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SinKD: Sinkhorn Distance Minimization for
Knowledge Distillation

Xiao Cui, Yulei Qin∗, Yuting Gao, Enwei Zhang, Zihan Xu, Tong Wu, Ke Li, Xing Sun, Wengang Zhou, Senior
Member, IEEE, and Houqiang Li†, Fellow, IEEE

Abstract—Knowledge distillation (KD) has been widely
adopted to compress large language models (LLMs). Existing
KD methods investigate various divergence measures including
the Kullback-Leibler (KL), reverse Kullback-Leibler (RKL), and
Jensen-Shannon (JS) divergences. However, due to limitations
inherent in their assumptions and definitions, these measures
fail to deliver effective supervision when few distribution overlap
exists between the teacher and the student. In this paper, we
show that the aforementioned KL, RKL, and JS divergences re-
spectively suffer from issues of mode-averaging, mode-collapsing,
and mode-underestimation, which deteriorates logits-based KD
for diverse NLP tasks. We propose the Sinkhorn Knowledge
Distillation (SinKD) that exploits the Sinkhorn distance to ensure
a nuanced and precise assessment of the disparity between
distributions of teacher and student models. Besides, thanks to
the properties of the Sinkhorn metric, we get rid of sample-
wise KD that restricts the perception of divergences inside each
teacher-student sample pair. Instead, we propose a batch-wise
reformulation to capture geometric intricacies of distributions
across samples in the high-dimensional space. Comprehensive
evaluation on GLUE and SuperGLUE, in terms of comparability,
validity, and generalizability, highlights our superiority over
state-of-the-art methods on all kinds of LLMs with encoder-
only, encoder-decoder, and decoder-only architectures. Codes and
models are available at https://github.com/2018cx/SinKD.

Index Terms—Knowledge distillation, Wasserstein distance,
Sinkhorn distance

I. INTRODUCTION

LARGE language models (LLMs) such as BERT [1],
RoBERTa [2], T0 [3], and GPT [4], [5] have set state-of-

the-art (SOTA) records on various tasks in the field of natural
language processing (NLP). On one hand, the scaling laws
of LLMs undoubtedly stimulate the development of models
with billions of parameters. On the other hand, the surge
of model size makes it impractical to deploy LLMs under
resource-constrained environments. Consequently, knowledge
distillation (KD), emerging as a cost-efficient approach, has
attracted attention from researchers to distill smaller models
which maintain highly competitive performance.

One kind of the most representative KD methods is logits-
based KD, where the divergence between the distributions
of the predicted logits from teacher and student models is
measured and minimized for knowledge transfer. The key
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Fig. 1. Limitations of existing divergence measures in logits-based distilla-
tion. (a) Mode-averaging by Kullback-Leibler divergence. (b) Mode-collapsing
by reverse Kullback-Leibler divergence. (c) Mode-underestimation by Jensen-
Shannon divergence.

to effective logits-based KD is exactly the proper measure-
ment of such divergence. Existing studies have experimented
with Kullback-Leibler (KL) divergence [6], reverse Kullback-
Leibler (RKL) divergence [7], [8], and Jensen-Shannon (JS)
divergence [9], [10], [11]. All these measures can be viewed as
variants of the f -divergence measures, which are notoriously
limited in quantification of any two distributions that lack
substantial intersections [12]. Moreover, each measure has its
own drawbacks (see Fig. 1). KL distillation results in mode-
averaging [13], [14], causing the student to learn an exces-
sively smooth distribution that encompasses the entire support
of the teacher. RKL leads to mode-collapsing [15], [9], where
the student focuses on one of the highly probable, salient
regions of the teacher distribution and ignores the remaining
ones. JS distillation gives rise to mode-underestimation [16],
[17] where the student underestimates the probability of rare
events due to insufficient penalty.

Another challenge of performing sample-wise KD on LLMs
is that for discriminative tasks, the low-dimensional categorical
outputs from the teacher provide limited insights into their
underlying distributions in the high-dimensional hidden space.
One intuitive solution is to bring in a batch of samples to
collectively grasp the distribution differences. Nevertheless,
existing divergence measures can only independently deal with
each sample pair for logit-by-logit matching because they are
not distance metrics. Given a batch of samples, they cannot
locate the paired teacher and student logits from the same
sample for overall distance minimization.

To address these challenges, we propose the Sinkhorn
Knowledge Distillation, termed as SinKD, for distillation of
LLMs. In consideration of generalizability, we tackle logits-
based KD in the present study, which would benefit a broad
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range of applications. Our SinKD employs the Sinkhorn
distance [18], a variant of the Wasserstein distance [19],
as divergence measure. The Wasserstein distance quantifies
how different two distributions are by solving the optimal
transport plan between them. Intuitively, it can be deemed as
the minimum “effort” required to transform one distribution
(i.e., student’s logits distribution) into the other (i.e., teacher’s
logits distribution), where the “effort” can be defined as the
product of the mass being moved and the moving distance.
Compared with traditional divergence measures, it is more
sensible as a cost function for distillation since it does not rely
on implicit assumptions about distributions to be measured.
Furthermore, it is differentiable almost everywhere, enabling
easy optimization. Despite these advantages, the Wasserstein
distance itself is difficult to be computed analytically. Its as-
sociated computational cost is prohibitively high for distilling
LLMs. Under such circumstance, we propose to use Sinkhorn
distance as an efficient approximation, which not only retains
all the benefits of the Wasserstein distance but also greatly
mitigates its cost issue for on-line distillation.

A straightforward application of Sinkhorn distance on
sample-wise logits matching, though feasible, cannot take full
advantage of its perception of structural differences in distri-
butions. Fortunately, Sinkhorn distance is a symmetric metric
and its derivation from the optimal transport (OT) imposes
explicit constraints on matching correctness. It means that
given a batch of logits outputs from the teacher and the
student respectively as sets A and B, the minimization of the
overall Sinkhorn distance between A and B enforces a precise
element-wise matching between the two outputs coming from
the same sample. Such properties allow it to work beyond
sample-wise distillation and lay a solid foundation for batch-
wise reformulation. As a result, we propose the “batchified”
SinKD. In this way, we can capture geometric structures
of the intricate and implicit distributions even through low-
dimensional observations. We do not introduce additional
modules or modify output formats specific to NLP tasks.

Extensive experiments are conducted in view of 1) compa-
rability, 2) validity, and 3) generalizability. For comparabil-
ity, we test SinKD with BERT on the GLUE benchmark [20]
and it consistently outperforms the SOTA KD methods. For va-
lidity, we provide a comprehensive analysis on ablation studies
and hyper-parameters tuning. Our findings advise practitioners
on how to adopt SinKD in their own work. For generalizability,
we test SinKD on the SuperGLUE benchmark [21] with LLMs
of various architectures, ranging from the encoder-decoder
T0 [3] to the decoder-only GPT-Neo [22] transformers. Our
SinKD showcases robustness across model choices while
previous studies merely investigate KD techniques on the
encoder-only transformers (e.g., BERT).

In summary, our contributions are:
• We propose a knowledge distillation approach, SinKD,

to employ the Sinkhorn distance for divergence measure.
It not only addresses limitations of KL, RKL, and JS di-
vergences under extreme scenarios, but also circumvents
the computation burden of Wasserstein distance.

• We unearth the properties of Sinkhorn distance and
further reformulate SinKD into batch-wise OT, extending

its applicability in NLP tasks.
• Extensive experiments in terms of comparability, validity,

and generalizability demonstrate the superiority of SinKD
over SOTA methods. We offer practical guidelines of
distillation for real-world applications.

Summary of Changes The present study is an extension of
our previous work [23]. Major changes of the current extended
version can be summarized below:

• The regression task is newly introduced for performance
comparison and ablation studies.

• More experiments on the generalizability of SinKD are
performed on larger models.

• The effect of prompt templates on distillation of genera-
tive LLMs is studied for further discussion.

• A more “glass-box” evaluation of our SinKD is conducted
from the aspect of the representations of hidden states,
the patterns of attention mechanism, and the layer-wise
performance analysis.

• One new section in the related work for distillation with
Sinkhorn distance is added.

• Extension of our SinKD to one-hot label fine-tuning is
newly introduced to confirm its broad application.

