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As first recognized by Hill in 1960’s, one character distinguishing the thermodynamics of small 9 

systems from the macroscopic one is that some intensive variables are no longer defined uniquely 10 

for small systems. For example, the differential chemical potential, defined as the derivative of a 11 

thermodynamic potential with respect to particle number, is no longer equal to the integral one, 12 

given by the ratio of Gibbs free energy to the particle number. The concept of differential and 13 

integral surface tensions has been introduced recently to account for the increasing surface 14 

contribution to thermodynamic potentials when a system shrinks down in size. Simulations 15 

constitute a powerful tool for testing new concepts. The present work provides the simulation 16 

evidence for distinct differential and integral surface tensions. Our results point out some useful 17 

directions for future experimental investigations to check the general validity of the concept of 18 

differential and integral surface tensions. 19 
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I. Introduction 24 

Thermodynamics provides a powerful framework for many scientific domains and technological 25 

applications. It was primarily developed for describing macroscopic systems. T. L. Hill was a pioneer 26 

who had proposed extending thermodynamics to small systems in 1960s by introducing an additional 27 

pair of conjugated variables, i.e., replica number and subdivision potential 1,2. Until now, none of these 28 

two variables has been determined experimentally. The lack of experimental validation constitutes a 29 

major obstacle for the wide acceptation of Hill’s theory, now named as nanothermodynamics 3-5. 30 

However, it is attracting much renewed interest 5-21 due to the booming nanotechnology. Recently, an 31 

alternative approach has been proposed for extending thermodynamics down to nanoscales without 32 

resorting to Hill’s replica trick but by focusing on a single small system and by introducing the new 33 

concept of differential and integral surface tensions, which are, in principle, both experimentally 34 

measurable quantities 22,23. 35 

Surface tension is a venerable scientific concept, Laplace 24 and Young 25 initiated its study to 36 

understand capillarity. Gibbs introduced its thermodynamic definition and derived its relation to the 37 

adsorption at surfaces or interfaces 26. The statistical-mechanics expression of the surface tension and 38 

that of pressure tensor were derived by Kirkwood and coworkers from their respective mechanical 39 

definition 27,28, (see also refs [29, 30] for reviews). Many simulation methods are now available for 40 

calculating the surface tensions of various interfaces 31-47 (the cited references not intending to be 41 

exhaustive). Experimental evidences start appearing to show the importance of surface contribution to 42 

thermodynamic potentials of nanoscale systems 48,49. It has been revealed recently that when the 43 

surface contribution becomes dominant to a system’s thermodynamic potential, two distinct surface 44 

tensions can arise, i.e., one named as differential surface tension, defined as the derivative of a 45 

thermodynamic potential with respect to interface area, and the other named as integral surface tension, 46 

given by the excess thermodynamic potential divided by surface area (see Eqs. 2 - 4 for more precise 47 

definitions) 22,23. Fig. 1 shows a prototype of such interfacial systems, e.g., a hard sphere fluid confined 48 

in a slit pore between two flat hard walls (model studied in this work). This is a benchmark model for 49 

the study of confined fluids and many theoretical and simulation works have been devoted to it. Despite 50 

our extensive literature search, we have not found any previous work giving whatever indication that 51 

the differential and integral definitions of surface tension can give different results. So, there is an 52 

obvious gap between the recent prediction of two distinct surface tensions 22,23 and the currently 53 
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available experimental and simulation data. The primary objective of the present work is for bridging 54 

this gap, at least that between the recent theoretical prediction and the previous simulations, i.e., 55 

evidencing the general validity of the concept of differential and integral surface tensions through 56 

detailed simulations. We believe that the feasibility demonstration and the search of optimal 57 

experimental conditions are really necessary and very valuable for motivating the endeavor devoted to  58 

 59 

FIG.1 A hard sphere (HS) fluid, of diameter 𝜎𝜎, confined in a slit pore formed by two hard walls. Pore 60 

width: H (accessible pore width: 𝐿𝐿 = 𝐻𝐻 − 𝜎𝜎); Surface area of one wall: 𝐴𝐴 (total surface area: 𝒜𝒜 =61 

