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A B S T R A C T   

Introduction: Spatial normalization is a prerequisite step for the quantitative analysis of SPECT or PET brain 
images using volume-of-interest (VOI) template or voxel-based analysis. MRI-guided spatial normalization is the 
gold standard, but the wide use of PET/CT or SPECT/CT in routine clinical practice makes CT-guided spatial 
normalization a necessary alternative. Ventricular enlargement is observed with aging, and it hampers the spatial 
normalization of the lateral ventricles and striatal regions, limiting their analysis. The aim of the present study 
was to propose a robust spatial normalization method based on CT scans that takes into account features of the 
aging brain to reduce bias in the CT-guided striatal analysis of SPECT images. 
Methods: We propose an enhanced CT-guided spatial normalization pipeline based on SPM12. Performance of the 
proposed pipeline was assessed on visually normal [123I]-FP-CIT SPECT/CT images. SPM12 default CT-guided 
spatial normalization was used as reference method. The metrics assessed were the overlap between the 
spatially normalized lateral ventricles and caudate/putamen VOIs, and the computation of caudate and putamen 
specific binding ratios (SBR). 
Results: In total 231 subjects (mean age ± SD = 61.9 ± 15.5 years) were included in the statistical analysis. The 
mean overlap between the spatially normalized lateral ventricles of subjects and the caudate VOI and the mean 
SBR of caudate were respectively 38.40 % (± SD = 19.48 %) of the VOI and 1.77 (± 0.79) when performing 
SPM12 default spatial normalization. The mean overlap decreased to 9.13 % (± SD = 1.41 %, P < 0.001) of the 
VOI and the SBR of caudate increased to 2.38 (± 0.51, P < 0.0001) when performing the proposed pipeline. 
Spatially normalized lateral ventricles did not overlap with putamen VOI using either method. The mean pu-
tamen SBR value derived from the proposed spatial normalization (2.75 ± 0.54) was not significantly different 
from that derived from the default SPM12 spatial normalization (2.83 ± 0.52, P > 0.05). 
Conclusion: The automatic CT-guided spatial normalization used herein led to a less biased spatial normalization 
of SPECT images, hence an improved semi-quantitative analysis. The proposed pipeline could be implemented in 
clinical routine to perform a more robust SBR computation using hybrid imaging.   

Abbreviation: VOI, volume of interest; SD, standard deviation; SBR, specific binding ratio; MNI, Montreal Neurological Institute; TPM, tissue probability map; 
SPM, statistical parametric mapping; LVV, lateral ventricular volume; [123I]-FP-CIT, 123- radiolabeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) 
nortropane; CSF, cerebrospinal fluid; GM, gray matter; WM, white matter; MIITRA, Multichannel Illinois Institute of Technology & Rush University Aging; ICBM, 
International Consortium for Brain Mapping; NMI, normalized mutual information; IQR, interquartile range (IQR); SE, standard error. 
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1. Introduction 

Numerous neurological studies aim to perform quantitative analyses 
of positron emission tomography (PET) or single-photon emission 
computed tomography (SPECT) images by using VOI template or voxel- 
based analysis. In both cases, this requires putting images in the same 
anatomical space, defined by a population average, also known as a 
template. Standard reference frames have been established to consis-
tently and accurately assess inter-subject anatomical correspondences in 
images (e.g., the stereotactic space of the Montreal Neurological Insti-
tute, MNI (Brett et al., 2002; Martino et al., 2013). This process is known 
as spatial normalization or registration and allows regions that are 
pre-defined on the templates to be overlaid on the spatially registered 
image, allowing automatic identification of different structures. An 
inaccurate spatial normalization can lead to remarkable anatomical 
mismatches, leading to biased quantification and reduced diagnostic 
effectiveness (Della Rosa et al., 2014; Zhang et al., 2022). By way of 
illustration, in studies involving dopamine transporter scintigraphy 
(123- radiolabeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3--
fluoropropyl) nortropane; [123I]-FP-CIT or Technetium-99m labeled 
tropane derivative; 99mTc-TRODAT-1), the spatial normalization accu-
racy will determine the accuracy of striatal uptake specific binding ratio 
(SBR) measurements. 

Spatial normalization can be based on functional images (SPECT or 
PET) or anatomical images (computed tomography, CT, or magnetic 
resonance imaging, MRI). For example, in studies involving dopamine 
transporter scintigraphy, SPECT or PET-guided spatial normalization are 
very sensitive to both specific and non-specific ligand binding (Kim 
et al., 2015). CT or MRI-based spatial normalization are not affected by 
this as they work independently from transporter density and provide 
anatomical information that is relevant for the warping process. MRI is 
the reference for SPECT or PET brain image spatial normalization, 
however the improvement of the image quality of CT scanners and the 
growing widespread use of hybrid imaging devices combining SPECT 
and CT, or PET and CT, makes CT-guided spatial normalization a more 
practical alternative. The feasibility of CT-guided spatial normalization 
has been reported, however it is complicated by the significant differ-
ences in skull, brain tissue, and air intensities as popular cost-functions 
applied to CT images are primarily driven by the contrast of air and bone 
while soft tissues have relatively equivalent similarity metrics (Carmi-
chael et al., 2007; Rorden et al., 2012; Kim et al., 2015; Matsuda et al., 
2021). 