• Experiments beyond NLP tasks (e.g., image classifica-
tion) are added to verify the effectiveness of our SinKD
in various domains (e.g., computer vision).

II. RELATED WORK

A. Knowledge Distillation

Knowledge distillation (KD) is proposed to transfer the in-
trinsic and inherent knowledge of a teacher model to a student
model via approximating the soft targets (e.g., output logits
and intermediate representations) of the teacher model. The
standard training approach of logits-based KD leverages both
the cross-entropy loss and the distillation loss as a weighted
combination for stable and efficient optimization of the student
model. Existing KD methods can be simply classified into
two categories: 1) logits-based KD and 2) representation-based
KD. The logits-based KD is popularized by [6]. They force the
student to match the predictions of the teacher as soft targets
via cross-entropy loss, which is equivalent to minimize the
KL divergence between teacher and student probabilities. [13]
bring logits-based KD into generative language models and
propose sequence KD. [24] and [25] apply KD on BERT for
smaller models with minor degradation. [7] propose ENGINE
to use the reverse KL for distillation of a non-autoregressive
translation model. For representation-based KD, the hidden,
intermediate representations of input tokens have been utilized
as the matching targets of the student [26], [24], [27], [28],
[29], [30]. There also exist methods that can adapt to either
logits-based or representation-based KD [31], [32], [33], [34].
Notably, KD-Zero [33] and Auto-KD [34] leverage evolution-
ary and Monte Carlo tree search to autonomously identify
effective distillation strategies for any teacher-student archi-
tectures. In contrast to KD-zero and Auto-KD, our approach
focuses on addressing the limitations inherent in existing
distillation divergence measures.
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In this paper, we primarily focus on logits-based KD and
investigate the fundamental problem: how to transfer label-
supplementary knowledge from the teacher to the student
with an effective and reliable divergence measure. Previous
studies exploit KL divergence [6], RKL divergence [7], [8],
JS divergence [9], [10], [11], and sophisticated distance mea-
sures [35], [36], [37], [38], [39]. However, these methods
do not consistently capture subtle distribution differences and
tend to take“shortcuts” in student imitating the teacher. To
address these limitations, we combine the strengths of KL
divergence in typical situations with the robustness of the
Sinkhorn Distance in handling distribution mismatches and its
ability to capture the geometry of probability distributions.

B. Sinkhorn Distance

We first introduce the Wasserstein distance as a founda-
tion for the Sinkhorn distance. It is a dissimilarity metric
derived by the mass transportation theory of two probability
measures. Since the Wasserstein distance takes into account
the underlying geometry of the distribution space [19], [40],
[41], [42], it enjoys high popularity in generative adversarial
networks [12], [43], [44], unsupervised learning [45], [46],
[47], causal discovery [48], [49], reinforcement learning [50],
[51], [52], [53] and task similarity estimation [54]. However,
the Wasserstein distance is too costly to be computed and
its efficient approximation is a prerequisite for distillation.
The Sinkhorn distance stems from it and incorporates an
extra entropy regularization term to make the OT tractable.
It is informally defined by the minimum transport cost of
an entropy-regularized OT plan [18], and has been successful
in classification [55], [56], machine translation [57], domain
adaptation [58], [59], [60], teacher model selection [61], [62]
and generative modeling [63], [64].

For distillation of LLMs, especially under discriminative
tasks, the vanilla sample-wise SinKD cannot make the best use
of its desirable properties in perceiving structural differences
between distributions. On the contrary, we propose the batch-
wise SinKD to make up the insufficient knowledge revealed
from the low-dimensional outputs of the teacher, improving
its generalization over tasks.

C. Distillation with Sinkhorn Distance

The divergence measures derived from the optimal transport
theory have been recently proposed for distillation of NLP
models. Specifically, Lu et al. [61] introduce the concept of
’faculty distillation’, a novel approach where the student se-
lects the most relevant teacher from a group. They use optimal
transport to bridge the differences of task and label space
between teacher and student models. Similarly, Bhardwaj et
al. [62] develop multiple teachers for knowledge distillation.
Inspired by the optimal transport, they introduce the semantic
distance as a new metric to evaluate the quality of knowledge
transfer under the federated learning settings.

The differences between our SinKD and previous distillation
methods that use Sinkhorn distance [61], [62] are three-fold.
First, we focus on addressing specific limitations in divergence

measures and therefore exploit the Sinkhorn distance to im-
prove the precision of assessing disparities between teacher
and student distributions. In contrast, they propose to use
Sinkhorn distance for selection of the most appropriate teacher
from multiple ones. Second, unlike existing methods [61],
[62], we directly calculate the Sinkhorn distance without
gradient computation. Besides, we propose the batch-wise
implementation for capturing geometric intricacies of distribu-
tions across samples in a batch. Third, in our setting, only one
teacher is involved and we do not polish the target logits from
the teacher. However, both [61] and [62] introduce teacher
groups and their output logits are dynamically weighted for
on-the-fly target adjustment.

III. METHODOLOGY

In this section, we first review classic divergence measures
and analyze their drawbacks. Then, we present details of
SinKD within an OT framework.

A. Problem Statement

Given a sample xi and its ground-truth label yi ∈ Rd in the
training set, the output logits with softmax activation στ from
the teacher fT and the student fS are respectively ti ∈ Rd

and si ∈ Rd:

ti = στ (fT (xi)), si = στ (fS(xi)), (1)

where τ is the temperature and d is the dimension of the
output logits. The objective of KD is to minimize the measured
divergence J(ti, si) for knowledge transfer.

B. Classic Divergence Measures

a) KL Divergence: It quantifies the amount of informa-
tion lost when si approximates ti as:

JKL(ti, si) ≈
d∑

j=1

(−ti(j) log si(j) + ti(j) log ti(j)). (2)

Here, j denotes the index of an element in a vector. Despite
its popularity, KL divergence suffers from three limitations.
First, it is asymmetric with JKL(ti, si) ̸= JKL(si, ti), which
introduces inconsistencies due to its violation of the property
as a distance metric. Second, the student model optimized
by the KL loss attempts to average the teacher’s multimodal
distribution, ending up with an underfitting of these modes.
This is known as the mode-averaging problem. Consequently,
the student fails to capture all crucial patterns of data and
ultimately impacts performance. Third, the KL divergence
corresponds to a non-smooth function, posing challenges to
optimization.

b) RKL Divergence: It addresses the issue of mode-
averaging associated with JKL(ti, si):

JRKL(ti, si) ≈
d∑

j=1

(si(j) log si(j) − si(j) log ti(j)). (3)

However, it shares the inherent asymmetry with KL which
leads to inconsistencies in capturing differences. Furthermore,
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Fig. 2. Illustration of our SinKD pipeline: 1) cost matrix computation, 2)
sinkhorn normalization, and 3) sinkhorn loss.

the student optimized by a RKL loss tends to pay attention
only to highly likely events of the teacher’s distribution, which
is known as mode-collapsing. Accordingly, if the teacher
assigns zero-probability to an event, the student is compelled
to do the same. This “zero-forcing” effect could be problematic
as the student lacks the capacity to track the complete distri-
bution of the teacher, resulting in suboptimal performance.

c) JS Divergence: It combines both KL and RKL by:

JJS(ti, si) ≈
1

2

d∑
j=1

(−si(j) logmi(j) + si(j) log si(j)

− ti(j) logmi(j) + ti(j) log ti(j)),

(4)

where mi =
1
2 (ti+si). While the JS divergence overcomes the

asymmetry shortcoming of the KL divergence, it is still subject
to non-smoothness that makes it challenging to optimize.
Moreoever, the student may excessively underestimate the
probability of rare events as the JS loss does not penalize
adequately for matching low probability regions. There also
exists a risk of gradient vanishing when JJS(ti, si) degenerates
as a constant on distributions with few or even no overlap.

