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Savings refers to faster relearning upon re-
exposure to a previously experienced movement
perturbation. One theory suggests that the brain
recognizes past errors and is therefore more able
to learn from them. If true, there should be a mod-
ification of the neural response to errors during re-
exposure to a perturbation. To test this idea, we
imaged the brains of participants who underwent
two sessions (1 day apart) of adaptation to a vi-
suomotor perturbation and investigated brain re-
sponses to movement errors. The magnitude of
movement error was entered into different types
of GLMs to study error-related activation and co-
activation (or functional connectivity). We identi-
fied a cerebello-thalamo-cortical network involved
in the processing of movement errors during adap-
tation. We found that connectivity between regions
of this network (i.e., between the cerebellum and
the thalamus, and between the primary somatosen-
sory cortex and the anterior cingulate cortex) be-
came stronger during re-adaptation. Importantly,
participants with the largest increases in connec-
tivity strength were those who demonstrated the
largest amounts of savings. These results estab-
lish a relationship between the ability of the brain to
represent errors and the phenomenon of savings.
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Introduction
The formation of motor memory has typically been stud-
ied in the context of adaptation paradigms in which sub-
jects learn to compensate for a systematic perturbation,
mostly involving a manipulation of the visual feedback
(Krakauer, 2009; Krakauer et al., 2005) or a change
in the dynamics of the motor apparatus (Shadmehr
and Brashers-Krug, 1997; Shadmehr and Mussa-Ivaldi,
1994). In these paradigms, one important observation
is that subjects learn to compensate for the perturbation
in fewer trials when they have previously experienced

that perturbation, a phenomenon referred to as sav-
ings (Zarahn et al., 2008; Smith et al., 2006; Krakauer
et al., 2005; Kojima et al., 2004). Savings during re-
peated perturbation exposures has been commonly as-
sumed to result from the reemergence of a latent motor
memory (Huang et al., 2011; Krakauer and Shadmehr,
2006). In particular, several studies have reported that
when subjects first encounter a perturbation, they learn
to adjust their behavior to compensate for the pertur-
bation, such as aiming in the opposite direction of the
rotation of the visual feedback during visuomotor adap-
tation (Taylor et al., 2014; Taylor and Ivry, 2011). Later,
upon re-exposure to the same perturbation, individuals
recall this action, resulting in faster relearning (Avraham
et al., 2021; Morehead et al., 2015). Alternatively, con-
verging lines of evidence have established that savings
does not necessarily result from the recall of a previous
action but occurs through an increase in the sensitivity
to movement errors during relearning (Coltman et al.,
2019; Leow et al., 2016; Herzfeld et al., 2014b). Experi-
encing a particular error at one time leads to a durable
change in response to the same error in the future, the
brain becoming more able to learn from that error. This
view is reinforced by studies having shown that the brain
can tune its rate of learning based on previous error his-
tory (Coltman et al., 2021; Gonzalez Castro et al., 2014;
Tan et al., 2014; Braun et al., 2009; Burge et al., 2008).
Thus, savings appears to depend not only on a memory
of actions but also on a memory of errors.
At the brain level, there is evidence that memories
formed during motor adaptation are stored in cortical
motor and somatosensory regions (Ebrahimi and Ostry,
2024; Galea et al., 2011; Landi et al., 2011; Hadipour-
Niktarash et al., 2007). However, it remains unclear
whether these regions genuinely support faster relearn-
ing. Modulation of the excitability of these regions using
transcranial magnetic stimulation has sometimes been
reported to affect savings (Kumar et al., 2019; Villalta
et al., 2015), but sometimes not (Darainy et al., 2023).
Similarly, there is no general consensus among func-
tional neuroimaging studies regarding which brain re-
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gions and mechanisms participate in savings. Some
studies failed to find any relationship between brain ac-
tivity and savings (Della-Maggiore et al., 2017; Bédard
and Sanes, 2014), whereas others reported associa-
tions, but mainly with non-sensorimotor regions such
as the hippocampus and default-mode areas (Standage
et al., 2023; Gale et al., 2022; Cassady et al., 2018).
However, changes in the neuronal population activity
dynamics of the monkey primary motor cortex has been
found to correlate with faster relearning (Sun et al.,
2022). Furthermore, there is some evidence that the
cerebellum may also play a role in the retention of motor
memory (Herzfeld et al., 2014a), including savings seen
during relearning (Medina et al., 2001). In particular, an
fMRI study demonstrated increased activity in the cere-
bellum (lobule VI) when repeating a motor adaptation
task, which correlated with the amount of savings (De-
bas et al., 2010). Finally, in locomotor adaptation, a rela-
tionship was found between cerebellar-thalamic intrinsic
functional connectivity and faster relearning (Mawase
et al., 2017). Therefore, savings might be supported
by neural changes that take place in a large scale
cerebello-thalamo-cortical network.
Here, we assessed the neural basis of savings by
asking whether this phenomenon builds specifically on
brain areas coding for errors. It has long been estab-
lished that the brain is tuned to errors, including the sen-
sorimotor cortical and cerebellar regions as well as the
parietal association areas during motor performance
(Luauté et al., 2009; Grafton et al., 2008; Diedrich-
sen et al., 2005). Importantly, these regions not only
serve as a passive observer that encodes the errors,
but they also play an active role in correcting these
errors. Electrical stimulation delivered to these areas
evokes movements that compensate for the errors (In-
oue and Kitazawa, 2018; Inoue et al., 2016). Further-
more, changes in intrinsic functional connectivity follow-
ing learning are predominantly found in error-related re-
gions (Bernardi et al., 2018), suggesting that they are
key regions for motor memory formation. These prop-
erties suggest that when we become better at learning,
manifesting savings, it is because error-related brain re-
gions have undergone changes. Specifically, we hy-
pothesized that these changes may apply to activation
and coactivation (i.e., functional connectivity) properties
of the error-related brain areas. To test this assumption,
we conducted an fMRI visuomotor learning/relearning
(24h later) experiment and assessed what changes in
activation and functional connectivity of brain regions
that processed errors (as identified using a parametric
modulation approach) accompanied savings. We also
looked for changes in intrinsic functional connectivity fol-
lowing learning and relearning sessions to get insights
into brain changes that may have survived beyond the
task.

