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Abstract. Social media platforms have played a key role in weaponiz-
ing the polarization of social, political, and democratic processes. This
is, mainly, because they are a medium for opinion formation. Opinion
dynamic models are a tool for understanding the role of specific social
factors on the acceptance/rejection of opinions and they can be used
to analyze certain assumptions on human behaviors. This work presents
a framework that uses concurrent set relations as the formal basis to
specify, simulate, and analyze social interaction systems with dynamic
opinion models. Standard models for social learning are obtained as par-
ticular instances of the proposed framework. It has been implemented in
the Maude system as a fully executable rewrite theory that can be used to
better understand how opinions of a system of agents can be shaped. This
paper also reports an initial exploration in Maude on the use of reach-
ability analysis, probabilistic simulation, and statistical model checking
of important properties related to opinion dynamic models.

Keywords: Concurrent set relations · opinion dynamic models · social
interaction systems · belief revision · rewriting logic · formal verification

1 Introduction

Social media platforms have played a key role in the polarization of social, po-
litical, and democratic processes. Social uprisings in the Middle East, Asia, and
Central and South America have led to sudden changes in the structure and
nature of society during this past decade [20,12,6,15,30,19]. Polarization across
the globe has paved the way to the divergence of political attitudes away from
the center, towards ideological extremes, sometimes resulting in fractured insti-
tutions, erratic policy making, incipient political dialog, and the resurgence of
old discredited regimes [13,18,22,20,11,16]. Democracy, viewed as a system of
power controlled by the people, has been made vulnerable by severe polariza-
tion as opposing sides are seen as adversaries that compete against an enemy
⋆ This work has been partially supported by the SGR project PROMUEVA (BPIN

2021000100160) under the supervision of Minciencias (Ministerio de Ciencia Tec-
nología e Innovación, Colombia).
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needing to be vanquished. As a result, popular election campaigns –including
presidential ones– have compromised the basic principles of democratic election
in some countries [4,29,28,3]. All these scenarios have a common factor: social
media interaction as a medium for opinion formation fueling polarization.

Social learning and opinion dynamic models have been developed to under-
stand the role of specific social factors on the acceptance/rejection of opinions,
such as the ones communicated via social media (see, e.g., [14,2,17,8]). They are
often used to validate how certain assumptions on human behaviors can explain
alternative scenarios, such as opinion consensus, polarization, and fragmenta-
tion. In their micro-level approach, the one followed in the present work, users
are considered as agents that can share opinions on a given topic. They up-
date their opinion by interacting with a selected group of users that have some
influence on them (e.g., influencers, their family and friends). These dynamics
take place at discrete time steps at which (some) agents update their opinion.
For instance, an opinion model can deterministically update the opinion of all
agents in such a time-step, while another one can non-deterministically update
the opinion of a single agent. Depending on the model of choice, which usually
defines its own update function for the individual agents, phenomena under dif-
ferent assumptions can be observed. The ultimate goal is to understand how the
opinions of the agents, as a social system, are shaped after a certain number of
steps.

This work proposes a framework that uses concurrent set relations as the
formal basis to specify, simulate, and analyze social interaction systems with
dynamic opinion models. The framework uses influence graphs to specify the
structure of agent interactions in the social system under study: vertices repre-
sent agents and a directed weighted edge from a to b represents the weighted
influence of agent’s a opinion over the opinion of agent b. In the sense of set
relations in [25], the framework comprises two main mechanisms that are com-
bined via closures for specifying opinion dynamics over the graphs: namely, an
atomic set relation and a strategy. The atomic set relation updates the opinion
of a single vertex with respect to a set of edges (and the corresponding ver-
tices) incident to it. The strategy selects the edges that will be used to update
in parallel (i.e., synchronously) the opinion associated to the vertices with edges
incident to it in the given set. As a consequence, dynamic opinion models can
be formalized as a concurrent set relation system, with parametric update func-
tion, using the composition of an atomic relation and a strategy via closures.
An important observation is that the determinism or non-determinism inherent
to a given opinion dynamic model is exactly captured by the deterministic or
non-deterministic nature of the corresponding concurrent set relation.

Standard models for social learning are obtained as particular instances of
the proposed framework. The classical DeGroot opinion model [9] is obtained as
the synchronous closure under the maximal redices strategy of a given atomic set
relation. In a similar fashion, gossip-based models that use pairwise interactions
to represent the opinion formation process (see, e.g., [10]) are obtained via the
asynchronous closure where the strategy selects single edges for the given atomic
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set relation. Other opinion models can be obtained via the synchronous closure of
an atomic set relation, as midpoints between De Groot and gossip-based models.

The proposed framework is implemented in the Maude system [7]. It is a
rewrite theory that exploits the reflective capabilities of rewriting logic and that
can be instantiated to the opinion model of interest. A state is an object-like
configuration representing the structure of the system and its opinion values.
An object is either an agent u with its opinion ou, specified as ⟨u : ou⟩, or the
influence of agent u over agent v with weight iuv, specified as ⟨(u, v) : iuv⟩. The
update function µ of each specific model is to be defined equationally. The im-
plementation of both the atomic set relation and the strategy is inspired by the
ideas in [24]. The atomic set relation is axiomatized as a (non-executable) rewrite
rule that takes as input an agent ⟨u : ou⟩ and a set of edges A ⊆ E in the current
state. For a given state, it updates the opinion ou to a new opinion o′u using µ,
and the opinion and influence of agents adjacent to it w.r.t. A. As a result, each
atomic step rewrites a single object ⟨u : ou⟩ to its updated version ⟨u : o′u⟩. The
metalevel is used to apply the atomic rewrite rule over the agents in a state
according to the edges selected by the given strategy: only agents appearing as
targets of the directed edges can have their opinion updated. This strategy is
defined equationally by the user and computes a collection of subsets of E: a
parallel rewrite step under the maximal redices strategy is performed for each
subset A of edges. Since the atomic rewrite relation is deterministic, the strat-
egy is the only source of non-determinism in the system and a concurrent step is
made for each identified subset A. The implementation of the proposed frame-
work results in a fully executable object-like rewrite theory in Maude. This tool
can be used to better understand how opinions of a system of agents are shaped
–and to ultimately understand polarization— using formal methods techniques,
such as reachability analysis and temporal model checking.