C. Sinkhorn Distance

The Sinkhorn distance provides a fast approximation to the
Wasserstein distance by incorporating entropy regularization.
This method considers the minimum cost of mass transmission
in converting one probability distribution into another.

a) Wasserstein Distance Definition: First, we define the
Wasserstein distance, which involves the set of a transportation
polytope U(ti, si). This set consists of all matrices of P ∈
Rd×d

+ that satisfy the following constraints:

U(ti, si) = {P ∈ Rd×d
+ |P1d = si,P

T1d = ti}, (5)

where 1d ∈ Rd is a vector of ones. Given a cost matrix D ∈
Rd×d, the Wasserstein distance is:

JWD(ti, si) = min
P∈U(ti,si)

⟨P,D⟩ =
∑
m,n

Pm,nDm,n, (6)

where Dm,n is usually the absolute difference between the
m-th and n-th elements of ti and si:

Dm,n = |ti(m) − si(n)|. (7)

b) Sinkhorn Distance Definition: To circumvent the sub-
stantial computation entailed by solving such an OT problem,
Sinkhorn distance is proposed as a fast approximation to the
Wasserstein distance for a constrained optimization [18]. It is
defined as the inner product between the OT plan Pλ and the
cost matrix D:

JSD(ti, si) =
〈
Pλ,D

〉
, (8)

where λ > 0 is the weight for entropy regularization.
c) Obtaining the OT Plan Pλ: The OT plan Pλ is

obtained by minimizing:

Pλ = argmin
P∈U(ti,si)

⟨P,D⟩ − λh(P), (9)

where h(P) is the entropy of the matrix P. The entropy
term encourages the transport plan to be more spread out for
easier optimization. The vanilla solution to Pλ by sample-wise
Sinkhorn normalization [18] is performed between ti and si
in a manner of iterative updates:(

ut,vt
)
←

(
ti ⊘

(
KTvt−1

)
, si ⊘

(
Kut−1

))
, (10)

K = exp(−D

λ
), (11)

where ⊘ indicates element-wise division and t denotes the
iteration time. Two vectors u ∈ Rd,v ∈ Rd are non-negative,
representing scaling factors used to adjust the transport plan in
the Sinkhorn algorithm. Both u and v are typically initialized
as vectors of ones, i.e., u(0) = 1 and v(0) = 1. Such
initialization with all-ones vectors has two benefits: 1) it
makes the iterative updates of the involved variables easy
to compute at the beginning stage, where some unnecessary
complex operations can be saved. 2) it avoids large fluctuations
of the values of u and v during continuous updates of the
algorithm. The kernel matrix K ∈ Rd×d is constructed by
applying the Gaussian kernel on D with the weight λ for
entropy regularization. Finally, Pλ is defined as:

Pλ = diag
(
vt
)
Kdiag

(
ut
)
. (12)

D. Batch-wise Reformulation

In view of properties of the Sinkhorn distance metric, we
can get rid of the sample-wise KD that only works on each
teacher-student sample pair, and instead perform KD on groups
of teacher and student samples. A batch of b samples all
participate in divergence measures with their overall output
logits t ∈ Rb×d and s ∈ Rb×d respectively from the teacher
and the student. It thereby increases the dimension of the
“observational” space via batch-wise reformulation especially
when d≪ b holds.

a) Cost Matrix Computation: To compute the cost ma-
trix, we use the ℓp-norm to measure the pairwise differences
between the i-th and j-th samples in a batch. This results in
the entry Di,j of the “batchified” cost matrix D ∈ Rb×b:

Di,j = ∥ti − sj∥p. (13)
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b) Sinkhorn Normalization: Before we propose the
batch-wise Sinkhorn normalization, we reformulate the
sample-wise solution to Pλ (Eq. 10) into a equivalent vector-
form with iterations only on K:

K̂t ← diag
(
Kt−11d ⊘ si

)−1
Kt−1,

Kt ← K̂tdiag

((
K̂t

)T
1d ⊘ ti

)−1

,
(14)

where K0 = K ∈ Rd×d is defined in Eq. 11. For distillation
beyond the d-dimensional space, we propose a more compact
solution in the matrix-form for batch-wise normalization with
K ∈ Rb×b:

K̂t ← diag
(
Kt−11b ⊘ws

)−1
Kt−1,

Kt ← K̂tdiag

((
K̂t

)T
1b ⊘wt

)−1

,
(15)

where ws and wt respectively represent the weights of each
element involved in the batch-wise KD from the student
and teacher. Without loss of generality, we assume uniform
distributions with ws = wt = 1

b1b. Given such conditions,
updates on Kt (Eq. 15) can be further simiplified as:

K̂t ← Kt−1 ⊘
(
Kt−11b1

⊤
b

)
,

Kt ← K̂t ⊘
(
1b1

⊤
b K̂

t
)
.

(16)

Out of simplicity, irrelevant constants are excluded from the
equations above. With a pre-determined number of iterations
T , the OT matrix is derived:

Pλ = KT (17)

c) Sinkhorn Loss: The batch-wise SinKD loss is:

LSD = JSD(t, s) =
〈
Pλ,D

〉
=

∑
i,j

KT
i,jDi,j (18)

We illustrate the entire pipeline in Fig. 2 and Alg. 1.
d) Total Loss: For each batch of b samples, we follow

the standard training approach to use a combination of the
cross-entropy loss LCE, the KL loss LKL, and our LSD:

L =

b∑
i=1

[(1− α)LCE(yi, si)

+ αLKL(ti, si)] + βLSD,

(19)

where α and β are weights, and LKL(ti, si) ≈ LCE(ti, si)
given that the second term in JKL(ti, si) can be viewed
as a constant during distillation. Such weighted combination
(Eq. 19) takes advantages of the KL divergence in dealing
with typical situations while benefiting from the robustness of
Sinkhorn Distance in solving severe distribution mismatches.

E. Variants of our SinKD

a) Alternative D: Apart from Eq. 21, we can further
take into account all the d-dimensional logits of b samples by
flattenning t and s for a D ∈ Rbd×bd:

Dim,jn = |ti(m) − sj(n)|. (20)

The normalization is performed on K ∈ Rbd×bd with ws =
wt =

1
bd1bd. In this case, SinKD takes a broader perspective

of batch distributions with a multiplied dimension bd, signifi-
cantly exceeding the sample-wise KD.

b) Extension to Regression Tasks: For regression, the
model does not generate probabilities for each option and only
produces one scalar (d = 1) instead. For a batch of b samples,
the outputs of the teacher and student models are denoted
as t ∈ Rb×1 and s ∈ Rb×1 , respectively. To calculate the
batch-wise Sinkhorn distance between the teacher and student,
entries of the cost matrix are determined by the absolute
differences between the “batchified” regression outputs:

Di,j = |ti − sj | . (21)

In the context of regression, the cross-entropy loss and KL
loss are inapplicable. We substitute these terms in Eq. 19 with
the mean squared error (MSE) loss LMSE:

L =
b∑

i=1

[(1− α)LMSE(yi, si)

+ αLMSE(ti, si)] + βLSD.

(22)

c) Extension to One-hot Label Fine-Tuning: Our SinKD
can also be applied for fine-tuning models only with one-hot
labels where logits from the teacher model are unavailable.
In such scenarios, the one-hot labels can be treated as the
logits of a “hypothetical” one-hot teacher model. Given the
predominant zeros in one-hot logits, traditional divergence
measures (e.g., KL) become impotent as they fail to handle
such extreme cases in divergence quantification. Therefore, we
simply ignore the KL term in Eq. 19 and present:

L =

b∑
i=1

αLCE(yi, si) + βLSD. (23)

Algorithm 1 Sinkhorn Algorithm for Knowledge Distillation
Require:

Teacher output t, Student’s output s,
Hyper-parameter λ, Maximum number of iterations T

Ensure:
Sinkhorn loss LSD

1: Initialize: Compute distance matrix Di,j = ∥ti − sj∥p
2: Initialize: Compute kernel matrix K← exp

(
−D

λ

)
3: Set iteration counter t← 0
4: while t < T do
5: Normalize rows: K← K⊘

(
K1b1

T
b

)
6: Normalize columns: K← K⊘

(
1b1

T
b K

)
7: Increment iteration counter t← t+ 1
8: end while
9: return Sinkhorn loss LSD ← ⟨K,D⟩ =

∑
i,j KijDij

IV. EXPERIMENTAL SETTINGS

A. Datasets

We evaluate our method on eight tasks of the GLUE bench-
mark [20], including seven discriminative tasks: CoLA [65],
SST-2 [66], MNLI [67], MRPC [68], RTE [69], QNLI [70]
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QQP [71], and one regression task STS-B [72]. For evaluation
metrics, we follow previous works [27], [32], [31] to report
accuracy (MNLI, SST-2, QNLI, QQP, and RTE), F1 score
(MRPC), Matthews correlation coefficient (CoLA) and and
Spearman’s rank correlation coefficient (STS-B). Note that all
discriminative tasks of GLUE are associated with extremely-
low dimension of logits output (d = 3 for MNLI and d = 2
for the remainings tasks).

