

## Towards Common Data Exchange Formats for Seafloor Geodesy

Pierre Sakic, David Schmidt, Valérie Ballu, John Desanto, Kaifei He, Martin Heesemann, Jesse Hutchinson, Motoyuki Kido, Yuto Nakamura, Keiichi Tadokoro, et al.

## ▶ To cite this version:

Pierre Sakic, David Schmidt, Valérie Ballu, John Desanto, Kaifei He, et al.. Towards Common Data Exchange Formats for Seafloor Geodesy. AGU Fall Meeting 2023, Dec 2023, San Francisco, California, United States. hal-04803624

## HAL Id: hal-04803624 https://hal.science/hal-04803624v1

Submitted on 26 Nov 2024

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

# Towards common data exchange formats for seafloor geodesy Recent development of the GNSS-A Data Standardization Task Force

# 

1 : Institut de physique du globe de Paris, Paris, France 3 : LIENSs, CNRS/ La Rochelle University, France, 2 : University of Washington, Earth and Space Sciences, Seattle, USA 4 : China University of Petroleum (East China), Qingdao, China



1) Scripps, Univ. of Washington & Ocean Network Canada (source: D. Schmidt & M. Heesemann)



2) IUEM Brest & LIENSs La Rochelle (source: J.-Y. Royer & P. Sakic)



# Goals

The goals of the task force were defined as follows:

- Enable the shareability of the seafloor geodesy data collected by the different research groups around the world.
- Give **better visibility** to seafloor geodetic data.
- Respect the **FAIR data principles** (Findable, Accessible, Interoperable, Reusable).
- A special emphasis has to be given to the **interoperability** of seafloor geodetic data, i.e., the possibility to easily use data of one research group with the software of another one.
- Identify how data can be **easily stored in existing** repositories or establish expectations for new repositories.
- Establish community-supported data standards that can be adopted by the repositories/data centers.

Initially, the task force attempted an exhaustive inventory of all the seafloor geodetic techniques. Given the main interest in **GNSS-Acoustic** for the initial participants during the first meeting, it was agreed to start discussions with this **technique.** Nevertheless, the task force is interested in a **wide** range of techniques and will likely revisit them in the future e.g. acoustic ranging, ocean bottom pressure sensors (OBP), tiltmeters...

How to federate the international seafloor geodesy community while making GNSS-A data acquired around the World interoperable?

⇒ Yes

The necessity to explicitly include both the send and receive ping epochs? If not, which one is the best?  $\Rightarrow$  We include both

What data level (raw versus initially processed) is appropriate for broad dissemination of GNSS-A data, and ingestion by processing codes?

 $\Rightarrow$  **UTC scale**, a reference epoch in the header, and the seconds w.r.t. the reference for each event

What should be the standardized reference frame for the position of the surface platform?

 $\Rightarrow$  **ECEF representation**. A sufficient level of detail must be provided regarding the reference frame in the metadata/header

Pierre Sakic<sup>1</sup>, <u>David Schmidt<sup>2</sup></u>, Valérie Ballu<sup>3</sup>, John DeSanto<sup>2</sup>, Kaifei He<sup>4</sup>, Martin Heesemann<sup>5</sup>, Jesse Hutchinson<sup>5</sup>, Motoyuki Kido<sup>6</sup>, Yuto Nakamura<sup>7</sup>, Keiichi Tadokoro<sup>8</sup>, Shun-ichi Watanabe<sup>7</sup>, Surui Xie<sup>9</sup>, Yusuke Yokota<sup>10</sup>

> 5 : Ocean Networks Canada, Vancouver, Canada 6 : IRIDeS, Tohoku University, Sendai, Japan 7 : Japan Coast Guard, Hydrographic and Oceanographic Dept, Tokyo, Japan



Since the 19th of October 2022, representatives of the seafloor geodesy community have met on a regular basis within an *ad hoc* working group called the GNSS-Acoustics Data Standardization Task Force (GADSTF). This task force has been placed **under the umbrella of the** International Association of Geodesy's Inter-Commission **Committee on Marine Geodesy** (ICCM).

# Main points discussed within the Task Force so far

Should we continue with ASCII/CSV style for GNSS-A data?

• Such a data representation style is more or less "universal" since all the members of the Task Force currently use it. • "such representation format must remain community-driven".

⇒ Level 1: raw observation i.e. RINEXs, lever arms, waveforms...  $\Rightarrow$  Level 2: a "master configuration + main data" file with preprocessed data

Which time scale/representation should we adopt for the recorded epochs?



