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Abstract: Navigation maps are subject to various er-

rors coming from the mapping process, or arising over

time from environment changes. To check the quality

of map data before using it, in particular in the localiza-

tion layer of a High-Definition (HD) map, the informa-

tion given by the sensors can be processed in real-time

while the vehicle is moving during a first passage. Two

methods are proposed and compared to address this

problem and experimental results are reported.

Keywords: ADAS; HD Map; Diagnosis; Sensor Fu-

sion.

1. Introduction

In order to operate safely, autonomous vehicles and

ADAS systems may need an accurate and reliable lo-

calization. This can be achieved using an HD map

with a dedicated layer which contains landmarks that

are observable with onboard sensors like cameras or

LiDARs. However, such maps suffer from errors that

may come from the mapping process, or from the mod-

ification of the environment in time [1]. Due to these

errors, maps cannot be considered as a fully reliable

source of information, and the data they contain must

be updated frequently and checked online by the vehi-

cles [2].

This problem of map map completeness and fresh-

ness has already lead to some research into diagnos-

tic and update methods. In [3], the authors propose a

method to detect missing roundabouts in Standard Def-

inition (SD) maps based on graphical pattern recogni-

tion methods, thus enabling to correct some topology

errors. Other approaches propose to detect errors in

HD maps by leveraging on onboard sensors and using

bayesian filtering [4], smoothing [5] or other fault detec-

tion techniques based on sequential statistical tests [6].

Some other use deep-learning algorithms coupled to a

database of map geometry and sensor information to

classify the map reliability with several sensors [7]. As

for map update, several methods where proposed to

incrementally increase the quality of a map using map-

ping vehicles or crowdsourced data [2], [8]–[11].

In this paper, we focus on road signs, that are common

landmarks for localization using vision or LiDAR sen-

sors. They are indeed easy to detect and are widely

present in urban scenarios where GNSS-based local-

isation demonstrates the worse capability. We pro-

pose a comparison of two methods for automatic cor-

rection of features maps, which are both able to deter-

mine whether the map is reliable enough to be used

for localization, or if the map is still subject to modifi-

cation. The first approach is based on a 2D grid map-

ping of the environment. The observations are stacked

in the grid until sufficient evidence of the existence of

a sign is reached. The second one uses Random Fi-

nite Sets (RFS) Bayesian filtering to solve this prob-

lem with a Probability Hypothesis Density (PHD) filter

that estimates simultaneously the number of signs and

their locations. Both methods use the same prior erro-

neous map. We provide an experimental comparison

of the two methods by highlighting their advantages

and drawbacks.

2. Problem statement

2.1 Context

Consider a vehicle equipped with onboard sensors

navigating a road surrounded by various types of road

signs. A map describing the location of the signs is pro-

vided to the vehicle. The signs that serve as landmarks

may suffer from different type of error. They can be

very poorly located, non-existent in reality (false pos-

itives), some of the signs on the map no longer exist

(false negatives) and some can have wrong significa-

tion (semantic error). In this article, the proposed ap-

proaches focus on signs location and existence.

During a learning phase in manual driving, the on-

board system corrects and improves the map. As

long as data integrity is uncertain, the vehicle remains
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driven by a human. During this phase, the vehicle has

to correct the map, i.e. identify precisely located signs,

remove or identify as bad any faulty ones, correct those

that are flawed and add to the map those that have

been detected and are not on the map. Once it is con-

fident in the data on its map, the on-board system auto-

matically suggests switching to autonomous mode and

driving the vehicle.

This approach aims to enhance the accuracy of local-

ization and improve autonomous navigation reliability.

The overall objective is to study a system that automat-

ically performs the correction of the map without any

human intervention.

2.2 Experimental Setup

The article is based on an experimental study. The test

track consists in two roundabouts with a straight line

between them (see for example fig. 5). 19 standard

compliant road signs were placed around the track. A

reference map was given for evaluation, while the a

priori map given to the system was generated by re-

moving signs from the reference, adding fake ones and

spatial noise to the landmarks.

