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Abstract. We generalize the DeGroot model for opinion dynamics to
better capture realistic social scenarios. We introduce a model where each
agent has their own individual cognitive biases. Society is represented as
a directed graph whose edges indicate how much agents influence one
another. Biases are represented as the functions in the square region
[−1, 1]2 and categorized into four sub-regions based on the potential re-
actions they may elicit in an agent during instances of opinion disagree-
ment. Under the assumption that each bias of every agent is a continuous
function within the region of receptive but resistant reactions (R), we
show that the society converges to a consensus if the graph is strongly
connected. Under the same assumption, we also establish that the entire
society converges to a unanimous opinion if and only if the source com-
ponents of the graph—namely, strongly connected components with no
external influence—converge to that opinion. We illustrate that conver-
gence is not guaranteed for strongly connected graphs when biases are
either discontinuous functions in R or not included in R. We showcase
our model through a series of examples and simulations, offering insights
into how opinions form in social networks under cognitive biases.

Keywords: Cognitive bias, Multi-Agent Systems, Social Networks

1 Introduction

In recent years, the significance and influence of social networks have experienced
a remarkable surge, capturing widespread attention and shaping users’ opinions
in substantial ways. The dynamics of opinion/belief formation in social networks
involves individuals expressing their opinions, being exposed to the opinions of
others, and adapting or reinforcing their own views based on these interactions.

⋆ Mário S. Alvim and Artur Gaspar da Silva were partially supported by CNPq,
CAPES, and FAPEMIG. Frank Valencia’s contribution to this work is partially
supported by the SGR project PROMUEVA (BPIN 2021000100160) supervised by
Minciencias.
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Modeling these dynamics allows us to gain insights into how opinions form,
spread, and evolve within social networks.

The DeGroot multi-agent model [6] is one of most prominent formalisms for
opinion formation dynamics in social networks. Society is represented as a di-
rected graph whose edges indicate how much individuals (called agents) influence
one another. Each agent has an opinion represented as a value in [0, 1] indicating
the strength of their agreement with an underlying proposition (e.g., “vaccines
are safe”). They repeatedly update their opinions with the weighted average of
their opinion differences (level of disagreement) with those who influence them.
The DeGroot model is valued for its tractability, derived from its connection
with matrix powers and Markov chains, and it remains a significant focus of
study providing a comprehensive understanding of opinion evolution [7].

Nevertheless, the DeGroot model has an important caveat: It assumes homo-
geneity and linearity of opinion update. In social scenarios, however, two agents
may update their opinions differently depending on their individual cognitive
biases on disagreement—i.e., how they interpret and react towards the level of
disagreements with others. This results in more complex updates that may in-
volve non-linear even non-monotonic functions. For example, an individual under
confirmation (cognitive) bias [3] may ignore the opinion of those whose level of
disagreement with them is over a certain threshold. In fact, much of the unpre-
dictability in opinion formation is due to users’ biases in their belief updates,
where users sometimes tend to reinforce their original beliefs, instead of ques-
tioning and updating their opinions upon encountering new information. Indeed,
rather than perfect rational agents, users are often subject to cognitive biases.

In an earlier FORTE paper [1], we introduced a DeGroot-like model with a
non-linear update mechanism tailored for a specific type of confirmation bias.
The model was shown to be tractable and it provides insights into the effect of
this cognitive bias in opinion dynamics. Nevertheless, it also assumes homogene-
ity of opinion update, and choosing a particular function to represent the bias,
although natural, may seem somewhat ad-hoc.

To address the above-mentioned caveat, in this paper we introduce a gen-
eralization of the DeGroot model that allows for heterogeneous and non-linear
opinion updates. Each agent has their own individual cognitive biases on levels of
disagreement. These biases are represented as arbitrary functions in the square
region [−1, 1]2. The model then unifies disparate belief update styles with bias
into a single framework which takes disagreement between agents as the central
parameter. Indeed, standard cognitive biases of great importance in social net-
works such as backfire effect [9], authority bias [10], and confirmation bias [3],
among others, can be represented in the framework.

We classify the biases in [−1, 1]2 into four sub-regions (M,R,B, I) based on
the cognitive reactions they may cause in an agent during instances of opinion
disagreement. For example, agents that are malleable, easily swayed, exhibit
fanaticism or prompt to follow authoritative figures can be modelled with biases
in M. Agents that are receptive to other opinions, but unlike malleable ones,
can exhibit some skepticism to fully accepting them can be modelled with biases
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in the region R. Individuals that become more extreme when confronted with
opposing opinions can be modelled by biases in B. Finally insular agents can be
modelled with the bias in I.