B. Implementation Details
Our SinKD is implemented in PyTorch Transformers [73].

For comparability, we follow AD-KD [27] to set BERTbase
as the teacher and a smaller BERT6 [25] as the student for
task-specific fine-tuning. For generalizability, we also validate
SinKD on T0 [3] and GPT-Neo [22]. Note that for all GLUE
tasks except MNLI, two definitions of D (Eqs. 21,20) are
equivalent given the constraint of

∑d
m=1 ti(m) = 1 and d = 2.

Consequently, we use the default D by Eq. 21. Out of sim-
plicity, we set p = 1 (ℓ1-norm) for D. The hyper-parameters
are optimized via grid search to determine the learning rate
lr ∈ {2e − 5, 3e − 5, 4e − 5, 5e − 5}, α ∈ {0.8, 0.9, 1.0},
b ∈ {16, 32, 64}, and τKL ∈ {1, 2, 3, 4}. We empirically set
τSD = 2, λ = 0.1, T = 20, and β = 0.8. Discussions on the
effect of T , λ, τSD, τKL, b, α, and β can be found in Sec. V-C.

C. Baselines
We compare SinKD with SOTA KD methods. For logits-

based KD, we include the vanilla KD [6], RCO [36],
DML [74], and PD [25]. For representation-based KD, we
compare PKD [35], TinyBERT [26], RKD [37], CKD [75],
SFTN [38], TAKD [76], ProKT [77], MGSKD [77], MetaDis-
till [31], ReAugKD [32], and AD-KD [27]. For fair com-
parison, we follow [27] to exclude MiniLM [78] and Mo-
bileBERT [79] as their two-stage settings involve both task-
agnostic and task-specific distillation. In contrast, we empha-
size a generalized one-stage setting without “customized” pre-
training. Baseline results are quoted [27], [32].

V. RESULTS AND DISCUSSIONS

A. Comparison with SOTA
Table I shows that SinKD outperforms all baselines on most

datasets. Specifically, SinKD achieves an average increase of
0.47% and 1.17% over AD-KD [27] and ReAugKD [32],
respectively, for classification tasks. Compared with AD-KD,
SinKD reduces the performance gap between the student and
the teacher over 57%, highlighting that SinKD effectively nar-
rows such gap by injecting structural knowledge from teacher
to student. In the regression task of STS-B, our approach also
attains state-of-the-art performance relative to other baseline
methods compared. Our improvements can be attributed to the
unique properties of Sinkhorn distillation, where the integrated
characteristics of distributions are respected during distillation
and thereafter facilitate impartial, efficient knowledge transfer
for robust convergence. We also notice that SinKD does not
rank the top on QNLI, possibly due to suboptimal hyper-
parameters for this specific task. Meticulous tuning of hyper-
parameters might yield better results, but will impair compa-
rability and therefore is beyond the scope of the present study.

B. Ablation Study

a) Sinkhorn loss benefits the student the most among all
losses: In order to study the impact of each loss component,
we carry out ablation studies on three variations of SinKD:
1) SinKD without Sinkhorn loss, 2) SinKD without KL
divergence loss, and 3) SinKD without cross-entropy loss.
As revealed in Table II, significant decreases over all tasks
can be observed when Sinkhorn loss is removed. In addition,
the drop of performance without KL divergence loss suggests
that the proposed SinKD is supplementary to the vanilla KL
divergence in distribution measurements. With respect to the
cross-entropy loss, its supervision from ground-truth labels
directly improves the student model and consequently should
be kept intact during distillation. Each component contributes
to diminishing the gap between the student and the teacher.
Our proposed Sinkhorn loss brings the most pronounced gains
over other losses, confirming the validity of Sinkhorn distance
as a stable metric for convergence to global optimum.

b) Batch-wise SinKD excels sample-wise SinKD: Ta-
ble III demonstrates the superiority of the batch-wise SinKD
over the sample-wise SinKD on all tasks, implying that the
Sinkhorn distance is indeed adept in handling the deviation
of the student from the teacher in a high-dimensional space.
The sample-wise distillation treats each instance independently
while neglecting the overall tendency in a batch of samples.

c) SinKD surpasses distillation methods based on vari-
ants of f -divergence: To investigate if the existing distillation
methods with f -divergence measures can achieve competitive
results, we replace our Sinkhorn loss with losses based on:
1) RKL divergence, 2) JD divergence, and 3) total variation
distance (TVD). To fairly compare with SinKD, each loss
mentioned above is combined with cross-entropy loss and
KL divergence loss during distillation. Table IV shows that
our SinKD outperforms three other distillation methods on all
datasets, verifying the superiority of Sinkhorn distance over
variants of f -divergence measures in matching distributions. It
is notable that traditional divergence measures like KL, RKL
and JS are inapplicable for regression tasks like STS-B as
they rely on specific probability values, which showcases the
superiority and broad applicability of batch- wise knowledge
distillation Additionally, it is worth noting that among the other
three methods, TVD exhibits slight advantages over RKL and
JS divergence on average. Such finding is consistent with [9].
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Fig. 3. Performance at different student scales on MRPC (left) & QQP
(right). Best viewed magnified.

d) SinKD generalizes well on student LLMs across
scales: To thoroughly assess the influence of size of student
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TABLE I
COMPARISON WITH SOTA METHODS ON GLUE WITH BERTBASE AS THE TEACHER (T) AND BERT6 AS THE STUDENT (S). THE FINAL COLUMN

PRESENTS TWO AVERAGES: THE FIRST EXCLUDES BOTH THE MNLI-(M/MM) AND STS-B SCORES, AND THE SECOND EXCLUDES ONLY THE
MNLI-(M/MM) SCORES.

Method #Params. COLA SST-2 MNLI-(m/mm) MRPC RTE QNLI QQP STS-B Avg(MCC) (ACC) (ACC) (F1) (ACC) (ACC) (ACC) (Spear)
BERTbase (T) [1] 110M 60.3 93.7 84.9/84.8 91.4 71.1 91.7 91.5 89.4 83.28/84.16
BERT6 (S) [25] 66M 51.2 91.0 81.7/82.6 89.2 66.1 89.3 90.4 88.3 79.53/80.79

Task-specific Representation-based Distillation
PKD [35] 66M 45.5 91.3 81.3/- 85.7 66.5 88.4 88.4 86.2 77.63/78.86
TinyBERT [26] 66M 53.8 92.3 83.1/83.4 88.8 66.5 89.9 90.5 88.3 80.30/81.44
RKD [37] 66M 53.4 91.7 - 86.1 68.6 89.5 90.9 - 80.03/-
CKD [75] 66M 55.1 93.0 83.6/84.1 89.6 67.3 90.5 91.2 89.0 81.11/82.24
SFTN [38] 66M 53.6 91.5 - 85.3 68.5 89.5 90.4 88.5 79.80/81.04
TAKD [76] 66M 53.8 91.4 - 85.0 68.5 89.6 90.7 88.0 79.83/81.00
ProKT [77] 66M 54.3 91.3 - 86.3 68.4 89.7 90.9 88.6 80.15/81.36
MGSKD [80] 66M 49.1 91.7 83.3/83.9 89.8 67.9 90.3 91.2 88.5 80.00/81.21
MetaDistill [31] 66M 58.6 92.3 - 86.8 69.4 90.4 91.0 89.1 81.42/82.51
ReAugKD [32] 66M 59.4 92.5 - 86.3 70.4 90.7 91.2 - 81.75/-
AD-KD [27] 66M 58.3 91.9 83.4/84.2 91.2 70.9 91.2 91.2 89.2 82.45/83.41

Task-specific Logits-based Distillation
Vanilla KD [6] 66M 53.6 91.1 82.7/83.1 89.4 66.8 90.1 90.5 88.7 80.25/81.46
RCO [36] 66M 53.6 91.4 - 85.1 67.6 89.7 90.6 88.3 79.67/80.90
DML [74] 66M 53.7 91.5 - 85.1 68.4 89.6 90.3 88.1 79.77/80.96
PD [25] 66M - 91.1 82.5/83.4 89.4 66.7 89.4 90.7 - -/-
SinKD (ours) 66M 60.2 93.1 83.8/84.2 91.3 71.1 90.5 91.3 89.2 82.92/83.81

TABLE II
EFFECT OF DIFFERENT LOSS TERMS ON GLUE. FOR STS-B, LCE AND LKL ARE REPLACED BY LMSE(yi, si) AND LMSE(ti, si).