2𝐴𝐴). 62 

the experimental validation. Before engaging actively in such an endeavor, any experimental group 63 

can raise the following relevant and important questions. At which pore sizes (e.g., in terms of fluid-64 

particle diameter), the distinct differential and integral surface tensions can show up? What should be 65 

the magnitude of the difference between the differential and integral surface tensions? Is the difference 66 

sufficiently large to be experimentally detectable? The present work aims at bringing some answers to 67 

these questions. The previous theoretical prediction of the two distinct surface tensions was based on 68 

a model with an ideal gas, which does not allow for answering many questions raised above. For 69 

example, the ideal gas is constituted of point particles, so no volume exclusion effect between fluid 70 

particles is taken into account. However, it is well-known that the repulsion between fluid particles at 71 

short distances is mainly responsible for the short-range structure in any real bulk and confined fluids. 72 

We believe that today, sixty years after Hill’s first work on thermodynamics of small systems, any 73 

efforts devoted to evidence the hallmark thermodynamic behaviors of small systems are worthwhile 74 

and timely endeavors. From a broader perspective, the firm establishment of distinct differential and 75 

integral intensive thermodynamic variables will advance our general understanding of 76 

thermodynamics. In the framework of macroscopic thermodynamics, the intensive variables, like 77 

pressure and chemical potential, play an important role for charactering thermodynamic equilibrium. 78 
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For the moment, it is not yet clear whether it is the differential or the integral intensive variable that 79 

enters into the conditions for determining the equilibrium in a nanoscale system. We believe such open 80 

questions will become interesting future research issues.   81 

From its mechanical definition, the surface tension is given by, 82 

𝛾𝛾mech = 1
2 ∫ 𝑑𝑑𝑑𝑑[𝑝𝑝⊥ − 𝑝𝑝∥(𝑑𝑑)]𝐿𝐿 2⁄

−𝐿𝐿 2⁄  ,                   (1) 83 

where 𝑝𝑝⊥ and 𝑝𝑝∥(𝑑𝑑) are respectively the normal and transverse component of the pressure tensor 84 

and the factor 1 2⁄   accounts for the two fluid-wall interfaces. One well-known thermodynamic 85 

definition gives, 86 

𝛾𝛾 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝒜𝒜
�
𝑇𝑇,𝑉𝑉,𝑁𝑁

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝒜𝒜
�
𝑇𝑇,𝑉𝑉,𝜇𝜇

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝒜𝒜
�
𝑇𝑇,𝑝𝑝⊥,𝑁𝑁

 ,              (2) 87 

where F , G, and 𝛺𝛺 are respectively the Helmholtz, Gibbs free energy and the grand potential of the 88 

confined fluid, V, N, T and 𝜇𝜇 are respectively volume, number of particles, temperature and chemical 89 

potential. Although the definitions given in eqs. (1) and (2) should be considered now as the standard 90 

knowledge of surface thermodynamics, their precise meaning and their relations are not always clearly 91 

perceived, thus they are considered sometimes as different things. When the expressions of 𝑝𝑝⊥ and 92 

𝑝𝑝∥(𝑑𝑑) derived by Ivring and Kirkwood 28 are substituted into eq. (1), one obtains an expression of 93 

𝛾𝛾mech  in terms of fluid-fluid and fluid-wall interactions. Starting from eq. (2) with a chosen 94 

thermodynamic potential and its corresponding partition function and taking properly the derivative 95 

with respect to surface area, Dong, Franosch, Shilling 55 have shown recently that eq. (2) gives exactly 96 

the same result as eq. (1). This shows clearly that the mechanical definition is identical to the 97 

differential thermodynamic definition of surface tension, as already pointed out in some particular 98 

cases 22,23. The equivalence of the definitions given in eqs. (1) and (2) allows for calculating the 99 

differential surface tension from either of them.  100 

Gibbs 26 and Cahn 50 gave respectively also the following expressions of surface tension,  101 