Methods
Population
Twenty-four healthy right-handed young adults (age:
29.4 ± 3.6 years old; 11 women) participated in this
study. They were free of any neurological or muscu-
loskeletal injuries, and presented normal or corrected-
to-normal vision. The study was conducted with the
approval of the ethics committee “Comité de Protec-
tion des Personnes Nord Ouest IV” under the approval
ID-RCB n° 2020-A00268-31. Written informed consent
was obtained from all participants.
An a priori power analysis was conducted using
G*Power 3.1.9.7 for sample size estimation (Faul et al.,
2007), based on data from (Standage et al., 2020). This
study investigated visuomotor adaptation on two test-
ing days in a sample of 32 subjects, assessing whether
the rate of learning increased over the two days (sav-
ings). The effect size was d=1.08 - obtained from t-value
using the formula d = t/

√
n (Rosenthal, 1991) - which

can be interpreted as a large effect size (Cohen, 1988).
With a significance criterion of α = .05 and power = .80,
the minimum sample size needed with this effect size
was n = 7 for a paired t-test. Furthermore, Standage
et al. (2020) identified distinct profiles of learners across
days, including one profile with poor savings. Using
data of this subsample (n=10) and using the same pa-
rameterization as above, the sample size needed was
n=24. Thus, our sample size of n = 24 should be ade-
quate to reveal savings, even in the least favorable sce-
nario.

Experimental setup
The experiment took place on two consecutive days,
which both included an anatomical scan, resting-state
runs, and task-based runs (Figure 1). To reduce head
motion and scanner noise, foam padding and earplugs
were provided to the participants. During anatomical
scans, participants were instructed to lie quietly look-
ing at a black cross, which was displayed on the screen
with a grey background to avoid visual fatigue. For the
task-based runs, participants held with their right hand a
custom-made fMRI-compatible joystick. A Plexiglas ad-
justable table fixed above their pelvis enabled them to
comfortably rest their arm and control the joystick while
minimizing movements of the elbow. Participants were
instructed to perform the task with their forearm trying
to avoid as much as possible large arm movements. Vi-
sual stimuli were back-projected onto a monitor (60-Hz
frame rate, 3840 x 2160 pixels screen resolution, 40” di-
agonal, NordicNeuroLab®) and viewed through a mirror
mounted on the head coil. The task consisted in per-
forming target aiming movements with the joystick that
controlled a green cursor (Struber et al., 2021). Each
movement started from the center of the screen to one
of eight possible targets equally spaced around a vir-
tual circle (radius 40 cm). Each trial started with one
of the eight targets becoming red. Participants had to
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reach the target with the green cursor as fast and as
accurately as possible. Once the target was reached,
it turned to blue and participants had to maintain the
cursor inside the target until the target disappeared and
a red circle appeared in the middle of the screen in-
dicating them to passively let the joystick return to its
initial position (Figure 1). Allotted time was 2 s for tar-
get reaching and 1.45 s for passive return movement.
These specifications allowed us to collect fMRI data dur-
ing 36 repetition times (TR) per block. The task was im-
plemented using a custom C++ software based on Qt
and Measurement Computing© libraries. This software
was synchronized with the MRI scanner.

Experimental conditions
Participants had to adapt to a constant perturbation on
two consecutive days (Adapt-day1 and Adapt-day2). A
60° clockwise (CW) rotation angle was maintained be-
tween the cursor on the screen and the actual move-
ment performed by the participants. We deliberately
chose to not include null trials (i.e., washout) between
the two days of adaptation to avoid unwanted antero-
grade interference and magnify, as much as possible,
the extent of savings (Villalta et al., 2015). On day1,
a normal, unrotated, movement condition was included
before the adaptation condition so as to identify seed re-
gions afterwards used for connectivity analysis (cf. fMRI
Processing). Resting-state scans were also acquired on
both days immediately before and after the adaptation
task (RestingPre-day1, RestingPost-day1, RestingPre-
day2 and RestingPost-day2). This was included so as
to investigate possible changes in intrinsic connectivity
following adaptation. Each task condition included 14
blocks of 49.68 s (36 TR) which started with 1 TR of
readiness indicating the beginning of the block, followed
by 14 trials of aiming movement with the cursor for a to-
tal of 196 trials per condition. Each block was followed
by 19.32 s (14 TR) of rest (Figure 1).

