142

E represents the (direct) influence relation between agents; i.e., (i, j) ∈ E means that agent i143

influences agent j. The value I(i, j), for simplicity written I(i,j) or Iij , denotes the strength144

of the influence: a higher value means stronger influence.145

Similar to the DeGroot-like models in [21], we model the evolution of agents’ opinions146

about some underlying statement or proposition, such as, for example, “human activity has147

little impact on climate change” or “AI poses a threat to humanity”.148

The state of opinion (or belief state) of all the agents is represented as a vector in [0, 1]|A|.149

If B is a state of opinion, B[i] denotes the opinion (belief, or agreement) value of agent i ∈ A150

regarding the underlying proposition: the higher the value of B[i], the stronger the agreement151

with such a proposition. If B[i] = 0, agent i completely disagrees with the underlying152

proposition; if B[i] = 1, agent i completely agrees with the underlying proposition.153

The opinion state is updated as follows: Starting from an initial state, at each time unit,154

one of the agents, say j, updates their opinion taking into account the influence and the155

opinion of one of their contacts, say i. Intuitively, in social network scenarios, this can be156

thought of as having an agent j read or listen to the opinion of one of their influencers i and157

adjusting their opinion B[j] accordingly.158

The above intuition can be realized as a Labelled Transition System (LTS) whose set of159

states is S = [0, 1]|A| and set of actions is E.160

▶ Definition 2 (OTS). An Opinion Transition System (OTS) is a tuple M = (G, Binit, →)161

where G = (A, E, I) is an influence graph, Binit ∈ S = [0, 1]|A| is the initial opinion state,162

and →⊆ S × E × S is a (labelled) transition relation defined thus: (B, (i, j), B′) ∈→, written163

B (i,j)−−−→ B′ , iff for every k ∈ A,164

B′ [k] =
{

B[j] + (B[i] − B[j])Iij if k = j

B[k] otherwise
(1)165

If B e−→ B′ we say that B evolves into B′ by performing (choosing or executing) the action e.166

A labeled transition B (i,j)−−−→ B′ represents the opinion evolution from B to B′ when167

choosing an action represented by the edge (i, j). As a result of this action, agent j updates168

their opinion as B[j] + (B[i] − B[j])Iij , thereby moving closer to the opinion of agent i.169

Alternatively, think of agent i as pulling the opinion of agent j towards B[i]. The higher the170

influence of i over j, Iij , the closer it gets. Intuitively, if Iij < 1, it means that agent j is171

receptive to agent i but offers certain resistance to fully adopting their opinion. If Iij = 1,172

agent j may be viewed as a puppet of i who disregards (or forgets) their own opinion to173

adopt that of i.174

▶ Remark 3. In Def. 1, we do not allow edges of the form (j, j). In fact, allowing them175

would not present us with any additional technical issues, and the results in this paper176
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would still hold. The reason for this design choice, however, has to do with clarity about177

the intended intuitive meaning of a transition. Suppose that B (i,j)−−−→ B′ . Since B′ [j] =178

B[j] + (B[i] − B[j])Iij = B[j](1 − Iij) + B[i]Iij , agent j gives a weight of Iij to the opinion179

of i and of (1 − Iij) to their own opinion. Therefore, the weight that j gives to their opinion180

may change depending on the agent i. Thus, allowing also a fixed weight Ijj of agent j to181

their own opinion may seem somewhat confusing to some readers. Furthermore, for any182

B ∈ S we would have B (j,j)−−−→ B regardless of the value Ijj thus making the actual value183

irrelevant. Notice also we do not require the sum of the influences over an agent to be 1.184

2.2 Runs and Consensus185

We are interested in properties of opinion systems, such as convergence to consensus and186

fairness, which are inherent properties of infinite runs of these systems.187

▶ Definition 4 (e-path, runs and words). An execution path (e-path) of an OTS M =188

(G, Binit, →), where G = (A, E, I), is an infinite sequence π = B0e0B1e1 . . . (also written189

B0
e0−→ B1

e1−→ . . . ) such that Bt
et−→ Bt+1 for each t ∈ N. We say that et is the action190

performed at time t and that Bt is the state of opinion at time t. Furthermore, if B0 = Binit191

then the e-path π is said to be a run of M .192

An ω-word of M is an infinite sequence of edges (i.e, an element of Eω). The sequence193

wπ = e0e1 . . . is the ω-word generated by π. Conversely, given an ω-word w = e′
0.e′

1 . . . the194

(unique) run that corresponds to it is πw = Binit
e′

0−→ B1
e′

1−→ . . .195

▶ Remark 5. The uniqueness of the run that corresponds to a given ω-word is derived from196

the fact that an OTS is a deterministic transition system1. This gives us a one-to-one197

correspondence between ω-words and runs, which allows us to abstract away from opinion198

states when they are irrelevant or clear from the context. In fact, throughout the paper, we199

will use the terms ω-words and runs of an OTS interchangeably when no confusion arises.200

It is also worth noting that in OTS, any action (edge) can be chosen at any point in an201

execution path; that is, all actions are enabled.202

Consensus is a property of central interest in social learning models [21]. Indeed, failure203

to reach a consensus is often an indicator of polarization in a community.204

▶ Definition 6 (Consensus). Let M = (G, Binit, →) be an OTS with G = (A, E, I) and205

π = Binit
e0−→ B1

e1−→ . . . be a run. We say that an agent i ∈ A converges to an opinion value206

v ∈ [0, 1] in π if limt→∞ Bt[i] = v. The run π converges to consensus if all the agents in A207

converge to the same opinion value in π.208

Furthermore, B is said to be a consensual state if it is a constant vector; i.e., if there209

exists v ∈ [0, 1] such that for every i ∈ A, B[i] = v.210

▶ Example 7. Let M = (G, Binit, →) where G is the influence graph in Fig. 1a and211

Binit = (0, 0.5, 1). If we perform a on Binit we obtain Binit
a−→ B1 = (0.0, 0.25, 1.0).212

Consider the word w = (abcd)ω. Then πw = Binit
a−→ (0.0, 0.25, 1.0) b−→ (0.125, 0.25, 1.0) c−→213

(0.125, 0.625, 1.0) d−→ (0.125, 0.625, 0.8125) a−→ . . .. Fig. 1b suggests that πw indeed converges214

to consensus (to opinion value 0.5). A more complex example of the evolution of opinions215

from a randomly generated graph with eleven agents is illustrated in Fig. 1c.216

1 While the actions in a run can be seen as being chosen non-deterministically by a scheduler, an OTS
is a deterministic transition system in the sense that given a state B and an action e, there exists a
unique state B′ such that B e−→ B′ .

CONCUR 2024
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3

2

1
a

b

c

d

(a) OTS with
influence graph
with agents
A = {1, 2, 3}, edges
E = {a, b, c, d},
influence Ie = 1/2
for all e ∈ E and
Binit = (0, 0.5, 1).

(b) Opinion evolution for the run that
corresponds to (abcd)ω of the OTS in Fig.
1a. Each plot corresponds to the opinion
evolution of the agent with the same color.

(c) Opinion evolution of a run of an OTS
with a G = (A, E, I), A = {1, . . . , 11},
Ie = 0.5 for each e ∈ E, Binit =
(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).
Each edge of G was generated with prob.
0.3. The edges of the (partial) run were
uniformly chosen from E.

Figure 1 Run examples for OTS in Fig. 1a and randomly-generated OTS in Fig. 1c
.

The examples above illustrate runs that may or may not converge to consensus. In the217

next section, we identify conditions on the influence and topology of graphs and on the runs218

that guarantee this central property of opinion models.219

3 Strong Connectivity, Puppet-Freedom and Fairness220

In this section, we discuss graph properties, as well as fairness notions and criteria from the221

literature on concurrent systems that give us insight into how agents converge to consensus in222

an OTS. For simplicity, we assume an underlying OTS M = (G, Binit, →) with an influence223

graph G = (A, E, I). We presuppose basic knowledge of graph theory and formal languages.224

3.1 Strong Connectivity225

As in the DeGroot model, if there are (groups of) agents in G that do not influence each other226

(directly or indirectly) and their initial opinions are different, these groups may converge227

to different opinion values. Consider the example in Fig. 2 where the groups of agents228

G1 = {1, 2} and G2 = {5, 6} do not have external influence (directly or indirectly), but229

influence the group G3 = {3, 4}. Each group is strongly connected within; their members230

influence each other. The agents in G1 converge to an opinion, and so do the agents in G2,231

but to a different one. Hence, the agents in both groups cannot converge to consensus. The232

agents in G3 do not even converge to an opinion because they are regularly influenced by233

the dissenting opinions of G1 and G2.234

The above can be prevented by requiring strong connectivity, i.e., there must be a path235

in G from any other to any other. Recall that a graph path from i to j of length m in G236

is a sequence of edges of E of the form (i, i1)(i1, i2) . . . (im−1, j), where the agents in the237

sequence are distinct. We shall refer to graph paths as g-paths to distinguish them from238

e-paths in Def. 4. We say that agent i influences agent j if there is a g-path from i to j in G.239

The graph G is strongly connected iff there is a g-path from any agent to any other in G.240

Hence, in strongly-connected graphs, all agents influence one another.241
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1 2

3 4

5 6

a1

a0

a2

a3

a4

a5
a6 a7

a8 a9

(a) Influence graph
with Ie = 1/2 for all
e ∈ E and Binit =
(0.4, 0.5, 0.45, 0.55,
0.5, 0.6)

(b) Opinion evolution of the run
((a2a3)5(a4a5)5(a0a1)5(a6a7a8a9))ω.
Each plot corresponds to the opinion
evolution of the agent with the same
color in Fig. 2a.

(c) Opinion evolution of the run (abcd)ω

for an OTS with G and Binit from Fig.
1a but assuming Ie = 1 for all e ∈ E.