The experimental setup consisted on a Renault Zoé

car, manually driven on the test track with no other ve-

hicle on it (fig. 1). The car localization was based on a

SPAN-CPT sensor, coupling an IMU and GNSS RTK.

The perception was done using a Pandora 40-layers

LiDAR in dual-return mode, providing 360° perception

at 10Hz.

Figure 1: The experimental vehicle on the track

A preprocessing of the LiDAR data was done to con-

vert the raw point cloud data detected by the LiDAR

sensor into a comprehensive list of signs poses, in-

cluding their ground plane coordinates and orientation,

for each LiDAR iteration. The first step in this pro-

cess involved filtering the point cloud using an inten-

sity threshold, leveraging the fact that the signs are re-

flective and thus exhibit a higher intensity compared

to the surrounding environment. This allows to isolate

potential sign points from the rest of the scene. Next,

we applied geometric distortion corrections, which are

essential to compensate for inaccuracies introduced

by the LiDAR’s movement, particularly due to varia-

tions in speed. Once the filtered and corrected point

cloud were obtained, we performed clustering using

Euclidian Clustering based on K-D trees[12] to group

the points that likely belong to individual signs. Finally,

Principal Component Analysis (PCA) was employed on

each cluster to accurately determine the orientation of

the signs, providing an accurate and structured output

of their poses.

3. Grid-based approach

The first approach is described in fig. 2. It lever-

ages a combination of clustering and graph matching

techniques to accurately localize road sign observa-

tions. First, the observations labeled as road signs are

mapped onto a structured grid. High-density clusters

are then identified, representing likely road sign loca-

tions. These clusters are subsequently matched to the

signs of the prior map. This enable to take advantage

of the prior map by retaining signs that were accurately

positioned. One advantage of this method is that it also

allows to retain the matched points for immediate vehi-

cle localization.

Figure 2: Grid-based approach overview

3.1 Data Aggregation into a Grid Structure

While the vehicle is driving the perception module con-

stantly provide observations of road signs. In real time,

we aggregate this data into a weighted grid map. Each

grid node has a weight which is increased whenever

a new observation falls in its vicinity. Such a grid effi-

ciently stores observation data by consolidating multi-

ple observations into specific nodes, reducing memory

usage and computational time. The aggregation of the

data into the grid and the clustering step take place at

a relatively high frequency while driving, therefore this

grid structure is essential for ensuring the system op-

erates swiftly.

3.2 Clustering of Observations

Each time the grid is updated with new observations,

the system proceeds to the clustering with DBSCAN

(Density-Based Spatial Clustering of Applications with

Noise) [13] to identify dense areas where road signs
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are likely located and mark noise points to be filtered

out. Each cluster identified is assumed to refer to the

location of a single road sign. As the vehicle gath-

ers more data over time, these clusters become more

refined and tend to stabilize. We will take advan-

tage of this to determine the stopping conditions later

on. When many imprecise observations of a single

road sign are scattered between many grid nodes, the

DBSCAN algorithm is able to take advantage of the

weights to precisely estimate the center of the clus-

ter.

3.3 Geometric Matching of Clusters to Map Points

One assumption of the given problem is that the major-

ity of landmarks in the map are well located. We then

want to use the information provided by the prior map to

enhance the perception, by correcting a potentially ex-

isting bias. In order to do this, we use the GraphMatch-

ing via Maximum Clique (GMC) [14] algorithm, which is

commonly used in simultaneous localization and map-

ping tasks. We feed this algorithm the centers of the

clusters calculated in the clustering step, which are the

observed road signs, as well as to the road signs in the

prior map. The result of the GMC algorithm is a subset

of road signs from the prior map that have been paired

to a cluster. We will be using this information for up-

dating the map.