Behavioral analysis and modelling
Cursor positions acquired at 2048 Hz were filtered
through a dual 4th order low pass Butterworth filter with
a 5 Hz cutoff frequency and were then down-sampled
at 100 Hz. Beginning of reaching movement was de-
fined as the time the cursor velocity was above 20%
of peak velocity. End of reaching movements was de-
fined as the time the cursor entered into the target. Tri-
als in which participants did not reach the target were
excluded from further analyses (1.5%, 6.1% and 4.9%
of the trials in Norm, Adapt-day1 and Adapt-day2 con-
ditions, respectively). For each trial, the motor perfor-
mance was quantified by the normalized cumulative er-
ror performed by the participant during target reaching.
To do so, at each time step, the error was defined as
the distance between the actual cursor position and the
shortest trajectory (i.e., the straight-line connecting the
starting position and the target). Then, all errors were
summed (square root of the sum of squared distances)

Figure 1. Design of the experiment. (A) Sequence of experimental tasks dur-
ing the two consecutive days of the experiment. Day1 started with the Norm
condition, in which the cursor direction was consistent with participants’ aimed
direction. It was followed by a pre-adaptation resting-state, then the adapta-
tion condition, in which the cursor direction was 60° clockwise rotated with re-
spect to the aimed direction. Finally, another resting-state was performed post-
adaptation. In Day2, the same sequence was used except the norm condition of
Day 1. (B) Block design and timing of behavioral tasks (Norm, Adapt-day1 and
Adapt-day2) in which 14 blocks of 14 trials were performed. Each block lasted
36 TR (MRI repetition time = 1.38 s), and were intertwined by a resting period of
14 TR. (C) Cues that were seen by participants for each trial, which was divided
in two phases, the reaching phase during which the target was displayed in red
and the cursor in green, and the passive return phase during which the center
of the screen was colored in red. Grey lines are drawn only for comprehension
purposes and were not visible by participants.

and normalized by reaching duration. This variable was
used afterwards in parametric modulation of brain acti-
vation (see below). For each participant, learning was
studied by modeling error over trials through a state-
space model (SSM) (Diedrichsen et al., 2005; Donchin
et al., 2003). Specifically, we modeled learning on each
day separately (i.e. for each Adapt condition), using a
one-state SSM of the following form (Albert and Shad-
mehr, 2018):{

xn+1 = Dn(A.xn +B.(u−yn))
yn = xn +εu,n

(1)

where

Dn =
{

Ad if trial is followed by a rest period
1 if trial is not followed by a rest period

with xn the hidden state at trial n, u the external pertur-
bation, yn the motor output, A the retention factor that
controls the decay rate of the state in the absence of
error due to the passage of time, B the error sensitiv-
ity parameter that controls the learning rate of the state
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from the error, Dn a parameter that depends on the de-
cay factor d and serves to model the additional decay
that elapses after the conclusion of the trial preceding a
break (every 14 trials), and εu,n the motor noise repre-
senting the alteration of the generated movement with
respect to the desired one. x0, the initial state of the
model, encodes the priors of the learner. For example,
a completely naïve learner would start with x0 = 0. A,
B, x0 and d were parameters to be determined by opti-
mization. To do so, the mean square error between ac-
tual error and prediction error u−yn was minimized (us-
ing Matlab fmincon function and interior-point algorithm
with optimality and constraint tolerances set to 10−15)
to obtain the optimal values of parameters (LMSE algo-
rithm). Our constrained search parameter space was
defined by its lower and upper bounds: A ∈ [0.1;1],
B ∈ [0.1;1], x0 ∈ [0;2u] and d ∈ [0.1;30] (Albert and
Shadmehr, 2018). We also derived an extra parameter
from the model equation, namely the asymptotic value
of motor error (Albert et al., 2021):

y∞ = u− ((B.u)/(1−A+B)) (2)

which informed on learning saturation following pro-
longed exposure to the perturbation. Differences in
model parameters between days 1 and 2 were as-
sessed using paired t-tests with a level of significance
set at p < 0.05. The amount of savings was quantified
as the difference in B-values between days 1 and 2, any
increase of B reflecting savings. Analysis and statistical
testing were performed using Matlab (R2018b).

MRI acquisition
MRI data were acquired at 3T (Achieva dStream 3.0T
TX, Philips, NL) with a 32-channel head coil at IR-
MaGe MRI facility (Grenoble, France). To account for
different head placements into the MRI, structural T1-
weighted images were acquired at the beginning of
each day, using a Magnetization-Prepared Rapid Ac-
quisition Gradient Echoes (MPRAGE) (TI = 900 ms,
TR/TE = 8.2 ms/4.7 ms, 220 slices, in-plane resolu-
tion = 1 × 1 mm, slice thickness = 1 mm, flip angle
= 8°, field of view = 256 × 256 x 220 mm3). Com-
pressed SENSE with acceleration factor 4.4 was used.
Resting scans functional blood-oxygen level-dependent
(BOLD) images were collected using a T2*- echo-planar
sequence with multiband acceleration of 3 and SENSE
factor of 2 (TR/TE = 1620/30 ms, voxel size = 2.25 x
2.25 x 2 mm3, gap = 0.25 mm, 69 slices, field of view =
216 × 216 x 155 mm3, flip angle = 70°, 350 volumes).
Task-based functional BOLD images were obtained with
a T2*- echo-planar sequence with multiband accelera-
tion of 3 and SENSE factor of 2 (multiband factor = 3,
TR/TE = 1380/30 ms, voxel size = 2.5 × 2.5 x 2.25 mm3,
gap = 0.25 mm, 63 slices, field of view = 200 × 218 x
157 mm3, flip angle = 70°, 700 volumes). To correct for
magnetic field inhomogeneity during data preprocess-
ing, we also acquired a pair of spin-echo images be-
fore each BOLD scan (same specifications as above for

task-based or resting), with reversed phase encoding
direction.