Figure 2 Run examples for OTS in Fig. 1a and Fig. 2a

3.2 Puppet-Freedom242

Nevertheless, too much influence may prevent consensus. If B (i,j)−−−→ B′ and Iij = 1, agent243

j behaves as a puppet of i forgetting their own opinion and adopting that of j. Fig. 2c244

illustrates this for the strongly-connected graph in Fig. 1a but with Iij = 1 for each (i, j) ∈ E:245

Agents 1 and 3 use Agent 2 as a puppet, constantly swaying his opinion between 0 and 1.246

We therefore say that the influence graph G is puppet free if for each (i, j) ∈ E, Iij < 1.247

3.3 Strong Fairness248

In an OTS, if G is strongly connected but a given edge is never chosen in a run (or not249

chosen sufficiently often), it may amount to not having all agents influence each other in250

that run, hence preventing consensus. For this reason, we make some fairness assumptions251

about the runs.252

In the realm of transition systems, fairness assumptions rule out some runs, typically253

those where some actions are not chosen sufficiently often when they are enabled sufficiently254

often. There are many notions of fairness (see [5, 19, 25] for surveys), but strong fairness255

is perhaps one of the most representative. As noted above, every action e ∈ E is always256

enabled in every run of an OTS. Thus, in our context, strong fairness of a given OTS run257

(ω-word) amounts to requiring that every action e occurs infinitely often in the run.258

▶ Definition 8 (Strong fairness). Let w be an ω-word of an OTS. We say that w is strongly259

fair if every e ∈ E occurs in every suffix of w.260

Notice that the graph from Ex. 7 is strongly connected and puppet free, and the ω-word261

w = (abcd)ω is indeed strongly fair and converges to consensus. Nevertheless, puppet freedom,262

strong fairness, and strong connectivity are not sufficient to guarantee consensus.263

▶ Proposition 9. There exists (G, Binit, →), where G is strongly connected and puppet free,264

with a strongly-fair run that does not converge to consensus.265

The proof of the existence statement in Prop. 9 is given next.266

CONCUR 2024



22:8 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

(a) Opinion evolution of the OTS from Fig. 1a for
the ω-word u = (anbcnd)n∈N+

(b) Opinion evolution of the OTS from Fig. 1a for
U = 0.75, L = 0.25 and the ω-word w from Cons.
10.

.

Figure 3 Run examples for OTS in Fig. 1a.

▶ Construction 10 (Counter-Example to Consensus). Let M = (G, Binit, →) be an OTS where267

G is the strongly-connected puppet-free influence graph in Fig. 1a and Binit is any state of268

opinion such that Binit[1] < Binit[2] < Binit[3]. We have A = {1, 2, 3} and E = {a, b, c, d}.269

We construct an ω-word w such that πw does not converge to consensus with the following270

infinite iterative process. Let U and L be such that Binit[1] < L < Binit[2] < U < Binit[3].271

Process: (1) Perform a non-empty sequence of a actions with as many a’s as needed until272

the opinion of Agent 2 becomes smaller than L. (2) Perform the action b. (3) Perform a273

non-empty sequence of c’s with as many c’s as needed until the opinion of Agent 2 becomes274

greater than U . (4) Perform the action d. The result of this iteration is a sequence of the275

form a+bc+d. Repeat steps 1–4 indefinitely.276

The above process produces the ω-sequence w = w1 · w2 · . . . of the form (a+bc+d)ω, where277

each wi = anibcmid is the result of the i-th iteration of the process and ni > 0 and mi > 0278

are the number of a’s and c’s in such interaction. (The evolution of the opinion of run πw,279

with U = 0.75, L = 0.25 and Binit = (0, 0.5, 1) is illustrated in Fig. 3b)280

Since each action e ∈ E appears infinitely often in w, w is strongly fair. Furthermore,281

right after each execution of Step 2, the opinion of Agent 1 gets closer to L, but it is still282

smaller than L since the opinion of Agent 2 at that point is smaller than L. For symmetric283

reasons, the opinion of Agent 3 gets closer to U , but it is still greater than U . Consequently,284

the opinion of Agent 1 is always below L, while the opinion of Agent 3 is always above U285

with L < U . Therefore, they cannot converge to the same opinion.286

Another ω-word for the OTS in Fig. 1a exhibiting a behavior similar to w in Cons. 10,287

but whose proof of non-convergence to consensus seems more involved, is u = (anbcnd)n∈N+=288

u1 · u2 · . . ., where each un = anbcnd. (see Fig. 3a). The delay in both w and u to execute d289

after b grows unboundedly due to the growing number of c’s. More precisely, let #e(v) be290

the number of occurrences of e ∈ E in a finite sequence v.291

▶ Proposition 11. Let w = w1 · w2 · . . . be the ω-word from Cons. 10 where each wm has the292

form a+bc+d. Then for every m ∈ N, there exists t ∈ N such that #c(wm+t) > #c(wm).293

The above proposition states that the number of consecutive c’s in w grows unboundedly,294

and hence so does the delay for executing d right after executing b. To prevent this form of295

unbounded delay, we recall in the next section some notions of fairness from the literature296

that require, at each position of an ω-word, every action to occur within some bounded297

period of time.298
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3.4 Bounded Fairness299

We start by introducing some notation to give a uniform presentation of some notions of300

fairness from the literature. We assume |E| > 1; otherwise, all the fairness notions are trivial.301

A word w is a possibly infinite sequence over E. A subword of w is either a suffix of w302

or a prefix of some suffix of w. Let κ be an ordinal from the set ω + 1 = N ∪ {ω} where ω303

denotes the first infinite ordinal. A κ-word is a word of length κ. Recall that each ordinal304

can be represented as the set of all strictly smaller ordinals. We can then view a κ-word305

w = (ei)i∈κ as a function w : κ → E such that w(i) = ei for each i ∈ κ. A κ-word w is306

complete if w(κ) = E (where w(κ) denotes the image of the function w). A κ-window u of w307

is a subword of w of length κ. Thus, if κ = ω then u is a suffix of w, and if κ ∈ N, u can308

be thought of as a finite observation of κ consecutive edges in w. We can now introduce a309

general notion of fairness parametric in κ.310

▶ Definition 12 (κ-fairness, bounded-fairness). Let w be an ω-word over E and κ ∈ ω + 1: w311

is κ-fair if every κ-window of w is complete. Furthermore, w is bounded fair if it is k-fair312

for some k ∈ N.313

Notice that the notion of strong fairness in Def. 8 is obtained by taking κ = ω; indeed, w314

is ω-fair iff every e ∈ E occurs infinitely often in w. Furthermore, if κ = k for some k ∈ N+,315

then we obtain the notion of k-fairness from [16]2. Intuitively, if w is k-fair, then at any316

position of w, every e ∈ E will occur within a window of length k from that position.317

It is not difficult to see that ω-fairness is strictly weaker than bounded-fairness, which in318

turn is strictly weaker than any k-fairness with k ∈ N. Let F (κ) be the set of all ω-words319

over E that are κ-fair. We have the following sequence of strict inclusions.320

▶ Proposition 13. For every k ∈ N, F (k) ⊂ F (k + 1) ⊂ (
⋃

κ∈N F (κ)) ⊂ F (ω).321

▶ Example 14. Let us consider the fair word w from Cons. 10, the counter-example to322

consensus. From Prop. 11, the delay for executing action d immediately after executing323

action b increases without bound. Thus, for every k, there must be a non-complete k-window324

u of w such that d does not occur in u. Consequently, w is not bounded fair.325

Not only does bounded fairness rule out the counter-example in Cons. 10, but it also326

guarantees consensus, as shown later, for runs of OTS with strongly-connected, puppet-free327

influence graphs. Nevertheless, it may be too strong of a requirement for consensus. We,328

therefore, introduce a weaker notion that satisfies the following criteria and guarantees329

consensus.330

Some Fairness Criteria331

Let us briefly discuss some fairness criteria and desirable properties that justify our quest for332

a weaker notion of fairness that guarantees consensus. An in-depth discussion about criteria333

for fairness notions, from which we drew some inspiration, can be found in [34, 33, 19, 5].334

Machine Closure. Following [1, 26] one of the most important criteria that a notion335

of fairness must meet is machine closure (also called feasibility [5]). Fairness properties are336

properties of infinite runs; hence, a natural requirement is that any finite partial run must337

have the chance to be extended to a fair run. Thus, we say that a notion of fairness is338

machine closed if every finite word u can be extended to a fair ω-word u · w.339

2 This notion is different from the notion of k-fairness from [9]
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Clearly, k-fairness with k ∈ N is not machine closed; e.g., the word ckd with E = {c, d}340

cannot be extended to a k-fair ω-word. Nevertheless, bounded fairness is machine closed: Each341

k-word u can be extended to a (k + m)-fair word u · (e1 . . . em)ω assuming E = {e1, . . . , em}.342

Constructive Liveness. According to [34], a notion of fairness may require that a343

particular action is taken sufficiently often, but it should not prevent any other actions from344

being taken sufficiently often. This concept is formalized in [34, 33] in a game-theoretical345

scenario, reminiscent of a Banach-Mazur game [28], involving an infinite interaction between346

a scheduler and an opponent. The opponent initiates with a word w0, then the scheduler347

appends a finite word w1 to w0. This pattern continues indefinitely, resulting in an ω-word348

w = w0 · w1 · w2 . . .. A given fairness notion is said to be a constructive liveness property if,349

regardless of what the opponent does, the scheduler can guarantee that the resulting ω-word350

is fair under the given notion.351

The notion of bounded fairness is not a constructive liveness property. If an ω-word352

is bounded fair, it is k-fair for some k ≥ |E| > 1. Let c ∈ E and take as the strategy of353

the opponent to choose in each of their turns wn = cn. Since |E| > 1, then w2k cannot354

be a complete k-window. Therefore, the resulting w = w0 · w1 · w2 . . . is not bounded fair,355

regardless of the strategy of the scheduler.356

It is worth noticing that the above opponent’s strategy is reminiscent of our procedure to357

construct an ω-sequence in Cons. 10 using the unbounded growth of c’s to prevent consensus.358

Random Words. Consider a word e0e1 . . . where each edge or action en = (i, j) is chosen359

from E independently with probability p(i,j) > 0. Let us refer to such kinds of sequences360

as random words. We then say that a given notion of fairness is random inclusive if every361

random ω-word is almost surely (i.e., with probability one) fair under the given notion.362

It follows from the Second Borel–Cantelli lemma3 that every random word is almost363

surely strongly fair. Nevertheless, the notion of bounded fairness fails to be random inclusive:364