Method COLA SST-2 MNLI-(m/mm) MRPC RTE QNLI QQP STS-B
(MCC) (ACC) (ACC) (F1) (ACC) (ACC) (ACC) (Spear)

SinKD (ours) 60.2 93.1 83.8/84.2 91.3 71.1 90.5 91.3 89.2
w/o LSD 53.6 91.1 82.7/83.1 89.4 66.8 90.1 90.5 88.7
w/o LKL 56.2 91.7 82.3/83.0 90.1 69.3 90.2 90.7 88.4
w/o LCE 58.0 92.3 83.5/84.1 91.1 70.4 90.4 91.3 88.4
w/o LKL&LSD 51.2 91.0 81.7/82.6 89.2 66.1 89.3 90.4 88.3

TABLE III
COMPARISON BETWEEN THE SAMPLE-WISE AND BATCH-WISE SINKD ON GLUE. N/A INDICATES THAT THE METHOD IS NOT APPLICABLE FOR THIS

TASK.

Level COLA SST-2 MNLI-(m/mm) MRPC RTE QNLI QQP STS-B
(MCC) (ACC) (ACC) (F1) (ACC) (ACC) (ACC) (Spear)

Sample-wise 54.2 91.5 83.2/83.7 90.4 69.0 90.3 91.2 N/A
Batch-wise 60.2 93.1 83.8/84.2 91.3 70.0 90.5 91.3 89.2

LLMs on the performance of SinKD, we conduct an extensive
analysis with comparison between the vanilla KD and SinKD.
Without loss of generality, we take two tasks (MRPC and
QQP) for demonstration. A broad range of model scales [25]
are employed to explore the adaptability and robustness of
SinKD when applied on student models with various config-
urations. Note that both the vanilla KD and our SinKD are
logits-based KD methods, which are independent of model
structure by nature and thus enjoy high versatility. As illus-
trated in Fig. 3, SinKD consistently outperforms the vanilla
KD on both two tasks across all scales. Such generalizability
on model size confirms the potential of SinKD as an efficient
and reliable KD method.

C. Discussion on Hyper-parameters

a) T as the number of Sinkhorn iterations: We vary the
number of iterations T and results (see Table V) reflect the
importance of selecting an appropriate T . An increase of T
to 20 respectively improves F1 scores for MRPC (91.3) and
accuracy for QQP (91.3), suggesting that sufficient iterations
is crucial to approximation and convergence. Nevertheless,
raising the iterations to 50 yields no further improvement. It
indicates the existence of a saturation point, beyond which
additional iterations are not beneficial but redundant. Hence,
we set T = 20 throughout experiments.

b) λ as the weight of entropy-regularization: The
Sinkhorn distance is derived from the entropy-regularized
OT problem, where the regularization term promotes a more
dispersed, less concentrated OT plan. In other words, entropy-
regularization would enhance the numerical stability and
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TABLE IV
COMPARISON WITH DISTILLATION METHODS BASED ON VARIANTS OF f -DIVERGENCE ON GLUE. N/A INDICATES THAT THE METHOD IS NOT

APPLICABLE FOR THIS TASK.

Method Complexity COLA SST-2 MNLI-(m/mm) MRPC RTE QNLI QQP STS-B
(MCC) (ACC) (ACC) (F1) (ACC) (ACC) (ACC) (Spear)

RKL [8] O (bd) 53.9 91.6 82.9/83.4 90.5 67.1 90.1 91.1 N/A
JS [9] O (bd) 54.2 92.2 83.1/83.7 90.7 68.9 90.3 91.2 N/A
TVD [9] O (bd) 54.1 92.1 83.3/83.8 90.9 70.0 90.2 91.2 87.9
SinKD O

(
b2 (d+ T )

)
60.2 93.1 83.8/84.2 91.3 71.1 90.5 91.3 89.2

TABLE V
EFFECT OF T ON MRPC & QQP.

Number of MRPC QQP
Iterations T (F1) (ACC)

2 90.6 91.0
5 90.9 91.0
10 90.9 91.1
20 91.3 91.3
50 91.3 91.3

TABLE VI
EFFECT OF b ON MRPC & SST-2.

Batchsize b
MRPC SST-2

(F1) (ACC)
2 90.5 91.3
8 90.8 92.4

16 91.3 92.8
32 91.1 93.1
64 91.3 93.1
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Fig. 4. Effect of λ on MRPC & QQP (left) and τSD on MRPC & RTE
(right). Best viewed magnified.

computational tractability of the solution to OT problem.
Theoretically, λ dictates the balance between the accuracy
of the OT approximation and the stability of the solution. A
larger λ results in a smoother and more stable solution, albeit
potentially less accurate. A smaller λ yields a more accurate
solution at the risk of numerical instability. As demonstrated
in Fig. 4(a), a λ within the range of 0.1 to 0.3 appears to
achieve an optimal trade-off among various aspects. Out of
consistency, we choose λ = 0.1 throughout experiments.

c) τSD as the temperature in Sinkhorn loss: Fig. 4(b)
systematically investigates the influence of τSD on distillation
on the tasks of MRPC and QQP. Our findings indicate that
the default empirical setting τSD = 2 is appropriate for
both two tasks. A smaller τSD may cause the student model
to concentrate solely on learning the most salient features,
neglecting the nuanced but valuable information present in
less probable categories for classification. On the other hand,
a larger τSD results in smoother and more uniform probability
distributions, which confuses the student model to discern
between essential and irrelevant information.
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Fig. 5. Effect of α on MRPC & SST-2 (left) and β on MRPC & RTE (right).
Best viewed magnified.

d) b as the number of batch size: The batch size is
closely associated with the efficiency of geometric structural
learning since the distribution divergences are measured within
each batch of samples for the proposed Sinkhorn distance min-
imization. An increased batch size contributes to enhancing
the student’s understanding of complex geometric inter-sample
relations present within the dataset. Empirical evidence, as
presented in Table VI, elucidates a positive correlation between
the batch size and evaluation results (F1 scores for the MRPC
and accuracy for SST-2). Such performance gains are theo-
retically grounded in the premise that larger batches provide
a more expansive dimensional space, allowing for a more
comprehensive representation of the geometric configuration
during each optimization step. A larger batch size b effectively
provides the model with exposure to the intrinsic geometric
variance of the dataset, potentially accelerating the transfer
and assimilation of the teacher model’s knowledge. However,
such benefit becomes negligible when the batch size increases
beyond 32, where both metrics for MRPC and SST-2 remain
almost unchanged. This observation suggests the existence of
a saturation point, which delineates the boundary where the
advantages of augmenting the geometric sampling space are
outweighed by the computational overhead.

TABLE VII
EFFECT OF τKL ON MRPC & SST-2.

Temperature τKL
MRPC SST-2

(F1) (ACC)
1 90.5 92.6
2 90.8 93.1
3 91.1 92.7
4 91.3 92.5

e) τKL as the temperature in KL loss: Table VII provides
the results of how the temperature τKL affects the knowledge
distillation. For the MRPC dataset, a monotonically increasing
trend in the F1-score is observed as τKL ranges from 1 to 4. The
best results of F1-score are achieved at τKL = 4. Conversely,
the accuracy for SST-2 is maximized at a lower temperature
(τKL = 2), beyond which a diminution occurs. It exempli-
fies the dualistic role of τKL: 1) refining the granularity of
probability distributions at lower temperatures and 2) fostering
generalization at higher settings. The optimal value of τKL is to
be task-dependent, underscoring the necessity of task-specific
hyperparameter tuning for SinKD applications.

f) α and β as the loss weights: In the total loss (Eq. 19)
of SinKD, we introduce α and β to balance the contribu-
tions from the cross-entropy loss, KL divergence loss, and
Sinkhorn distance loss. A comprehensive evaluation of various
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TABLE VIII
RESULTS OF T0 ON SUPERGLUE.