MRI preprocessing

After conversion into a BIDS dataset (Gorgolewski
et al., 2016), preprocessing was performed using
FMRIPREP version 20.2.6 (Esteban et al., 2019,
RRID:SCR_016216), a Nipype (Gorgolewski et al.,
2016, 2011, RRID:SCR_002502) based tool. Each
T1w (T1-weighted) volume was corrected for INU
(intensity non-uniformity) using N4BiasFieldCorrection
v2.1.0 (Tustison et al., 2010) and skull-stripped us-
ing antsBrainExtraction.sh v2.1.0 (using the OASIS
template). Brain surfaces were reconstructed using
recon-all from FreeSurfer v6.0.1 (Dale et al., 1999,
RRID:SCR_001847), and the brain mask estimated
previously was refined with a custom variation of the
method to reconcile ANTs-derived and FreeSurfer-
derived segmentations of the cortical gray-matter of
Mindboggle (Klein et al., 2017, RRID:SCR_002438).
Spatial normalization to the ICBM 152 Nonlinear
Asymmetrical template version 2009c (Fonov et al.,
2009, RRID:SCR_008796) was performed through
nonlinear registration with the antsRegistration tool of
ANTs v2.1.0 (Avants et al., 2008, RRID:SCR_004757),
using brain-extracted versions of both T1w volume and
template. Brain tissue segmentation of cerebrospinal
fluid (CSF), white-matter (WM) and gray-matter (GM)
was performed on the brain-extracted T1w using fast
(Zhang et al., 2001, FSL v5.0.9, RRID:SCR_002823).
Functional data was slice time corrected using 3dTshift
from AFNI v16.2.07 (Cox, 1996, RRID:SCR_005927)
and motion corrected using mcflirt (Jenkinson et al.,
2002, FSL v5.0.9,). Distortion correction was performed
using an implementation of the TOPUP technique (An-
dersson et al., 2003) using 3dQwarp (AFNI v16.2.07).
This was followed by co-registration to the correspond-
ing T1w using boundary-based registration (Greve
and Fischl, 2009) with nine degrees of freedom,
using bbregister (FreeSurfer v6.0.1). Motion correct-
ing transformations, field distortion correcting warp,
BOLD-to-T1w transformation and T1w-to-template
(MNI) warp were concatenated and applied in a single
step using antsApplyTransforms (ANTs v2.1.0) using
Lanczos interpolation. ICA-based Automatic Removal
of Motion Artifacts (Pruim et al., 2015, ICA-AROMA)
was performed on the preprocessed functional data
after spatial smoothing with an isotropic, Gaussian
kernel of 6mm FWHM (full-width half-maximum).
Noise components were partially regressed in the
internal regression step of ICA-AROMA, which con-
stitutes an effective strategy to abolish motion-related
variance for relatively low cost in terms of data loss
(Parkes et al., 2018; Ciric et al., 2017). Additionally,
region-wise global signals within WM and CSF were
computed. Many internal operations of FMRIPREP
use Nilearn (Abraham et al., 2014, RRID:SCR_-
001362), principally within the BOLD-processing
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workflow. For more details of the pipeline see
https://fmriprep.readthedocs.io/en/20.2.6/workflows.html.

fMRI Processing

Task-based and resting-state (participant-level and
group-level) analyses were performed using custom-
made (batch syntax) Matlab routines (R2018b) running
SPM12 toolbox (https://www.fil.ion.ucl.ac.uk/spm/) and
CONN toolbox (https://web.conn-toolbox.org/), respec-
tively.

GLM analysis. Brain activation and functional connectiv-
ity during the adaptation sessions were assessed us-
ing standard and beta series (least squares-all method)
GLMs, respectively (Rissman et al., 2004). Beta series
GLM differ from standard GLM in that the model is fitted
to the fMRI data trial-wise, and not condition-wise. This
creates time series of beta estimates which can be sub-
sequently correlated to estimate functional connectivity.
Here, the GLM design matrix included movement trials,
each trial being represented as a boxcar function time-
locked to the onset of movement and convolved with
SPM canonical hemodynamic response function (HRF).
Trials were represented all together in a single column
of the design matrix in standard GLM while they were
represented separately in as many columns as there
were trials in beta series GLM. A parametric modula-
tor was also entered into the design matrix to model the
linear effect relating the evoked-response during each
trial to the magnitude of movement error. This modula-
tor was entered the same way as the movement trials
in the GLM, i.e., in a single column for standard GLM
and in as many columns as there were trials in beta
series GLM. This parametric modulator was demeaned
to avoid collinearity issues prior to convolution with the
HRF (Mumford et al., 2015). The WM and CSF time se-
ries were further entered into the design matrix to serve
as nuisance variables. As for standard GLM, individ-
ual beta maps of the parametric modulator were then
entered into a second-level analysis. One-sample t-
tests revealed brain regions whose activation related to
movement errors during the adaptation sessions. A two-
sample t-test assessed whether activation of these re-
gions related to errors was different between adaptation
and re-adaptation sessions. As for beta series GLM, we
extracted the mean beta series of the parametric modu-
lator within four regions of interest (ROIs), including the
primary motor cortex (M1), the primary somatosensory
cortex (S1), and the lobules VI and VIIIb of the cere-
bellum. These lobules of the cerebellum are known to
assume sensorimotor function (King et al., 2019; Buck-
ner et al., 2011). As mentioned in introduction, these
regions appear to be key regions for the storage of mo-
tor memories. ROIs were 6mm radius spheres built after
running a standard GLM on the Norm condition and ex-
tracting coordinates of local maxima of the group-level
(one-sample t-test) activation map (Norm versus implicit
baseline). ROIs were centered at MNI coordinates [-