If a word is bounded fair, it is k-fair for some k ≥ |E|, and thus it needs to have the form365

w0 · w1 . . . where each wm is a complete k-window. Since 1 < |E|, the probability that a366

random k window is complete is strictly smaller than 1. Therefore, the probability of a367

random word having an infinite number of consecutive complete k-windows is 0.368

Random words are important in simulations of our model (see Fig. 1c). Furthermore,369

having a notion of fairness that is random inclusive and guarantees consensus will allow us370

to derive and generalize consensus results for randomized opinion models, such as gossip371

algorithms [17]. We elaborate on this in the related work. We now introduce our new notion372

of fairness.373

4 A New Notion of Bounded Fairness374

A natural way to relax bounded fairness to satisfy constructive liveness and random inclusion375

is to require that the complete k-windows need only appear infinitely often: i.e., an ω word376

w is said to be weakly bounded fair if there exists k ∈ N such that every suffix of w has a377

k-window. Nevertheless, as it will be derived later, weak bounded fairness is not sufficient to378

guarantee consensus.379

It turns out that, to guarantee consensus, it suffices to require that a large enough number380

3 The lemma states that if the sum of the probabilities of an infinite sequence of events E0E1 . . . that are
independent is infinite, then the probability of infinitely many of those events occurring is 1 [31]. Here,
each event Ek expresses that the edge ek occurs at time k and these events are independent because
each edge (i, j) in a random word is chosen independently with probability p(i,j) > 0.
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m of consecutive complete k-windows appear infinitely often. These consecutive windows are381

referred to as multi-windows.382

▶ Definition 15 ((m, κ) multi-window). Let w be an ω-word over E, m ∈ N+ and κ ∈ ω + 1.383

We say that w has an (m, κ) multi-window if there exists a subword u of w of the form384

u = w1 · w2 · . . . · wm where each wi is a κ-window of w. Furthermore, if each wn in u is385

complete, we say that w has a complete (m, κ) multi-window. If it exists, the word u is called386

an (m, κ) multi-window of w.387

Notice that because of the concatenation of windows in Def. 15, by construction, no388

ω-word has a (m, ω) multi-window with m > 1: If κ = ω then m = 1. In this case, the389

multi-window is just a window of infinite length of w, i.e., a suffix of w.390

▶ Definition 16 ((m, κ)-fairness). Let w be an ω-word over E, m ∈ N+ and κ ∈ ω + 1. We391

say that w is (m, κ)-fair if every suffix of w has a complete (m, κ) multi-window. We say392

that w is m-consecutive bounded fair, or m-bounded fair, if it is (m, k)-fair for some k ∈ N.393

Clearly, w is ω-fair iff it is (1, ω)-fair, and w is weakly bounded fair iff it is 1-bounded ω-394

fair. Let F (m, κ) and F (κ) be the sets of ω-words that are (m, κ)-fair and κ-fair, respectively.395

We have the following sequence of strict inclusions (assume k, m ∈ N+):396

▶ Proposition 17. F (k) ⊂ F (m + 1, k) ⊂ F (m, k) ⊂ (
⋃

κ∈N F (m, κ)) ⊂ F (1, ω) = F (ω).397

Compliance with Fairness Criteria. Let us consider the criteria for fairness in the398

previous section. The notion of m-bounded fairness is machine closed since bounded fairness399

is stronger than m-bounded fairness (Prop. 13 and Prop. 17) and bounded fairness is400

machine closed.401

It is also a constructive liveness property since (m, k) fairness, for k ≥ |E|, is stronger402

than m-bounded fairness (Prop. 17), and it is also a constructive liveness property: A403

winning strategy for the scheduler is to choose a complete (m, k)-window at each one of its404

turns.405

Similarly, m-Bounded Fairness is random inclusive since the stronger notion (m, k)-406

Fairness is random inclusive for k ≥ |E|. In a random ω-word w = w0 · w1 . . . where each wn407

is a (m × k)-window, the probability that wn is a complete (m, k)-multi-window is non-zero408

and independent. Thus again, by the Second Borel–Cantelli lemma, almost-surely w has409

infinitely many complete (m, k) multi-windows, i.e., it is almost-surely (m, k)-fair.410

4.1 Consensus Theorem411

We can now state one of our main theorems: m-bounded fairness guarantees consensus in412

strongly-connected, puppet-free graphs.413

▶ Theorem 18 (Consensus under m-bounded fairness). Let M = (G, Binit, →) be an OTS414

where G is a strongly-connected, puppet-free influence graph. For every run π of M , if wπ is415

m-bounded fair and m ≥ |A| − 1, then π converges to consensus.416

▶ Remark 19. A noteworthy corollary of Th. 18 is that, under the same assumptions of417

the theorem, if wπ is a bounded fair (a random ω-word), then π converges to consensus (π418

almost surely converges to consensus). This follows from the above theorem, Prop. 13, Prop.419

17 and the fact that m-bounded fairness is random inclusive.420

A proof of Th. 18 is given in the technical report [7]. Let us give the main intuitions here.421

The proof focuses on the evolution of maximum and minimum opinion values. The sequences422
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1

2

3

4

a

b

d c

f

e

(a) OTS with Ie =
1/2 for every edge
e ∈ E and Binit =
(0.0, 0.2, 0.8, 1.0).

(b) Opinion evolution of the 1-bounded
fair ω-word w in Cons. 21 with U = 0.8
and L = 0.2.

(c) Opinion evolution of the 3-bounded
fair ω-word ((bfdace)3a10e10)ω.

Figure 4 Examples of an m-bounded fair runs. In Fig. 4b and 4c, each plot corresponds to the
opinion of the agent with the same color in Fig. 4a.

of maximum and minimum opinion values in a run, {max Bt}t∈N and {min Bt}t∈N, can be423

shown to be (bounded) monotonically non-increasing and non-decreasing, respectively, so424

they must converge to some opinion values, say U and L with L ≤ U .425

We must then argue that L = U (this implies convergence to consensus of π by the426

Squeeze Theorem [32]). Since wπ is m-bounded fair with m ≥ |A| − 1, after performing all427

the actions of an (m, k) multi-window of wπ, for some k ≥ |E|, all the agents of A would428

have influenced each other. In particular, the agents holding the maximum and minimum429

opinion values, say agents i and j. To see this, notice that since G is strongly connected,430

there is a path from i to j, a1 . . . al with length l ≤ |A| − 1. Thus, after performing the431

first complete k-window of the (m, k)-multi-window, a1 must be performed, after performing432

the second complete k-window, a2 must be performed, and so on. Hence, after performing433

all the actions of the multi-window, i would have influenced j. It can be shown that their434

mutual influence causes them to decrease their distance by a positive constant factor (here,435

the puppet freedom assumption is needed). Since the wπ is m-fair, there are infinitely many436

(m, k)-windows to be performed, and thus the sequences of maximum and minimum opinion437

values converge to each other, i.e., U = L. ◀438

It is worth pointing out that without the condition m ≥ |A| − 1 in Th. 18, we cannot439

guarantee consensus. Fig. 4c illustrates an m-bounded fair run, for m = |A| − 1, of an OTS440

with 4 agents that converges to consensus. Nevertheless, the following run construction441

shows that for m = |A| − 3, we can construct an m-bounded fair run that fails to converge442

to consensus (the run is illustrated in Fig. 4b). It also shows that weak bounded fairness,443

i.e., 1-bounded fairness, is not sufficient to guarantee convergence to consensus. We do not444

have a counter-example or a proof for m = |A| − 2.445

▶ Proposition 20. There exists M = (G, Binit, →), where G = (A, E, I) is a strongly446

connected, puppet-free graph, with an m-bounded fair ω-word w, m = |A| − 3, such that πw447

does not converge to consensus.448

The proof of the above proposition is given in the following construction.449

▶ Construction 21 (Counter-Example to Consensus for m-bounded fairness with m ≤ |A| − 3).450

Suppose that M = (G, Binit, →) where G is the strongly-connected, puppet-free, influence graph451

in Fig. 4a and Binit is any state of opinion such that Binit[1] < Binit[2] < Binit[3] < Binit[4].452
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2 1
a

b

(a) Binit = (0.0, 1.0) and if B[1] = B[2] then
IB

a = IB
b = 0.5, otherwise

IB
a =

[
U−B[2]

2(B[1]−B[2])

]1

0
, IB

b =
[

L−B[1]
2(B[2]−B[1])

]1

0

3 2 1
c

d

b

a

(b) Binit = (0.0, 0.5, 1.0), IB
d = IB

b = 0.5, if B[1] = B[2]
then IB

a = 0.5, if B[2] = B[3] then IB
c = 0.5, otherwise

IB
a =

[
1
2 (B[1]+L)−B[2]

B[1]−B[2]

]1

0
, IB

c =
[

1
2 (B[3]+U)−B[2]

B[3]−B[2]

]1

0

(c) Opinion and influence evolution of the ω-word
(ab)ω. Each plot corresponds to the opinion of the
agent with the same color in Fig. 5a. The influences
IB

a and IB
b are plotted in green and purple.

(d) Opinion and influence evolution of the ω-word
(a b c d)ω . Each plot corresponds to the opinion of the
agent with the same color in Fig. 5b. The influences
IB

a and IB
c are plotted in green and purple.