Well-established algorithms for structurally guided and atlas-based 
spatial normalization use a combined approach for segmentation and 
normalization, in a single probabilistic framework (Fischl et al., 2004; 
Ashburner and Friston 2005). For this, tissue probability maps (TPMs), 
which represent the prior probability of different tissue classes being 
found at each location in an image, are indispensable (Ashburner and 
Friston 2005). Templates and their associated TPMs are constructed 
from MRI of numerous brains that are registered into a common space 
and are used for spatial normalization of MRI and CT images. This 
unified framework is implemented in the widely used Statistical Para-
metric Mapping (SPM) software (Wellcome Trust Centre for Neuro-
imaging, London, UK), and has been successfully used in numerous 
investigations (Allen et al., 2008; Colloby et al., 2011; Izquierdo-Garcia 
et al., 2014). Another approach for non-linear deformations relies on 
deep neural networks to learn the spatial normalization function (Dalca 
et al., 2019; Krebs et al., 2019), but this either requires some sort of prior 
image processing or it is restricted to MR imaging. 

Templates and TPMs are representative of an age specific group of 
individuals, usually young adults, from which they are generated. The 
substantial inter-individual variability in brain images with ventricular 
enlargement due to age-related atrophy, pathological atrophy or hy-
drocephalus, poses significant challenges in the delineation of adequate 
TPMs. These challenges result in a poor segmentation, especially of 
lateral ventricles, hence a less accurate spatial normalization (Allen 

et al., 2008; Kennedy et al., 2009; Peelle et al., 2012; Eloyan et al., 
2014;) and biased metabolic activity measurements (Reig et al., 2007). 
In this context, there is a consensus that the performance of default 
structure-guided spatial normalization in SPM12 is impacted when 
dealing with ventricular enlargement (Ganzetti et al., 2018). Moreover, 
accurate delineation of striatal structures that are adjacent to the lateral 
ventricles remains challenging (Makowski et al., 2018). As a result, 
measurements of radiotracer uptake could be biased (Reig et al., 2007). 
Therefore, new tissue priors were developed, and were generated from 
individuals with ages similar to what is commonly seen in neurode-
generative studies, and the delineation of subcortical structures was 
improved to compensate age-related bias in tissue classification (Lorio 
et al., 2016; Ridwan et al., 2021; Niaz et al., 2022). 

The purpose of the present study was twofold: to propose a more 
robust CT-guided spatial normalization method with features to deal 
with CT scans and the hallmarks of the aging brain and to compare the 
proposed pipeline with the default SPM12 CT-guided spatial normali-
zation pipeline. The comparison of the two pipelines relied on, first, the 
assessment of the performance of the lateral ventricles’ spatial normal-
ization, and second, the impact on the semi-quantification of [123I]-FP- 
CIT images from subjects with uncertain parkinsonian syndromes and 
visually normal scans. 

2. Methods 

2.1. Subjects, system data acquisition, and reconstruction 

[123I]-FP-CIT SPECT/CT images were acquired at Hospices Civils de 
Lyon nuclear medicine department between 2008 and 2017 and 
described in the study reported by Fahmi et al. (2020). We included 237 
subjects (117 women and 120 men) with uncertain parkinsonian syn-
dromes, visually normal [123I]-FP-CIT SPECT images and without any 
brain injury (tumors or stroke); the age of whom ranged from 16 to 88 
years (mean ± standard deviation (SD) = 62.2 ± 15.7 years). Clinical 
indications for obtaining a diagnostic CT scan were given in all cases. 
These subjects were representative of routine clinical practice at our site. 
Imaging was performed using a Symbia® T2 (Siemens Healthineers, 
Erlangen, Germany) system equipped with low energy high-resolution 
collimators. The CT scanning parameters were held constant in the he-
lical scanning mode: pitch = 1, 130 kV, 150mAs, reconstruction matrix 
= 512 × 512, voxel size = 0.59 mm × 0.59 mm × 1.5 mm. The CT 
acquisition protocol resulted in a volumetric dose index of 35 mGy, a 
mean effective dose of 1.64 ± 0.15 mSv, while the mean dose length 
product was 940 ± 179.95 mGy*cm. The SPECT scanning parameters 
were held in circular step and shoot mode: 120 projection angles over 
360◦ (each projection lasted 30 s), hardware zoom = 1.23 × 1.23, 
in-plane pixel size = 3.9 mm by 3.9 mm, slice thickness = 3.9 mm, 
reconstruction matrix = 128 × 128, photo peak imaging window = 159 
keV ± 8 %, and acquisition time = 30 min. The mean injected dose of 
[123I]-FP-CIT was 185.97 ± 14.17 MBq (range 158–211 MBq), and the 
image acquisition started 3 h after the injection. Images were recon-
structed using a commercial 3-dimensional ordered subset expectation 
maximization algorithm (Flash3D®; Siemens Healthineers) with 10 it-
erations, 8 subsets. Attenuation correction relied on µ-map derived from 
the down sampled CT and scatter correction used a triple energy window 
method. Images were smoothed using a Gaussian filter with an 8 mm 
full-width-at-half-maximum. A visual check was conducted to verify the 
alignment between the CT and SPECT images in the native space. The 
datasets generated and/or analyzed during the current study are not 
publicly available due to institutional restrictions on patient confiden-
tiality, prior consent, and privacy. 