Consensus is a central property for opinion formation dynamics. Indeed the
inability to converge to consensus is often a sign of a polarized society. In this
paper we use the above-mentioned region classification to provide the following
insightful theoretical results for consensus.

– Assuming that each bias of every agent is a continuous function in R, the
society converges to a consensus if that society is strongly connected. This
implies that a strongly connected society can converge to a consensus if its
members are receptive but resistant to the opinions of others.

– Under the same assumption, we also establish that the entire society con-
verges to a unanimous opinion if and only if the source components of the
graph, i.e., strongly connected components with no external influence, con-
verge to that opinion. This implies that upon agreeing on an opinion, closed
and potentially influential groups, can make all individuals converge to that
opinion in a society whose members are receptive but resistant.

– We show that convergence is not guaranteed for strongly connected graphs
when biases are either discontinuous functions in R or not included in R.

We also demonstrate our model with examples and computer simulations that
provide insights into opinion formation under cognitive biases. The open code for
these simulations can be found at https://github.com/bolaabcd/polarization2.

2 An Opinion Model with Cognitive Biases

The DeGroot model [6] is a well-known model for social learning. In this formal-
ism each individual (agent) repeatedly updates their current opinion by averag-
ing the opinion values of those who influence them. But one of its limitation is
that the model does not provide a mechanism for capturing the cognitive biases
under which each individual may interpret and react to the opinion of others.

In this section we introduce a generalization of the DeGroot model with a
mechanism to express arbitrary cognitive bias based on opinion disagreement.

2.1 Influence Graph

In social learning models, a community/society is typically represented as a
directed weighted graph with edges between individuals (agents) representing
the direction and strength of the influence that one carries over the other. This
graph is referred to as the Influence Graph.

Definition 1 (Influence Graph). An (n-agent) influence graph is a directed
weighted graph G = (A,E, I) with A = {1, . . . , n} the vertices, E ⊆ A × A the
edges, and I : A×A → [0, 1] a weight function s.t. I(i, j) = 0 iff (i, j) /∈ E.

https://github.com/bolaabcd/polarization2
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The vertices in A represent n agents of a given community or network. The
set of edges E ⊆ A× A represents the (direct) influence relation between these
agents; i.e., (i, j) ∈ E means that agent i influences agent j. The value I(i, j),
for simplicity written Ii,j , denotes the strength of the influence: 0 means no
influence and a higher value means stronger influence. We use Ai to denote the
set {j | (j, i) ∈ E} of agents that have a direct influence over agent i.

Remark 1. In contrast to [1], we do not require agents to have nonzero self-
influence. Furthermore, since we do not require the sum of influences over a
given agent to be 1 (unlike [6]), we will use the following notation for proportional
influence of j over i: Ij,i =

Ij,i∑
k∈Ai

Ik,i
if (j, i) ∈ E, else Ij,i = 0.

2.2 General Opinion Update

Similar to the DeGroot-like models in [7], we model the evolution of agents’
opinions about some underlying statement or proposition. For example, such a
proposition could be “vaccines are unsafe,” “human activity has little impact on
climate change,”, “AI poses a threat to humanity”, or “Reviewer 2 is wonderful ”.

The state of opinion (or belief state) of all the agents is represented as a vector
in [0, 1]|A|. If B is a state of opinion, Bi ∈ [0, 1] denotes the opinion (belief, or
agreement) value of agent i ∈ A regarding the underlying proposition. If Bi = 0,
agent i completely disagrees with the underlying proposition; if Bi = 1, agent i
completely agrees with the underlying proposition. Furthermore, the higher the
value of Bi, the stronger the agreement with such a proposition.

At each time unit t ∈ N, every agent i ∈ A updates their opinion. We shall
use Bt to denote the state of opinion at time t ∈ N. We can now define a general
DeGroot-like opinion model as follows.

Definition 2 (Opinion Model). An Opinion Model is a tuple (G,B0, µG)
where G is an n-agent influence graph, B0 is the initial state of opinion, and
µG : [0, 1]n → [0, 1]n is a state-transition function, called update function. For
every t ∈ N, the state of opinion at time t+ 1 is given by Bt+1 = µG(B

t).

The update functions can be used to express any deterministic and discrete
transition from one opinion state to the next, possibly taking into account the
influence graph. This work singles out and characterizes a meaningful family of
update functions extending the basic DeGroot model with cognitive biases that
are based on opinion disagreement. Intuitively, these update functions specify the
reaction of an agent to the opinion disagreements with each of their influencers.
To build some intuition, we first recall the update function of the DeGroot model.