Figure 5 Plots for DOTS in Fig. 5a and Fig. 5b with U = 0.8 and L = 0.2.4

We have A = {1, 2, 3, 4} and E = {a, b, c, d, e, f}. We construct an ω-word w such that πw453

does not converge to consensus with the following infinite iterative process. Let U and L be454

such that Binit[2] ≤ L < U ≤ Binit[3].455

Process: (1) Perform the sequence of actions bfdace. (2) Perform a sequence of a actions456

with as many a’s as needed until the opinion of Agent 2 becomes smaller than L. (3) Perform457

a sequence of e’s with as many e’s as needed until the opinion of Agent 3 becomes greater458

than U . The result of this iteration is a sequence of the form bfdace · a∗e∗. Repeat steps 1-3459

indefinitely.460

The above process produces the ω-sequence w = v ·w1 ·v ·w2 · . . . of the form (bfdace a∗e∗)ω
461

where v = bfdace and wi = amieni are results of the i-th iteration of the process, and ni ≥ 0462

and mi ≥ 0 are the number of a’s and e’s in each wi. (The opinion evolution of run πw,463

with L = 0.2, U = 0.8 and Binit = (0.0, 0.2, 0.8, 1.0) is illustrated Fig. 4b)464

Since the subword v is a complete (1,6)-multi-window and appears infinitely often in w,465

w is m-bounded fair for m = |A| − 3 = 1. Furthermore, right after each execution of edge466

f in step 1, the opinion of Agent 1 gets closer to L, but it is still smaller than L since the467

opinion of Agent 2 at that point is smaller than L. For symmetric reasons, after action b, the468

opinion of Agent 4 gets closer to U , but it is still greater than U since the opinion of Agent469

3 at that point is greater than U . Consequently, the opinion of Agent 1 is always below L,470

while the opinion of Agent 4 is always above U with L < U . Therefore, they cannot converge471

to the same opinion.472

CONCUR 2024



22:14 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

5 Dynamic Influence473

The static weights of the influence graph of an OTS imply that the influence that each474

individual has on others remains constant throughout opinion evolution. However, in real-life475

scenarios, the influence of individuals can vary depending on many factors, in particular the476

state of opinion (or opinion climate). Indeed, individuals may gain or lose influence based on477

the current opinion trend or for expressing dissenting and extreme opinions, among others.478

To account for the above form of dynamic influence, we extend the weight function479

I : E → (0, 1] of the influence graph G = (A, E, I) as a function I : E × [0, 1]|A| → [0, 1] on480

edges and the state of opinion. The resulting graph is said to have dynamic influence.481

▶ Definition 22 (Dynamic OTS). A Dynamic OTS (DOTS) is a tuple (G, Binit, →) where482

G = (A, E, I) has dynamic influence I : E × [0, 1]|A| → [0, 1]. We write IB
ij for I((i, j), B).483

The labeled transition → is defined as in Def. 2 but replacing Iij with IB
ij in Eq. 1.484

The notions of runs, words, e-paths, and related notions for DOTS remain the same as485

those for OTS (Def. 4). Let us consider some examples of dynamic influence.486

Confirmation Bias. Under confirmation bias [8], an agent j is more influenced by those487

whose opinion is closer to theirs. The function IB
ij = 1 − | B[j] − B[i] | captures a form of488

confirmation bias; the closer the opinions of i and j, the stronger the influence of i over j.489

Bounded Influence. Nevertheless, if we allow dynamic influence that can converge490

to 0 in a given run Binit
e0−→ B1

e1−→ . . . , i.e, if limt→∞ IBt
i,j = 0, we may reduce indefinitely491

influence and end up in a situation similar to non-strong connectivity of the graph, thus492

preventing consensus as in Section 3.1 (Fig. 2). Analogously, if limt→∞ IBt
i,j = 1, we may end493

up in puppet situations preventing consensus like in Section 3.2 (Fig. 2c). Both situations494

are illustrated in the DOTS in Fig. 5. To prevent them, we bound the dynamic influences.495

▶ Definition 23 (Bounded Influence). A DOTS (G, Binit, →) with G = (A, E, I) has bounded496

influence if there are constants IL, IU ∈ (0, 1) such that for each B ∈ [0, 1]|A|, (i, j) ∈ E, we497

have IB
i,j ∈ [IL, IU ].498

The previous form of confirmation bias influence IB
ij = 1 − |B[j] − B[i]| is not bounded.499

Nevertheless, the linear transformation IL + (IU − IL)IB
ij can be used to scale any unbounded500

influence IB
ij into a bounded one in [IL, IU ] while preserving its shape.501

We conclude with our other main theorem, whose proof is given in the technical report502

[7].503

▶ Theorem 24 (Consensus with bounded influence). Let M = (G, Binit, →) be a DOTS where504

G is a strongly-connected, influence graph. Suppose that M has bounded influence. For every505

run π of M , if wπ is m-bounded fair with m ≥ |A| − 1, then π converges to consensus.506

The result generalizes Th. 18 to dynamic bounded influence. Therefore, in strongly-507

connected and dynamic bounded influence graphs, convergence to consensus is guaranteed508

for all runs that are m-bounded fair, which include each random run almost surely.509

6 Conclusions and Related Work510

We introduced a DeGroot-based model with asynchronous opinion updates and dynamic511

influence using labelled transition systems. The model captures opinion dynamics in social512

4 We use a clamp function for [0, 1] defined as [r]10 = min(max(r, 0), 1) for every r ∈ R.
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networks more faithfully than the original DeGroot model. The fairness notions studied and513

the consensus results in this paper show that the model is also tractable and brings new514

insights into opinion formation in social networks. To our knowledge, this is the first work515

that uses fairness notions from concurrent systems in the context of DeGroot-based models.516

There is a great deal of work on DeGroot-based models for social learning (e.g., [4, 13, 12,517

38, 37, 15, 11]). We discuss work with asynchronous updates and dynamic influence, which518

is the focus of this paper. The work [15] introduces a version of the DeGroot model in which519

self-influence changes over time, while the influence on others remains the same. The works520

[11, 12] explore convergence and stability, respectively, in models where influences change over521

time. The works mentioned above do not take into account asynchronous communication,522

whereas this paper demonstrates how asynchronous communication, when combined with523

dynamic influence, can prevent consensus.524

Recent works on gossip algorithms [17, 30, 2, 35] study consensus with asynchronous525

communications for distributed averaging and opinion dynamics. The work in [30] studies526

reaching consensus (in finite time) rather than converging to consensus. The works [2, 35]527

consider undirected cliques rather than directed graphs as influence graphs. The closest528

work is [17], which states consensus for random runs in directed strongly connected graphs529

but unlike our case all edges have the same fixed weight q ∈ (0, 1) (i.e., they assume static530

influence with the same influence value for all edges). The dynamics of asymmetric gossip531

updates in [17] can indeed be captured as OTS, and their random runs are almost-surely532

m-bounded fair. Consequently, our work generalizes the consensus result in [17] by extending533

it to graphs with (bounded) dynamic influence and whose edges may have different weights.534

Furthermore, the framework in [17] does not address fairness notions which are the focus535

and the main novelty of our work.536

The work [19] discusses probabilistic fairness as a method equally strong as strong fairness537

to prove liveness properties, where a liveness property is characterized by a set of states such538

that a run holds this property iff the run reaches a state of this set. However, the property539

of (convergence to) consensus (Def. 6) does not correspond to this notion of liveness since540

it is not about reaching a specific set of states but about converging to a consensual state.541

In fact, unless there are puppets or the initial state of a run is already a consensual state,542

consensus is never reached in finite time in our model.543

Bounded fair ω-words can be characterized by Prompt Buchi Automata (PBW) [3].544

Indeed, the set of bounded-fair words of an OTS can be characterized as the language545

of PBW. Hence, the closure properties of these automata may prove valuable for future546

developments of our work. It would also be interesting to see in future work whether or not547

the m−bounded fair words of an OTS can be characterized as the language of a PBW (or of548

an elegant variant of it).549

In future work, we plan to study the actual value of consensus in a given system. This may550

provide information about the most influential agents. We also plan to study how actions551

can be scheduled (or manipulated), while preserving the fairness assumptions, to converge552

more quickly or slowly to a consensus, or to a given consensus value. For example, giving553

priority to edges whose agents have a greater opinion disagreement, while respecting fairness554

assumptions. We may build on previous work on priorities in concurrent communications [6]555

for this purpose.556

Finally, we plan to extend our model with agents that can learn by exchanging beliefs,557

lies, and information, by building upon our work in concurrent constraint programming (e.g.558

[24, 23, 18]).559
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We establish a conditional proof of U = L by deriving bounds ensuring that the maximum662

opinion decreases under the influence of agents with the minimum opinion. The conditions are663

strong connectivity, puppet freedom, and a concept we introduce called recurrent ∆−bound.664

Finally, (3) we show that m-bounded fair runs (on strongly-connected puppet-free graphs)665

fulfil these conditions for m ≥ |A| − 1 and therefore ensure consensus.666

The complete proofs of the lemmas used next are found in Appendix B. For simplicity,667

assume an underlying OTS M = (G, Binit, →) with an strongly-connected puppet-free668

influence graph G = (A, E, I).669

Step 1. We show that the opinion values in a state is bounded by the extreme opinions670

in the previous state.671

▶ Lemma 25 (Opinion evolution is bounded by the extremes). Let B e−→ B′ be a transition.672

Then min(B) ≤ B′ [k] ≤ max(B) for all k ∈ A.673

Notice that monotonicity does not necessarily hold for the opinion of agents (e.g., see Fig.674

1c). Nevertheless, it follows from lemma 25 that max(Bt) is monotonically non-increasing675

and min(Bt) is monotonically non-decreasing with respect to t.676

▶ Corollary 26 (Monotonicity of extremes). Let B0
e0−→ B1

e1−→ . . . be an e-path. max(Bt+1) ≤677

max(Bt) and min(Bt+1) ≥ min(Bt) for all t ∈ N.678

Monotonicity and boundedness of extremes, together with the Monotonic Convergence679

Theorem [32], lead us to the existence of limits for opinions of extreme agents.680

▶ Theorem 27 (Limits of extremes). Let B0
e0−→ B1

e1−→ . . . be an e-path. There exist681

U, L ∈ [0, 1] such that limt→∞{max(Bt)} = U and limt→∞{min(Bt)} = L.682

Therefore, by the squeeze theorem [32], to prove Th. 18, it suffices to show that683

{max(Bt)}t≥0 and {min(Bt)}t≥0 converge to the same value.684

Step 2. To prove consensus, we now show that U = L for U, L in Th. 27. We say685

that an e-path π′ is an e-suffix of an e-path π if π′ is a suffix of π. In what follows we let686

π′ = B0
e0−→ B1

e1−→ . . . be an e-suffix of an strongly-fair run and w = e0e1 . . . be the ω-word687

generated by π′.688

In Lem. 30 we identify a lower bound on how much {max(Bt)}t≥0 decreases. The689

decrease may occur when an agent of minimum opinion influences all agents.5 To characterize690

it, we define a function ∆w(i) that quantifies how long it takes for an agent to influence691

every other. This requires some notation.692

Recall that a sequence (g-path in this case) p = a0a1 . . . an is a subsequence of a word693

w = e0e1 . . . if there exist indices i0 < i1 < . . . < in such that ei0 = a0, ei1 = a1, . . .,694

ein = an. We define δw(p) as the length of the smallest prefix w′ of w that such that p is a695

subsequence of w′.696

Recall that by definition g-paths are finite (i.e., simple paths in the graph). Let PG(i) be697

the set of all the g-paths starting from i.698

▶ Definition 28 (∆). For all i ∈ A, we define ∆w(i) = max{δw(p) | p ∈ PG(i)}699

Intuitively, ∆w(i) is the length of the smallest prefix of w that has all g-paths that start700

with agent i as subsequences. Because G is strongly connected, agent i must have influenced701

every other agent after the ∆w(i)-th action in w.702

5 A proof of consensus with the maximum opinion influencing all agents can be analogously presented.
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▶ Example 29. Consider the OTS from Fig. 1a. The path ad is a subsequence of abcd.703