This work is part of a broader effort to make available computational ideas
and approaches for analyzing phenomena in social networks, such as polarization,
consensus, and fragmentation. They include concurrency models, modal and
probabilistic logics, and formal methods frameworks, techniques, and tools. In
this context, the work presented here is a first step towards the use of rewriting
logic for such purposes. As explained in the sections that follow, one major
problem a opinion dynamic model may face is that of state space explosion. An
initial exploration on the use of probabilistic simulation and statistical analysis
to deal with this problem is reported in this work. However, the extension of the
proposed framework to a fully probabilistic setting, in which –e.g.– the strategy
selects the set of edges according to a probability distribution function, falls
outside the scope of this paper. It needs to be further explored as future work as
it may open the door to statistical model checking of novel properties using a new
breed of measures, thus paving the way to the analysis of quantitative properties
beyond the reach of techniques currently available for opinion dynamic models.

Organization. After recalling the notion of set relations in Section 2, Section 3
shows how different models for social learning can be seen as particular instances
(atomic set relation and strategy) of this framework. The implementation in
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Maude is described in Section 4, while different analyses performed on the pro-
posed rewrite theory are introduced in Section 5. Section 6 concludes the paper.
The full Maude specification supporting the set relations framework is available
at [23], as companion tool to the paper.

2 Set Relations

This section introduces set relations and their notation, as used in this paper. It
defines the asynchronous, parallel, and synchronous set relations as closures of
an atomic set relation. This section is based mainly on [25].

Let U be a set whose elements are denoted A,B, . . . and let → be a binary
relation on U . An element A of U is called a →-redex iff there exists B ∈ U such
that the pair ⟨A;B⟩ ∈ →. The expressions A→B and A ̸→B denote ⟨A;B⟩ ∈ →
and ⟨A;B⟩ ̸∈ →, respectively. The identity and reflexive-transitive closures of →
are defined as usual and denoted 0→ and ∗→, respectively.

It is assumed that U is the family of all nonempty finite subsets of an abstract
and possibly infinite set T whose members are called elements (i.e., U ⊆ P (T ),
∅ ̸∈ U , and if A ∈ U , then card (A) ∈ N ). Therefore, → is a binary relation on
finite subsets of elements in T . When it is clear from the context, curly brackets
are omitted from set notation; e.g., a, b→ b denotes {a, b}→{b}. Because this
convention, the symbol ‘,’ is overloaded to denote set union. For example, if A
denotes the set {a, b}, B the set {c, d}, and D the set {d, e}, the expression
A,B→B,D denotes a, b, c, d→ c, d, e.

Given a set of elements, in the asynchronous set relation exactly one redex
is selected to be updated.

Definition 1 (Asynchronous Set Relation). The asynchronous relation □→
is defined as the asynchronous closure of →, i.e., the set of pairs ⟨A;B⟩ ∈ U ×U
such that A □→B iff there exists a →-redex A′ ⊆ A and an element B′ ∈ U such
that A′ →B′ and B = (A \A′) ∪B′.

In the parallel set relation, a nonempty collection of redices is identified to
be updated in parallel (i.e., without interleaving).

Definition 2 (Parallel Set Relation). The parallel relation
||→ is defined

as the parallel closure of →, i.e., the set of pairs ⟨A;B⟩ ∈ U × U such that

A
||→B iff there exist (nonempty) pairwise disjoint →-redices A1, . . . , An ⊆ A,

and elements B1, . . . , Bn in U such that Ai →Bi, for 1 ≤ i ≤ n, and B =(
A \

⋃
1≤i≤nAi

)
∪
(⋃

1≤i≤nBi

)
.

The synchronous set relation s→ applies as many atomic reductions as pos-
sible, in parallel. However, in contrast to the previous two closures, the redices
are selected with the help of a strategy s, namely, a function that identifies a
nonempty subset of redices. As a consequence, the synchronous set relation is
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a subset of the parallel set relation. It is important to note that the notion of
strategy used for defining the synchronous closure of the atomic set relation is
different to the one introduced in Section 1 for the framework; the name used in
this section is kept from [25].

Definition 3 (→-strategy). A →-strategy is a function s that maps any ele-
ment A ∈ U into a set s(A) ⊆ P (→) such that if s(A) = {⟨A1;B1⟩ , . . . ⟨An;Bn⟩},
then Ai ⊆ A and Ai →Bi, for 1 ≤ i ≤ n, and A1, . . . , An are pairwise disjoint.

Definition 4 (Synchronous Relation). Let s be a →-strategy. The syn-
chronous relation s→ is defined as the synchronous closure of → w.r.t. s, i.e.,
the set of pairs ⟨A;B⟩ ∈ U × U such that A s→B iff B =

(
A \

⋃
1≤i≤nAi

)
∪(⋃

1≤i≤nBi

)
where s(A) = {⟨A1;B1⟩ , . . . ⟨An;Bn⟩}.

This section is concluded with an example that illustrates the notions intro-
duced so far.

Vaccine Example. Consider the directed weighted graph G = (V,E, i) in
Figure 1. It represents a social system with six agents V = {a, b, c, d, e, f} and
twelve opinion influences. The label i(u, v) associated to each edge (u, v) from
agent u to agent v denotes the opinion influence iuv = i(u, v) of agent u over
the opinion of agent v (about a given topic): these values are in the real interval
[0, 1] (i.e., i : E → [0, 1]); the higher the value, the stronger the influence. In
this example, the influence of f over a is the strongest possible. Notice that
agents may also have self-influence, representing agents whose opinion need not
be completely influenced by the opinion of the others.