Below we omit the index from the update function µG if no confusion arises.

2.3 DeGroot Update

The standard DeGroot model [6] is obtained by the following update function:

µ(B)i =
∑
j∈Ai

Ij,iBj (1)
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for every i ∈ A. Thus, in the DeGroot model each agent updates their opinion
by taking the weighted average of the opinions of those who influence them. We
can rewrite Eq. 1 as follows:

µ(B)i = Bi +
∑
j∈Ai

Ij,i(Bj −Bi). (2)

Notice that DeGroot update is linear in the agents’ opinions and can be
expressed in terms of disagreement : The opinion of every agent i is updated tak-
ing into account the weighted average of their opinion disagreement or opinion
difference with those who influence them.

Intuitively, if j influences i, then i’s opinion would tend to move closer to
j’s. The disagreement term (Bj − Bi) ∈ [−1, 1] in Eq. 2 realizes this intuition.
If (Bj − Bi) is a negative term in the sum, the disagreement can be thought of
as contributing with a magnitude of |Bj −Bi| (multiplied by Ij,i) to decreasing
i’s belief in the underlying proposition. Similarly, if (Bj − Bi) is positive, the
disagreement contributes with the same magnitude but to increasing i’s belief.

2.4 Disagreement-Bias Update

Now we generalize DeGroot updates by defining a class of update functions that
also allows for non-linear updates, and for each agent to react differently to
opinion disagreement with distinct agents. We capture this reaction by means of
bias functions βi,j : [−1, 1] → [−1, 1], where (j, i) ∈ E, on opinion disagreement
stating how the bias of i towards the opinion of j, βi,j , affects i’s new opinion.

In the following definition we use the clamp function for the interval [0, 1]
which is defined as [r]10 = min(max(r, 0), 1) for any r ∈ R.

Definition 3 (Bias Update). Let (G,B0, µG) be an opinion model with G =
(A,E, I). The function µG is a (disagreement) bias update if for every i ∈ A,

µG(B)i =

Bi +
∑
j∈Ai

Ij,iβi,j(Bj −Bi)

1

0

(3)

where each βi,j with (j, i) ∈ E, called the (disagreement) bias from i towards j,
is an endo-function5 on [−1, 1]. The model (G,B0, µG) is a (disagreement) bias
opinion model if µG is a disagreement bias update function.

The clamp function [·]10 guarantees that the right-hand side of Eq. 3 yields a
valid belief value (a value in [0, 1]). Intuitively, the function βi,j represents the
direction and magnitude of how agent i reacts to their disagreement Bj−Bi with
agent j. If βi,j(Bj −Bi) is a negative term in the sum of Eq. 3, then the bias of

5 The biases we wish to capture can be seen as distortions of disagreements, themselves
disagreements. It seems then natural to choose [−1, 1] as the domain and co-domain
of the bias function.
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agent i towards j contributes with a magnitude of |βi,j(Bj −Bi)| (multiplied by
Ij,i) to decreasing i′s belief in the underlying proposition. Conversely, if βi,j(Bj−
Bi) is positive, it contributes to increasing i′s belief with the same magnitude.

Below we identify some particular examples of the cognitive biases that can
be captured with disagreement-bias opinion models.

Example 1 (Some Cognitive Biases). Clearly, the classical DeGroot update func-
tion Eq. 2 can be recovered from Eq. 3 by letting every bias βi,j be the identity
on disagreement: i.e., βi,j = degroot where degroot(x) = x.

Confirmation Bias. We now illustrate some form of confirmation bias [3]
where agents are more receptive to opinions that are closer to theirs. An example
of confirmation bias can be obtained by letting βi,j = conf(x) = x(1 + δ −
|x|)/(1+ δ) for a very small non-negative constant δ.6 In the following plots and
simulations we fix δ = 1 × 10−4. This bias causes i to pay less attention to the
opinion of j as their opinion distance |x| = |Bj −Bi| tends to 1.

Backfire Effect. Let us now consider another important cognitive bias called
backfire effect [9]. Under this effect an agent strengthens their position of dis-
agreement with another agent if their opinions are significantly distant. A form of
backfire effect can be obtained by letting βi,j = backf where backf(x) = −x3.
Notice that unlike the DeGroot update, this bias contributes to changing i’s
opinion with a magnitude of |backf(Bj − Bi)| (multiplied by Ij,i) but in the
opposite direction of the opinion of j. This potentially makes the new opinion of
agent i more distant from that of j.