It holds that PG(1) = {a, ad} and PG(3) = {c, cb}. Take the ω-word w = (abcd)ω. Then,704

δw(a) = 1, δw(ad) = 4, δw(c) = 3, and δw(cb) = 6; ∆w(1) = 4 and ∆w(3) = 6.705

Now take the ω-word u = (anbcnd)n∈N+ from the counter-example to consensus in Fig.706

3a. Then ∆u(1) = 5 and ∆u(3) = 7. But for the suffix u′ = (anbcnd)n≥10 of u, ∆u′(1) = 22707

and ∆u′(3) = 34. In this case, ∆u′ increases the later the suffix u′ starts in u.708

The function ∆w(i) allows us to express a bound on the maximum opinion in terms of709

the opinion of i and the constants max(B0), |A| and the maximum and minimum influences710

of the graph. Let Imax = max(i,j)∈E Iij and Imin = min(i,j)∈E Iij .711

▶ Lemma 30 (Opinion bound over a network). Let π′ = B0
e0−→ B1

e1−→ . . . be an e-suffix of a
strongly-fair run and w = e0e1 . . . the ω-word generated by π′. If G is strongly connected,
then for all i ∈ A

max(B0) − max(B∆w(i)) ≥ I
|A|
min(1 − Imax)∆w(i)(max(B0) − B0[i])

This quantifies a decrement in the opinion of the maximum opinion based on the initial712

opinion of an agent B0[i]. However, this decrease may become unboundedly smaller if ∆w(i)713

grows unboundedly, as in Cons. 10. Therefore, we bound ∆w(i) when i is an agent of714

minimum opinion. Define mπ′ ∈ A as the least6 agent in A such that B0[mπ′ ] = min(B0).715

▶ Definition 31 (∆-bound). Let π be a strongly fair run and π′ an e-suffix of π. We say716

β ∈ N is a ∆-bound of π′ if ∆wπ′ (mπ′) ≤ β.717

We say β ∈ N is a recurrent ∆-bound of π if for infinitely many e-suffixes π′ of π, β is a718

∆-bound of π′.719

Intuitively, a ∆-bound of an e-suffix π′ is a length bound for the smallest prefix of wπ′ that720

has all g-paths that start with an agent of minimum opinion as subsequences. A recurrent721

∆-bound of a run π is a ∆-bound for infinitely many e-suffixes of π. With this, we apply722

Lemma 30 with an agent of minimum opinion to bound the maximum opinion.723

▶ Lemma 32 (n − ϵ decrement). Let π = Binit
e0−→ B1

e1−→ . . . be a run with a strongly-724

connected G and a recurrent ∆-bound β ∈ N. For all n ∈ N, there exists an e-suffix725

π′ = Bt
et−→ Bt+1

et+1−−−→ . . . of π such that β is a ∆-bound of π′ where726

max(Binit) − max(Bt+β) ≥ n ∗ ϵ

with ϵ = I
|A|
min(1 − Imax)β(U − L).727

This is enough to prove U = L by contradiction. Suppose U ̸= L. We have Imax < 1 by728

puppet freedom. Then ϵ is greater than a positive constant. Using Lemma 32, take n ∈ N729

such that n ∗ ϵ > max(Binit), then max(Bt+β) < 0 for some t, a contradiction. Therefore,730

U = L.731

If U = L, the agents of extreme opinion converge to consensus, and by the squeeze732

theorem [32], every agent converges to the same opinion. Thus, any run of an OTS with733

strongly-connected puppet-free G and a recurrent ∆-bound converges to consensus.734

▶ Lemma 33 (Consensus with recurrent ∆-bound). Let M = (G, Binit, →) be an OTS where735

G is a strongly-connected, puppet-free influence graph. Then for every run π of M , if there736

exist β ∈ N such that β is a recurrent ∆-bound of π, then π converges to consensus.737

6 Assume A is ordered under the usual order in the natural numbers.
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Step 3. It remains to show that m-bounded fair runs, with m ≥ |A| − 1, have a recurrent738

∆-bound.739

▶ Lemma 34 (m-bounded fair runs have a recurrent ∆-bound). Any bounded m-fair run with740

m ≥ |A| − 1 has a recurrent ∆-bound β = (|A| − 1) × k for some k ∈ N.741

The intuition is that if π is m-bounded fair, it is (m, k)-fair for some k. This (m, k)-742

fairness provides a complete (m, k) multi-window for every e-suffix. All g-paths must be a743

subsequence of any complete (m, k) multi-window with m ≥ |A| − 1, because a g-path can744

visit at most |A| − 1 agents. This implies ∆wπ′ (mπ′) ≤ β = (|A| − 1) × k for every e-suffix745

w′ of w that starts with a complete (m, k) multi-window.746

Therefore, a bounded m-fair run of an OTS with m ≥ |A| − 1, strong connectivity and747

puppet freedom also has a recurrent ∆-bound, which implies convergence to consensus.748

B Proofs749

In this appendix, the reader may find the proofs of the following results:750

Proposition 11.751

Proposition 13.752

Proposition 17.753

Theorem 24 (Consensus with bounded influence).754

Lemma 25 (Opinion evolution is bounded by the extremes).755

Lemma 30 (Opinion bound over a network).756

Lemma 32 (n − ϵ decrement).757

Lemma 33 (Consensus with recurrent ∆-bound).758

Lemma 34 (m−bounded fair runs have a recurrent ∆-bound).759

Proposition 35 (Minimum effort for pulling an agent over a given belief).760

Lemma 36 (Opinion bound after one step).761

Lemma 37 (Opinion upper bound after n steps).762

Lemma 38 (Direct influence bound).763

Lemma 39 (Opinion upper bound along a path).764

Lemma 41 (epsilon decrement ∆-bound e-suffix).765

Lemma 42 (epsilon decrement ∆-bound run).766

▶ Proposition 11. Let w = w1 · w2 · . . . be the ω-word from Cons. 10 where each wm has the767

form a+bc+d. Then for every m ∈ N, there exists t ∈ N such that #c(wm+t) > #c(wm).768

Proof. We will prove this proposition in two steps. First (claim 1), for any m ∈ Nat we769

will prove, using Prop. 35, that there exists OE ∈ N+ such that #c(wm) ≤ OE. Second770

(claim 2), we will prove, using again Prop. 35 and the fact that B[3] converges to U , that771

there exists t ∈ Nat+ and UE ∈ N+ such that OE < UE and UE ≤ #c(wm+t). Then, we772

can conclude that for each m ∈ N, there exists t ∈ N+ such that #c(wm+t) > #c(wm).773

Claim 1: Let L, U ∈ (0, 1) be the two fixed values used for building w, such that774

0 < L < B0[2] < U < 1.775

Let ua#a(wm)b be a prefix of w that represents a partial execution of w, that is, w =776

ua#a(wm)bw′ and w′ = c#c(wm)dwm+1 . . .777

Let B[2] and B[3] be the opinions of agents 2 and 3 respectively, before starting execution778

of w′. We know that, by definition, the #c(wm) executions of edge c will carry the opinion779

of agent 2, just over U and below B[3]. We don’t know the exact value of #c(wm), but we780
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can overestimate it easily estimating the minimum effort needed for carrying a opinion of 0781

over U using the actual opinion of agent 3, B[3]. We call this overestimation OE.782

Using proposition 35 we can conclude that

OE = ⌈log2( B[3] − 0
B[3] − U

)⌉ = ⌈log2( B[3]
B[3] − U

)⌉

Because of B[2] > 0 we can conclude that OE ≥ #c(wm).783

Claim 2: Now, because of limt→∞Bt[3] = U , we can be sure that executing the784

wm+1wm+2 . . . run there will be a moment m + t, just after executing the d edge of wm+t−1,785

where B[3] ≤ U + ϵ for any ϵ ∈ (0, Bm+t−1[3] − U).786

That is w1w2 . . . wmwm+1 . . . wm+t−1 has been executed and B[3] ≤ U + ϵ. Now the787

edges of wm+t = apm+tbcqm+td will be executed. We don’t know the exact value of qm+t, but788

we can underestimate it easily estimating the minimum effort needed for carrying a opinion789

of L over U at that moment using the actual opinion of agent 3, B[3]. By construction, we790

know that the partial execution of w until this moment has carried B[2] under L. We call791

this underestimation UE.792

Using proposition 35 we can conclude that

UE = ⌈log2( B[3] − L

B[3] − U
)⌉ = ⌈log2( U + ϵ − L

U + ϵ − U
)⌉ = ⌈log2(U + ϵ − L

ϵ
)⌉

Because B[2] ≤ L at the beginning of execution of wm+t we can conclude that qm+t ≥ UE.
As qm+t = #c(wm+t) then we have

#c(wm+t) ≥ UE

Then we have #c(wm) ≤ OE and UE ≤ #c(wm+t).793

Now we choose ϵ such that: OE < UE, that is, such that

log2( B[3]
B[3] − U

) < log2(U + ϵ − L

ϵ
)

that is794

B[3]
B[3] − U

<
U + ϵ − L

ϵ

then795

ϵ <
(U − L)(B[3] − U)

U

Then, we can conclude that

#c(wm+t) ≥ UE > OE ≥ #c(wm)