2.2. Methods description 

We hypothesized that performing a custom pipeline for the CT- 
guided anatomical standardization that is more robust for dealing 
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with low dynamic ranges of soft tissue in CT scans and more suitable to 
the aging brain anatomy could reduce spatial normalization errors. This 
can reduce the overlap differences between the spatially normalized 
lateral ventricles and the striatal VOIs of the reference space. Thus, we 
compared SPM12 default spatial normalization with the proposed 
spatial normalization pipeline. The workflow of the proposed pipeline is 
fully automated and relies on tools available in SPM12. All programs 
were developed using MATLAB (R2021a; The MathWorks Inc., Natick, 
MA, USA). 

2.2.1. Estimating lateral ventricular volumes within the cohort 
The estimation of LVVs before and after warping is a robust metric to 

evaluate the spatial normalization performance on the adjacent striatal 
regions. This is explained by the fact that the size of the spatially 
normalized lateral ventricles and the adjacent striatal regions should 
match those of the template after the warping. 

The LVV estimation pipeline consisted of two steps. Firstly, we 
segmented the cerebrospinal fluid (CSF) using SPM12 dedicated seg-
mentation tools; and secondly, we extracted the lateral ventricles from 
the CSF (Fig. 1). In the 1st step, we used 6 TPMs combined with adapted 
segmentation parameters (Table 1). Six tissue classes were then gener-
ated from the CT image: white matter (WM), gray matter (GM), CSF, 
skull, soft tissue, and air. To compensate for the effect of the spatial 
normalization (volumetric changes induced by non-rigid deformations), 
volume information at each voxel is conserved by multiplying tissue 
density values by the Jacobian determinant. In the 2nd step, we used the 
binary mask that is part of the Automatic Lateral Ventricle delIneatioN 
(ALVIN) program (Kempton et al., 2011), with the aim of excluding CSF 
outside the lateral ventricles (superior cistern, sulcal CSF, and the third 
ventricle). This mask takes into consideration the large inter-subject 
variability in the shape and the size of lateral ventricles that may still 
exist even after the spatial normalization. 

In the case of a severe lateral ventricular enlargement, segmentation 
of CSF using the ‘Segmentation’ module of SPM12 may fail and produce 
unreliable volume measurement. We therefore used an additional seg-
mentation technique based on thresholding and masking (using the 
same mask). In case of large differences in LVV estimations between the 
two segmentation techniques (> mean difference [mL] + 1 SD), images 
were analyzed visually to detect severe lateral ventricular enlargement 
(potential hydrocephalus) that caused spatial normalization failure. 
These cases were excluded from the analysis. 

The algorithm works with a parametrization of the image intensities 
for each tissue type using a Gaussian Mixture Model. For CT images, a 
non-parametric approach (NP) was used to model the tissue intensities 
of white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), 
skull, soft tissue, and air 

2.2.2. Spatial normalization pipeline 
Before conducting the spatial normalization of CT images and 

applying the generated deformation fields to the SPECT images, the 1st 
step of the proposed pipeline consisted of using a rigid body model to 
align CT and SPECT images of each subject, using the ‘Coregister’ 
module of SPM12. This step was intended to remove any unexpected 
misalignment (incorrect system calibration or head motion between 
SPECT and CT acquisitions). The chosen fixed image for spatial 
normalization was the CT image, while the moved one was the SPECT 
image (Fig. 3). The transformation was parameterized by three trans-
lations and three rotations around each axis. Subsequently, the intention 
was to estimate the transformation, by finding parameters that optimize 
the objective function. In the present case of multimodal images, the 
chosen similarity measure was intensity based, and relied on normalized 
mutual information (NMI) computed as: 

SM (C, S) =
H(C) + H(S)

H(C, S)
(1) 

Where H (C) and H (S) are the marginal entropies of the CT and 
SPECT images respectively, and H (C, S) is the joint entropy of C and S 
and were computed as: 

H (C) = −
∑

c∈C
p{c}log(p{c}) (2)  

H (S) = −
∑

s∈S
p{s}log(p{s}) (3)  

H (C, S) = −
∑

c∈C

∑

s∈S
p{c, s}log(p{c, s}) (4)  

Where c and s are the set of values occurring in CT and SPECT images 
respectively, p{c} and p{s} are the marginal probabilities of c and s 
respectively and p{c,s} the joint distribution of c and s. 

Fig. 1. Pipeline of the lateral ventricles’ segmentation. The cerebrospinal fluid (CSF) was segmented using SPM12 and a binary mask was then applied. In the output, 
we obtained a 3D image of the lateral ventricles. 

Table 1 
Settings for the unified segmentation algorithm.  

Setting Parameter CT 

Bias field correction Full width at half maximum Disabled 
Regularization - 

Approach for modeling tissue intensities GM NP 
WM NP 
CSF NP 
Bone NP 
Tissue NP 
Air NP 

Warping regularization Absolute displacement 0 
Membrane energy 0.001 
Bending energy 0.5 
Linear elasticity 1 0.05 
Linear elasticity 2 0.2  
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The goal of using NMI was to overcome the sensitivity of mutual 
information to variations of the overlap size between the fixed image 
and the moved one. While being written in the new space, the images 
were sampled using 4th◦ B-spline interpolation and smoothed slightly as 
was the histogram. 