Authority Bias. Another common cognitive bias in social networks is the
authority bias [10] under which individuals tend to blindly follow authoritative
or influential figures often to the extreme. Let βi,j = fan be the sign function,
i.e., fan(x) = x/|x| if x ̸= 0, otherwise fan(x) = 0. This bias illustrates a case
of die-hard fanaticism of i towards j. Intuitively, when confronted with any
disagreement x = Bj −Bi ̸= 0, this bias contributes to changing i’s opinion with
the highest magnitude, i.e., |βi,j(x)| = 1, in the direction of the opinion of j.

Finally we illustrate a bias that, unlike the previous, causes agents to ignore
opinions of others. We call it the insular bias βi,j = ins and it is defined as the
zero function ins : x 7→ 0.

The particular bias function examples of Ex. 1 are depicted in the square re-
gion [−1, 1]2 in Fig. 1. The functions may seem somewhat ad hoc but in Section 3
we identify a broad family of bias functions in the region [−1, 1]2 that guarantees
a property of central interest in multi-agent opinion evolution; namely, whether
all the agents will converge to the same opinion, i.e. convergence to consensus.

Remark 2. We conclude this section by noting that unlike the DeGroot model,
in Eq. 3 we allow agents to react with a distinct bias function to each of their
influencers. This broadens the range of captured opinion dynamics and we illus-
trate this in the next section with an example exhibiting agents with different
bias functions including those in Ex. 1. This, however, comes at a price; the
6 The confirmation bias function from [1] uses δ = 0
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Fig. 1: Bias functions from Ex. 1 in the region [−1, 1]2: degroot (in green), conf
(in blue), backf (in yellow), fan (in red), ins (in orange).

update function can be non-linear in the agents’ opinions (see e.g., functions
backf and conf). Thus, the analysis of opinion convergence using Markov chain
theory for linear-system evolution as done for the DeGroot model is no longer
applicable. In Section 3 we study opinion convergence using methods from real
analysis.

2.5 Vaccine Example

Let us suppose that the proposition of interest is “vaccines are unsafe” and G =
(A,E, I) is as in Fig. 2. Suppose that initally the agents 1, 2, 3 are anti-vaxers
with opinion values 1.0, 0.9, 0.8 about the proposition. In contrast, agents 4, 5, 6
are initially pro-vaxers, with opinion values 0.2, 0.1, 0.0 about the proposition.
Thus, the initial state of opinion is B0 = (1.0, 0.9, 0.8, 0.2, 0.1, 0.0).

Notice that although agent 1 is the most extreme anti-vaxer, agent 6, the
most extreme vaxer, has the highest possible influence over them. As we shall
illustrate below, depending on the bias of 1 towards 6, this may have a strong
impact on the evolution of the opinion of agent 1.

We now consider the evolution of their opinion under different update func-
tions obtained by combining biases from Ex. 1. In Fig. 3 we show the evolution
of opinions of vaxxers and anti-vaxxers using combinations of the bias functions
from Fig. 1. Consider Fig. 3a. Agent 2 reaches the extreme opinion value 1.0
rather quickly because of their die-hard fanaticism towards the opinion of 1 (i.e.,
β2,1 = fan). As the influence of 6 on agent 1 backfires (β1,6 = back), agent 1
stays with belief value 1.0. Eventually, all the other biases contribute to changing
the belief value of the influenced agents towards 1.0. Indeed, the agents converge
to a consensus that vaccines are unsafe.

In Fig. 3b, the influence of 3 on agent 5 backfires, since β5,3 = backf. This
makes their disagreement increase, moving agent 5’s opinion closer to 0. On the
other hand, the opinion of agent 6 is influenced at the same time by the belief
values of 5 and 4 as in the DeGroot model (β6,5 = β6,4 = degroot) so her
opinion stays between theirs.
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Fig. 2: Influence graph for vaccine example. The weight on edge (i, j) is the value
Ii,j .

Notice that in Fig. 3c agent 5 reacts to 3 with die-hard fanaticism (β5,3 = fan)
while 3’s belief value does not converge to 0.0 or 1.0. Thus we obtain the looping
behaviour of agent 5. The fanaticism of agent 5 propagates also to agent 6 since
he is influenced by agent 5 by degroot bias.

Finally, notice the behaviours in Fig. 3 when all the agents have the same bias.
In particular, Fig. 3g suggests convergence to consensus when all the agents are
under confirmation bias. In fact convergence to consensus is indeed guaranteed
for this example as we shall later see in this paper. Also, Fig. 3f is an example of
why the clamp function might be necessary to guarantee that the belief values
are always in [0, 1].