By using a geometry based matching algorithm, we are

not exclusively relying on spacial proximity between the

clusters and the signs from the prior map. This makes

our system less sensitive to biases in the localization

of the vehicle itself and in the perception module.

3.4 Stopping Condition

To determine when to stop the process, we assess

whether the clusters resulting from the clustering step

have changed within a specified time interval (in this

case, 1 second, chosen arbitrarily for this experiment).

If the centers of the detected clusters remain un-

changed after a certain number of updates, we con-

sider them stable enough to proceedwith correcting the

prior map. We consider that the clusters have changed

if a new cluster has appeared or disappeared, and we

consider that a cluster has disappeared if on an itera-

tion of the clustering step, DBSCAN cannot find a clus-

ter anymore near the center of an old cluster from the

previous iteration. This condition tolerates that the cen-

ters of the clusters move slightly between iterations,

which is to be expected as their position is being re-

fined the more observations are collected. As soon as

the clusters are deemed stable, we can proceed to the

updating step.

3.5 Map Update and Correction

We proceed to the update step after the clusters have

stabilized and the matching step has occurred. In or-

der to produce the updated map, we simply retain the

road signs from the prior map which were matched in

the matching step (we assume they were properly po-

sitioned), plus the clusters which were not matched to

any road sign in the matching step (they are the new

road signs which were missing from the prior map).

4. Filtering Approach

The second approach uses a filtering method based on

a Probability Hypothesis Density (PHD) filter. It is struc-

tured around three main modules (fig. 3): the PHD filter

node, the decision node, and the alignment node.

Figure 3: Filtering approach overview

To describe the method, first we will explain the op-

erations of a PHD filter and its relevance in our case.

Next, we highlight the assumptions made and the ad-

justments implemented. Finally, we detail the stopping

conditions of the module, the evaluation of the gener-

ated map, and the post-processing steps.

4.1 Probability Hypothesis Density filter

The Probability Hypothesis Density (PHD) filter is a

multiple-target tracking filter designed to handle an un-

known number of targets, based on finite set statis-

tics [15] and has already been proved for feature-based

mapping and SLAM [16]. It allows for the recursive es-

timation of both the cardinality and individual states of

a target set (Xk) based on a set of observations (Zk).

This filter operates on the principles of a Bayesian filter

and utilizes the PHD function, which, when integrated

over a given space, provides the count of elements

within that space.

A necessary approximation for performing the compu-

tations of the filter is that its elements are Gaussian

distributed. Consequently, the filter actually processes

a mixture of Gaussians, both as input and output. In a

mixture, a Gaussian distribution is characterized by a

weight (ω), a pose (x, y, α), and a covariance matrix.

An iteration of a PHD filter consists of five steps: pre-

diction, update, pruning, merging, and birth.
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The prediction step propagates each Gaussian in the

input mixture based on the previous time steps, using

the system’s evolution model.

The update phase incorporates the observations. All

Gaussians resulting from the prediction step are con-

sidered hypotheses. For each hypothesis, its weight

is multiplied by a factor of (1 − PD), where PD is the

probability of an element being detected. Let mk be

the number of observations and Hk the number of hy-

potheses. For each observation, Hk new Gaussians

are calculated. By definition, the weight of a compo-

nent calculated between an observation and a hypoth-

esis is higher when the observation aligns closely with

the hypothesis. The weights are then normalized to ac-

count for potential false detections and to ensure that

each observation contributes to a total weight of 1.

The pruning step removes components with weights

deemed too low, considered insignificant while the

merging step combines Gaussians that are close in po-

sition and angle. This prevents having multiple com-

ponents with small weights that are spatially close, by

merging them into a single Gaussian with a necessarily

larger covariance.

Finally, the birth step adds one component per obser-

vation to the mixture.

4.2 Field of View Management

The PHD filter and the assumptions made are typically

used for tracking moving objects that are expected to

be visible when they exist. However, the problem con-

sidered here does not fit this scenario perfectly, as we

are dealing with signs (static entities) with limited visibil-

ity (they may not always be visible). This has required

us to find solutions to adapt the filter to the framework

of the study.