The initial opinions (or beliefs) of the agents are depicted within the box
below each node. They are specified by a function o : V → [0, 1], which is
assumed to represent the opinion value ou = o(u) of each agent u on the given
topic. The greater the value, the stronger (weaker) the agreement (disagreement)
with the proposition, and 0 represents total disagreement. In this example such
a proposition is vaccines are safe. Intuitively, the agents a, b, and c are in strong
disagreement with vaccines being safe (the anti-vaxxers) and the rest are in
strong agreement (the pro-vaxxers).

Notice that although a is the most extreme anti-vaxxer, the most extreme
pro-vaxxer f has a strong influence over a. Hence, it is expected that the evolu-
tion of a’s opinion will be highly influenced by the opinion of f . In general, an
agent’s opinion evolution takes into account a subset of its influences, as will be
explained shortly.

Recall the object-like notation in Section 1. The set of elements T is made of
pairs of the form ⟨u : r⟩ or ⟨(u, v) : r⟩, with u, v ∈ V , (u, v) ∈ E, and r ∈ [0, 1].
The graph in Figure 1 can be specified as the set of elements Γ :

Γ = { ⟨a : 0.0⟩ , ⟨b : 0.1⟩ , ⟨c : 0.15⟩ , ⟨d : 0.82⟩ , ⟨e : 0.89⟩ , ⟨f : 0.92⟩ ,
⟨(a, b) : 0.6⟩ , ⟨(a, c) : 0.4⟩ , ⟨(b, d) : 0.6⟩ , ⟨(c, e) : 0.6⟩ , ⟨(d, c) : 0.2⟩ , ⟨(d, f) : 0.4⟩ ,
⟨(e, f) : 0.6⟩ , ⟨(f, a) : 1.0⟩ , ⟨(b, b) : 0.4⟩ , ⟨(c, c) : 0.4⟩ , ⟨(d, d) : 0.4⟩ , ⟨(e, e) : 0.4⟩}.
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Fig. 1: Graph representing opinion and influence interaction in a social system.
Initial opinions are given within the box below each node. The labels on each
edge (u, v) represent the influence value of agent u over agent v.

The atomic relation →A is defined over elements representing agents and is
parametric on a set A of elements representing edges in Γ . In this example, it
follows the pattern

⟨u : ou⟩ →A

〈
u :

∑
⟨(x,u):ixu⟩∈A

ox · ixu∑
⟨(y,u):iyu⟩∈A iyu

〉
, (1)

where the summation in the denominator is assumed to be non-zero. The opinion
ou of an agent u w.r.t. to A is updated to be the weighted average of the opinion
values of those agents adjacent to u and whose influence is present in A. For
instance, let A = {⟨(a, b) : 0.6⟩ , ⟨(b, b) : 0.4⟩ , ⟨(c, e) : 0.6⟩}. Then, the atomic set
relation →A has the following two pairs:

⟨b : 0.1⟩ →A ⟨b : 0.04⟩ ⟨e : 0.89⟩ →A ⟨e : 0.15⟩ .

In the case of agent b, its opinion is updated to 0.04 = 0.0 · 0.61.0 +0.1 · 0.41.0 because,
w.r.t. A, it is influenced both by itself and by agent a, whose opinion value is
0.0 and influence over b is 0.6. In the case of agent e, its opinion is influenced
only by agent c. In this case, the value is updated to 0.15 = 0.15 · 0.6

0.6 . It can be
said that, w.r.t. A, agent e acts like a puppet whose own opinion is not taken
into account when it is updated.

The asynchronous closure of →A has exactly two pairs, one for each redex
determined by →A (i.e., one for agent b and another for agent e):

Γ
□→A (Γ \ {⟨b : 0.1⟩}) ∪ {⟨b : 0.04⟩} Γ

□→A (Γ \ {⟨e : 0.89⟩}) ∪ {⟨e : 0.15⟩}.

The parallel closure
||→ has three pairs: one in which the opinions of both b and

e are updated, in addition to the same two pairs present in the asynchronous
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closure:

Γ
||→A (Γ \ {⟨b : 0.1⟩}) ∪ {⟨b : 0.04⟩}

Γ
||→A (Γ \ {⟨e : 0.89⟩}) ∪ {⟨e : 0.15⟩}

Γ
||→A (Γ \ {⟨b : 0.1⟩ , ⟨e : 0.89⟩}) ∪ {⟨b : 0.04⟩ , ⟨e : 0.15⟩}.

Finally, to illustrate the synchronous closure of →, let s = A be the strategy.
That is, all redices in →A are identified to be reduced. Therefore, this relation
has the only pair in which the opinions of both b and e are updated in parallel:

Γ
s→A (Γ \ {⟨b : 0.1⟩ , ⟨e : 0.89⟩}) ∪ {⟨b : 0.04⟩ , ⟨e : 0.15⟩}.

3 Opinion Dynamic Models

This section shows how opinion dynamic models can be specified as set relations
(see Section 2). In particular, a gossip-based and the classical De Groot opinion
models are introduced, as well as a generalization of De Groot and gossip (under
some conditions), here called the hybrid opinion model.

The three above-mentioned models are defined, as stated in Section 2, over a
directed weighted graph G = (V,E, i) representing a social system, with agents
V , directed opinion influences E ⊆ V × V , and influence values i : E → [0, 1]. A
given topic (i.e., proposition) is fixed. The weight iuv = i(u, v) associated to each
edge (u, v) ∈ E from agent u to agent v denotes the opinion influence value of
agent u over the opinion value of agent v on the given topic. The opinion value
ou = o(u) ∈ [0, 1] associated to each agent u ∈ V in the given topic is assumed
to be known by all agents in the system. As in Section 2, the higher the value
of a opinion (resp., influence), the stronger the agreement (resp., influence).