38, -18, 62] for left M1, [-34, -30, 52] for left S1, [28
-48 -26] for right cerebellar lobule VI, and [18 -60 -54]
for right cerebellar lobule VIIIb (Supplementary Figure
S1). The fact that ROIs were obtained from a condition
(i.e., Norm) other than the condition under study (i.e.,
Adapt) was done to contain the risk of circular analysis
(Kriegeskorte et al., 2009). As a second step, the beta
series of the parametric modulator of each ROI was
correlated (Pearson) with the beta series of the para-
metric modulator of each voxel in the rest of the brain.
We used the doBetaSeries function from Andy’s brain
blog (http://andysbrainblog.blogspot.com/2014/06/beta-
series-analysis-in-spm.html). This yielded correlation
maps that were finally converted to z-score maps and
entered into the second-level analysis. One-sample t-
tests revealed co-activation, i.e. functional connectivity,
patterns of the ROIs during the adaptation sessions. It
is worth mentioning, given the methodology described
above, that these patterns represented similarities be-
tween ROIs and brain regions in their responses to er-
ror during the task. Finally, two-sample t-tests assessed
whether the co-activation patterns of the ROIs were dif-
ferent between adaptation and re-adaptation sessions.

Resting-state connectivity. Functional connectivity be-
fore and after adaptation sessions was scrutinized us-
ing seed-to-voxels and independent component (ICA)
approaches. Seed-to-voxels maps were computed as
the Fisher-transformed bivariate correlation coefficients
between denoised average BOLD time series computed
across all the voxels within each ROI presented above
and each individual voxel of denoised BOLD time series
in the brain. Group-level ICA followed Calhoun’s gen-
eral methodology (Calhoun et al., 2001) and estimated
40 temporally coherent networks from the resting-state
fMRI data combined across all subjects and conditions.
The BOLD signal from every timepoint and voxel in
the brain was concatenated across subjects and con-
ditions along the temporal dimension. A singular value
decomposition of the z-score normalized BOLD sig-
nal (subject-level SVD) with 64 components separately
for each subject and condition was used as a subject-
specific dimensionality reduction step. The dimension-
ality of the concatenated data was further reduced using
a singular value decomposition (group-level SVD) with
40 components, and a fast-ICA fixed-point algorithm
with hyperbolic tangent (G1) contrast function was used
to identify spatially independent group-level networks
from the resulting components. GICA3 back-projection
was then used to compute ICA maps associated with
these same networks separately for each individual sub-
ject and condition. Finally, we identified the network we
were interested in, namely the sensorimotor network,
using the correlational spatial match-to-template tool of
CONN. Any difference that may have occurred between
the resting state conditions were examined from F-tests
run on seed-to-voxel and ICA (sensorimotor) maps.

Struber et al. | Neural correlates of savings | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.13.610754doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.13.610754
http://creativecommons.org/licenses/by-nc-nd/4.0/


Thresholding of statistical maps. Maps were thresholded
using a cluster-forming threshold p < 0.001 and a
cluster-extent based threshold p < 0.05 family-wise error
rate (FWER) corrected, according to established rec-
ommendations (Eklund et al., 2016; Woo et al., 2014).
Cluster-extent threshold was estimated using the Gaus-
sian random field method (Worsley et al., 1996), as im-
plemented in SPM 12 and CONN 19.

Results
State space modelling of behavior
The evolution of error across trials and model predic-
tion on days 1 and 2 are plotted on Figure 2A (averaged
across participants). Paired t-tests run on SSM param-
eters (Figure 2B) showed that the error sensitivity that
controls the rate at which the state learns from previous
error was significantly higher in day2 than day1 (mean
± SE: 0.052 ± 0.013 in day1, 0.106 ± 0.020 in day2,
p = 0.036) while the retention factor that encodes the
rate at which state decays with the passage of time re-
mained similar whatever the day (mean ± SE: 0.995 ±
0.001 in day1, 0.992 ± 0.001 in day2, p = 0.186). Hence,
there was a larger amount of learning from error during
relearning, consistent with the notion of savings, while
the amount of forgetting between trials was unchanged.
We also observed that relearning saturated at a lower
asymptotic error in day2 than day1 (mean ± SE: 0.122
± 0.010 in day1, 0.089 ± 0.007 in day2, p = 0.007). This
was a direct consequence of the fact that the amount of
learning increased from day1 to day2 while the amount
of forgetting remained the same (cf. equation 2). Fi-
nally, there was no change in the initial error (mean ±
SE: 0.362 ± 0.017 in day1, 0.342 ± 0.014 in day2, p =
0.327) from day1 to day2, indicating that learning and
relearning both started from the same value of internal
state and testified that savings was unbiased.

Figure 2. Behavioral and computational results. (A) Evolution of movement
error across trials during Adapt-day1 (light blue) and Adapt-day2 (dark blue)
conditions, and as predicted by the state space model (internal state in red). (B)
Bar graphs of the model parameters, with retention factor = A, error sensitivity
= B, and initial model error = x0 in equation 1, and asymptotic error = y∞
in equation 2. Significant differences between day1 and day2 are marked with
asterisks (*: p < 0.05, **: p < 0.01). Curves and bar graphs are presented as
mean ± standard error across subjects.

Activation of brain regions responsive to errors
Regional patterns of activation obtained during the
adaptation sessions are reported in Figure 3. For the
sake of providing an overall picture of what happened
at the brain level during adaptation, we first reported
brain activation during the adaptation trials regardless
of whether activation was modulated by error magni-
tude (Figure 3A). Activated regions on day1 and day2
included, as expected for a right-hand movement, the
sensorimotor parcels (lobules V, VI, and VIIIb) of the
right cerebellum, the left sensorimotor cortical areas
(primary motor cortex – BA4, primary somatosensory
cortex – BA1, dorsal premotor cortex – BA6, supple-
mentary motor area – BA6), and regions of the left pos-
terior parietal cortex (superior parietal lobule – BA5 and
BA7, and extending a bit into the supramarginal gyrus –
BA40). Activation foci were also found in the right dorsal
premotor cortex, the right superior parietal lobule, and
the left sensorimotor cerebellum (lobules V, VI, and VI-
IIb). Given the visuomotor nature of the task, activation
was also observed in the right and left primary and sec-
ondary visual (BA17 and BA18, respectively) cortices.
Finally, subcortical regions were also part of the activa-
tion network, including the right and left basal ganglia
(putamen) and thalamus. There was no activation dif-
ference between days 1 and 2.