𝛾𝛾�𝜕𝜕 = 𝜕𝜕(𝑇𝑇,𝜇𝜇,𝑉𝑉,𝒜𝒜)−𝜕𝜕bulk

𝒜𝒜
= 𝜕𝜕(𝑇𝑇,𝜇𝜇,𝑉𝑉,𝒜𝒜)+𝑝𝑝bulk𝑉𝑉

𝒜𝒜
 ,               (3) 102 

𝛾𝛾�𝜕𝜕 = 𝜕𝜕(𝑇𝑇,𝑝𝑝,𝑁𝑁,𝒜𝒜)−𝜕𝜕bulk

𝒜𝒜
= 𝜕𝜕(𝑇𝑇,𝑝𝑝,𝑁𝑁,𝒜𝒜)−𝜇𝜇bulk𝑁𝑁

𝒜𝒜
 ,             (4) 103 

where 𝛺𝛺bulk  and 𝐺𝐺bulk  are respectively the grand potential and the Gibbs free energy of the 104 

considered fluid in bulk. While eq. (2) gives the surface tension from the derivative of a 105 

thermodynamic potential, the ones defined by eqs. (3) and (4) are based on finite differences. So, the 106 

former has been named recently as differential surface tension while the latter as integral surface 107 
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tension 22,23. When the pore width is large, all the above expressions give the same result. In fact, all 108 

the previous simulations for determining the surface tension have been carried out under such 109 

conditions. With the help of the model of a strongly confined ideal gas 22,23, a prediction has been made 110 

recently: the differential and integral surface tensions are no longer the same. Moreover, the integral 111 

surface tensions can be ensemble-dependent, e.g., eqs. (3) and (4) give different results, while the 112 

differential surface tension is ensemble-independent, i.e., eq. (2) holds even when the slit pore becomes 113 

very narrow. Thus, it is necessary to indicate which thermodynamic potential is used to define an 114 

integral surface tension. The index used for an integral surface tension serves for this purpose, e.g., 𝛾𝛾�𝜕𝜕 115 

and 𝛾𝛾�𝜕𝜕. In order to motivate experimental groups to engage actively in the investigations devoted to 116 

test the predictions of nanoscale thermodynamics, it is necessary to go beyond the ideal gas model 117 

since some key questions concerning the experimental feasibility and the detection conditions can not 118 

be answered with the ideal-gas model constituted of point particles. An immediate such question is: 119 

for which pore sizes (in terms of fluid-particle diameter) one can expect to see distinct differential and 120 

integral surface tensions?  121 

It is true that the system chosen for the present study, i.e., a hard-sphere fluid in a slit pore, is still 122 

a simplified model for fluids. However, it is capable of capturing some key general features of real 123 

fluids. For example, the structure factor of some simple liquids determined from neutron-scattering 124 

experiments is quite close to that given by a HS model. Moreover, the HS model can account for a 125 

large part of a fluid’s free energy since it is a well-known good reference system widely used in 126 

perturbation theories for describing real fluids. Since it is no longer possible to obtain exact and 127 

analytical results for a HS fluid confined in a slit pore, we resort to computer simulations in the present 128 

work. 129 

II. Methods 130 

A. Calculation of integral surface tension, 𝛾𝛾�𝜕𝜕 131 

The most straightforward way to determine the integral surface tension in a grand canonical ensemble, 132 

i.e., 𝛾𝛾�𝜕𝜕  is to use its definition given in eq. (3). The grand potential of the confined fluid can be 133 

obtained by using the Grand Canonical Transition Matrix Monte Carlo method (GCTMMC) proposed 134 

by Errington 51,52. To determine the grand potential of the bulk fluid, we use Carnahan-Stirling equation 135 

to calculate the pressure of the bulk hard sphere fluid in chemical equilibrium with the confined fluid. 136 

To apply eq. (3), we need to choose also the reference surfaces with respect to which the surface tension 137 
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is calculated. In the present work, all the results are obtained by choosing the reference surfaces at 138 