The set of elements T in the set relations framework is made of pairs of
the form ⟨u : r⟩ or ⟨(u, v) : r⟩, with u, v ∈ V , (u, v) ∈ E, and r ∈ [0, 1]. A G-
configuration (or configuration) is the set of elements in T that exactly represent
the structure of G, and the values of opinions and influences. Therefore, in the
rest of this section, it is assumed that any configuration Γ can be partitioned
in two sets Γo and Γi, respectively containing elements of the form ⟨u : ou⟩
specifying opinions and ⟨(u, v) : iuv⟩ specifying influences.

A model specifies how opinions (associated to agents) can be updated. Each
model definition comprises three pieces; namely, an atomic relation, a strategy,
and an update function for opinions. Therefore, a model specifies how a G-
configuration Γ = Γo ∪ Γi can change to another G-configuration Γ ′ = Γo′ ∪ Γi,
where only opinions are updated. It is important to note that the notion of
strategy introduced in this section generalizes the notion of strategy introduced
in Section 2, as will be explained later.

The atomic relation is defined in Section 3.1 for the three models. Each model
is introduced by identifying a specific strategy and a specific update function in
subsequent sections.



8 Olarte, Ramírez, Rocha, and Valencia.

3.1 The Atomic Relation

The atomic relation →A is parametric on a subset A ⊆ Γi and defines how the
opinion of a single agent may evolve. The set of influences A directly identifies
the influences (and indirectly the opinions) to update the opinion of each agent
in the configuration Γ (i.e., in Γo). For each one of the three models, the atomic
relation →A follows the pattern:

⟨u : ou⟩ →A ⟨u : µ(Γ,A, u)⟩ , (A-Rel)

where µ is the update function specific to each model. This function takes as
input a G-configuration (e.g., Γ ), a subset of its influences (e.g., A), and the
agent whose opinion is to be updated (e.g., u), and outputs the new opinion for
agent u w.r.t. Γ and A in the corresponding model.

3.2 Gossip-based Models

In a gossip-based model, single peer-to-peer interactions are used to update the
opinion of a single user at each time-step. In general, a strategy in the proposed
framework identifies a collection of subsets of interactions in Γi. In particular,
the strategy ρgossip maps a G-configuration to the collection of singletons made
from the influences in Γi:

ρgossip(Γ ) = {{x} | x ∈ Γi}.

This means that, at each time-step, the opinion value of agent v can be updated
w.r.t. the opinion value of agent u for each singleton {⟨(u, v) : iuv⟩} computed
by the strategy ρgossip(Γ ).

The update function µgossip is defined for any u ∈ V andA = {⟨(v, u) : ivu⟩} ∈
ρgossip(Γ ) as:

µgossip(Γ,A, u) = ou + (ov − ou) · ivu.

Each singleton A ∈ ρgossip(Γ ) determines an atomic relation that updates
exactly one agent’s opinion in the given configuration. Recall, from Section 3.1,
that each pair in the atomic set relation →A has the form:

⟨u : ou⟩ →A ⟨u : µgossip(Γ,A, u)⟩ .

Hence, in this model, the opinion of an agent u is updated by identifying an
edge from an agent v (it may be u itself if it has a self-loop) with influence ivu
over u and by adding to its current opinion ou the weighted difference of opinion
(ov − ou) · ivu of v over u.

A gossip-based model is identified as a binary set relation on G-configurations
in terms of the asynchronous closure of →A, for each singleton A ∈ ρgossip(Γ ).

Definition 5. The →gossip set relation is defined as the set of pairs ⟨Γ ;Γ ′⟩ of
G-configurations such that:

Γ →gossip Γ
′ iff (∃A ∈ ρgossip(Γ )) Γ

□→A Γ ′.
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From the viewpoint of concurrency, the gossip-based opinion dynamic model
captured by →gossip is non-deterministic in the sense that at each state (i.e.,
G-configuration) exactly |Γi| transitions are possible, one per edge in E.

3.3 De Groot Model

In the De Groot model, the opinion value of every agent in the network is updated
at each time-step. All influences are considered at the same time.

The strategy for De Groot in the proposed framework identifies the whole
set of interactions in the network, i.e., Γi. In particular, the strategy ρDeGroot
maps a G-configuration to the singleton whose only element is Γi:

ρDeGroot(Γ ) = {Γi}.

The update function µDeGroot is defined for any u ∈ V and A ∈ ρDeGroot(Γ )
(i.e., A = Γi) as:

µDeGroot(Γ,A, u) = ou +
∑

⟨(v,u):ivu⟩∈A

(ov − ou) ·
ivu∑

⟨(x,u):ixu⟩∈A ixu
,

where the summation in the denominator is assumed to be non-zero. Otherwise,
the value of this function is assumed to be ou (i.e., the opinion of agent u does
not change).

The De Groot model is identified as a binary set relation on G-configurations
in terms of the synchronous closure of →Γi

under the maximal redices strategy
for s = Γi.

Definition 6. The →DeGroot set relation is defined as the set of pairs ⟨Γ ;Γ ′⟩
of G-configurations such that:

Γ →DeGroot Γ
′ iff Γ

Γi→Γi
Γ ′.

From the viewpoint of concurrency, the De Groot opinion dynamic model
captured by →DeGroot is deterministic in the sense that, at each state, there is
exactly only one possible transition where all influences are taken into account
to update each agent’s opinion without interleaving.

3.4 The Hybrid Model

The hybrid model considers every possible influence scenario in the network,
i.e., any possible combination of influences are used to update the opinion of
agents that may be affected by them at each time-step. Therefore, the strategy
in the proposed framework identifies all nonempty subsets of interactions in Γi.
In particular, the strategy ρhybrid maps a G-configuration to the collection of
nonempty subsets made from the influences in Γi:

ρhybrid(Γ ) = {A | A ⊆ Γi and A ̸= ∅}.
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This means that, at each time-step, the opinion value of an agent v can be
updated with a subset of its influencers.