Since signs are static, the prediction phase of the filter

is a constant. However,a model uncertainty is added

by the mean of a covariance matrix.

Regarding the visibility of the signs, since the percep-

tion method used is LiDAR, a sign is only visible when

facing the vehicle. Given the track’s layout and the var-

ious possible positions for the signs, they are only vis-

ible within a restricted field of view. A solution is to

determine a visibility field that accommodates any sign

configuration around the track.

The factors considered are the distance from the ve-

hicle to the sign and the angle. If a sign is too close

(<2 meters) or too far, it is considered not visible. The

sign’s angle is used to assess whether the vehicle is

directly facing it. Figure 4 illustrates a possible con-

figuration, with non-visible signs shown in red and the

visible one in green, along with its visibility field.

The implementation of sign visibility has been incorpo-

rated into the PHD filter in two main ways. Firstly, it is

Figure 4: Visibility of a sign depending on its orientation

and distance from the vehicle

used to filter observations. We only consider observa-

tions if we are reasonably certain that the vehicle can

see the sign, which helps filter out lower-quality obser-

vations. However, the defined visibility field remains

relatively broad. Secondly, this visibility information is

applied during the update step of the filter, with a more

restricted visibility area. If a Gaussian pose is consid-

ered as a non-visible sign, its detection probability PD

is set to 1. This means that when multiplying the weight

by the factor (1−PD), the sign is treated as if it cannot

be undetected because it cannot be seen. The sec-

ond application occurs during the calculation of a new

Gaussian component between an observation and an

hypothesis. The formula for the weight of this compo-

nent is as follows:

w̃i×Hk+h
k|k ← PDwh

k|k−1N (zik; ẑ
h
k|k−1, S

h
k ) (1)

wherewh
k|k−1 corresponds to the weight of the hypothe-

sis, w̃
i×Hk|k−1+h
k|k to the weight of the new component,

and zik is the observation. It can be noted that if this

hypothesis is not visible, PD = 0, and thus the obser-

vation cannot be associated with this hypothesis.

4.3 Stopping Conditions and Map Evaluation

The decision node receives as input the poses of the

signs estimated by the PHD filter. It determines when

the map is stable enough to proceed to the next phase.

This decision involves two metrics: the distance trav-

eled by the vehicle since the start of the global cor-

rection node and the Generalized optimal sub-pattern

assignment (GOSPA) metric [17].

Intuitively, it is easy to deduce that at least one com-

plete lap of the track is needed to ensure all signs have

been seen. Therefore, we calculate the distance trav-

eled by the vehicle, and as long as it is less than a bit

more than one lap, map correction continues.

The GOSPA metric calculates the distance, or rather

the degree of dissimilarity, between two finite sets of

elements. It is computed by associating points from the

two sets and then calculating the metric based on the
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distance of associated points, the number of false de-

tections, and the number of missed detections. Specif-

ically, we use the mean-GOSPA, which is the GOSPA

metric divided by the number of detected elements.

This adjustment accounts for the fact that with more el-

ements to compare, there are more potential sources

of error. To compute the mean-GOSPA, we use both

the prior map and the map from the PHD filter. Even if

the prior map data might be noisy, it contains a number

of well-placed signs. The presence of incorrect or miss-

ing signs in the prior map does not prevent the mean-

GOSPA from decreasing as new, well-placed signs ap-

pear in the PHD map.

After more than one lap of the track, if this metric re-

mains constant over a certain period, we consider the

map to be stable and thus conclude that that diagnosis

phase has converged.

4.4 Alignment

Once the decision is made to stop updating the PHD

map, we plan to perform an alignment of the gener-

ated map with the prior map. This aims to correct any

potential biases that may be introduced, particularly by

localization errors.