Figure 3. Brain activation (A) evoked by the adaption task, and (B) positively
related to the magnitude of movement error. M1: primary motor cortex; S1:
primary somatosensory cortex; SMA: supplementary motor area; PMd: dorsal
premotor cortex; PPC: posterior parietal cortex; BG: basal ganglia; Thal.: tha-
lamus; V1: primary visual cortex; V2: secondary visual cortex; CbVI: cerebellar
lobule VI; CbVIIIb: cerebellar lobule VIIIb. R = right hemisphere; L = left hemi-
sphere. x, y, z: coordinates in MNI space.

A subset of regions listed above demonstrated a posi-
tive parametric modulation of activation by error magni-
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Figure 4. ROI-to-voxel co-activation patterns. The contrast day2>day1 reveals regions whose connectivity with ROIs was stronger on day2 compared to day1.
These regions are situated on the connectivity maps using green open circles. ACC: anterior cingulate cortex; M1: primary motor cortex; S1: primary somatosensory
cortex; SMA: supplementary motor area; PMd: dorsal premotor cortex; PPC: posterior parietal cortex; SMG: supramarginal gyrus; BG: basal ganglia; Thal.: thalamus;
V1: primary visual cortex; V2: secondary visual cortex; CbVI: cerebellar lobule VI; CbVIIIb: cerebellar lobule VIIIb. R = right hemisphere; L = left hemisphere. x, y, z:
coordinates in MNI space.

tude on days 1 and 2 (Figure 3B). Activation foci were
located in the right lobule VIIIb and the right and left
lobule VI of the cerebellum, in the primary visual cortex,
and in the left primary somatosensory and dorsal pre-
motor cortices. Activation was also related to errors in
the primary motor cortex and the supplementary motor
area on day2. Comparison between days did not reveal
any difference in error modulation.

Connectivity between brain regions responsive to
errors

The co-activation patterns derived from the ROIs looked
roughly similar and delineated the same error-related
network of interconnected regions that spread over the
cerebral cortex, the cerebellum, the basal ganglia and
the thalamus (Figures 4 & S2). Specifically, they were
composed of sensorimotor (BA1, 4, 6), posterior pari-
etal (BA5, 7, 40) and visual (BA17, 18) brain regions,
sensorimotor cerebellar territories (lobules V, VI and VI-
IIb), as well as basal ganglia and thalamus in both the
left and right hemispheres. Interestingly, there were also
areas located more anteriorly in the frontal lobe, espe-
cially in the anterior cingulate cortex (BA 24, 32) and in
the lateral prefrontal cortex (BA9, 44). Importantly, the
functional connectivity was stronger, on day2 compared
to day1, between (i) left S1 and anterior cingulate cor-
tex (MNI coord. = [2, 6, 34], n voxels = 39, pFWE-corr
= 0.05; Figures 4A & 5A), (ii) right cerebellar lobule VI
and left thalamus (MNI coord. = [-18, -10, 2], n voxels =
49, pFWE-corr = 0.04; Figures 4B & 5A), (iii) right cere-

bellar lobule VI and right thalamus (MNI coord. = [10,
-22, 2], n voxels = 35, marginal effect with pFWE-corr =
0.161 but qFDR-corr = 0.044; Figures 4B & 5A), and (iv)
right cerebellar lobule VIIIb and left supramarginal gyrus
(MNI coord. = [-48, -30, 42], n voxels = 38, pFWE-corr
= 0.031; Figure 4C & 5A).

Figure 5. (A) Change in interregional co-activation from day1 to day2, and (B)
its relationship with savings. Savings is represented as change in adaptation
rate (AR). ACC: anterior cingulate cortex; S1: primary somatosensory cortex;
SMG: supramarginal gyrus; Thal: thalamus; CbVI: cerebellar lobule VI; CbVIIIb:
cerebellar lobule VIIIb. r = right hemisphere; l = left hemisphere.

Regarding pathways evoked above between left S1 and
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Figure 6. Sensorimotor ICA map obtained during the conditions of resting-state. Clusters that showed increased connectivity following adaptation in both day1
and day2 are represented with black and grey contours. M1: primary motor cortex; S1: primary somatosensory cortex; SMA: supplementary motor area; PPC:
posterior parietal cortex; ACC: anterior cingulate cortex; Cb_V: cerebellar lobule V; Cb_VIIIb: cerebellar lobule VIIIb; r.: right hemisphere; l.: left hemisphere.

anterior cingulate cortex and right cerebellar lobule VI
and left thalamus, the increased functional connectiv-
ity from day1 to day2 positively correlated with the in-
creased learning rate across individuals (r = 0.64, p
= 0.0007 and r = 0.46, p = 0.02, respectively; Fig-
ure 5B), showing that there was a relationship between
increased functional connectivity and savings. Note
that these two correlations remained significant when
adjusting FDR (4 comparisons) using the Benjamini-
Hochberg procedure. On the other hand, regarding the
other two pathways between right cerebellar lobule VI
and right thalamus and right cerebellar lobule VIIIb and
left supramarginal gyrus, there was only a tendency for
a positive correlation between increased connectivity
and increased learning rate (r = 0.34, p = 0.1 and r
= 0.37, p = 0.07, respectively; Figure 5B).