In the 2nd step of the proposed pipeline (Fig. 3), the intensity of CT 
images was converted to the image brightness range of a CT template 
(Rorden et al., 2012). This intensity transformation was intended to 
increase the intensity range representing the CSF and brain tissue and 
reduce intensity contrast between the latter and the skull. The 
intensity-transformed CT images were then subject to a non-rigid 
transformation with the CT template using the ‘Old Normalization’ 
module of SPM12. This step was intended to ease the execution of the 
unified framework of the 2nd non-rigid registration (the 3rd step of the 
pipeline), by providing reasonable starting estimates for the local opti-
mization procedure. In other words, the primary aim of this spatial 
registration step was to compensate partially for potentially enlarged 
ventricles. The used enhanced CT template (Rorden et al., 2012) was 
adapted to common spatial normalization cost functions (such as 
least-squares) and was generated from healthy older subjects (mean age 
± SD = 61.3 ± 18.4 years). The LVV of this CT template was 40.98 mL. 
Within this registration step, an affine registration (involving 12-param-
eter affine transformation) was followed by estimating nonlinear de-
formations, defined by a linear combination of 3D discrete cosine 
transform (DCT). The matching between the CT image and the CT 
template involved minimizing the membrane energies of the deforma-
tion fields and the residual squared difference (Ashburner et al., 2021). 

In the 3rd step of the proposed pipeline (Fig. 3), we implemented an 
image-processing step using the unified normalization segmentation 
within the ‘Segmentation’ module found in SPM12. A different set of 
TPMs were used (Ridwan et al., 2021) as compared to SPM12 default 
normalization pipeline. Indeed, both the standard template image and 
TPMs found in SPM12 are based on MRI T1-weighted data from 152 
young normal adults (age range: 18–44 years, International Consortium 
for Brain Mapping [ICBM152] template). Thus, after the spatial 
normalization, age-related enlarged lateral ventricles tend to be mis-
aligned and the LVV does not match that of the ICBM152 template 
(Ganzetti et al., 2018). The comprehensive older adult brain atlas, 
Multichannel Illinois Institute of Technology & Rush university Aging 
(MIITRA), contains a T1-weighted template and TPMs based on 222 
older adults (age range: 65–95 years; mean ± SD = 80.1 ± 8.3 years), 

making it representative of older adult brain (Ridwan et al., 2021). 
Moreover, the construction approach of MIITRA was different from 
conventional template building, as it was constructed with 
state-of-the-art spatial normalization (Ridwan et al., 2021). LVV (46.95 
mL) of the MIITRA template was closer to that of the aging population 
(Fig. 2), limiting the deformations needed to match the template. 

A non-parametric approach was used to model tissue intensities, 
which was more suitable for CT images as aliasing effects responsible for 
poorly behaved intensity histograms are less pronounced than in MRI 
images (Ashburner et al., 2021). The used registration approach 
involved simultaneously minimizing two terms. One of these was a 
measure of similarity between the images, whereas the other was a 
measure of the roughness of the deformations. In the output, spatially 
normalized CT images were segmented, and deformation fields were 
generated. Then the combined deformation fields were applied to 
co-registered SPECT images, using B-spline interpolation based on a 4th◦

spline. 
The default SPM12 spatial normalization pipeline used as the refer-

ence in the present study consists of applying the unified framework that 
alternates between classification (using ICBM152 TPMs) and registra-
tion. The same non-parametric approach used to model tissue intensities 
was applied in the default SPM12 approach. 

2.3. Evaluation 

Firstly, the performance of the spatial normalization was estimated 
using the comparison between the estimated LVV before warping and 
the LVV of the template, as well as between the estimated LVV after 
warping and the LVV of the template, as a robust spatial normalization 
should make the subject’s LVV similar to that of the template. The 
volume difference was computed as follows: VolumeDifference 
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|LVVtemplate − LVVCT|

√
(5), where LVVtemplate was the LVV of the 

template associated with the selected set of TPMs, and LVVCT was the 
LVV of the spatially normalized CT image from one subject. The root was 
added to display values more clearly. The smaller was the Vol-
umeDifference the better was the spatial normalization. The intersection 
between the polynomial fits of the differences between the LVV of the 
spatially normalized CT images and that of the template when per-
forming both methods was used to identify the LVV cutoff from which 
the proposed method provides better performance. 

Secondly, performance of the spatial normalization was estimated 

Fig. 2. Comparison between axial slices of SPM12 standard MRI template (top left) and MIITRA template (bottom left) as well as their respective tissue probability 
maps (TPMs). The voxel size of the standard TPMs is 1.5 × 1.5 × 1.5 mm3; TPMs for MIITRA have a voxel size of 1 × 1 × 1 mm3. The lateral ventricular volume (LVV) 
of MIITRA (46.95 mL) is greater than that of ICBM152 (29.38 mL). For TPMs, the brightest voxels indicate high probability of that tissue class. 
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using the overlap between the striatal VOIs (caudate and putamen) of 
the template and the spatially normalized lateral ventricles of subjects. 
Striatal VOIs were chosen, as their positioning is potentially impacted by 
the enlarged lateral ventricles. We measured the overlap between 
striatal VOIs generated from the template corresponding atlas and the 
lateral ventricles of the spatially normalized CT images as an indirect 
method to assess the correspondence between spatially normalized 

striatal regions of CT images and those of the used atlas, without the 
need of segmenting these anatomical regions on the CT image. This 
overlap was calculated as follows: 

Overlap(%) = 100.
|LV ∩ AVOIs|

|AVOIs|
(7)  