◀796

▶ Proposition 13. For every k ∈ N, F (k) ⊂ F (k + 1) ⊂ (
⋃

κ∈N F (κ)) ⊂ F (ω).797

Proof. We will divide the proof into the following statements to prove:798

F (k) ⊂ F (k + 1): it will be divided into the following two statements to prove:799
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F (k) ⊆ F (k + 1): If w ∈ F (k) then all the k windows of w are complete. Then, every800

e ∈ E will occur within a window of length k from any position of w. Therefore, every801

e ∈ E will also occur within a window of length k + 1 (or greater) from any position802

of w, i.e., all k + 1 windows of w are complete; thus, w ∈ F (k + 1).803

F (k + 1) ̸⊆ F (k): Consider a k + 1-fair word w = u · u · . . . and the k + 1-windows804

u = v · ei, such that v(k) = E′, where E′ ⊂ E and E = E′ ∪ {ei}, clearly every805

k + 1-windows in w is complete, but the occurrences of the k-window v in w are not806

complete. Therefore, w ∈ F (k + 1) but w ̸∈ F (k).807

F (k + 1) ⊂ (
⋃

κ∈N F (κ)): it will be divided into the following two statements to prove:808

F (k+1) ⊆ (
⋃

κ∈N F (κ)) : as k+1 ∈ N, it is straightforward that F (k+1) ⊆ (
⋃

κ∈N F (κ)).809

(
⋃

κ∈N F (κ)) ̸⊆ F (k + 1): as F (k + 2) ̸⊆ F (k + 1) and F (k + 2) ⊆ (
⋃

κ∈N F (κ)),810

there is at least a word w such that w ∈ F (k + 2) and hence w ∈
⋃

κ∈N F (κ) where811

w ̸∈ F (k + 1).812

(
⋃

κ∈N F (κ)) ⊂ F (ω): it will be divided into the following two statements to prove:813

(
⋃

κ∈N F (κ)) ⊆ F (ω): if w ∈ (
⋃

κ∈N F (κ)), then w ∈ F (k) for some k ∈ N, therefore,814

every e ∈ E will also occur within a window of length k from any position of w, thus,815

every e ∈ E occurs infinitely often in w, hence w is strong fair; w ∈ F (ω).816

F (ω) ̸⊆ (
⋃

κ∈N F (κ)): consider a strong-fair word w, i.e. w ∈ F (ω), a set E = {e1, e2}817

where w(i) = e1 if i is a power of 2, otherwise, w(i) = e2; as the distance between818

consecutive occurrences of e1 grows unboundedly in w, e1 will not be within every819

window of length k in w for some k ∈ N. Therefore, w ̸∈ (
⋃

κ∈N F (κ)).820

◀821

▶ Proposition 17. F (k) ⊂ F (m + 1, k) ⊂ F (m, k) ⊂ (
⋃

κ∈N F (m, κ)) ⊂ F (1, ω) = F (ω).822

Proof. We will divide it into the following statements to prove:823

F (k) ⊂ F (m + 1, k): it will be divided into the following two statements to prove:824

F (k) ⊆ F (m + 1, k): If w ∈ F (k) then all the k windows of w are complete. Therefore,825

from any position of w, every e ∈ E will occur within a window of length k; hence,826

from any position of w an infinite number of consecutive complete k-windows appear,827

thus, every suffix of w has a complete (n, k) multi-window for all n ∈ N+, including828

when n = m + 1, then w ∈ F (m + 1, k).829

F (m + 1, k) ̸⊆ F (k): Consider a word w and E = {e1, e2} where w = w1 · w2 · w3 . . .830

such that every subword w2i+1 corresponds to a complete (m + 1, k) multi-window and831

every subword w2i corresponds to a k window of e1, i.e, w can be seen as a sequence832

of complete (m + 1, k) multi-windows separated between every pair of multi-windows833

by a k windows of e1. Clearly, w ∈ F (m + 1, k) as every suffix of w has a complete834

(m + 1, k) multi-window, however, as there are k windows of e1 in w, it is not true that835

from any position of w, every e ∈ E will occur within a window of length k, therefore836

w ̸∈ F (k).837

F (m + 1, k) ⊂ F (m, k): it will be divided into the following two statements to prove:838
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F (m + 1, k) ⊆ F (m, k): If w ∈ F (m + 1, k), then from any position of w, m + 1839

consecutive complete k-windows appear, therefore, clearly from any position of w, m840

consecutive complete k-windows appear, i.e. w ∈ F (m, k).841

F (m, k) ̸⊆ F (m + 1, k): Consider a word w and E = {e1, e2} where w = w1 · w2 · w3 . . .842

such that every subword w2i+1 corresponds to a complete (m, k) multi-window and843

every subword w2i corresponds to a k window of e1, i.e, w can be seen as a sequence844

of complete (m, k) multi-windows separated between every pair of multi-windows by845

a k windows of e1. Clearly, w ∈ F (m, k) as every suffix of w has a complete (m, k)846

multi-window, however, there are no m + 1 consecutive complete k-windows in w,847

therefore w ̸∈ F (m + 1, k).848

F (m, k) ⊂
⋃

κ∈N F (m, κ): it will be divided into the following two statements to prove:849

F (m, k) ⊆
⋃

κ∈N F (m, κ): as k ∈ N, it is straightforward that F (m, k) ⊆
⋃

κ∈N F (m, κ).850

(
⋃

κ∈N F (m, κ)) ̸⊆ F (m, k): Consider a word w and E = {e1, e2, . . . , ek+1} such that851

w = w′ · w′ . . . where w′ = e1 · e2 . . . ek+1. i.e. w ∈ F (m, k + 1). Additionally, as852

F (m, k + 1) ⊆
⋃

κ∈N F (m, κ), w ∈ (
⋃

κ∈N F (m, κ)), however, since |E| = k + 1, it is853

not possible that there are complete k-windows in w, therefore w ̸∈ F (m, k).854

(
⋃

κ∈N F (m, κ)) ⊂ F (1, ω): it will be divided into the following two statements to prove:855

(
⋃

κ∈N F (m, κ)) ⊆ F (1, ω) : if w ∈ (
⋃

κ∈N F (κ)), then w ∈ F (m, κ) for some κ ∈ N,856

therefore, every suffix of w has a complete (m, κ) multi-window. i.e. m consecutive857

complete k-windows appear infinitely often in w. This implies that in every suffix of858

w, every e ∈ E occurs. Therefore, every suffix of w can be seen as a complete window859

of infinite length (ω), hence w ∈ F (1, ω).860

F (1, ω) ̸⊆ (
⋃

κ∈N F (m, κ)): consider any κ ∈ N, a word w, a set E = {e1, e2} where861

w(i) = e1 if i is a power of 2, otherwise, w(i) = e2; since e1 and e2 occur infinitely often862

in w, every suffix of w can be seen as a complete window of infinite length (ω), hence863

w ∈ F (1, ω). However, since the distance between consecutive occurrences of e1 grows864

unboundedly in w, it is not possible that a complete κ-window occurs infinitely often865

in w, therefore, there are suffixes of w that don’t have a complete (m, κ) multi-window,866

thus, w ̸∈⊆ (
⋃

κ∈N F (m, κ)).867

F (1, ω) = F (ω): w ∈ F (1, ω) corresponds to say that every suffix of w has a complete868

(1, ω) multi-window, it is equivalent to say that every e ∈ E occurs from any position in869

w, it equates to say that w ∈ F (ω).870

◀871

▶ Theorem 24 (Consensus with bounded influence). Let M = (G, Binit, →) be a DOTS where872

G is a strongly-connected, influence graph. Suppose that M has bounded influence. For every873

run π of M , if wπ is m-bounded fair with m ≥ |A| − 1, then π converges to consensus.874

Proof. We have It
ij ∈ [IL, IU ] by bounded influence. We will reformulate Lemma 36, lemmas875

37, 38, 39, 30, 41, Lemma 32 and Lemma 33 for consensus with IL and IU playing the roles876

of Imin and Imax.877

Similarly to Lemma 36, we prove that for any transition B (i,j)−−−→ B′ and any k ∈ A, we878

can show879
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B′ [k] ≤ B[k](1 − IU ) + max(B)IU

Let π′ = B0
e0−→ B1

e1−→ . . . be an e-suffix of π and w′ = e0e1 the ω-word generated by π′.880

Similarly to Lemma 37, we can deduce that for any i ∈ A,881

Bn[i] ≤ max(B0) − (1 − IU )n(max(B0) − B0[i])

Then, similar to Lemma 38, for any i, j ∈ A, if en+1 = (i, j),

Bn+1[j] ≤ max(B0) − IL(1 − IU )n(max(B0) − B0[i])

and this bound can be extended along a path, similar to Lemma 39. Let p be a path in882

G that starts with agent i and ends with agent j. Then883

Bδw′ (p)[j] ≤ max(B0) − I
|p|
L (1 − IU )δw′ (p)(max(B0) − B0[i])

and similar to Lemma 30, we can show that because G is strongly connected, then for all884

j ∈ A and some i ∈ A885

max(B0) − B∆w′ (i)[j] ≥ I
|A|
L (1 − IU )∆w′ (i)(max(B0) − B0[i]) (2)886

As proven in Lemma 34, π being m-bounded fair with m ≥ |A| − 1 implies that there887

exists a β ∈ N such that β is a recurrent ∆-bound of π. Therefore,888

Similarly to Lemma 41, if the e-suffix π′ = Bt
et−→ Bt+1

et+1−−−→ . . . of π has β as a bound889

∆, then:890

ϵ ≤ max(Binit) − max(Bt+β)

for ϵ = I
|A|
L (1 − IU )β(U − L), where U = limt→∞ max(Bt) and L = limt→∞ min(Bt)891

from Theorem 27.892

Similarly to Lemma 32, for all n ∈ N, there exists an e-suffix π′ = Bt
et−→ Bt+1

et+1−−−→ . . .893

of π such that β is a ∆-bound of π′ where894

n ∗ ϵ ≤ max(Binit) − max(Bt+β)

for ϵ = I
|A|
L (1 − IU )β(U − L),895

We are ready to reformulate Lemma 33 for consensus with dynamic influence. It remains896

to prove that U = L.897

Suppose, by contradiction, that U ̸= L. We have IU < 1 by bounded influence. Then898

ϵ is greater than or equal to a positive constant. Using Lemma 32, take n ∈ N such that899

n ∗ ϵ > max(Binit), then max(Bt+β) < 0 for some t, a contradiction by definition.900

Therefore, U = L, and by the squeeze theorem [32],

lim
t→∞

max(Bt) = lim
t→∞

min(Bt) = lim
t→∞

Bt[k] ∀k ∈ A

we converge to consensus.901

◀902

▶ Lemma 25 (Opinion evolution is bounded by the extremes). Let B e−→ B′ be a transition.903

Then min(B) ≤ B′ [k] ≤ max(B) for all k ∈ A.904
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Proof. We want to prove that
B′ [k] ≤ max(B)

Take the transition relation of Definition 2 and let e = (i, j). Either k ̸= j or k = j.905