Changes in intrinsic functional connectivity

ROI-to-voxels analysis did not reveal any difference (F-
test) of intrinsic connectivity between the resting state
conditions (i.e., pre-day1, post-day1, pre-day2, post-
day2). ICA-based analysis revealed a “sensorimo-
tor” network that spread over the supplementary mo-
tor area, the anterior (mid) cingulate cortex, the pri-
mary sensorimotor cortex, the posterior parietal cortex
(BA5 and BA7), the secondary somatosensory cortex
and cerebellar regions (Figure 6). This corresponded
closely to the network seen in adaptation. Connectivity
within this network showed some changes between the
resting state conditions, including an increased voxel-
to-voxel connectivity following adaptation in both day1
(pre-day1 vs post-day1) and day2 (pre-day2 vs post-
day2) in two clusters located centrally in the brain, one
in front of the central sulcus (MNI coord. = [-6, -18,
74], n voxels = 167, pFWE-corr = 0.0003) and that cov-
ered parts of the primary motor cortex and the dorsal
premotor cortex, and the other behind the central sul-
cus (MNI coord. = [8, -44, 62], n voxels = 290, pFWE-
corr = 0.000002) and that covered parts of the primary

somatosensory cortex and the posterior parietal cortex
(BA5 and BA7).

Discussion
The present study showed that the more savings there
was in a visuomotor learning task, the more important
was the increase of connectivity between regions of a
cerebello-thalamo-cortical network responsive to errors.
This indicated that faster re-adaptation to a perturba-
tion goes through a mechanism that strengthens the
communication between brain regions processing er-
rors. Previous studies introduced the notion of memory
of errors in which the brain recognizes past errors and
commands to increase the gain of error correction, the
so-called sensitivity to errors, when re-visiting these er-
rors (Leow et al., 2020; Coltman et al., 2019; Leow et al.,
2016; Herzfeld et al., 2014b; Mawase et al., 2014). The
present finding suggests that this memory of errors may
materialize as a set of brain regions more responsive to
errors when re-experiencing a known perturbation.
Specifically, we found that the amount of savings was
associated with an increase of connectivity in two path-
ways, namely a pathway between the primary so-
matosensory cortex and the dorsal anterior cingulate
cortex, and a pathway between the sensorimotor cere-
bellum (lobule VI) and the thalamus. All these regions
have in common that they relate actions to their out-
comes, and show error signals when the expected out-
comes are not reached. The dorsal anterior cingu-
late cortex (Klein-Flügge et al., 2022; Hyman et al.,
2017; Amiez et al., 2005) and the thalamus (Collomb-
Clerc et al., 2023; Chase et al., 2015) are implicated
in encoding reward prediction errors, that is the differ-
ence between the predicted value of future rewards and
their realized value. The primary somatosensory cor-
tex integrates information from both the primary mo-
tor cortex and the periphery, making it able to repre-
sent discrepancies between expected and actual sen-
sory consequences of the action (Umeda et al., 2019;
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Mathis et al., 2017). Likewise, the cerebellum repre-
sents sensory prediction errors during voluntary move-
ments (Hull, 2020; Brooks et al., 2015; Izawa et al.,
2012; Schlerf et al., 2012; Tseng et al., 2007). In the
context of visuomotor adaptation, previous observation
showed that the error can be broken down into a vari-
ety of error types, including reward and sensory errors
(Morehead and Orban De Xivry, 2021; Izawa and Shad-
mehr, 2011). Presumably, the deviation of the visual
feedback cursor during pointing movements made er-
roneous the prediction of the internal model about the
sensory consequences of the motor commands (i.e.,
a sensory prediction error) as well as the expectation
about the intrinsic reward associated with successfully
attaining the target (i.e., a reward prediction error). With
regard to the latter aspect, it is indeed known that the at-
tainment of intrinsic rewards is a general feature of suc-
cessful completion of goal-directed sensorimotor tasks
(Carroll et al., 2019).
The present result relating savings to cerebellar-
thalamic connectivity echoes a previous study on loco-
motor adaptation in which the amount of savings could
be predicted from the strength of the cerebellar-thalamic
connectivity at rest (Mawase et al., 2017). It was also
demonstrated that patients with essential tremor treated
with deep brain stimulation of the ventral intermedi-
ate nucleus (vim) of the thalamus or vim thalamotomy,
which disrupts thalamus functioning, are impaired in
their ability to learn from errors (Chen et al., 2006). Fur-
thermore, in fMRI, an increased activity of the cerebel-
lum (lobule VI) correlating with the amount of savings
was observed when repeating a motor adaptation task
(Debas et al., 2010). These results and the present
ones suggest that the rate at which individuals learn
from errors is set by the interactions between the cere-
bellum and the thalamus. It is perhaps surprising, how-
ever, that our result did not uncover the entire cerebello-
thalamo-cortical pathway. Indeed, it is generally as-
sumed that the prediction error generated in the cere-
bellum is sent to the contralateral thalamus through ef-
ferent connections in the superior cerebellar peduncle
(Sokolov et al., 2017), which in turn projects the error
to multiple cortical targets to adjust the motor command
(Abram et al., 2022). Accordingly, there is a possibility
that the two pathways reported in the present study are
the most visible constituents of a larger-scale network in
charge of adjusting the learning rate. We can also men-
tion the fact that single trial activity estimation used in
beta series correlation can be quite noisy, which could
have affected the sensitivity to detect context-modulated
functional connectivity, possibly leaving out some con-
nections. However, there is really no better alterna-
tive to assess context-dependent functional connectiv-
ity. Results obtained with other methods are roughly
similar to those obtained with the beta series method,
each method having its pros and cons (Abdulrahman
and Henson, 2016; Cisler et al., 2014; Mumford et al.,
2012).