Where LV were the lateral ventricles and AVOIs were the striatal VOIs of 

Fig. 3. Top: Pipeline of the proposed CT-guided spatial normalization of SPECT images. The CT image in the native space is spatially registered, and then the 
generated deformation fields are combined by the operation of “composition” and applied to the co-registered SPECT image. Bottom: SPM12 default CT-guided 
normalization. 
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the atlas. 
Additionally, we used the Dice score index (Shattuck et al., 2001; 

Fischmeister et al., 2013) to assess the performance of the segmentation 
of WM and GM, as it was jointly executed with the spatial normalization. 
Therefore, this was a complementary manner to assess the performance 
of the unified framework used both in SPM12 default spatial normali-
zation and in the proposed pipeline. We calculated the Dice score index 
as follows: 

Dice(CTTPM, TTPM) = 2.
|CTTPM ∩ TTPM|

|CTTPM| + | TTPM|
(6)  

Where CTTPM and TTPM were the TPMs of WM and GM of the spatially 
normalized CT image and the MRI template respectively, normalized to 
template space and thresholded to 0.5. The notation |.| represents the 
cardinality of these binary sets. The ground truth segmentation was 
considered as the MRI template’s segmentation (TTPM), as its own 
associated TPMs were used for tissue classification. 

Lastly, we performed the semi-quantitative analysis of [123I]-FP-CIT 
SPECT images using predefined striatal and occipital lobe VOIs. SBR was 
computed using the following formula (Innis et al., 2007):  

SBR = (Cvoi− Coccipital) /Coccipital                                                      (8) 

Where Cvoi and Coccipital are the mean uptakes of voxels within the 
caudate VOI, putamen VOI and within the occipital lobe, respectively. 
The reference was the occipital region as it has negligible density of 
tracer-binding sites. 

As the spatial normalization influences the accuracy of the VOI 
positioning (Gispert et al., 2003), it is expected that in our visually 
normal cohort of [123I]-FP-CIT SPECT images, poorly positioned VOIs 
reduce the value of SBRs. Since there was no labelled atlas corre-
sponding to the MIITRA template available at the time of the study, new 
striatal VOIs were created. These VOIs were a manually modified 

version of ICBM152 corresponding atlas’s VOIs, as we overlaid these 
VOIs to better match the MIITRA template. It is worth noting that the 
volume of the striatal VOIs were fixed and did not take into consider-
ation potential volumetric decrease due to aging (Coupé et al., 2019). 

2.4. Statistical analyses 

Descriptive statistics are presented as follows: continuous variables 
as means and SD or median and interquartile range (IQR) and compared 
using the Wilcoxon test or the Student’s t-test, according to their dis-
tribution. The linear regression analyses were performed to estimate the 
relationship of the LVV after the spatial normalization and caudate SBR 
with the tested independent variable: initial LVV. The linear regression 
line was defined as y = slope (± Standard Error [SE]) × initial LVV +
intercept (± SE). The relationship between VolumeDifference and the 
independent variable: initial LVV was analyzed using polynomial 
regression. The interaction between age and LVV and their impact on the 
caudate SBR were tested using the following linear model: SBR ~ age +
LVV + age:LVV (the product of age and LVV). All statistical analyses 
were performed using MATLAB (R2021a; The MathWorks Inc., Natick, 
MA, USA). 

3. Results 

3.1. LVV distribution and correlation with age 

After assessing LVV through the two segmentation techniques, and 
conducting visual inspection, 6 subjects were excluded for failed CSF 
segmentation (2.5 %). In total 231 subjects (mean age ± SD = 61.9 ±
15.5 years) were included in the statistical analysis. LVV ranged from 12 
to 109 mL (Fig. 4), and the mean LVV ± SD was 48.58 ± 21.96 mL. Age 
and the LVV were moderately correlated (r = 0.65). Age was also 
moderately correlated with LVV of the left and the right hemispheres (r 

Fig. 4. Lateral ventricular volumes (LVV) distribution and the fitted normal distribution (red continuous line) are displayed in the top left graph. Total LVV (top right 
graph), the left LVV (bottom left) and the right LVV (bottom right) are displayed according to age (years). 
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= 0.62 and r = 0.64, respectively) highlighting age-related enlargement 
of the lateral ventricles. 

3.2. LVV after spatial normalization 

The intersection between the polynomial fits of VolumeDifference 
after performing both SPM12 default spatial normalization and the 
proposed pipeline indicated that above 30 mL, LVVs of subjects were 
closer to the template’s LVV after performing the proposed pipeline 
(mean VolumeDifference = 1.92 for the proposed pipeline and mean 
VolumeDifference = 4.48 for SPM12 default spatial normalization). 
Below 30 mL (corresponding to approximately 42 years of age), using 
SPM12 default normalization provided slightly better results (mean 
VolumeDifference = 1.33) than the proposed pipeline (mean Vol-
umeDifference = 2.15; Fig. 5). 

The comparison between LVV after SPM12 default spatial normali-
zation (linear regression: y = 0.7156 (± 0.0095) × x + 10.97 (±
0.5073), R2 = 0.96) and those after the proposed pipeline (linear 
regression: y = 0.2371 (± 0.0058) × x + 44.427 (± 0.3125), R2 = 0.94), 
confirmed that spatial normalization accuracy was improved signifi-
cantly (P < 0.001). After application of the proposed pipeline, LVVs 
were much closer to that of the template (the intercept value was closer 
to the LVV of the template and the slope was closer to zero; Fig. 6). 
Moreover, the SD of LVV decreased from 16.13 mL to 6.62 mL. 