Method RTE CB
(ACC) (ACC)

T011B (T) 89.1 100
T03B (S) 87.1 94.6
KL 87.4 94.6
KL+RKL 87.8 96.4
KL+JS 88.1 96.4
KL+SinKD 89.9 98.2

combinations of α and β can be found in Fig. 5. Each time,
we only adjust one parameter and keep the other one fixed.
Our findings indicate that a larger α generally produces better
performance, corroborating that knowledge transfer from the
teacher model does play an indispensable role. In line with the
results of SinKD without the cross-entropy loss (see Table II),
α = 1 causes a drastic decline on SST-2, suggesting that “soft”
guidance from the teacher model is not equivalent to “hard”
supervision from ground-truth labels. Additionally, we observe
that β = 0.8 yields promising results for both two tasks.
Consequently, we keep β = 0.8 fixed and find the optimal
α in {0.8, 0.9, 1.0} respectively for each task.

D. Training Cost and Complexity

In our experiments, the training cost for SinKD depends on
the architecture of the language model and the complexity of
the tasks. We report the runtime on GLUE in Table IX. We
have endeavored to optimize the training process of SinKD
to maintain a balance between efficiency and performance.
Also, we compare the computational complexity of the training
process with SOTA methods in Table X. Under the same
experimental settings where b ≤ 32, d ≤ 3, T = 20, and
e = 768, our complexity is smaller when b(d+ T ) < e. This
indicates that the computational complexity of our method is
lower than any representation-based KD method under these
conditions. When comparing with the SOTA logits-based KD
methods, our proposed SinKD (O(b2(d + T ))) has a higher
complexity than their O(bd) since b(d + T ) > d. However,
given that our results are achieved with moderate values of
b and T , the proposed SinKD still maintains a competitive
computational complexity.

E. Generalizability on Generative LLMs

To demonstrate the potential of our SinKD on generative
LLMs, we perform distillation on various transformer archi-
tectures including the encoder-decoder T0 [3] and the decoder-
only GPT-Neo [22]. Specifically, T011B, GPT-Neo1.3B and
GPT-Neo2.7B serve as the teacher while T03B, GPT-Neo125M
and GPT-Neo2.7B as the student. We validate SinKD on
the SuperGLUE [21] benchmark against SOTA KD methods
based on 1) KL divergence, 2) RKL divergence, and 3) JS
divergence. We choose two datasets of RTE [69], CB [81] for
demonstrative experiments of typical real-word NLP tasks.

a) Comparison with SOTA methods: Table VIII, XI
and XII show that the proposed SinKD surpasses all other KD
methods. Specifically, when compared to the teacher model

Fig. 6. Effect of prompt templates on GPT-Neo2.7B on the RTE task of
SuperGLUE. All templates are chosen from the templates of the Prompt-
Source [82].

GPT-Neo1.3B, a student model with an order of magnitude
fewer parameters (10 times fewer) achieves commendable
performance utilizing our SinKD method. On the RTE task, all
three existing methods of KL, RKL, and JS perform similarly
with respect to the vanilla fine-tuning performance of GPT-
Neo125M. In contrast, the proposed SinKD improved the vanilla
performance by 0.6%. For the CB task, the performance gains
by SinKD are much more obvious, where an increase of 4.5%
in accuracy is achieved. Furthermore, in scenarios where the
parameter sizes of the student and teacher models are more
closely matched, our method facilitates the student model in
reaching performance levels comparable to those of the teacher
model. Such findings showcase that SinKD can generalize to
generative LLMs whose output logits are of high dimension
equivalent to the size of the tokenizer vocabulary. Moreover,
the performance gap between T0 and GPT-Neo can be as-
cribed to two reasons: 1) Architecture. The encoder-decoder
architectures are generally more suitable for discriminative
tasks compared with the decoder-only architectures since the
former better comprehend the input-output relationships with
bi-directional modeling. 2) Model scale. According to the
scaling laws [5], the performance of GPT-Neo is expected
to grow exponentially with billions of parameters increased.
Under the limited GPU budget, experiments on larger decoder-
only models are currently unavailable.

b) Effect of Prompt Templates: In consideration of the
effect of prompt design on performance of generative models,
we also compare the results of GPT-Neo2.7B under different
prompt templates. Out of simplicity and comparability, we
obtain the prompt templates of the SuperGLUE benchmark
from the PromptSource [82]. From Figs. 6 and 7, it is observed
that the GPT-Neo is not robust to prompt templates and the
variance of performance is non-negligible for both two tasks
of the RTE and CB. It is noteworthing that the GPT-3 style
prompt template is not the best template even though the GPT-
Neo shares a similar architecture with GPT-3 [5]. We believe
that due to the nature of these discrimination tasks, prompts
which are originally designed for encoder-only and encoder-
decoder transformers, are not appropriate for direct adaptation
for the GPT-style models. It requires both a reformulation of
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TABLE IX
TRAINING COSTS OF SINKD ON GLUE. TEACHER: BERTBASE , STUDENT: BERT6

Task CoLA MNLI SST-2 QNLI MRPC QQP RTE STS-B
Training Time 20 minutes 6 hours 30 minutes 1 hour 15 minutes 6 hours 5 minutes 12 minutes

TABLE X
COMPUTATIONAL COMPLEXITIES PER BATCH FOR EXISTING SOTA

METHODS IN KNOWLEDGE DISTILLATION. VARIABLES: b = BATCH SIZE, d
= NUMBER OF CATEGORICAL LOGITS (CLASSES), k = NUMBER OF
INTERMEDIATE LAYERS, e = EMBEDDING DIMENSION, N , F , C =

PARAMETERS FROM SFTN [38], m = NUMBER OF RELATION HEADS IN
MGSKD [80], T = NUMBER OF SINKHORN ITERATIONS.

ATTENTION-BASED DISTILLATION COSTS ARE EXCLUDED.

Method Complexity
PKD [35] O(b(ke+ d))
TinyBERT [26] O(b(ke+ d))
RKD [37] O(b3e)
CKD [75] O(b2e+ bd)
SFTN [38] O(Nb(F 2Ce+ d))
TAKD [76]† -
ProKT [77]† -
MGSKD [80] O(mb2e+mb3)
MetaDistill† [31] -
ReAugKD [32] O(b2e)
AD-KD [27] O(b(e+ d))
Vanilla KD [6] O(bd)
RCO [36] O(bd)
DML [74] O(bd)
PD [25] O(bd)
SinKD (ours) O(b2(d+ T ))

† The complexity of these methods is not comparable since the teacher
model and the additionally introduced teacher assistant model are optimized
simultaneously during distillation.

TABLE XI
THE AVERAGED RESULTS OF GPT-NEO ON SUPERGLUE UNDER THREE
DIFFERENT PROMPTS (MEAN±STD.). FOR EACH TASK, THREE PROMPT

TEMPLATES ARE RANDOMLY CHOSEN FROM THE PromptSource [82]
RESPECTIVELY. FOR RTE, WE USE THE PROMPT TEMPLATES OF GPT-3

style, MNLI crowdsource, AND must be true. FOR CB, WE USE THE PROMPT
TEMPLATES OF GPT-3 style, must be true, AND should assume. THE

GPT-NEO1.3B ACTS AS THE TEACHER WHILE THE GPT-NEO125M ACTS AS
THE STUDENT.

Method RTE CB
(ACC) (ACC)

GPT-Neo1.3B (T) 75.4±1.8 86.9±1.0
GPT-Neo125M (S) 64.4±3.2 80.4±1.8
KL 64.7±2.7 83.3±2.1
KL+RKL 64.3±3.2 83.3±2.7
KL+JS 64.6±2.9 82.1±3.1
KL+SinKD 65.0±3.1 84.5±2.7

the task and an explicitly defined and re-organized prompt
for generative models to comprehend the task. Furthermore,
the best design of prompt templates is specific to downstream
tasks and beyond the scope of the present study.