𝑑𝑑 = ± 𝐿𝐿 2⁄  (see Fig. 1), thus, 𝑉𝑉 = 𝐿𝐿𝐴𝐴 (A: surface area of one wall). 139 

 It is also possible to calculate 𝛾𝛾�𝜕𝜕 by integrating Gibbs adsorption equation, i.e., 140 

�𝜕𝜕𝛾𝛾�𝛺𝛺
𝜕𝜕𝜇𝜇
�
𝑇𝑇,𝐿𝐿

= −𝛤𝛤 = −𝑁𝑁−𝑁𝑁bulk

𝒜𝒜
 ,                 (5) 141 

where 𝛤𝛤 is the adsorption and 𝑁𝑁bulk the number of the corresponding bulk fluid at the same T, the 142 

same 𝜇𝜇 and occupying a volume in the bulk equal to that of the confined fluid. This method, named 143 

as Gibbs-Cahn integration, has been successfully explored by B. B. Laird and coworkers for 144 

calculating surface tension at a single interface 46. In the present work, we do not use this method since 145 

it requires calculating a series of values of the adsorption as well as the determination of the integration 146 

constant, i.e., one value of the surface tension by using another method. However, it is to be pointed 147 

out that this method can provide a useful basis for the experimental determination of 𝛾𝛾�𝜕𝜕 since the 148 

experimental measurement of the adsorption is a routine one.        149 

B. Calculation of differential surface tension, 𝛾𝛾 150 

As already pointed out above, the mechanical definition of surface tension, i.e., eq. (1), is identical to 151 

the thermodynamic differential definition given in eq. (2). Moreover, it has been shown that the 152 

differential surface tension is ensemble-independent 22,23. So, eq. (1) can be used with any ensemble 153 

provided one chooses the corresponding thermodynamic potential to calculate 𝛾𝛾 as required by eq. 154 

(2). Eq. (2) shows that the differential surface tension can be calculated by taking the derivative of the 155 

grand potential with respect to surface area when the grand-canonical ensemble is considered. 156 

Nevertheless, a simpler alternative way to calculate the differential surface tension exists by exploring 157 

the fact that the grand potential is a first-order homogeneous function of both 𝑉𝑉 and 𝒜𝒜. For a given 158 

finite pore width, the volume of the slit pore scales with the pore surface area 22, i.e.,  159 

𝛺𝛺(𝑇𝑇, 𝜇𝜇, 𝜆𝜆𝑉𝑉, 𝜆𝜆𝒜𝒜) = 𝜆𝜆𝛺𝛺(𝑇𝑇, 𝜇𝜇,𝑉𝑉,𝒜𝒜) .             (6) 160 

This leads immediately to 161 

𝛺𝛺(𝑇𝑇, 𝜇𝜇,𝑉𝑉,𝒜𝒜) = −𝑝𝑝⊥𝑉𝑉 + 𝛾𝛾𝒜𝒜 .              (7) 162 

In contrast to eq .(3), 𝛾𝛾 in eq.(7) is the differential surface tension while 𝛾𝛾�𝜕𝜕 in eq.(3) is the integral 163 

surface tension since 𝑝𝑝bulk in eq.(3) is the pressure in the reservoir of the grand canonical ensemble 164 

while 𝑝𝑝⊥ in eq.(7) is the normal pressure of the confined fluid on the pore walls. When these two 165 

pressures are not equal, their difference, 𝛱𝛱 = 𝑝𝑝⊥ − 𝑝𝑝bulk , is Derjaguin’s disjoining pressure 53,54. 166 

Dong, Franosch and Schilling have proven recently that the contact-value theorem holds also for a 167 
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hard sphere fluid confined in a hard slit pore for any pore width 55 (their proof holds also for the grand 168 

canonical ensemble). The normal pressure can be easily obtained from 𝑝𝑝⊥ = 𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇(± 𝐿𝐿 2⁄ )  (𝑘𝑘𝐵𝐵 : 169 