3.3. Overlap of the template’ striatal VOIs with lateral ventricles of the 
spatially normalized CT images 

For the sake of simplicity, we will refer to the VOIs from atlases 
corresponding to the used templates as template’s VOIs. Fig. 7 presents 
an example of the superposition of the template’s caudate VOI on a 
SPECT/CT image (LVV = 69.62 mL) using the SPM12 default spatial 
normalization and the proposed spatial normalization; the overlap of the 
template’s caudate VOI with subjects’ lateral ventricles was 55.86 % of 
the VOI using the former and 11.31 % using the proposed spatial 
normalization pipeline. 

When using the SPM12 default spatial normalization, the mean ± SD 
overlap between the template’s caudate VOI and the lateral ventricles 
represented 38.40 % ± 19.48 % of the VOI (Fig. 8). For subjects with an 
LVV above the median LVV, this increased to 54.11 % ± 13.37 % (P < 
0.001). However, using the proposed pipeline with MIITRA TPMs, the 
mean overlap was equal to 9.13 % (± 1.41 %, P < 0.001) of the initial 
volume of the template’s caudate VOI. While for subjects with an LVV 
above the median LVV, the mean overlap was 9.79 % (± 1.39 %, P < 
0.001). 

The overlap between putamen VOI and the lateral ventricles was 
negligible (<0.001 % of the putamen VOI) for both methods. In other 
words, evaluating striatal VOIs overlap with the lateral ventricles 
amounted only to evaluate caudate VOI overlap with the lateral 
ventricles. 

3.4. Dice score index 

After performing the default spatial normalization within SPM12, 
the median Dice score index was 0.59 (IQR, 0.58–0.60) for the combined 
GM and WM. The median score was greater (0.64, P < 0.001, IQR, 
0.62–0.66) with the new pipeline (Fig. 9). 

3.5. Impact on specific binding ratios 

The mean ± SD and SBR values for the caudate were 1.77 ± 0.79 
using the default spatial normalization within SPM12, and this was 
significantly greater when using the proposed approach (mean caudate 
SBR ± SD = 2.38 ± 0.51, P < 0.0001; Fig. 10). The mean putamen SBR 
value obtained after the proposed spatial normalization (2.75 ± 0.54) 
were not significantly different to that obtained using default SPM12 
spatial normalization (2.83 ± 0.52, P > 0.05; Fig. 11). 

The relationship between SBR of caudate and LVV was analyzed 
using linear regression (Fig. 12); the R2 for proposed pipeline (0.22) was 
lower than that of the default SPM12 spatial normalization (0.53) 
indicating a lower impact of LVV on SBR values (Table 2) 

Additionally, the relationship between caudate SBR, age and LVV 

Fig. 5. Scatter plot and polynomial fits of the difference between lateral ventricular volume (LVV) of each spatially normalized CT image and that of the template 
after using SPM12 default spatial normalization (light blue) and after the proposed pipeline (green). Volume differences closer to zero suggest a more accurate spatial 
normalization. 
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was analyzed using regression analysis. According to the coefficient 
estimates for each corresponding term in the model: SBR ~ age + LVV +
age:LVV (R2 = 0.621 for the SPM12 default CT-guided spatial normal-
ization and R2 = 0.38 for the proposed pipeline), age and LVV were 
significant predictors for both pipelines (P < 0.05). The coefficient of 
the interaction term is statistically significant (P < 0.05) for both 
methods as well. However, the proposed pipeline reduced the signifi-
cance of the correlation between caudate SBR and the interaction be-
tween age and LVV (from P = 0.02 to P = 0.04). 

4. Discussion 

In the present study, the proposed CT-guided pipeline increased the 
performance of warping older brains to a standard stereotaxic space as 
compared to the default SPM12 CT-guided pipeline. The improved 

normalization to a standard space decreased the overlap between the 
spatially normalized lateral ventricles and the caudate VOI. In the cohort 
of visually normal [123I]-FP-CIT scan, caudate SBR increased by 
reducing its underestimation due to lateral ventricular enlargement and 
VOI misalignment. 

The proposed pipeline does not require an MRI to be readily used 
with SPECT or PET CT hybrid scanner even though MRI-guided spatial 
normalization remains the gold standard. Presotto et al. (2018) reported 
that CT- and MRI-based normalized GM maps overlapped within 1 mm 
in 90 % of voxels (isotropic voxel size of 1 mm), validating the feasibility 
of a CT-based pipeline for PET spatial normalization. Kim et al. (2015) 
also confirmed that the CT-guided spatial normalization had comparable 
capability to the MRI-guided method for the analysis of [18F]-FP-CIT 
PET. In addition, it has also been reported that low dose CT can sub-
stitute MRI-guided spatial normalization (Matsuda et al., 2021). How-
ever, these studies did not include the impact of enlarged lateral 
ventricles on the performance of spatial normalization. 