The update function µhybrid is the same as function ρDeGroot. That is, it is
defined for any u ∈ V and A ∈ ρhybrid(Γ ) as:

µhybrid(Γ,A, u) = ou +
∑

⟨(v,u):ivu⟩∈A

(ov − ou) ·
ivu∑

⟨(x,u):ixu⟩∈A ixu
,

where the summation in the denominator is assumed to be non-zero. Otherwise,
the value of this function is assumed to be ou (i.e., the opinion of agent u does
not change). Each subset A ∈ ρhybrid(Γ ) determines an atomic relation that may
update more that one agent’s opinion. Hence, in this model, the opinion of an
agent is updated by identifying some edges that may have influence over it.

The hybrid model is identified as a binary set relation on G-configurations
in terms of the synchronous closure of →A, for each subset A ∈ ρhybrid(Γ ).

Definition 7. The →hybrid set relation is defined as the set of pairs ⟨Γ ;Γ ′⟩ of
G-configurations such that:

Γ →hybrid Γ
′ iff (∃A ∈ ρhybrid(Γ )) Γ

A→A Γ ′.

From the viewpoint of concurrency, the hybrid opinion dynamic model has
the maximum degree of non-determinism possible. Moreover, this model is more
general than the De Groot model.

Theorem 1. →DeGroot ⊆ →hybrid.

Proof. It follows by noting that Γi ∈ ρhybrid(Γ ) and, for each vertex u ∈ V , the
equality µDeGroot(Γ, Γi, u) = µhybrid(Γ, Γi, u) holds.

It is not necessarily the case that →gossip ⊆ →hybrid. This is because the
update functions do not always agree when the collection of selected influ-
ences A is a singleton. In particular, for each singleton A = {⟨(v, u) : ivu⟩},
µhybrid(Γ,A, u) = ov, meaning that agent u in the hybrid model behaves always
like a puppet when u ̸= v. Note that this is not (necessarily) the case in →gossip.
Nevertheless, there is a class of graphs for which this inclusion holds.

Theorem 2. If G is such that each vertex has a self-loop and is influenced at
most by another vertex, and the summation of its incoming influences is 1, then
→gossip ⊆ →hybrid.

Proof. If Γ →gossip Γ
′, there is a singleton A ∈ ρgossip(Γ ) such that Γ □→A Γ ′.

Let A = {⟨(v, u) : ivu⟩}. If u has exactly one incoming edge, then v = u (by
the initial assumption) and ρgossip(Γ,A, u) = ou = ρhybrid(Γ,A, u). Since A ∈
ρhybrid(Γ ), it follows that Γ →hybrid Γ ′. If u has two edges, and the self-loop
is taken, the case v = u is as above. Otherwise, if u ̸= v, the same transition
is obtained in the hybrid model by taking A′ ∈ ρhybrid(Γ ) where A′ = A ∪
{⟨(u, u) : 1− ivu⟩} (an noticing that the denominator in µhybrid becomes 1).
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4 The Framework in Rewriting Logic

This section presents a rewrite theory that implements the set relations frame-
work in Section 2. Off-the-shelf definitions are provided to instantiate the frame-
work with opinion dynamic models, such as the ones introduced in Section 3. This
section assumes familiarity with rewriting logic [21] and Maude [7]; Section 4.1
presents some preliminaries on these two subjects. The full Maude specification
supporting the set relations framework is available at [23].

4.1 Overview of Rewriting Logic and Maude

A rewrite theory [21] is a tuple R = (Σ,E,L,R) such that: (Σ,E) is an equa-
tional theory where Σ is a signature that declares sorts, subsorts, and function
symbols; E is a set of (conditional) equations of the form t = t′ if ψ, where t
and t′ are terms of the same sort, and ψ is a conjunction of equations; L is a
set of labels; and R is a set of labeled (conditional) rewrite rules of the form
l : q −→ r if ψ, where l ∈ L is a label, q and r are terms of the same sort, and
ψ is a conjunction of equations. Condition ψ in equations and rewrite rules can
be more general than conjunction of equations, but this extra expressiveness is
not needed in this paper.

The expression TΣ,s denotes the set of ground terms of sort s and TΣ(X)s
denotes the set of terms of sort s over a set of sorted variables X. The expressions
TΣ(X) and TΣ denote all terms and ground terms, respectively. A substitution
σ : X → TΣ(X) maps each variable to a term of the same sort and tσ denotes
the term obtained by simultaneously replacing each variable x in a term t with
σ(x).

A one-step rewrite t −→R t′ holds if there is a rule l : q −→ r if ψ, a subterm
u of t, and a substitution σ such that u = qσ (modulo equations), t′ is the term
obtained from t by replacing u with rσ, and vσ = v′σ holds in (Σ,E) for each
v = v′ in ψ. The reflexive-transitive closure of −→R is denoted as −→∗

R.
Maude [7] is a language and tool supporting the specification and analysis

of rewrite theories. A Maude module (mod M is ... endm) specifies a rewrite
theory R. Sorts and subsort relations are declared by the keywords sort and
subsort; function symbols, or operators, are introduced with the op keyword:
op f : s1 ... sn -> s, where s1, . . . , sn are the sorts of its arguments, and s
is its (value) sort. Operators can have user-definable syntax, with underbars ‘_’
marking each of the argument positions (e.g., _+_). Some operators can have
equational attributes, such as assoc, comm, and id: t, stating that the operator
is, respectively, associative, commutative, and/or has identity element t. Equa-
tions are specified with the syntax eq t = t′ or ceq t = t′ if ψ; and rewrite rules
as rl [l] : u => v or crl [l] : u => t′ if ψ. The mathematical variables in
such statements are declared with the keywords var and vars.