F. Glass-box Evaluation

To enhance our intrinsic evaluation, we investigate and
propose the following additional analyses:

1) Representation of Hidden States: We delve deeper into
how the SinKD reshapes the feature space by focusing on
the representations at various layers of the student model.
Given the same input examples, we compared the differences

TABLE XII
THE AVERAGED RESULTS OF GPT-NEO ON SUPERGLUE UNDER THREE
DIFFERENT PROMPTS (MEAN±STD.). FOR EACH TASK, THREE PROMPT

TEMPLATES ARE RANDOMLY CHOSEN FROM THE PromptSource [82]
RESPECTIVELY. FOR RTE, WE USE THE PROMPT TEMPLATES OF GPT-3

style, MNLI crowdsource, AND must be true. FOR CB, WE USE THE PROMPT
TEMPLATES OF GPT-3 style, must be true, AND should assume. THE

GPT-NEO2.7B ACTS AS THE TEACHER WHILE THE GPT-NEO1.3B ACTS AS
THE STUDENT.

Method RTE CB
(ACC) (ACC)

GPT-Neo2.7B (T) 79.9±2.3 91.7±6.7
GPT-Neo1.3B (T) 75.4±1.8 86.9±1.0
KL 75.8±0.9 90.5±4.5
KL+RKL 77.1±1.5 88.7±2.7
KL+JS 77.6±0.9 91.0±1.8
KL+SinKD 78.1±0.6 91.7±2.1

Fig. 7. Effect of prompt templates on GPT-Neo2.7B on the CB task of Super-
GLUE. All templates are chosen from the templates of the PromptSource [82].

Fig. 8. Cosine similarity of hidden space representation on MRPC and QQP.

in representations of intermediate layers of the student models
before and after distillation. As shown in Fig. 8, it is observed

TABLE XIII
MAE BETWEEN THE TEACHER AND STUDENT IN MRPC.

Base KL RKL JS SinKD
MAE 0.0485 0.0464 0.0463 0.0461 0.0458
Reduction in MAE 0 0.0021 0.0022 0.0024 0.0027
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Fig. 9. MAE of weights across differnet layers on MRPC (left) and QQP
(right). Best viewed magnified.

Fig. 10. Cosine similarity of weights across differnet layers on MRPC (left)
and QQP (right). Best viewed magnified.

Fig. 11. MAE of attention matrix across differnet layers on MRPC (left) and
QQP (right). Best viewed magnified.

Fig. 12. Cosine similarity of attention matrix across differnet layers on MRPC
(left) and QQP (right). Best viewed magnified.
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[SEP]
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[SEP]
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Fig. 13. Visualization of the attention map at the 4-th layer of the student
model before (left) and after (right) distillation. The example is cherry-picked
from the QQP task. Best viewed magnified.

that the cosine similarity of representations decreases with
an increasing layer depth (e.g., 0.97→0.38 for QQP and

1.00→0.72 for MRPC), indicating that the extent of change
in representations is expected to be higher in latter layers.
Notably, representations from the last hidden state undergo
the most significant transform, suggesting that logits-based
distillatiosn predominantly impacts representations of the final
layer. Moreover, we also find that the variation of represen-
tations might depend on: a) the number of training samples
of the downstream tasks, b) the knowledge gap between the
pre-training and the downstream tasks.

For tasks such as MRPC and RTE, given limited amount of
training data, representations of shallow layers exhibit mini-
mal variation while those of deeper layers exhibit significant
changes. This is evidenced by an upward trajectory in the
slope of the curve of the cosine similarity versus layer depth.
For instance, in the MRPC task, the absolute value of cosine
similarity decreases along the layer depth (1 at layer 0→0.7
at layer 6). However, the volume of such changes, namely the
slope of the curve, continuously increased by a factor up to 13
(0.01 at layer 1 → 0.02 at layer 2 → 0.03 at layer 3 → 0.04
at layer 4→ 0.06 at layer 5→ 0.13 at layer 6). This confirms
that changes are expected to be stronger in deeper layers.

On the other hand, for tasks with abundant training data,
the amount of variations is related to the knowledge gap
where the task-specific knowledge is missing during pre-
training. Substantial variations of representations in shallow
layers are observed while changes in upper layers are less
pronounced, demonstrated by the downward slope of the curve
of the cosine similarity versus layer depth. For instance, in
QQP, the slope has been reduced to one-tenth of its original
value (0.10 at layer 1 → 0.08 at layer 2 → 0.07 at layer
3 → 0.02 at layer 4 → 0.01 at layer 5). Since the QQP
dataset contains questions across various domains from the
Quora website, such task of identifying multiple duplicated
questions poses challenges to language models on the extent
of knowledge. Therefore, a large amount of data from specific
domains and tasks would provide models with supplemental
knowledge by fundamentally affecting parameters throughout
layers, bridging the gap between pre-training and fine-tuning.

2) Patterns of Attention Mechanism: In consideration of
the importance of the attention mechanism, we measure the
similarity of self-attention matrices (query, key, and value)
before and after distillation across layers: a) between the base
and fine-tuned student models, b) between the student and
teacher models. In the present study, we take the tasks of
QQP and Microsoft Research Paraphrase Corpus (MRPC) for
demonstration (see Figs. 9, 10, 11, 12).

a) Differences between the Base and Fine-tuned Student
Models: The consistent patterns across tasks are observed
when comparing student models before and after distillation.
The layer-wise cosine similarity of the ’value’ matrices in the
multi-head attention increases as layer deepens. In contrast,
the cosine similarity for ’query’ and ’key’ matrices does not
show strong correlation with the layer depth. Furthermore, the
mean absolute errors (MAEs) for the query, key, and value
components all decrease as the layer deepens, suggesting a
trend towards lower variance in deeper layers. For instance,
for the student model under the MRPC task, the MAE of
’value’ matrices decreases by 13%. The cosine similarity of
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TABLE XIV
COMPARISON WITH SOTA METHODS ON ONE-HOT EVALUATION. N/A INDICATES THAT THE METHOD IS NOT APPLICABLE FOR THIS TASK.

Method COLA SST-2 MNLI MRPC RTE QNLI QQP STS-B
(MCC) (ACC) (ACC) (F1) (ACC) (ACC) (ACC) (Spear)

CE/MSE 51.2 91.0 81.7/82.6 89.2 66.1 89.3 90.4 88.3
TaiLr [83] 49.3 91.1 81.9/82.7 89.1 66.1 89.3 90.5 N/A
MixCE [84] 51.9 91.3 82.0/82.8 89.7 66.4 89.9 90.4 N/A
CE/MSE + sample-wise SinKD 53.7 91.4 81.9/82.8 89.7 67.1 89.4 90.4 N/A
CE/MSE + batch-wise SinKD 55.4 91.9 82.3/83.1 90.0 67.9 89.9 90.6 88.6

TABLE XV
EXPERIMENTAL RESULTS ON THE TESTING SET OF CIFAR-100 [85]. RESULTS OF BASELINES REPORTED IN CRD [86] AND METADISTILL [31] ARE

DIRECTLY CITED HERE.

Teacher ResNet-56 ResNet-110 ResNet-110 VGG-13 ResNet32x4 ResNet32x4
Student ResNet-20 ResNet-20 ResNet-32 VGG-8 ShuffleNetV1 ShuffleNetV2
Teacher 72.34 74.31 74.31 74.64 79.42 79.42
Student 69.06 69.06 71.14 70.36 70.50 71.82
KD [6] 70.66 70.67 73.08 72.98 74.07 74.45
FitNet [87] 69.21 68.99 71.06 71.02 73.59 73.54
AT [88] 70.55 70.22 72.31 71.43 71.73 72.73
SP [89] 69.67 70.04 72.69 72.68 73.48 74.56
CC [90] 69.63 69.48 71.48 70.71 71.14 71.29
VID [91] 70.38 70.16 72.61 71.23 73.38 73.40
RKD [37] 69.61 69.25 71.82 71.48 72.28 73.21
PKT [92] 70.34 70.25 72.61 72.88 74.10 74.69
AB [93] 69.47 69.53 70.98 70.94 73.55 74.31
FT [94] 69.84 70.22 72.37 70.58 71.75 72.50
ProKT [77] 70.98 70.74 72.95 74.12 71.74 74.68
CRD [86] 71.16 71.46 73.48 73.94 75.11 75.65
MetaDistil [31] 71.25 71.40 73.35 73.65 - -
SinKD 71.65 71.54 73.74 73.94 75.34 75.94

TABLE XVI
TRAINING COST OF SINKD ON CIFAR-100 [85].