The proposed spatial normalization pipeline was specifically devel-
oped for the spatial normalization of CT scans. In the 1st step we applied 
an intensity transformation rather than an explicit skull stripping, which 
may be prone to errors and is time consuming. Intensity transformation 
increases the intensity range representing the CSF and brain tissue, and 
reduces intensity contrast between the skull and brain tissue. Kim et al. 
(2015) reported that there was no large difference between the perfor-
mance of spatial normalization using a skull-stripped CT-guided method 
and an intensity-transformed CT-guided method. The 1st non-rigid 
registration with the CT template was intended to ease the functioning 
of the non-rigid registration with TPMs as its LVV was closer to the 
median LVV of the included subjects. Therefore, the aim of this step was 
to correct partially gross spatial variability of CT brain images and 
permit a more accurate non-linear spatial registration when using TPMs. 
In the 2nd non-rigid registration, we used TPMs to conduct spatial 
normalization. MRI TPMs are generally used for both CT and 
MRI-guided spatial normalization (Presotto et al., 2018). TPMs from the 
MIITRA improved, as expected, the spatial normalization for cases with 
LVV greater than 30 mL. We also tested an additional approach for the 

Fig. 6. Comparison of lateral ventricular volumes (LVV) after SPM12 spatial normalization (light blue dots) vs after the proposed spatial normalization (green dots), 
according to the initial lateral ventricular volume. A linear fit intercept equaling the LVV of the used template and a slope equaling zero means a perfect spatial 
normalization, as the lateral ventricles of the spatially normalized CT images match precisely those of the template. 

Fig. 7. Comparison between the superposition of the template’s caudate vol-
ume of interest (VOI; white) on a SPECT image, in case of SPM12 default spatial 
normalization (left) and the proposed spatial normalization (right). After per-
forming the proposed spatial normalization, the overlap between the caudate 
VOI and the anatomical caudate was enhanced, and a larger area of caudate 
uptake was measured. 
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2nd step of the proposed pipeline in which the set of TPMs was chosen 
according to the estimated LVV (not reported herein). In this approach, 
SPM12 TPMs were used when LVV were below a certain cutoff instead of 
using MIITRA TPMs in all cases. Standard TPMs found in SPM12 pro-
vided accurate spatial normalization results when the LVV was lower 
than that of the ICBM152. Below an LVV of 30 mL (LVV of ICBM152 =
29.38 mL), using SPM12 default spatial normalization resulted in a 
mean volumetric difference of 1.77 mL between the spatially normalized 
lateral ventricles and the lateral ventricles of the template. However, 
switching TPMs provided moderate enhancement of the spatial 
normalization as compared to the proposed single-template approach. 
The large proportion of elderly patients in the study cohort, who had 

large ventricles, made this refinement unnecessary. However, we un-
derline that the set of TPMs should be adapted to the studied population. 
This is in line with the study reported by Brudfors et al. (2020) in which 
it was found that a registration to an optimal space can increase the 
accuracy of spatial normalization instead of a coarse registration to MNI 
space. The combination of all these steps improved the process of seg-
menting images into different classes using a mixture model algorithm. 
This resulted in a greater Dice score index (for the combined segmen-
tation of WM and GM), and in a closer CT LVV (for segmented CSF) to 
that of the template after the spatial normalization, providing higher 
spatial normalization accuracy compared to the reference method. 

Reig et al. (2007) focused on the impact of PET spatial normalization 
in pathologic brain using a PET template in the measurement of PET 
metabolic activity. The mean overlap between the spatially normalized 
caudate and the caudate of the template was lower than 50 %. This 
caused miscalculation for quantitative analysis relying on the caudate 
VOI. The authors reported a significant correlation between the size of 
the lateral ventricles and underestimation of metabolic activity of the 
caudate and warned against this source of error that should be taken into 
account. Likewise, in the present study the reduced amount of overlap 
between the spatially normalized lateral ventricles and the caudate VOI 
was highly correlated with the increase of caudate SBR values when 
performing the proposed pipeline as compared to the default pipeline. 
No overlap was noted between the normalized lateral ventricles and the 
putamen VOI from the standard space using both pipelines. Even though 
the putamen is considered as the most relevant brain region in 
[123I]-FP-CIT studies for idiopathic Parkinson’s disease, a correct mea-
sure of the uptake in the caudate allows assessing striatum uptake, 
which, combined with quantitative parameters such as 
putamen-to-caudate ratios and asymmetry index, can be useful in cases 
where a clear evaluation cannot be made. These quantitative parameters 
are more independent from the reconstruction algorithm and back-
ground activity making them relevant data (Koch et al., 2005). In 
addition, subregional patterns, including caudate uptake, can be used to 
suggest atypical parkinsonian syndrome as suggested in the last EANM 
guidelines reported by Morbelli et al. (2020). Even though they often 
overlap with Parkinson’s disease features; for example, in progressive 
supranuclear palsy, uptake reduction tends to be more symmetric and to 
involve the caudate nucleus earlier in disease course as compared with 

Fig. 8. Comparison of the overlap between the template’s caudate volume of interest (VOI) and the lateral ventricles of subjects after SPM12 default spatial 
normalization (blue dots) vs after the proposed spatial normalization pipeline (green dots), as % of the VOI volume. A more robust spatial normalization means less 
overlap (y = 0 when the spatial normalization is perfect). 

Fig. 9. Box plot of Dice values using SPM12 default spatial normalization vs the 
proposed spatial normalization approach for the combined gray matter and 
white matter (GM+WM). The central red mark indicates the median, and the 
bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. The whiskers stand for the minimum and the maximum value of 
the data set. 
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idiopathic Parkinson disease. Furthermore, the measurement of the 
caudate function is relevant as functional implications of the caudate 
have been recorded in Parkinson’s disease (Pasquini et al., 2019), Alz-
heimer’s disease (Xiong et al., 2022), Huntington’s disease (Agus et al., 
2019), and schizophrenia (Kirino et al., 2019) in which lateral ventric-
ular enlargement may also occur. 