The above illustrates that different types of biases can have strong impact
on opinion evolution for a given influence graph. In the next section, we will
identify meaningful families of bias as functions in the region [−1, 1]2.

3 Bias Region and Consensus

Consensus is a property of central interest in social learning models. Indeed,
failure to converge to a consensus is often an indicator of polarization in a society.

Definition 4 (Consensus). Let (G,B0, µG) be an opinion model with G =
(A,E, I). We say that the subset of agents A′ ⊆ A converges to an opinion value
v ∈ [0, 1] iff for every i ∈ A′, limt→∞ Bt

i = v. We say A′ ⊆ A converges to
consensus iff A′ converges to an opinion value v for some v.

In this section we identify a broad and meaningful region of [−1, 1]2 where
all the continuous disagreement bias functions guarantee that agents converge
to consensus under certain topological conditions on the influence graph.

3.1 Bias Regions

In what follows we say that a bias βi,j is in a region R ⊆ [−1, 1]2 if its function
graph is included in R, i.e., if {(x, βi,j(x)) | x ∈ [−1, 1]} ⊆ R. We now identify
regions of [−1, 1]2 that capture several notions of cognitive bias.
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(a) β2,1 = fan, β1,6 =
backf, β4,2 = β1,2 =
degroot, otherwise βi,j =
conf.

(b) β2,1 = fan, β1,6 =
β5,3 = backf, β6,5 =
β6,4 = degroot, otherwise
βi,j = conf.

(c) β5,3 = fan, β4,3 =
backf, β6,5 = β1,6 =
degroot, otherwise βi,j =
conf.

(d) Each βi,j = degroot. (e) Each βi,j = fan. (f) Each βi,j = backf.

(g) Each βi,j = conf.

Fig. 3: Simulations for G in Fig. 2 with B0 = (1.0, 0.9, 0.8, 0.2, 0.1, 0.0) using
different biases. Each plot represents the evolution in time of the opinion of the
agent in Fig. 2 with the same color.

Definition 5 (Bias Regions). Let S be the square region [−1, 1]2. Let the
(sub)regions M,R,B, I ⊆ S, named Malleability, Receptive-Resistant, Backfire
and Insular, be defined as follows:

M ={(x, y) ∈ S |(x < 0 and y ≤ x) or (x > 0 and y ≥ x) or x = 0}
R ={(x, y) ∈ S | (x < 0 and x < y < 0) or (x > 0 and 0 < y < x) or x = y = 0}
B ={(x, y) ∈ S | (x < 0 and 0 < y) or (x > 0 and y < 0) or x = y = 0}
I ={(x, y) ∈ S | y = 0}.

The regions are depicted in Fig. 4. Notice that if a point (x, y) of a bias
βi,j is in the Malleability region M (i.e., y = βi,j(x) and (x, y) ∈ M) it means
that for a disagreement x = Bj − Bi between j and i, the bias will contribute
with a magnitude |y| ≥ |x| (multiplied by Ij,i) to changing the opinion of i in
the direction of j’s opinion. Since |y| ≥ |x|, depending on the value of Ij,i, the
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Fig. 4: Bias Regions: Malleability (M, in blue), Receptive-Resistant (R, in yel-
low), Backfire (B, in red), Insular (I, the dotted line y = 0).

opinion of i may move to match j’s opinion or even further (which can make i’s
new opinion even more extreme than that of j). Individuals that blindly follow
authoritative or influential figures, easily swayed agents, fanaticism, among oth-
ers, can be modelled by bias functions in this region. Indeed the function fan

from Ex. 1 is in M (see Fig. 1). The identity bias function degroot is also in M.

Like in the case above, if a point (x, y) of a bias βi,j is in the Receptive-
Resistant region R, it also means that for a disagreement x = Bj − Bi ̸= 0
between j and i, the bias contributes to changing the opinion of i in the direction
of j’s opinion. Nevertheless, the magnitude of contribution is not as high as the
previous case, namely it is |y| with |x| > |y| > 0. Individuals that are receptive
to other opinions but, unlike malleable ones, may demonstrate some resistance,
reluctance, or skepticism to fully accept them, can be modelled in this region.
The confirmation bias function conf(x) = x(1 + δ − |x|)/(1 + δ) from Ex. 1,
where δ > 0 is a very small constant, is in R (see Fig. 1).