Teacher ResNet-56 ResNet-110 ResNet-110 VGG-13 ResNet32x4 ResNet32x4
Student ResNet-20 ResNet-20 ResNet-32 VGG-8 ShuffleNetV1 ShuffleNetV2
Training Time 60 minutes 80 minutes 100 minutes 30 minutes 120 minutes 130 minutes

the output dense weight increases with layer depth, while the
intermediate dense weight does not exhibit a clear trend with
respect to the layer. A decrease of MAE can be observed
in both the output and intermediate dense matrices with an
increasing layer depth. Overall, these observations suggest that
larger variations are more prevalent in earlier layers.

In Fig. 13, we provide the visualization of the attention
map from the 4-th layer of the student model before and after
distillation. The example is cherry-picked from the the QQP
task, which requires the model to determine whether two input
questions share the same semantics. We opt to visualize the 4-
th attention layer because the initial layers primarily “digest”
information at the token-level with exchange flow across adja-
cent tokens, whereas the subsequent layers gradually aggregate
information from [SEP] and [CLS] tokens. The intermediate
layer (e.g., 4-th) provides insight into the behavior of the
[CLS] token and the network’s overall dynamics. The distilled
[CLS] token can better focus on information critical for
making judgments (such as ’have children’, ’marry’), whereas
the attention distribution of the model before distillation is
relatively uniform across all normal tokens.

b) Differences between the Student and Teacher Models:
With respect to the similarity between the student and the
teacher, an increase in the cosine similarity of the classifier’s

weight, together with a reduction in MAE, can be observed
in the distilled student model. Such improvement appears
more pronounced than those observed with other divergence
measures. For instance, as shown in Table XIII, compared to
the baseline without distillation, the MAE reduction between
student and teacher models using SinKD exceeded the MAE
reduction achieved by KL divergence distillation by 30%.
These findings imply that the SinKD exhibits superior efficacy
in capturing the characteristics of the teacher model, which is
indicative of a successful knowledge transfer.

3) Layer-wise Performance Analysis: We meticulously in-
vestigate the impact of integrating the classifier heads at
various layers as side outputs. Our findings indicate that
for architectures with relatively sparse neurons (e.g., lower
dimension of the hidden states), there exists a negligible
correlation between the layer-depth and the overall model
performance, where the side outputs from various layers
share similar performance. Conversely, for denser networks,
performance of side outputs consistently increases along the
layer depth. We believe for large language models, the capacity
of intermediate representations get continuously augmented as
layers pile up. Therefore, logits-based KD, where supervision
signals intervene from the very last layer towards front layers,
should take advantage of representations at each layer to
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pinpoint semantic nuances between the student and the teacher.

G. One-hot Label Fine-tuning

One-hot labels can be conceptualized as logit outputs from
a “theoretical” one-hot teacher model. Specifically for both
discriminative and generative language models, the one-hot
labels, either in the dimension of the number of categories
or the size of vocabulary, are widely adopted in maximizing
likelihood estimation (MLE). Unlike existing divergence mea-
sures (e.g., KL), our SinKD method can also be extended to
fine-tuning language models with one-hot labels.

For performance comparison, we contrast our SinKD
against MLE and two of its variants: TaiLr [83] and
MixCE [84]. TaiLr decomposes the TVD and seeks to min-
imize its upper bound alongside the MLE loss. MixCE in-
troduces an approximation technique and employs an in-
terpolation coefficient to merge it with the forward cross-
entropy. While both TaiLr and MixCE utilize novel distance
metrics that theoretically surpass forward cross-entropy in
certain aspects, they inherit the fundamental limitation of
existing divergence measures in representing complex data
distributions. For a fair comparison, we follow TaiLr [83] and
MixCE [84] to adopt their default hyper-parameter settings.
For our SinKD method, we keep hyper-parameters of CE/MSE
configurations unchanged and additionally set α = 1, β = 0.8,
τSD = 2, λ = 0.1 and T = 30. Table XIV reveals that our
batch-wise SinKD consistently surpasses both MLE and other
training paradigms across all tasks in the GLUE benchmark.

Due to the limited information of one-hot labels, the sample-
wise SinKD does not adequately capture the characteristics
of the underlying distribution. Moreover, it is the dependence
on probability distributions that impedes MLE, TaiLr, MixCE,
and the sample-wise SinKD from being applicable for regres-
sion tasks (e.g., STS-B). Such limitation further highlights the
necessity and superiority of our batch-wise reformulation.

H. Sinkhorn Distillation on Image Classification

Beyond the large language models, we investigate whether
the proposed SinKD can be extended to distillation of vision
models. Besides, we explore the versatility and efficacy of our
SinKD across scenarios where the teacher and student models
do and do NOT share the same architecture.

a) Experimental Settings: We align our experimental
setup with the protocols established in CRD [86] and MetaDis-
till [31], focusing on the CIFAR-100 [85] classification chal-
lenge as a typical task in computer vision. Our experiments
span a variety of student-teacher pairs which differ in capacity
and architectural design. We mainly investigate ResNet [85]
and VGG [95] configurations. In addition, we study the
distillation between heterogeneous architectures. Specifically,
we set ResNet as the teacher and ShuffleNet [96], [97] as
the student. Results of the top-1 accuracy are reported for the
distilled student models. For hyper-parameters, we set p = 1
(ℓ1-norm) for D. Their settings are optimized via grid search
to determine α ∈ {0.85, 0.9, 0.95} and β ∈ {0.08, 0.8, 8}. We
empirically set the learning rate lr = 0.05, b = 8, τKL = 4,
τSD = 2, λ = 0.1 and T = 30. Although a more exhaustive

grid search might yield improved outcomes, we are aimed
at demonstrating the robustness and applicability of SinKD
instead of pursuing the optimal hyper-parameter combinations.

b) Baselines: Our method is compared with 13 distil-
lation methods, including one SOTA distillation method in
image classification [86], one cutting-edge language model
distillation framework [31], and other prevalent knowledge
distillation methodologies such as ProKT [77].

c) Results: We show the experimental results of SinKD
distilling ResNet [85], VGG [95] and ShuffleNet [96], [97]
with six different teacher-student pairs. As shown in Table XV,
SinKD consistently surpasses all baseline methods in every
configuration tested, including the current benchmark in image
classification distillation, CRD [86], as well as alternative ap-
proaches with sophisticated feature and loss function designs.
Remarkably, SinKD achieves superior results without resorting
to CRD’s additional mechanisms like negative sampling and
contrastive learning. Such performance underscores the adapt-
ability of our method, confirming its effectiveness across both
homogeneous and heterogeneous architectures. The training
cost is reported in Table XVI.

VI. CONCLUSION

We propose the Sinkhorn distance for divergence measure
and present the SinKD to address limitations of existing
distillation methods. Besides, we propose the batch-wise re-
formulation to capture geometric intricacies of distributions
across samples in the high-dimensional space. Extensive ex-
periments on GLUE and SuperGLUE benchmarks confirm the
superiority of our SinKD over SOTA methods from the aspect
of comparability, validity, and generalizability. Furthermore,
additional experiments on one-hot label finetuning and vision
tasks further demonstrate the universality of our method, show-
casing its effectiveness across a broader range of applications.

Future work includes exploring application to
representation-based KD, attention-based KD, and their
extension to other tasks (e.g., document summarization and
machine translation). Moreover, it would be an interesting
topic to delve deep into conducting rigorous mathematical
analysis and proofs for the effect of the batch-wise Sinkhorn
distillation on intermediate representations.
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