Boltzmann constant, 𝑇𝑇(± 𝐿𝐿 2⁄ ): contact value of the fluid density profile at pore walls). By using thus 170 

obtained 𝑝𝑝⊥, we obtain the differential surface tension straightforwardly from eq. (7). 171 

 Since the differential surface tension is ensemble-independent, we can also calculate it with the 172 

mechanical definition, i.e., eq. (1), in a canonical ensemble. The test-volume and test-area methods 39-173 

41 are based on this principle. We used also these methods to calculate the averaged values of the two 174 

components of pressure tensor in order to compare 𝛾𝛾 from the canonical ensemble with that obtained 175 

from the grand canonical ensemble to evidence effectively its ensemble-independence. 176 

C. Calculation of integral surface tension, 𝛾𝛾�𝜕𝜕 177 

In order to show clearly our procedure for calculating 𝛾𝛾�𝜕𝜕, it is useful to recall that Gibbs free energy 178 

is a first-order homogeneous function of 𝑁𝑁 and 𝒜𝒜. i.e., 179 

𝐺𝐺(𝑇𝑇,𝑝𝑝⊥, 𝜆𝜆𝑁𝑁, 𝜆𝜆𝒜𝒜) = 𝜆𝜆𝐺𝐺(𝑇𝑇,𝑝𝑝⊥,𝑁𝑁,𝒜𝒜).             (8) 180 

This leads immediately to 181 

𝐺𝐺(𝑇𝑇,𝑝𝑝⊥,𝑁𝑁,𝒜𝒜) = 𝜇𝜇𝑁𝑁 + 𝛾𝛾𝒜𝒜,               (9) 182 

where 𝜇𝜇 is the chemical potential of the confined fluid. We first calculate the chemical potential with 183 

Widom’s test particle method 56 and 𝛾𝛾 with the help of its mechanical definition and the test-volume 184 

method for the components of pressure tensor 39 in canonical ensemble. Since both 𝜇𝜇  and 𝛾𝛾  are 185 

differential intensive variables, thus ensemble-independent, we can use them to calculate Gibbs free 186 

energy by using eq. (9). Once 𝐺𝐺 is determined, we obtain readily the integral surface tension, 𝛾𝛾�𝜕𝜕, 187 

from its definition, i.e., eq. (4) with 𝜇𝜇bulk being the chemical potential of the corresponding bulk fluid 188 

at the same T with a pressure equal to 𝑝𝑝⊥. We use Carnahan-Stirling equation for calculating 𝜇𝜇bulk 189 

since it gives essentially the exact result for a bulk hard sphere fluid. 190 

III. Results 191 

In order to enhance their visual perception, all the results shown in the main text are presented in form 192 

of curves. However, the numerical data given in tables can facilitate their use by other researchers who 193 

wish to compare their own results with ours. Such tables along with detailed computational parameters 194 

and conditions are presented as Supplementary Material (SM).  195 

Now, we present first the simulation evidence for the distinct integral and differential surface 196 

tensions. Fig. 2 show the results for 𝛾𝛾�𝜕𝜕 and 𝛾𝛾 as a function of chemical potential which are obtained 197 
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in a grand canonical ensemble by using respectively the methods described in Sec. II-A and Sec. II-B. 198 

We see clearly that for narrow pores, 𝛾𝛾 (continuous curves) is different from 𝛾𝛾�𝜕𝜕 (dash-dot curves). 199 

The differential surface tension changes significantly with the pore width while the modification of the 200 

integral surface tension with the pore width is moderate. We see also that the difference between 𝛾𝛾�𝜕𝜕 201 

and 𝛾𝛾  increases with the chemical potential. So, it is easier to detect this difference at high fluid 202 

densities. For the system studied here, the largest difference between 𝛾𝛾�𝜕𝜕 and 𝛾𝛾 is found for the pore 203 

width, 𝐿𝐿 = 1.5𝜎𝜎 (see the red curves in Fig. 2).  204 

 205 

FIG.2. Results evidencing distinct integral and differential surface tensions from grand canonical 206 