Another significant finding was the relationship ob-
served between savings and connectivity of the primary
somatosensory cortex. There is still debate about which
regions contribute to memory consolidation in motor
learning. Some studies found that the primary mo-
tor cortex is involved in the retention of newly learned
movements (Galea et al., 2011; Orban De Xivry et al.,
2011; Hadipour-Niktarash et al., 2007; Muellbacher
et al., 2002), while others did not find it to be involved
(Kumar et al., 2019; Baraduc et al., 2004). On the other
hand, several studies supported the view that the pri-
mary somatosensory cortex, instead of the primary mo-
tor cortex, is key to retention (Ebrahimi and Ostry, 2024;
Darainy et al., 2023; Kumar et al., 2019). According to
these studies, this cortex would store learning-updated
sensory states which serve to guide the movement. The
present results support a participation of the primary
somatosensory cortex to memory consolidation, as re-
flected by a faster relearning. However, the fact that
savings was associated with multiple connectivity path-
ways suggests that memory consolidation is not limited
to a given brain region but rather depends on interre-
gional interactions.
One important issue in motor adaptation has been
to understand which processes contribute to error-
based learning. Behavioural studies revealed a dual-
process organization with a slow/implicit learning pro-
cess and a fast/explicit learning process (Huberdeau
et al., 2015). However, their respective contributions
to savings vary across studies, including an improve-
ment of the slow/implicit process (Yin and Wei, 2020;
Joiner and Smith, 2008; Smith et al., 2006), of the
fast/explicit process (Avraham et al., 2021; Morehead
et al., 2015), and of both (Coltman et al., 2019). This
variety of findings comes from the fact that the inter-
play between the two processes critically depends on
the specifics of the learning protocol. In a standard pro-
tocol of visuomotor adaptation, as the present one, both
processes are involved, and as such may have con-
tributed to savings. This assumption is supported by
the contribution of cerebellar and cortical regions in the
connectivity pathways that were related to savings. In-
deed, the slow/implicit and fast/explicit components of
savings would be implemented in the cerebellum and
the cerebral cortex, respectively (Kim et al., 2015). Fu-
ture research on the neural correlates of savings should
consider using more sophisticated protocols able to iso-
late the specific contributions of these two processes of
adaptation (Morehead et al., 2017; Haith et al., 2015;
Taylor et al., 2014).
Finally, following each session of adaptation, there
was evidence of an increased connectivity within re-
gions of the resting-state sensorimotor network (i.e., so-
matosensory cortex and frontal motor areas). This ob-
servation is consistent with the idea that motor adap-
tation tasks drive plasticity in both sensory and motor
brain areas, plasticity in the sensory and motor sys-
tems being reciprocally linked (Ostry and Gribble, 2016;
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Vahdat et al., 2011). However, we failed to establish
a relationship between these changes in the resting-
state sensorimotor network and the (SSM) learning pa-
rameters, which raises the question of whether these
changes were specific to the adaptation task or re-
flected transient changes that would occur following
any task execution. A recent study which investigated
changes in the resting-state connectivity following con-
stant perturbation (i.e., adaptation) and random pertur-
bation (i.e., no adaptation) tasks in a force field envi-
ronment linked most changes in intrinsic connectivity to
the adaptation process (Farrens et al., 2023). Accord-
ingly, it seems reasonable to assume that the observed
changes in the resting state sensorimotor network were
driven by the adaptation process. Finally, we found that
intrinsic connectivity of the sensorimotor network was
the same following both sessions of adaptation (i.e., no
change accumulated from session 1 to session2). Thus,
the changes reported in task-evoked (error-related) re-
sponses of the brain during the second session of adap-
tation did not seem to rely on a change in intrinsic brain
connectivity. This null finding is rather surprising in view
of the role of intrinsic brain activity in shaping task acti-
vations (Cole et al., 2016; Tavor et al., 2016; Cole et al.,
2014) and organizing brain functions (Raichle, 2015).
Studies with more intensive learning (e.g., more move-
ment trials, multiple sessions), which should magnify
behavioural and connectivity changes, may be valuable
to revisit this plasticity issue and investigate the relation-
ship between intrinsic and task-evoked activity in motor
adaptation.
In summary, we examined which changes happened in
the brain of individuals who showed savings when re-
learning a visuomotor rotation task. We found an in-
creased functional connectivity between subcortical and
cortical regions responsive to movement errors during
relearning, which was predictive of the amount of sav-
ings. Hence, when individuals better perform a motor
task than before it is because of an improved communi-
cation between brain regions involved in error process-
ing. This provides a concrete brain mechanism to the
concept of increased sensitivity to errors used in previ-
ous studies on motor learning and savings. However,
such an improved communication did not persist in the
resting brain following learning of the motor task.
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Supplementary Information

Figure S1. ROIs locations. ROIs have been defined from local maxima of the group-level activation map of the Norm condition
(against implicit baseline). M1: primary motor cortex; S1: primary somatosensory cortex; Cb_VI: cerebellar lobule VI; Cb_VIIIb:
cerebellar lobule VIIIb; L: left hemisphere; R: right hemisphere.

Figure S2. M1-to-voxels co-activation (or equivalently functional connectivity) patterns between regions responsive to errors. The
contrast day2>day1 indicated that M1 connectivity related to error did not change on day2 compared to day1.
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