If k ̸= j, B′ [k] = B[k], then B′ [k] = B[k] ≤ max(B).906

If k = j,907

B′ [k] = B[j] + (B[i] − B[j])Iij

Now note that by definition B[i] ≤ max(B) and Iij ≤ 1. Then908

B′ [k] ≤ B[j] + (max(B) − B[j]) = max(B)

as wanted. The proof that B′ [k] ≥ min(B) is analogous.909

◀910

▶ Lemma 30 (Opinion bound over a network). Let π′ = B0
e0−→ B1

e1−→ . . . be an e-suffix of a
strongly-fair run and w = e0e1 . . . the ω-word generated by π′. If G is strongly connected,
then for all i ∈ A

max(B0) − max(B∆w(i)) ≥ I
|A|
min(1 − Imax)∆w(i)(max(B0) − B0[i])

Proof. Take any k ∈ A. Because G is strongly connected, there is a path p between i and k.911

Apply Lemma 39 to p912

Bδw(p)[k] ≤ max(B0) − I
|p|
min(1 − Imax)δw(p)(max(B0) − B0[i])

Now because this is for all k ∈ A, it follows that913

max(Bδw(p)) ≤ max(B0) − I
|p|
min(1 − Imax)δw(p)(max(B0) − B0[i])

and by Lemma 25, we know that B∆w(i)[j] ≤ max(Bδw(p)) for all j ∈ A.914

B∆w(i)[j] ≤ max(B0) − I
|p|
min(1 − Imax)∆w(i)(max(B0) − B0[i])

Recall that by definition 28, δw(p) ≤ ∆w(i), because p starts with i. Then915

max(B∆w(i)) ≤ max(B0) − I
|p|
min(1 − Imax)∆w(i)(max(B0) − B0[i])

Note that |p| ≤ |A|, therefore916

max(B∆w(i)) ≤ max(B0) − I
|A|
min(1 − Imax)∆w(i)(max(B0) − B0[i])

Now by substracting max(B0) on both sides and multiplying by −1, we have917

max(B0) − max(B∆w(i)) ≥ I
|A|
min(1 − Imax)∆w(i)(max(B0) − B0[i])

◀918

▶ Lemma 32 (n − ϵ decrement). Let π = Binit
e0−→ B1

e1−→ . . . be a run with a strongly-919

connected G and a recurrent ∆-bound β ∈ N. For all n ∈ N, there exists an e-suffix920

π′ = Bt
et−→ Bt+1

et+1−−−→ . . . of π such that β is a ∆-bound of π′ where921

max(Binit) − max(Bt+β) ≥ n ∗ ϵ

with ϵ = I
|A|
min(1 − Imax)β(U − L).922
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Proof. We proceed by induction on n to prove that for all n ∈ N, there exists an e-suffix923

π′ = Bt
et−→ Bt+1

et+1−−−→ . . . of π such that β is a ∆-bound of π′ where924

n ∗ ϵ ≤ max(Binit) − max(Bt+β)

Base Case (n = 1)925

From Definition 31 and as π has a recurrent ∆-bound β, there exists an e-suffix π′ =926

Bt
et−→ Bt+1

et+1−−−→ . . . such that β is a ∆-bound of π′.927

As β is a ∆-bound of π′, and by applying Lemma 42 on π and π′, we have the following:

ϵ ≤ max(Binit) − max(Bt+β)

with ϵ = I
|A|
min(1 − Imax)β(U − L).928

Inductive Step:929

As inductive hypothesis, we assume that there is an e-suffix π′ = Bt
et−→ Bt+1

et+1−−−→ . . .930

of π such that β is a ∆-bound of π′ where931

n ∗ ϵ ≤ max(Binit) − max(Bt+β)

with ϵ = I
|A|
min(1 − Imax)β(U − L).932

We need to prove that there exists an e-suffix π′′ = Bs
es−→ Bs+1

es+1−−−→ . . . of π such that933

β is a ∆-bound of π′′ where934

(n + 1) ∗ ϵ ≤ max(Binit) − max(Bs+β)

with ϵ = I
|A|
min(1 − Imax)β(U − L).935

To prove it, we consider Definition 31 and the fact that π has a recurrent ∆-bound β.936

As π has a recurrent ∆-bound β, there are infinitely many e-suffixes of π, such that β is937

a ∆-bound of each of them. It implies that there are infinitely many e-suffixes of every938

e-suffix of π, such that β is a ∆-bound of each of them.939

Thus, consider an e-suffix π′′ = Bs
es−→ Bs+1

es+1−−−→ . . . of π′ such that β is a ∆-bound of940

π′′ and s ≥ t + β.941

From the inductive hypothesis, we know that:942

n ∗ ϵ ≤ max(Binit) − max(Bt+β)

From Corollary 26 and s ≥ t + β, we know that:943

max(Bt+β) ≥ max(Bs)

Applying Lemma 41 on π′′, we know that:944

max(Bs) ≥ max(Bs+β) + ϵ

Then max(Bt+β) ≥ max(Bs+β) + ϵ and using the inductive hypothesis, we have:945

n ∗ ϵ ≤ max(Binit) − max(Bt+β) ≤ max(Binit) − max(Bs+β) − ϵ

Therefore:946

n ∗ ϵ + ϵ = (n + 1) ∗ ϵ ≤ max(Binit) − max(Bs+β)

As expected.947
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◀948

▶ Lemma 33 (Consensus with recurrent ∆-bound). Let M = (G, Binit, →) be an OTS where949

G is a strongly-connected, puppet-free influence graph. Then for every run π of M , if there950

exist β ∈ N such that β is a recurrent ∆-bound of π, then π converges to consensus.951

Proof. Let π = B0
e0−→ B1

e1−→ . . . . By Theorem 27, there exists U, L ∈ [0, 1] such that952

U = limt→∞ max(Bt) and L = limt→∞ min(Bt).953

We now prove U = L. Let β ∈ N be a recurrent ∆-bound of π.954

By Lemma 32, there exists an e-suffix π′ = Bt
et−→ Bt+1

et+1−−−→ . . . of π such that β is a955

∆-bound of π′ where956

n ∗ ϵ ≤ max(Binit) − max(Bt+β) (3)957

with ϵ ≥ I
|A|
min(1 − Imax)β(U − L) For all n ∈ N.958

Now suppose, by contradiction, that U ̸= L. That, together with Imax < 1 from the959

puppet freedom property, imply that ϵ is a constant greater than zero. Then U −L > 0. Thus,960

from (3) there exist some n ∈ N such that n ∗ ϵ > max(Binit), which implies max(Bt+β) < 0,961

which a contradiction by definition.962

Therefore, U = L, and by the squeeze theorem [32],

lim
t→∞

max(Bt) = lim
t→∞

min(Bt) = lim
t→∞

Bt[k] ∀k ∈ A

which is consensus.963

◀964

▶ Lemma 34 (m-bounded fair runs have a recurrent ∆-bound). Any bounded m-fair run with965

m ≥ |A| − 1 has a recurrent ∆-bound β = (|A| − 1) × k for some k ∈ N.966

Proof. Consider an OTS (G, Binit, →) with a strongly-connected G = (A, E, I). Let π be a967

m-bounded fair run with m ≥ |A| − 1 and let w = wπ be its related ω-word.968

If w is m-bounded fair, it is (m, k)-fair for some k. Then, every suffix of w has a complete969

(m, k) multi-window. Let w′ = w0 · w1 . . . wm . . . be one of the infinitely many suffixes that970

start when the complete (m, k) multi-window starts. Every wi is a complete k−window.971

Let p = a1a2 . . . a|p|−1 be any g-path in G.972

Because w1 is complete, a1 must occur in w1; a2 must occur in w2, and so on. a|p|−1973

must occur in w|p|−1. The path p can be length |A| − 1 at most, therefore every edge of p974

must occur in order in the complete (|A|−1, k) multi-window. This means p is a subsequence975

of the multi-window. The size of the multi-window is greater or equal than (|A| − 1) ∗ k,976

therefore, δw′(p) ≤ (|A| − 1) ∗ k for any p.977

This includes the g-paths that start with mπ′ , then ∆w′(mπ′) ≤ (|A| − 1) ∗ k.978

This holds for infinitely many suffixes w′ of w, specifically the suffixes that start when979

the complete (m, k) multi-window starts.980

◀981

▶ Proposition 35 (Minimum effort for pulling an agent over a given opinion). Suppose that982

M = (G, Binit, →) where G is the strongly-connected, puppet-free, influence graph in Fig.983

1a and Binit = (0, 0.5, 1) as in example 10. Let i, j ∈ A, (j, i) ∈ E and U ∈ [0, 1] such that984

B[i] < U < B[j]. Let t ∈ N, the least number of consecutive executions of edge (j, i) needed985

for pulling the opinion of agent i over U . Then t = ⌈log2( B[j]−B[i]
B[j]−U )⌉.986
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Proof. Let δ = B[j] − B[i]. The opinion of agent i after t consecutive activations of edge
(j, i) is B[i] + ( δ

21 + δ
22 + . . . + δ

2T ). We need to find t such that this value be over U . That is:

B[i] + ( δ

21 + δ

22 + . . . + δ

2t
) ≥ U

We know that B[i] + ( δ
21 + δ

22 + . . . + δ
2T ) = B[i] + δ(1 − 1

2t ).987

Let T be the value where B[i] + δ(1 − 1
2T ) = U , that is, solving T :

T = log2(B[j] − B[i]
B[j] − U

)

Then t = ⌈T ⌉ ◀988

▶ Lemma 36 (Opinion bound after one step). For any transition B ·−→ B′ , and any k ∈ A989

B′ [k] ≤ B[k](1 − Imax) + max(B)Imax

Proof. Take the transition relation of Definition 2, where k ̸= j implies B′ [k] = B[k] and990

k = j implies B′ [k] = B[j] + (B[i] − B[j])Iij . For the first case B′ [k] = B[k],991