transition matrix Monte Carlo simulation. 𝛾𝛾�𝜕𝜕: symbols and dash-dot lines; 𝛾𝛾: symbols and continuous 207 

lines. Symbols are original simulation data and lines are fittings with a third-order polynomial. Three 208 

pore widths are considered: 𝐿𝐿 = 0.25𝜎𝜎  (black), 𝐿𝐿 = 1.5𝜎𝜎  (red), 𝐿𝐿 = 2.0𝜎𝜎  (blue). Details about 209 

computational conditions are given in Supplementary Material (SM). 210 

We have recalled above that the integral surface tension, 𝛾𝛾�𝜕𝜕 , satisfies a generalized Gibbs 211 

adsorption equation, i.e., eq. (5). From our grand canonical ensemble simulations, we can readily 212 

calculate the adsorption, i.e., the right-hand-side (RHS) of eq. (5). The results of 𝛾𝛾�𝜕𝜕 as a function of 213 

𝜇𝜇 allow for determining the derivative on the left-hand-side of eq. (5). In order to calculate accurately 214 

the derivative, the simulation data in Fig. 2 are fit to smooth curves (dash-dot lines). The thus obtained 215 

derivatives of 𝛾𝛾�𝜕𝜕 with respect to 𝜇𝜇 are presented in Fig. 3 as lines while the simulation results for 216 

−𝛤𝛤 are shown as symbols. The good agreement between the lines and the symbols shown in Fig. 3 217 

evidences the validity of the generalized Gibbs adsorption equation. 218 
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 219 

FIG.3. Corroboration of adsorption equation satisfied by the integral surface tension, 𝛾𝛾�𝜕𝜕. Values of 220 

−(𝜕𝜕 𝛾𝛾�𝜕𝜕 𝜕𝜕𝜇𝜇⁄ )𝑇𝑇,𝐿𝐿: Continuous lines; Adsorption, 𝛤𝛤: Symbols. Three pore widths are considered: 𝐿𝐿 =221 

0.25𝜎𝜎 (black), 𝐿𝐿 = 1.5𝜎𝜎 (red), 𝐿𝐿 = 2.0𝜎𝜎 (blue). Details about computational conditions are given 222 

in SM. 223 

 Hill first point out that the ensemble-dependence is one salient feature of the thermodynamics of 224 

small systems 1,2. The recent work of W. Dong has further clarified that only integral intensive variables 225 

are ensemble-dependent while the differential intensive variables are not 23. In Sec. II-B, we described 226 

the respective the procedure to calculate 𝛾𝛾  in a grand canonical ensemble, as well as that in a 227 

canonical ensemble. In addition to the results of 𝛾𝛾 obtained in a grand canonical ensemble (those in 228 

Fig. 2), we also calculated 𝛾𝛾 in a canonical ensemble with the help of its mechanical definition and 229 

the test-volume method to calculate the averaged components of pressure tensor. These results of 𝛾𝛾 230 

from different ensembles are presented in Fig. 4 (continuous curves for µVT-ensemble and symbols 231 

for NVT-ensemble). The good agreement between the results from different ensembles confirms well 232 

the ensemble-independence of the differential surface tension. 233 

 234 

FIG. 4. Ensemble-independence of differential surface tension evidenced by comparing the µVT-235 

ensemble simulation results (continuous curves) and those from NVT-ensemble (symbols). Three pore 236 

widths are considered: 𝐿𝐿 = 0.25𝜎𝜎  (black), 𝐿𝐿 = 1.5𝜎𝜎  (red), 𝐿𝐿 = 2.0𝜎𝜎  (blue). Details about 237 

computational conditions are given in SI. 238 
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In Sec. II-C, the method for calculating Gibbs free energy with our simulation data is described. 239 

We used again Carnahan-Stirling equation to calculate the chemical potential of a bulk hard sphere 240 

fluid, 𝜇𝜇bulk, at a pressure equal to the value of the normal pressure in the confined fluid. Then, eq. (4) 241 

allows for calculating straightforwardly 𝛾𝛾�𝜕𝜕. The results for 𝛾𝛾�𝜕𝜕 as a function of 𝑝𝑝⊥ are presented in 242 