To achieve this, we use an Iterative Closest Point (ICP)

algorithm [18]. ICP is employed to match two datasets

(often in the form of point clouds) which represent two

partial views of the same object. Each view consists of

a set of points, and the goal is to iteratively minimize

the distance between these points.

Finally, after all these steps, the aligned map is sent to

the localization system to replace the prior map.

5. Results and discussion

In this section, we present the results obtained from the

two previously described approaches: the grid-based

approach and the filtering approach using the PHD fil-

ter. These results allow us to evaluate the performance

of each method in terms of road sign localization accu-

racy, map error correction, and data stability. Both ap-

proaches were tested on the same dataset to ensure a

fair comparison and to identify the strengths and limi-

tations of each method.

The environment in which these methods were tested

is the ”Seville” test track at UTC. Figure 5 shows the

shape of the track, the actual placement of the road

signs (red), as well as the prior map (green). As a re-

minder, the prior map includes: a certain number of

exact signs, signs that exist but with errors in position

and angle, signs that do not exist, and signs that are

missing compared to the ground truth.

Figure 6 shows the result of the grid-based approach

after the stopping condition was met. The clustering

and matching steps retained a subset of the prior map

and produced a set of new signs, which together make

up the updated map. As can be seen on the figure, one

Figure 5: Map of the driving area with ground truth and

prior map whose errors are clearly visible

real sign was not recognized. This was caused by the

inaccuracies in the perception module which caused

two nearby real road signs to be detected by DBSCAN

as one single cluster. In addition to that, some of the

points retained from the prior map are clearly misslo-

cated. These errors are due to the matching step, that

prevents the method to correct small localization er-

rors.

Figure 6: Comparison of the actual road sign, the cen-

ters of the clusters and their state in the

matching algorithm (grid-based approach)

Figure 7 shows the counter value during the experi-

ment to determine when to stop. Each time a LiDAR

scan is obtained, the counter value increases while

the clusters do not change, and is set to 0 whenever

a change is detected. In this experiment the value

started increasing constantly after 90 seconds, which

means that no new road sign was detected after this

time. It reaches a threshold of 1000 after 175 seconds,

signaling that the map verification is complete and the
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prior map can be updated.

Figure 7: Mapping stability indicator as a function of

time (grid-based approach)

Concerning the PHD filter, the chosen value for the de-

tection probability PD is set at 0.8, reflecting a high con-

fidence level in the system’s ability to detect panels.

Additionally, the weight assigned to new observations

during the birth step of the PHD filter is initialized at

0.01, allowing for a balanced contribution of fresh data

without overwhelming the existing hypotheses. The co-

variance matrix is initialized based on the uncertainty

associated with the data sources, particularly consid-

ering the inherent uncertainties of the LiDAR measure-

ments. This careful initialization of the covariance ma-

trix is crucial for accurately modeling the positional un-

certainties and enhancing the overall effectiveness of

the filtering process. The result of the filter-based ap-

proach is shown in fig. 8.

Figure 8: Map obtained through the filtering approach

As mentioned previously, it is essential to detect the

convergence of this approach. Figure 9 shows the

mean-GOSPA between the prior map and the esti-

mated map using the PHD filter as a function of the

distance traveled by the vehicle. The curve initially de-

creases and then begins to stabilize around a asymp-

totic value. This value cannot be zero because this

test compares the map with the prior map, which con-

tains errors, missing signs, or extra signs (the lower the

mean-GOSPA, the better the correspondence between

the two sets). The stabilization of the mean-GOSPA

indicates that there are no more significant changes in

the mapping. The stabilization of this indicator is there-

fore a good indicator to stop the diagnosis of the prior

map.