In fact, it is worth noticing that for any constant δ > 0, the resulting bias
function βi,j(x) = x(1 + δ − |x|)/(1 + δ) is in R. In the limit, however, we have
limδ→∞ x(1 + δ − |x|)/(1 + δ) = x = degroot(x) which is not in R but in M.
Therefore, δ could be viewed as a parameter of receptiveness; the higher the
value of δ, the more receptive and less resistant agent i is toward j’s opinion. In
the limit, agent i is not resistant and behaves as a malleable agent towards j.

Contrary to the previous two cases, if a point (x, y) of a bias βi,j is in the
Back-Fire region B, it means that for a disagreement x = Bj −Bi ̸= 0 between
j and i, the bias contributes to changing the opinion of i but in the opposite
direction of j’s opinion. This bias can then cause the disagreement between i
and j to grow. Individuals that become more extreme when confronted with a
different opinion can be modelled by bias functions in this region. Indeed, the
function backf from Ex. 1 is in B (see Fig. 1).

Finally, if a point (x, y) of a bias βi,j is in the Insular region I, it means
that y = 0, thus for a disagreement x = Bj − Bi ̸= 0 between j and i, the bias
causes i to completely ignore the opinion of j. Individuals that are stubborn



3. BIAS REGION AND CONSENSUS 11

or closed-minded can be modelled with the function in this region. In fact, the
function ins from Ex. 1 is the only function in I (see Fig. 1).

We conclude this section with a proposition stating that we can dispense
with the clamp function whenever all the bias functions are in the R region.

Proposition 1 (Update with Bias in R). Given a Bias Opinion Model
(G,B0, µG) with G = (A,E, I), if for all (a, b) ∈ E we have βb,a ∈ R, then
for all B ∈ [0, 1]|A| and i ∈ A: µG(B)i = Bi +

∑
j∈Ai

Ij,iβi,j(Bj −Bi).

The proof of this proposition can be found in the technical report [2].

3.2 Consensus under Receptiveness in Strongly Connected Graphs

Our first main result states the convergence to consensus for strongly connected
societies when all bias functions are continuous and in the Receptive-Resistant
Region defined in 3.1. We need some standard notions from graph theory.

Recall that a path from i to j in G = (A,E, I) is a sequence i0i1 . . . im such
that i = i0, j = im and (i0, i1), (i1, i2), . . . (im−1, im) are edges in E. The graph
G is strongly connected iff there is path from any agent to any other. We can
now state our first consensus result.

Theorem 1 (Consensus I). Let (G,B0, µ) be a bias opinion model with a
strongly connected graph G = (A,E, I). Suppose that for every (j, i) ∈ E, βi,j is
a continuous function in R. Then the set of agents A converges to consensus.

Hence, the continuous bias functions in R guarantee consensus in strongly
connected graphs, regardless of initial beliefs. Intuitively, the theorem says that
a strongly connected community/society will converge towards consensus if its
members are receptive but resistant to the opinions of others.

Notice that the Vaccine Example in Sec. 2.5 with all agents under confirma-
tion bias satisfy the conditions of Th. 1, so their convergence to consensus is
guaranteed. In fact, the opinion difference between any two agents grows smaller
rather rapidly (Fig. 3g illustrates this). In contrast, Fig. 5 illustrates an exam-
ple, with a different bias also in R, where the opinion difference grows smaller
much slowly. But since such an example also satisfies the conditions of Th. 1,
convergence to consensus is guaranteed.

Before outlining the proof of this theorem, we elaborate on its conditions.

Discontinuous Bias. Requiring continuity for the bias functions in Th. 1 seems
reasonable; small changes in an opinion disagreement value x = Bj −Bi should
result in small changes in i’s biased reaction to x. Nevertheless, if we relaxed the
continuity requirement, we would have the following counter-example.

Consider a strongly connected graph with two agents with I1,2 = I2,1 = 1,
agent 1 influences agent 2 with the bias functions β1,2 = β2,1 = f , satisfying
f(x) = x

8 if x ∈ [− 1
2 ,

1
2 ], f(x) = x−0.5

8 if x ∈ ( 12 , 1] and f(x) = x+0.5
8 if x ∈

[−1,− 1
2 ). If one agent starts with belief value 1.0 and the other 0.0, then they

will not converge to consensus (their belief values will approach 3
4 and 1

4 , but
will never reach those values). Figure 6 illustrates this example.
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(a) Bias function
β1,2(x) = β2,1(x) ={
0 if x = 0
x
|x| · e

− 1
|x| if x ̸= 0

1

2

1.0

(b) Influence Graph
(I1,2 = I2,1 = 1.0).