Fig. 5 along with the differential surface tension. We see that 𝛾𝛾�𝜕𝜕 is also different from 𝛾𝛾 and their 243 

difference is even more pronounced than that between 𝛾𝛾�𝜕𝜕 and 𝛾𝛾. Concerning the influence of the 244 

pore width on 𝛾𝛾 and 𝛾𝛾�𝜕𝜕, Fig. 5 shows that 𝛾𝛾�𝜕𝜕 changes slightly when the pore width is modified 245 

while the differential surface tension is much more sensitive to the change of the pore width as what 246 

is already observed from the results given in Fig. 2. 247 

 248 

FIG. 5. Integral surface tension defined from Gibbs free energy, 𝛾𝛾�𝜕𝜕 (symbols being simulation data 249 

and dash lines for guiding the eye) as a function of normal pressure, compared to differential surface 250 

tension, 𝛾𝛾 (symbols being simulation data and full lines for guiding the eye). Three pore widths are 251 

considered: 𝐿𝐿 = 0.5𝜎𝜎 (black), 𝐿𝐿 = 1.0𝜎𝜎 (red), 𝐿𝐿 = 1.5𝜎𝜎 (blue). 252 

Finally, the ensemble dependence of the integral surface tensions is evidenced by the results 253 

presented in Fig. 6, which shows clearly that 𝛾𝛾�𝜕𝜕 ≠ 𝛾𝛾�𝜕𝜕. From Fig. 6, one can see that for 𝐿𝐿 = 2.0𝜎𝜎, 254 

the curve of 𝛾𝛾�𝜕𝜕 overlaps nearly that of 𝛾𝛾�𝜕𝜕, so the ensemble-dependence of the integral surface tension 255 

becomes negligible for pores with a width larger than 2.0𝜎𝜎 . However, a pronounced ensemble-256 

dependence is observed for strong confinements, 𝐿𝐿 < 2.0𝜎𝜎. 257 
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 258 

FIG. 6. Ensemble-dependence of integral surface tensions. Integral surface tension defined from grand 259 

potential, 𝛾𝛾�𝜕𝜕: symbols being simulation data and dash-dot lines given by fittings with a third-order 260 

polynomial; Integral surface tension defined from Gibbs free energy, 𝛾𝛾�𝜕𝜕: symbols being simulation 261 

data and full lines for guiding the eye. Three pore widths are considered: 𝐿𝐿 = 0.25𝜎𝜎 (black), 𝐿𝐿 =262 

1.5𝜎𝜎 (red), 𝐿𝐿 = 2.0𝜎𝜎 (blue). 263 

IV. Discussion 264 

The results of the present study provide the simulation evidences for the general validation of the 265 

concept of distinct differential and integral surface tensions 22,23, i.e., 𝛾𝛾 ≠ 𝛾𝛾�𝜕𝜕 ≠ 𝛾𝛾�𝜕𝜕, when the size of 266 

an interfacial system shrinks down in the direction normal to the interface. The mechanical definition 267 

and the differential thermodynamic definition of surface tension are ensemble-independent and give 268 

the same result, i.e. 𝛾𝛾 = 𝛾𝛾mech . But the integral surface tensions are ensemble-dependent, e.g., 269 

𝛾𝛾�𝜕𝜕 ≠ 𝛾𝛾�𝜕𝜕 in cases of strong confinement. In contrast to Hill’s nanothermodynamics, the alternative 270 

approach proposed recently 22,23 focuses on a single small system without resorting to the artifice of 271 

replica proposed by Hill. Now, a physically-appealing measure for quantifying a system’s smallness 272 

emerges as well. In fact, down to which size, a system can be qualified as a small one? Before 273 

answering this question, it is to note that the absolute value of the size does not always provide a 274 

suitable answer to such a question. For the system considered in this work, it is the pore size compared 275 

to the fluid-particle size that really matters. A more quantitative characterization of different degrees 276 

of smallness can be formulated according to successive modifications of the thermodynamic properties 277 