Maude provides a large set of analysis methods, including computing the
canonical form of a term t (command red t), simulation by rewriting (rew t),
reachability analysis (search t =>* t′ such that ψ), and rewriting according to
a given rewrite strategy (srew t using str). Basic rewrite strategies include r[σ]
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(apply rule with label r once with the optional ground substitution σ), idle
(identity), fail (empty set), and match P s.t. C, which checks whether the
current term matches the pattern P subject to the constraint C. Compound
strategies can be defined using concatenation (α ; β), disjunction (α |β), iteration
(α ∗), α or-else β (execute β if α fails), among other options.

The Unified Maude model-checking tool [26] (umaudemc) enables the use of
different model checkers to analyze Maude specifications. Besides being an inter-
face for the standard LTL model checker of Maude, it also offers the possibility
of interfacing external CTL and probabilistic model checkers. For the purpose
of this paper, the command scheck [27] is used to assign probabilities to the
transition system generated by an initial term t and to perform statistical model
checking to estimate quantitive expressions written in the Quantitative Temporal
Expressions (QuaTEx) language [1]. QuaTEx supports parameterized recursive
temporal operator definitions using primitive non-temporal operators (e.g., con-
ditional statements, values from the current state of the system, etc) and the
next temporal operator (notation #). The QuaTEx query eval E[expr] returns
the expected value of the expression expr using the Monte Carlo method.

Meta-programming. Maude supports meta-programming, where a Maude module
M (resp., a term t) can be (meta-)represented as a Maude term M of sort Module
(resp., as a Maude term t of sort Term) in Maude’s META-LEVEL module. Maude
provides built-in functions such as metaRewrite and metaSearch, which are
the “meta-level” functions corresponding to “user-level” commands to perform
rewriting and search, respectively.

4.2 Influences, Opinions, and States

An agent a and its opinion oa, and the influence of agent a over agent b with
weight iab, are specified in R with the help of the following sorts and function
symbols:

sorts Agent Opinion Edge .
op <_:_> : Agent Float -> Opinion [ctor] .
op <‘(_,_‘):_> : Agent Agent Float -> Edge [ctor] .

The user is expected to provide appropriate constructors for the sort Agent, e.g.,
by extending R with the subsort relation subsort Nat < Agent to use natural
numbers as identifiers for agents.

Sets of agents, opinions, and edges (sorts SetAgent, SetOpinion, and SetEdge
respectively) are defined as “,”-separated sets of elements in the usual way. A
G-configuration Γ = Γo ∪ Γi is represented by a term of sort Network, defining
the set of agents’ opinions (Γo) and influences (Γi) with the following sort and
function symbol:

sort Network .
op < nodes:_ ; edges:_ > : SetOpinion SetEdge -> Network [ctor] .

Analyzing opinion dynamics usually requires determining the number of in-
teractions between agents and the time needed to reach a given state. A term
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of the form “N in step: t comm: nc” of sort State represents the state of a
network N at time instant t, where a number of interactions/communications
nc have taken place:

sort State .
op _in step:_ comm:_ : Network Nat Nat -> State [ctor] .

4.3 Strategies and the Atomic Relation

The framework is parametric on a strategy ρ and an update function µ, as
explained in Section 3. The atomic relation →A is parametric on a nonempty
subset A ⊆ Γi. A strategy identifies each one of such subsets at each time-step.
A SetSetEdge is a “;”-separated set of sets of edges.

sort SetSetEdge . subsort NeSetEdge < SetSetEdge .
op mt : -> SetSetEdge [ctor] .
op _;_ : SetSetEdge SetSetEdge -> SetSetEdge [ctor assoc comm id: mt] .

Some distinguished SetSetEdges include the singleton with all the edges in
the network (De Groot model), the set containing only singletons (Gossip model)
and the set of nonempty subsets of edges (Hybrid model).

var SE : SetEdge . var E : Edge .
op deGroot : SetEdge -> SetSetEdge .
eq deGroot(SE) = SE .

op gossip : SetEdge -> SetSetEdge .
eq gossip(empty) = mt .
eq gossip((E, SE)) = E ; gossip(SE) .

op hybrid : SetEdge -> SetSetEdge .
eq hybrid(SE) = power-set(SE) \ empty .

op strategy : -> SetSetEdge . --- user defined strategy

The operator strategy must be defined by the user to identify the subsets
A ⊆ Γi available in each transition. This can be done, e.g., by adding the equation

eq strategy = gossip(edges) .

where edges is the set of edges in the network currently being modeled.
The atomic relation (pattern (A-Rel)) is defined as a non-executable rewrite

rule and the set relation framework is implemented using the meta-programming
facilities in Maude. In particular, the atomic rewrite relation updates the BELIEF
of a given AGENT (u in pattern (A-Rel)) to a new BELIEF’ when a set of EDGES
(A) is selected and the current state of the system is STATE (Γ ):

var AGENT : Agent . vars BELIEF BELIEF’ : Float . var STATE : State .
vars SETEDGE EDGES : SetEdge .

op update : State SetEdge Agent -> Float . --- user defined µ

crl [atomic] : < AGENT : BELIEF > => < AGENT : BELIEF’ >
if BELIEF’ := update(STATE, SETEDGE, AGENT) [nonexec] .



14 Olarte, Ramírez, Rocha, and Valencia.

The function update (µ in pattern (A-Rel)) must be specified by the user.
The framework provides instances of this function for the models presented in
Section 3.

An asynchronous, parallel, or synchronous rewrite step, depending on the
underlying strategy, is captured by the rewrite rule step below:

var SETNODE : SetNode . vars STEPS COMM : Nat .
op moduleName : -> Qid . --- Name of the module with the user’s network

crl [step] : STATE => STATE’
if EDGES ; SSE := strategy /\

STATE’ := step([moduleName], STATE, EDGES) .