(c) Each plot represents
the evolution in time of
the opinion of the agent
in Fig. 5b with the same
color.

Fig. 5: Simulations with B0 = (0.0, 1.0) using a bias function in region R, with
very slow convergence.

Bias Outside R. Notice that Th. 1 requires bias functions to be in the responsive-
resistant region R. We consider counter-examples where we allow bias functions
outside this region in Th. 1. If we allowed continuous bias functions outside R
with points in the backfire region B, then the scenario in Fig. 3f provides a
counter-example to consensus. If we allow continuous bias functions outside R
with points in region M, then the scenario in Fig. 7 is a counter-example to
consensus: notice how the absolute value of their disagreement begins at 0.001
and increases until it reaches 1. Finally, it is clear that if we allowed the only
function in I, the insular bias, with the graph in Fig. 5b and initial beliefs
B0 = (0, 1), consensus will never be reached since the agents will ignore each
other.

3.3 Proof Outline of Th. 1

In this Section we outline the proof of Th. 1. In the process we single out the
central properties of the behaviour of agents that are receptive and yet resistant
to disagreement. The complete proof can can be found in the technical report
[2].

Let (G,B0, µ) be as in the statement of Th. 1. Suppose B = µt(B0) is the
state of opinion at some time t ≥ 0 where consensus has not yet been reached:
i.e., assume min(B) ̸= max(B) where min(B) and max(B) are the minimum
and maximum opinion values in B. By assumption, all the biases βi,j are in R.
Thus βi,j(x) = y, where x = Bj − Bi, contributes to update the opinion of i in
the direction of the opinion of j but with a magnitude |y| > 0 strictly smaller
than |x| if |x| > 0 (or equal to 0 if |x| = 0). Using this and Prop. 17, we show
the new (updated) opinion of each i, µ(B)i, is bounded as follows:

7 This follows from the known property that weighted averages of any set of values
are always between the minimum and the maximum of those values.
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(a) Bias function
β1,2(x) = β2,1(x) =

x+0.5
8

if − 1 ≤ x < − 1
2

x
8

if − 1
2
≤ x ≤ 1

2
x−0.5

8
if 1

2
< x ≤ 1

(b) Each plot represents the evo-
lution in time of the opinion of
the agent in Fig. 5b with the same
color.

Fig. 6: Counter-example to consensus for two agents with non-continuous bias
functions in R, for G in Fig. 5b and B0 = (1.0, 0.0).

Lemma 1 (Update Bounds). For each i ∈ A, min(B) ≤ µ(B)i ≤ max(B).

We use the above lemma to prove that the bounded sequences of minimum
and maximum opinion values at each time, {min(Bt)}t≥0 and {max(Bt)}t≥0,
are monotonically non-decreasing and monotonically non-increasing. Thus by
the Monotone convergence theorem [11], they both converge. Therefore, by the
Squeeze theorem [11], to prove Th. 1, it suffices to show that {min(Bt)}t≥0 and
{max(Bt)}t≥0 converge to the same value.

We first prove the following lemma which intuitively states that the number
of extreme agents decrease with time.

Lemma 2 (Extreme Agents Reduction). Suppose that min(B) ̸= max(B)
and let M = max(B). If G has a path i1 . . . in such that Bin = M and Bi1 < M ,
then |{j ∈ A : Bj ≥ M}| > |{j ∈ A : µ(B)j ≥ M}|. A symmetric property
applies to the minimum.

To see the lemma’s intuition, notice that since G is strongly connected and
min(B) < max(B), G indeed has a path i1 . . . in such that Bin = M = max(B)
and Bi1 < M . In the path some agent ik whose belief value is equal to M will be
influenced by some agent with smaller belief value. Thus, since the bias functions
are in R, the opinion of ik will change in the direction of the smaller value, and
thus will strictly decrease. Also, no agent that had a smaller belief value will
reach the current maximum, as the bias functions are in the region R.

Thus, because of Lem. 2 and G being strongly connected, we conclude that
the maximum (minimum) belief value will eventually decrease (increase). I.e.,

Corollary 1. Suppose that min(B) ̸= max(B). Then there exist s, t > 0 such
that max(µs(B)) < max(B) and min(µt(B)) > min(B).
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(a) Bias function β1,2(x) =
β2,1(x) =

arctan x
arctan 1

(b) Each plot represents the evo-
lution in time of the opinion of
the agent in Fig. 5b with the same
color.