due to the size decrease. For the prototype system considered in this work, when the pore width 278 

becomes smaller, one finds first 𝑝𝑝⊥ ≠ �̂�𝑝  (differential pressure: 𝑝𝑝⊥ = −(𝜕𝜕𝛺𝛺 𝜕𝜕𝑉𝑉⁄ )𝑇𝑇,𝜇𝜇,𝒜𝒜 , integral 279 

pressure: �̂�𝑝 = −𝛺𝛺 𝑉𝑉⁄  ) and 𝜇𝜇 ≠ �̂�𝜇  (differential chemical potential: 𝜇𝜇 = (𝜕𝜕𝐺𝐺 𝜕𝜕𝑁𝑁⁄ )𝑇𝑇,𝑝𝑝⊥,𝒜𝒜 , integral 280 

chemical potential: �̂�𝜇 = 𝐺𝐺 𝑁𝑁⁄ ). Further decreasing the pore width leads to 𝛾𝛾 ≠ 𝛾𝛾�𝜕𝜕 ≠ 𝛾𝛾�𝜕𝜕 in addition 281 
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to 𝑝𝑝⊥ ≠ �̂�𝑝, 𝜇𝜇 ≠ �̂�𝜇. 282 

 The new concept of differential and integral surface tensions improves not only our understanding 283 

of the thermodynamic properties of small systems but also our knowledge about various simulation 284 

methods for determining surface tensions. Up to now, it is believed that all the simulation methods 285 

give the same result for surface tension. However, this is no longer true when the surface contribution 286 

becomes dominant in the thermodynamic potential. Under such conditions, the methods based on the 287 

differential definition or the mechanical definition do not give the same result as those based on the 288 

integral definition of surface tension. For example, the first category, including the methods based on 289 

pressure tensor 36,37 or the test area method 39-41, gives the differential surface tension while the second 290 

category, including the thermodynamic integration method 43 and that base on integrating Gibbs 291 

adsorption equation 46,47, gives the integral surface tension. When the methods of the second category 292 

are used, particular attention has to be payed also to the ensemble-dependence of the obtained results. 293 

The general validity of the approach proposed recently by W. Dong 22,23 is demonstrated by the 294 

simulations reported in this work. We hope this will provide an impetus to the investigations for its 295 

experimental validation. We also hope that the present work can motivate further theoretical 296 

investigations. Intensives variables, like pressure and chemical potential, play an important role for 297 

describing phase equilibria. It is not yet clear whether it is the differential or the integral intensive 298 

variables that determine the phase equilibria in small systems. Advance in clarifying such open issues 299 

will certainly benefit the development of nanoscience and nanotechnology. 300 

Although the hard sphere fluid is a quite simple model for fluids, it is now well-known that it is 301 

capable of describing quite well the properties of many colloid systems. Moreover, granular gases 302 

resemble in many aspects to a hard sphere fluid although their motion is not a thermal one but driven 303 

by the vibration of the plateau on which they are placed. Recently, some experiments with granular 304 

gases have provided very interesting results for corroborating some theoretical predictions of stochastic 305 

thermodynamics 57-60. One can wonder how a granular gas which is a macroscopic system can be used 306 

to test the predictions of the nanoscale thermodynamics. In fact, if a granular gas can be confined in a 307 

slit pore of a width in the range of a few diameters of a granular, the system is under the strong 308 

confinement conditions. Such a system should manifest the same behaviors as those observed from 309 

our simulations. As already pointed out above, the really relevant physical measure of smallness is not 310 

the absolute size but the pore width compared to the fluid-particle size. Under the condition of strong 311 
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confinement, the fluid adsorption near one pore wall affects that on the other wall. Thus, there is no 312 

long a clear distinction of bulk and interface regions in such a system, the characteristic thermodynamic 313 

behaviors of small systems will manifest themselves. The strategy described above should allow for 314 

devising possible experimental investigations with granular gases and our simulation results will be 315 

certainly useful to help finding the suitable experimental conditions. 316 
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