In this rule, the current STATE is updated to STATE’ by non-deterministically
selecting a set of EDGES from the set of set of edges available according to the
strategy. The function step below takes as parameters the meta-representation
of the user’s module defining the network ([moduleName]), the current state, and
the selected set of edges.

var SETAG : SetAgent . var SETOP : SetOpinion . var OP : Opinion .

op step : Module State SetAgent SetOpinion SetEdge -> State .
op step : Module State SetEdge -> State .

eq step(M, STATE, EDGES) =
step(M, STATE, incidents(EDGES), empty, EDGES) .

eq step(M, STATE, empty, SETOP, EDGES) =
< nodes: (nodes(STATE) / SETOP) ; edges: edges(STATE) >
in step: (steps(STATE) + 1) comm: (comm(STATE) + | non-self(EDGES) |) .

eq step(M, STATE, (AGENT, SETAG), SETOP, EDGES) =
step(M, STATE, SETAG, (SETOP, next(M, AGENT, EDGES, STATE)), EDGES) .

The function step recursively computes the beliefs of the agents incident to
EDGES. The updated beliefs are accumulated in the set of opinions SETOP. The
opinions of the other agents remain as in STATE (operator /), and the number of
steps and the number of communications are updated accordingly. The expres-
sion | non-self(.) | returns the number of edges that are not self-loops and
nodes(.) returns the opinions (Γo) in a state.

The function next computes the outcome of the transition ⟨u : ou⟩ →A

⟨u : o′u⟩ by applying (metaApply) the rule atomic with the needed substitutions
to make this rule executable (and deterministic). Namely, it fixes the opinion to
be updated (AGENT and BELIEF), the current STATE, and the set of EDGES to be
considered during the update.

op next : Module Agent SetEdge State -> Opinion .
ceq next(M, AGENT, EDGES, STATE) = OP
if SUBS := ’AGENT:Agent <- upTerm(AGENT) ;

’BELIEF:Float <- upTerm(opinion(AGENT, STATE)) ;
’STATE:State <- upTerm(STATE) ;
’EDGES:SetEdge <- upTerm(EDGES) /\

RES? := metaApply(M, upTerm(< AGENT : opinion(AGENT, STATE) >),
’atomic, SUBS, 0) /\

OP := if RES? == failure then error
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else downTerm(getTerm(RES?), error) fi .

The opinion function returns the opinion of an agent in a given state.

5 Experimentation

This section shows how Maude and some of its tools can be used to analyze
instantiated versions of the rewrite theory R (see Section 4) to better understand
the evolution of opinions in networks of agents. Of special interest is checking
the (im)possibility of reaching a consensus (i.e., agent’s opinions converge to a
given value) or stability of the systems, computing the number of steps to reach
consensus, computing an optimal strategy to reach consensus, measuring the
polarization of the system at each time-step, among others. It is noticed that
for De Groot and gossip-like models, there are theoretical results identifying
topological conditions that guarantee consensus. In particular, in these models,
the agents reach consensus if the graph is strongly connected and aperiodic (i.e.,
the greatest common divisor of the lengths of its cycles is one) [14].

5.1 Finding Consensus

Let Example-DG be the module/theory extending R with the following operators
and equations:

op init : -> Network . --- Initial state (as in Fig 1)
eq init = < nodes: ... ; edges: ... > in step: 0 comm: 0 .
eq moduleName = ’Example-DG . --- Name of the theory

--- Predefined µ for De Groot
eq update(STATE, SETEDGE, AGENT) = deGrootUpdate(STATE, SETEDGE, AGENT) .
eq strategy = deGroot(edges(init)) . --- De Groot strategy

The following command answers the question of whether it is possible to
reach a consensus from the initial state. Function consensus(.) checks if all
opinions oi and oj in a given state satisfy |oi−oj | < ϵ, where ϵ is an error bound.

Maude> search [1] init =>* STATE such that consensus(STATE) .

Solution 1 (state 34)
STATE --> < nodes: < 0 : 4.80e-1 >, < 1 : 4.79e-1 >, < 2 : 4.79e-1 >, ...

edges: <(0,1): 5.99e-1 >, <(0,2): 4.00e-1 >, ... >
in step: 34 comm: 272

The consensus about the given proposition is approximately 0.48 and it is
reached in 34 steps. Since in the De Groot model all the 12 edges are considered in
each interaction, there is a total of 272 = 34×8 communications (the interactions
on the self-loops are not considered in that counting). Note that an application
of rule step in this case is completely deterministic (the strategy considers only
one possible outcome, including all the edges of the network).

Let Example-H be as Example-DG, but considering the strategy and update
functions for the hybrid model. As explained in Section 3.4, the hybrid model
exhibits the maximum degree of non-determinism. Using search to check the
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existence of a reachable state satisfying consensus for the system in Figure 1 (12
edges) becomes unfeasible: a state may have up to 4095 (nonempty subsets of
Γi) successor states. Certainly, for this network, a solution must exist due to the
above output of the search command and the fact that →DeGroot ⊆ →hybrid.

Consider the following rewrite rule and expression in the Maude’s strategy
language:

crl [step’] : STATE => STATE’
if STATE’ := step([moduleName], STATE, EDGES) [nonexec] .

var STR : SetSetEdge .
strat round : SetSetEdge @ State .
sd round(EDGES ; STR) := (match STATE s.t. consensus(STATE))

or-else step’[EDGES <- EDGES] ; round(STR) .