Figure 9: Mean-GOSPA as a function of the distance

traveled by the vehicle (filtering approach)

Figure 10 shows that the number of signs does not in-

crease monotonically. This behavior can be attributed

to factors such as missed detections and variations in

the weights of the Gaussians, which can temporarily

lead to the absence of certain signs. Consequently,

while the overall trend may show an increase in the

number of detected signs, fluctuations occur due to

these uncertainties in the detection process. This sen-

sitivity to missed detections stems from the fact that

the PHD filter only accounts for the number of detected

elements without considering the uncertainty associ-

ated with that count. As a result, fluctuations in the de-

tected number of signs may occur, indicating the need

for methods that better incorporate uncertainty for more

robust tracking.

Metric Grid-based method Filtering Approach

Missed detections 1 1

Clutter 0 0

Mean absolute error 0.702m 0.3751 m

Standard Deviation 0.285m 0.1403 m

Mean error Angles unknown 9.7754°

Standard Deviation Angles unknown 7.4703°

Table 1: Comparison of the two methods

Table 1 provides a comparison of the approaches using

both qualitative and quantitative data. Both methods

Page 6 / 8



Figure 10: Number of signs estimated by the PHD filter

experience missed detections, albeit for different rea-

sons. The grid-based method may fail to detect signs

if the grid or sensor resolution is insufficient, leading

to situations where closely spaced signs are perceived

as a single entity. In contrast, the PHD filter is highly

sensitive to missed detections; if the perception mod-

ule fails to identify a sign during one or a few iterations,

the corresponding Gaussian weight, representing the

probability of the sign being located at that position, de-

creases rapidly and may even disappear. Regarding

the accuracy of the methods, both perform well, with

notably better results for the second approach. Fur-

thermore, the filter-based method also provides infor-

mation about the orientation of the signs.

Regarding the stopping conditions, two proposed in-

dicators are relevant. For the PHD filter, the conver-

gence of the mean-GOSPA effectively is clearly visible.

An automatic stopping condition based on this metric

was not implemented in this work but this opens the

door to a wide range of solutions. For the grid-based

method, the stopping condition is met as soon as the

vehicle is not making new observations during a pe-

riod of time, regardless of the accuracy of the clusters

and the vehicle’s trajectory. The tuning of this duration

needs more tests in different conditions.

6. Conclusion

This paper addressed the challenge of ensuring ac-

curate and up-to-date HD maps for autonomous vehi-

cle navigation. Two automatic methods for detecting

and correcting localization signs were proposed, imple-

mented and compared.

While the PHD filter approach allows for more accurate

positioning of signs, the total number of detected signs

heavily relies on the quality of the perception module.

Conversely, the grid method is more robust, albeit with

slightly lower accuracy.

Indeed, the grid-based approach was able to extract

the localization of most road signs, even though it was

notably less accurate than the filtering method. By tak-

ing advantage of the matching process, it can local-

ize road signs from the prior map while they remain

unconfirmed. Some improvements could be made to

the way the grid accumulates observations. The cur-

rent implementation of our system does not take into

account how clutter detections could accumulate on

the grid over long periods of time, causing DBSCAN

to eventually falsely detect clusters made of them. A

potential solution could be to create multiple smaller

grid maps instead of one, each with different clustering

parameters based on how long the associated physical

location is visible by the perception module. We also

believe significant improvements in accuracy could be

obtained by further tuning the proximity parameters of

the GMC algorithm.

Regarding the filtering approach, the results obtained

from the test data presented in this article demonstrate

the real potential of this method. Its structure allows it

to achieve good results and it can also correct biases

present in a sensor. Themain area for improvement re-

mains the issue of miss-detections, which significantly

impact the filter’s performance. An idea can be accu-

mulating observations to improve the results. Another

potential solution can be implementing a Cardinalized

Probability Hypothesis Density (CPHD) filter, which re-

tains uncertainty about the number of elements. This

filter is much more robust but also needs a manage-

ment of the visibility field of view.

Finally, as both methods were tested with a highly ac-

curate localization system and an HD precise map,

even if it contains some error, it would be interesting

to see how a less accurate localization or map system

could behave on the presented approaches.
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