As we evaluate the anatomical reliability of automated brain tissue 
classification through LVV, we had to accurately estimate it. Accurate 
LVV quantification is also important in studies investigating cortical 
atrophy and age-related brain changes, such as neurodegenerative dis-
eases (Yepes-Calderon and McComb 2022). While there was no large 
dataset-derived standard established for normal or pathological LVV, 
Maragkos et al. (2021) used a deep learning-based segmentation to 
conduct LVV measurements in more than 13,851 patients; scans classi-
fied as “normal” had a median LVV of 15.7 mL (IQR, 11.1–22.2) and 
those classified as “hydrocephalus” had a median LVV of 82.1 mL (IQR, 
51.1–126.0); those classified as “atrophy” had a median LVV that was 
approximately comparable to that found in the present study (47.11 mL) 
which is concordant as the studied cohort contained mainly older adults 
(mean age > 60 years) with brain structural changes such as atrophy. 

The present study has some limitations. First of all, we did not take 
into account the partial volume effect (PVE). Indeed, due to PVE, biases 
can be introduced when tracer uptake in small VOI is measured. PVE is 
the 3-dimensional image blurring secondary to the finite spatial 

Fig. 10. Top: Plot of caudate specific binding ratio (SBR) values using SPM12 
default spatial normalization vs the proposed spatial normalization pipeline. 
The central red mark indicates the mean, the box represents the standard de-
viation (SD), and the whiskers stand for the minimum and the maximum value 
of the data set. Bottom: Bland-Altman plot with limits of agreement indicating 
±1.451*IQR (dotted lines). 

Fig. 11. Top: Plot of putamen specific binding ratio (SBR) values using SPM12 
default spatial normalization vs the proposed spatial normalization pipeline. 
The central red mark indicates the mean, the box represents the standard de-
viation (SD), and the whiskers stand for the minimum and the maximum value 
of the data set. Bottom: Bland-Altman plot with limits of agreement indicating 
±1.96*SD (dotted lines). 

Fig. 12. Caudate specific binding ratio (SBR) values according to the lateral 
ventricular volume (LVV) with SPM12 default spatial normalization (light blue 
dots) vs with the proposed spatial normalization (green dots), and their 
respective linear fits. 
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resolution of the SPECT system which causes spillover between regions 
and may reduce maximum measured activity. For example, to 
compensate these effects, multiplicative recovery coefficients have been 
applied in several studies (Gnesin et al., 2016; Peters et al., 2019). 
However, these recovery coefficients always require some type of cali-
bration either by experiments or simulation and are mostly measured 
based on spherical objects in phantoms while being size-dependent and 
reconstruction-algorithm-dependent (Ismail and Mansor, 2019). 
Expanded VOIs can also be used to include both the object region and 
the spill-out region so that all of the spill-out uptakes are captured (Bian 
et al., 2023). This accuracy of this method depends on how well the VOI 
can be delineated. For irregular-shaped small regions such the caudate 
and the putamen, the delineation can be challenging. In the present 
study, we focused on the recovery of the “lost” striatal uptake that was 
not captured due to lateral ventricular enlargement and VOI mis-
positioning rather than obtaining “true” uptake value thanks to a partial 
volume correction. Indeed, no ground-truth for SBR computation was 
available (e.g., using manually derived individual specific VOI or 
phantom acquisition) to assess the “true” uptake value. Additionally, 
expansion of the striatal VOIs, a potential PVE correction method, could 
have hampered the evaluation of the spatial normalization accuracy by 
potentially compensating the impact of lateral ventricles enlargement. 

Second, the influence of CT image quality and image reconstruction 
on the performance and robustness of the spatial normalization pipeline 
was not studied. However, several studies suggest the feasibility of low- 
dose CT guided spatial normalization of PET images (Kim et al., 2015; 
Presotto et al., 2018; Matsuda et al., 2021). Nevertheless, future studies 
are needed to assess whether the use of low dose CT provides the same 
improvements when performing the proposed approach and validate the 
pipeline using data from multiple sites with different acquisition and 
reconstruction protocols. 

Third, hybrid nuclear medicine scanners use hardware calibration to 
align SPECT and CT images; however, accidental misalignment may 
occur (head movement between the two acquisitions). The added rigid 
registration step was intended to prevent any potential shift between the 
two modalities. However, it is worth noting that caution should be taken 
when performing rigid registration (for both SPECT/CT and PET/CT), 
mainly when the imaging with various radio ligands of which binding is 
limited to some regions of the brain or of which binding pattern is quite 
different between the controls and subjects. 

Fourth, the volume of the caudate VOI was fixed and did not take 
into consideration potential structural changes due to aging (Bauer 
et al., 2015), which may affect the overlay of the VOIs. Fifthly, manually 
labelled brain regions could have been used as a gold standard, offering 
a more reliable measure of spatial normalization accuracy (Klein et al., 
2009), however this approach could not be adopted in the present study 
as manual labelling is time consuming and cannot be performed in case 
of larger datasets. 

5. Conclusion 

The automatic CT-guided spatial normalization used herein led to a 

less biased spatial normalization of SPECT images, resulting in an 
improved quantitative analysis. The proposed pipeline could be imple-
mented in clinical routine to perform a more robust SBR computation 
using hybrid imaging. 
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