Unlike step, rule step’ does not use the model strategy to select the set of EDGES
that will be used to compute the next state (and hence, it is non-executable).
The Maude’s strategy round checks whether the current state satisfies consen-
sus and stops. Otherwise, it non-deterministically chooses a set EDGES, applies
the rule step’ instantiating the set of edges with that particular set, and it is
recursively called without EDGES. In other words, round starts with a set of pos-
sible interactions and it allows for these interactions to happen only once. This
is certainly one of the possible behaviors that can be observed with the hybrid
model. Using this strategy, the solutions found by the commands below posi-
tively answer the following question for the model in Figure 1: Can consensus
be reached by making some groups of agents (non necessarily disjoint) interact
only once? The expression filter>=(n,STR) below returns the sets in STR with
cardinality at least n.

Maude> dsrew [1] init using round(hybrid(edges)) .
Solution 1
result State: < nodes: < 0 : 0.0 >, ... edges: ... > in step: 8 comm: 13 .

Maude> dsrew [1] init using round(filter>=(6, hybrid(edges))) .
Solution 1
result State: < nodes: < 0 : 1.50e-1 >, ... > in step: 21 comm: 88 .

As expected, because of the non-deterministic nature of the hybrid model,
the value of consensus (and the number of steps to reach such a state) can heavily
depend on the choice of edges at each step. In the first output returned by dsrew
in the first command, all the sets considered by round included edges where a
acts as an influencer and the edge f −→ a is never selected. This explains the
value of the consensus, where the opinion of a was propagated to her neighbors.
In the send command, larger groups are chosen to interact, and the edge f −→ a is
selected in 4 out of the 21 interactions. Hence, a eventually changes her opinion.

5.2 Statistical Analysis

An alternative approach to deal with the inherent state space explosion problem
when analyzing R is to perform statistical model checking. In the following, the
tool umaudemc [26] is used for such a purpose. The umaudemc command scheck
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enables Monte-Carlo simulations of a rewrite theory extended with probabilities;
it estimates the value of a quantitative temporal expression written in the query
language QuaTEx [1].

Consider the following QuaTEx expression that computes the probability of
reaching a consensus before N communications:

Prob(N) = if (s.rval("consensus(S)")) then 1.0 else
if (s.rval("comm(S)") <= N) then # Prob(N) else 0.0 fi fi;

The two commands below estimate the probability (output of the tool µ =
val) of reaching consensus before 30 (expression E[Prob(30)]) and 20 commu-
nications, respectively, in the running example when the gossip-based model is
considered. The confidence level of these analyses is 95% and the same proba-
bility is assigned to every successor state (–assign uniform).

umaudemc scheck ex-gossip init formula -a 0.05 -d 0.01 --assign uniform
(µ = 0.587)

umaudemc scheck ex-gossip init formula -a 0.05 -d 0.01 --assign uniform
(µ = 0.348)

As expected, reducing the maximum number of communications decreases the
changes of reaching a consensus state.

The authors in [5] hypothesize that the less dispersed opinion becomes, the
easier it will be to reach consensus. In fact, the variance (a standard measure
of dispersion) is used as a measure of opinion polarization in social networks
[5]. The following commands aim at testing such a hypothesis in the running
example when considering the hybrid model:

umaudemc scheck example-H init ... --assign uniform
(µ = 0.901)

umaudemc scheck example-H init ... --assign "term(variance(L,R))"
(µ = 1.0)

umaudemc scheck example-H init ... --assign "term(distance(L,R))"
(µ = 0.987)

These commands estimate the probability of reaching consensus before 300
communications (E[Prob(300)]). In the first case, all the successor states are
assigned the same probability. In the second, successor states whose set of cho-
sen agents has higher variance are assigned higher probabilities. In the third
command, successor states whose set of chosen agents are more polarized, in the
sense that the distance between the maximal and the minimal opinions is big-
ger, are assigned higher probabilities. These results confirm the hypothesis that
it is more likely (1.0 vs 0.9) to reach consensus sooner when communications of
agents with more distant opinions is encouraged to reduce dispersion of opinions.
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6 Concluding Remarks

This paper presented a unified framework for dynamic opinion models. Such
models are tools to analyze the evolution of opinion values, about a given topic,
in a network of agents whose opinion may be influenced by other agents. Set
relations, which are used for specifying and analyzing concurrent behavior in
collections of agents, are the formalism used to unify the modeling of these
systems. This framework relies on two mechanisms, namely, an atomic relation
that updates the opinion of single agents based on a collection of interactions
and a strategy defining the collections of interactions to be considered. The
framework is formally specified as a rewrite theory, which is expected to be
instantiated for the opinion dynamic model of interest. Three different dynamic
opinion models (De Groot, goossip-like, and hybrid) are shown to be instances
of this framework. Experiments on these models show that statistical model
checking is a promising alternative to tackle the state space explosion problem
when analyzing models with a high degree of non-determinism, such is the case
of the hybrid model. To the best of the authors’ knowledge, this is the first
documented effort to make available concurrency theory, techniques, and tools
for the specification and analysis of opinion dynamics models and properties
such as polarization and consensus.

The ultimate goal of making available computational ideas and approaches
for analyzing phenomena in social networks requires (significant) additional
work. First, a more in-depth exploration of properties related to these phenom-
ena in social networks is required. This may lead to the proposal of new temporal
and probabilistic properties that cannot be handled with current techniques and
approaches supporting the opinion dynamic modeling community, but that may
be highly supported by the developments in concurrency and computational
logics. Second, extensions to the current framework in terms of more general
dynamic networks (i.e., the value of influences can change), temporal networks
(i.e., nodes and edges can appear and disappear), and the inclusion of several
topics/propositions that may share causal relations are in order. Third, more
experimental validation is required, ideally with data gathered from real social
networks. Fourth, building on the abstract relations proposed here, techniques
from concurrency theory become available for the analysis of social systems. It is
worth exploring standard concurrency techniques such as bisimulation and test-
ing equivalences to answer questions such as whether two social systems ought
to be equivalent and whether there is a social context, represented as a social
system, that can tell the difference between two other social systems.
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