B′ [k] ≤ B[k]992

B′ [k] ≤ B[k](1 − Imax + Imax)993

B′ [k] ≤ B[k](1 − Imax) + B[k]Imax994

B′ [k] ≤ B[k](1 − Imax) + max(B)Imax by definition B[k] ≤ max(B)995

996

For the second case, we have997

B′ [k] = Bj + (B[i] − B[j])Iij

by definition, B[i] ≤ max(B), therefore998

B′ [k] ≤ B[j] + (max(B) − B[j])Iij

In addition, Iij ≤ Imax by definition; replacing999

B′ [k] ≤ B[j] + (max(B) − B[j])Imax

which can be rewritten as1000

B′ [k] ≤ B[k](1 − Imax) + max(B)Imax

◀1001

▶ Lemma 37 (Opinion upper bound after n steps). Let B0
e0−→ B1

e1−→ . . . be an e-path. For
any i ∈ A

Bn[i] ≤ max(B0) − (1 − Imax)n(max(B0) − B0[i])
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Proof. We use induction for n. For the base case n = 1, we claim1002

B1[i] ≤ max(B) − (1 − Imax)(max(B) − B[i])

which we deduce by applying Lemma 36 to B e1−→ B1:1003

B1[i] ≤ B[i](1 − Imax) + max(B)(Imax)1004

= B[i] − B[i](Imax) + max(B)(Imax)1005

= B[i] + Imax(max(B) − B[i])1006

= max(B) − max(B) + B[i] + Imax(max(B) − B[i])1007

= max(B) − (max(B) − B[i]) + Imax(max(B) − B[i])1008

= max(B) − (1 − Imax)(max(B) − B[i])1009

1010

as claimed. For the inductive case, we claim1011

1012

Bn[i] ≤ max(B) − (1 − Imax)n(max(B) − B[i]) =⇒1013

Bn+1[i] ≤ max(B) − (1 − Imax)n+1(max(B) − B[i]) (4)1014

to prove this, we apply Lemma 36 to Bn
en+1−−−→ Bn+1:1015

Bn+1[i] ≤ Bn[i](1 − Imax) + max(Bn)Imax

by Lemma 25, max(Bn) ≤ max(B)1016

Bn+1[i] ≤ Bn[i](1 − Imax) + max(B)Imax

using the inductive hypothesis, we replace Bn[i]1017

Bn+1[i] ≤ [max(B) − (1 − Imax)n(max(B) − B[i])] (1 − Imax) + max(B)Imax1018

= max(B) − [(1 − Imax)n(max(B) − B[i])] (1 − Imax)1019

= max(B) − (1 − Imax)n+1(max(B) − B[i])1020

1021

as claimed. Thus, for any n ∈ N and i ∈ A,1022

Bn[i] ≤ max(B) − (1 − Imax)n(max(B) − B[i])

◀1023

▶ Lemma 38 (Direct influence bound). Consider the e-path B0
e0−→ B1

e1−→ . . . with en+1 =
(i, j). Then

Bn+1[j] ≤ max(B) − Imin(1 − Imax)n(max(B) − B[i])
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Proof. For some Bn[j] and en+1 = (i, j), the transition relation from Definition 2 yields that1024

Bn+1[j] = Bn[j] + (Bn[i] − Bn[j])Iij = Bn[j](1 − Iij) + Bn[i]Iij (5)1025

by Lemma 37, we know that1026

Bn[i] ≤ max(B) − (1 − Imax)n(max(B) − B[i])

replacing Bn[i] in (5)1027

Bn+1[j] ≤ Bn[j](1 − Iij) + max(B)Iij − (1 − Imax)n(max(B) − B[i])Iij (6)1028

and to continue, we infer the following1029

max(B) ≤ max(B)1030

max(B)(1 − Iij + Iij) ≤ max(B)1031

max(B)(1 − Iij) + max(B)Iij ≤ max(B)1032

Bn[j](1 − Iij) + max(B)Iij ≤ max(B) Bn[j] ≤ max(B) from Lemma 251033

1034

to replace on (6) which yields1035

Bn+1[j] ≤ max(B) − Iij(1 − Imax)n(max(B) − B[i])

and by definition, Imin ≤ Iij , therefore1036

Bn+1[j] ≤ max(B) − Imin(1 − Imax)n(max(B) − B[i])

◀1037

▶ Lemma 39 (Opinion upper bound along a path). Let π = B0
e0−→ B1

e1−→ . . . be an e-path1038

such that wπ is strongly fair. Let p be a g-path in G from agent i to j. Then1039

Bδw(p)[j] ≤ max(B0) − I
|p|
min(1 − Imax)δw(p)(max(B0) − B0[i])

Proof. Let p = p0 . . . pk . . . p|p|−1; pk = (ik, ik+1). Define1040

τ(k) = δw(p0 . . . pk)

Notice that τ(k) ∈ N because δr(p) ∈ N. τ(k) is time step when the k-th edge of p is1041

activated after τ(k − 1), i.e. eτ(k) = pk.1042

We assert that1043

Bτ(k)[ik+1] ≤ max(B0) − Ik+1
min(1 − Imax)τ(k)(max(B0) − B[i]) (7)1044

proving it by induction over k. For the base case k = 0, we claim1045

Bτ(0)[i1] ≤ max(B0) − Imin(1 − Imax)τ(0)(max(B0) − B[i]) (8)1046
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Consider the e-path B0 → B1 → B2 . . .
p0−→ Bτ(0). Applying Lemma 38:1047

Bτ(0)[i1] ≤ max(B0) − Imin(1 − Imax)τ(0)−1(max(B0) − B[i]) (9)1048

and we can prove that (1 − Imax)τ(0)−1 ≥ (1 − Imax)τ(0), therefore we derive1049

Bτ(0)[i1] ≤ max(B0) − Imin(1 − Imax)τ(0)(max(B0) − B[i]) (10)1050

as claimed. For the inductive case, we need to prove1051

1052

Bτ(k)[ik+1] ≤ max(B0) − Ik+1
min(1 − Imax)τ(k)(max(B0) − B[i]) =⇒1053

Bτ(k+1)[ik+2] ≤ max(B0) − Ik+2
min(1 − Imax)τ(k+1)(max(B0) − B[i])1054

Consider the e-path Bτ(k) → Bτ(k)+1 → Bτ(k)+2 . . .
pk+1−−−→ Bτ(k+1) which is an e-suffix of1055

π. From Lemma 38 we obtain:1056

Bτ(k+1)[ik+2] ≤ max(B0) − Imin(1 − Imax)τ(k+1)−τ(k)−1(max(B0) − Bτ(k)[ik+1]) (11)1057

replacing Bτ(k)[ik+1] given the inductive hypothesis1058

1059

Bτ(k+1)[ik+2] ≤ max(B0) − Imin(1 − Imax)τ(k+1)−τ(k)−1(max(B0)−1060 [
max(B0) − Ik+1

min(1 − Imax)τ(k)(max(B0) − B[i])
]
)1061

= max(B0) − Ik+2
min(1 − Imax)τ(k+1)−1(max(B0) − B[i])1062

and we can prove that (1 − Imax)τ(k+1)−1 ≥ (1 − Imax)τ(t+1), therefore we derive1063

Bτ(k+1)[ik+2] ≤ max(B0) − Ik+2
min(1 − Imax)τ(k+1)(max(B0) − B[i])

as wanted. Thus, (7) is true. Then, for k = |p| − 1,1064

Bτ(|p|−1)[i|p|] ≤ max(B0) − I
|p|
min(1 − Imax)τ(|p|−1)(max(B0) − B[i])1065

clearly, i|p| = j and τ(|p| − 1) = δw(p), therefore1066

Bδw(p)[k] ≤ max(B0) − I
|p|
min(1 − Imax)δw(p)(max(B0) − B[i])1067

◀1068

▶ Corollary 40 (L and U are bounds of extremes). Let B0
e0−→ B1

e1−→ . . . be an e-path1069

and U, L ∈ [0, 1] such that limt→∞{max(Bt)} = U and limt→∞{min(Bt)} = L. Then1070

max(Bt) ≥ U and min(Bt) ≤ L for all t ∈ N.1071

CONCUR 2024
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▶ Lemma 41 (epsilon decrement ∆-bound e-suffix). Let π′ = B0
e0−→ B1

e1−→ . . . be an e-suffix1072

of a strongly-fair run, with a ∆-bound β ∈ N, then:1073

max(B0) − max(Bβ) ≥ ϵ

with ϵ = I
|A|
min(1 − Imax)β(U − L).1074

Proof. Considering π′ and the agent mπ′ ∈ A, we apply Lemma 30 to bound the maximum
opinion of an agent in π′ as follows:

max(B0) − max(B∆w′
π

(mπ′ )) ≥ I
|A|
min(1 − Imax)∆w′

π
(mπ′ )(max(B0) − B0[mπ′ ])

As max(B0) ≥ U and B0[mπ′ ] ≤ L from Corollary 40, then:1075

max(B0) − max(B∆w′
π

(mπ′ )) ≥ I
|A|
min(1 − Imax)∆w′

π
(mπ′ )(U − L)

As β is a ∆-bound of π′, ∆w′
π
(mπ′) ≤ β, hence:1076

max(B0) − max(B∆w′
π

(mπ′ )) ≥ I
|A|
min(1 − Imax)∆w′

π
(mπ′ )(U − L) ≥ I

|A|
min(1 − Imax)β(U − L)

From Corollary 26 and ∆w′
π
(mπ′) ≤ β, max(B∆w′

π
(mπ′ )) ≥ max(Bβ), consequently:1077

max(B0) − max(Bβ) ≥ max(B0) − max(B∆w′
π

(mπ′ )) ≥ ϵ

with ϵ = I
|A|
min(1 − Imax)β(U − L), as expected.1078

◀1079

▶ Lemma 42 (epsilon decrement ∆-bound run). Let π = Binit
e0−→ B1

e1−→ . . . be a run with1080

strongly-connected G, and an e-suffix π′ = Bt
et−→ Bt+1

et+1−−−→ . . . of π with a ∆ bound β ∈ N,1081

then:1082

max(Binit) − max(Bt+β) ≥ ϵ

with ϵ = I
|A|
min(1 − Imax)β(U − L).1083

Proof. Applying Lemma 41 on π′, we obtain:

max(Bt) − max(Bt+β) ≥ ϵ

with ϵ = I
|A|
min(1 − Imax)β(U − L)1084

From Corollary 26, we know max(Binit) ≥ max(Bt), therefore:1085

max(Binit) − max(Bt+β) ≥ max(Bt) − max(Bt+β) ≥ I
|A|
min(1 − Imax)β(U − L)

Then:1086

max(Binit) − max(Bt+β) ≥ ϵ

with ϵ = I
|A|
min(1 − Imax)β(U − L), as expected.1087

◀1088
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