8 : Nagoya University, Earthquake and Volcano Research Center, Nagoya, Japan 9 : University of Houston, Dept of Civil and Environmental Engineering, Houston, USA 10 : Institute of Industrial Science, University of Tokyo, Tokyo, Japan



4) Japan Coast Guards (source: S. Watanabe)

# Prototype for a future common exchange format

## Draft of GNSS-A data format standardization

Version 0.231129 before discussion of the standardization Taskforce meeting of the 29th November 2023

## **Definitions of column in GNSS-A standard CSV format** Table 1. Definitions of column in GNSS-A standard CSV format

| Index      | Necessity | Description                                                |  |  |
|------------|-----------|------------------------------------------------------------|--|--|
| MT_ID      | Essential | ID of mirror transponder                                   |  |  |
| TravelTime | Essential | Observed travel time (net value) [sec.]                    |  |  |
| T_transmit | Essential | Transmission time of acoustic signal [sec. from origin]    |  |  |
| X_transmit | Essential | Transducer position at T_transmit in ECEF [m]              |  |  |
| Y_transmit | Essential | Transducer position at T_transmit in ECEF [m]              |  |  |
| Z_transmit | Essential | Transducer position at T_transmit in ECEF [m]              |  |  |
| T_receive  | Essential | Reception time of acoustic signal [sec. from origin]       |  |  |
| X_receive  | Essential | Transducer position at T_receive in ECEF [m]               |  |  |
| Y_receive  | Essential | Transducer position at T_receive in ECEF [m]               |  |  |
| Z_receive  | Essential | Transducer position at T_receive in ECEF [m]               |  |  |
| ant_X0     | Optional  | GNSS position at T_transmit in ECEF [m]                    |  |  |
| ant_Y0     | Optional  | GNSS position at T_transmit in ECEF [m]                    |  |  |
| ant_Z0     | Optional  | GNSS position at T_transmit in ECEF [m]                    |  |  |
| roll0      | Optional  | Roll at T_transmit (in degree)                             |  |  |
|            |           | <pre>*rotation around "forward" axis in ATD offset</pre>   |  |  |
| pitch0     | Optional  | Pitch at T_transmit (in degree)                            |  |  |
|            |           | <pre>*rotation around "rightward" axis in ATD offset</pre> |  |  |
| heading0   | Optional  | Heading at T_transmit (in degree from north)               |  |  |
|            |           | <pre>*rotation around "downward" axis in ATD offset</pre>  |  |  |
| ant_X1     | Optional  | GNSS position at T_receive in ECEF [m]                     |  |  |
| ant_Y1     | Optional  | GNSS position at T_receive in ECEF [m]                     |  |  |
| ant_Z1     | Optional  | GNSS position at T_receive in ECEF [m]                     |  |  |
| roll1      | Optional  | Roll at T_receive (in degree)                              |  |  |
| pitch1     | Optional  | Pitch at T_receive (in degree)                             |  |  |
| heading1   | Optional  | Heading at T_receive (in degree from north)                |  |  |
| [other]    | Optional  | Any other optional indices                                 |  |  |
|            |           | * should be defined in the header or other documents       |  |  |

**Definitions of site information file in GNSS-A standard format** 

Current discussion in the Task Force intent to store these metadata either:

In the header of the data stored in a CSV as in the Table 1

In a separated dedicated file such as YAML

| Variable                       | Format                | Description                                                                                                                          |
|--------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Site_name                      | character             | GNSS-A site name or code                                                                                                             |
| Campaign                       | character             | Observation campaign name                                                                                                            |
| TimeOrigin                     | YYYY-MM-DD hh:mm:ss.s | Origin of time used in the file [UTC]                                                                                                |
| RefFrame                       | character             | Reference frame used in the file                                                                                                     |
| MTlist                         | list of character     | List of ID of mirror transponders                                                                                                    |
| [*]_appPos                     | list of float         | Approximate positions of transponder <i>in</i><br><i>ECEF</i> [m]<br>[*] should be replaced with MT's ID.                            |
| ATDoffset<br>(optional)        | list of float         | ATD offset (or local-tie/ lever-arm)<br>defined as the vector of GNSS to<br>transducer with [forward, rightward,<br>downward] in [m] |
| [ <i>other</i> ]<br>(optional) | N/A                   | Any other optional values<br>* should be clearly defined in comments<br>or other documents                                           |
| Comments<br>(optional)         | character             | Any other optional comments                                                                                                          |

3) Tohoku University (source: M. Kido)







5) Nagoya University (source: K. Tadokoro)

# Future topics of discussion

- Establish standards for low-level data to be included as Level 1 data (GNSS record as RINEX, raw waveform, etc.).
- Identify the best data quality indicators for GNSS/A data.
- How to improve metadata records.
- The appropriateness of archiving GNSS/A data in a binary format, such as NetCDF
- Define a naming convention for the data files, seafloor sites, and campaigns.
- Establish **new task forces** for other seafloor geodetic data types, **especially for ocean** bottom pressure.

We welcome new members to join the task force! Help us to strengthen the international seafloor geodetic community!







get the report the Task Force provided to the IAG for the IUGG'23

> https://hal.science/ hal-04319233

For more information about the task force, contact Pierre Sakic (sakic@ipgp.fr)