Fig. 7: Counter-example for consensus when all bias function are continuous but
allowed to have points in M, with initial belief vector B0 = (0.0, 0.001) and the
influence graph of figure 5b.

We now apply Bolzano-Weierstrass theorem [11]8 to find a sub-sequence
{Bt}t∈∆ of {Bt}t∈N that converges to some B∞. Notice that {max(Bt)}t∈∆

converges to max(B∞) and it is a sub-sequence of the convergent sequence
{max(Bt)}t∈N, so {max(Bt)}t∈N should also converge to max(B∞). Since each
bias function βi,j is continuous, the update function µ is continuous. There-
fore, {µ(Bt)}t∈∆ converges to µ(B∞), and thus {max(µ(Bt))}t∈∆ converges to
max(µ(B∞)). But since the sequence {max(µ(Bt))}t∈∆ = {max(Bt+1)}t∈∆ is a
sub-sequence of the convergent sequence {max(Bt)}t∈N, both must converge to
the same value, hence max(B∞) = max(µ(B∞)). Similarly, we can show that
min(B∞) = min(µ(B∞)). It can thus be shown that if we repeatedly apply µ to
B∞, the maximum should not change, and the same applies to the minimum.
More precisely, we conclude the following.

Corollary 2. max(B∞) = max(µt(B∞)) and min(B∞) = min(µt(B∞)) for
each t ≥ 0.

Consequently, if min(B∞) ̸= max(B∞) then Cor. 1 and Cor. 2 lead us to
a contradiction. Therefore, min(B∞) = max(B∞) and thus, {min(Bt)}t≥0 and
{max(Bt)}t≥0 converge to the same value max(B∞) as wanted.

3.4 Consensus Under Receptiveness in Arbitrary Graphs

Recall that Th. 1 applies to strongly connected influence graphs. Our second
main result applies to arbitrary influence graphs. First we need to recall the
notion of strongly-connected components of a graph.

8 Every infinite bounded sequence in Rn has a convergent sub-sequence.
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A strongly-connected component of G is a maximal subset S ⊆ A such that
for each two i, j ∈ S, there is path from i to j. A strongly-connected component
S is said to be a source component iff there is no edge (i, j) ∈ E such that
i ∈ A \ S and j ∈ S. We use S(G) to denote the set of source components of G.

Intuitively, a source component of a graph can be thought of as a closed
group that is not externally influenced but may influence individuals outside the
group. The following theorem gives a characterization of consensus with biases
in R for arbitrary graphs in terms of source components.

Theorem 2 (Consensus II). Let (G,B0, µ) be a bias opinion model with G =
(A,E, I). Suppose that for every (j, i) ∈ E, βi,j is a continuous function in R.
Then the set of agents A converges to consensus iff there exists v ∈ [0, 1] such
that every source component S ∈ S(G) converges to opinion v.

The above theorem, whose proof can be found in the technical report [2],
provides the following intuitive yet insightful remark. Namely, upon agreeing on
an opinion, the closed and potentially influential groups, can make all individuals
converge to that opinion in a society whose members are receptive but resistant.

4 Concluding Remarks and Related Work

We introduced a generalization of the DeGroot Model where agents interact
under different biases. We identified the notion of bias on disagreement and
made it the focus our model. This allowed us to identify families of biases that
capture a broader range of social dynamics. We also provided theoretical results
characterizing the notion of consensus for a broad family of cognitive biases.

The relevance of biased reasoning in human interactions has been studied
extensively in [13], [10], [12], and others.

There is a great deal of work on formal models for belief change in social
networks; we focus on the work on biased belief update, which is the focus of
this paper. Some models were previously proposed to generalize the DeGroot
model and introduce bias, for instance [5], [4] and [15] analyse the effects of
incorporating a bias factor for each agent to represent biased assimilation: how
much of the external opinions the agent will take into consideration. [14] extends
the model [5] to include the effect of backfire-effect as well. The main difference
of these models to our model is that biases are not incorporated in those models
in terms of the disagreement level between agents, but either as an exponential
factor that reduces the impact of the opinion of neighbours or by dynamically
changing the weights of the DeGroot model. Thus, our model brings a new point
of view to how distinct types of biases can be represented and identified.

In [8], it is proved that “constricting” update functions, roughly, functions
where the extreme agents move closer to each other, lead to convergence in
strongly connected social networks. This is similar to our theorem, indeed, the
functions in our R region are easily shown to be constricting. However, their
social network model is more abstract than ours and further from real social
networks, and they do not directly analyse biases as a function of disagreement.
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