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Powerful batch conformal prediction for classification

Ulysse Gazin∗ Ruth Heller† Etienne Roquain‡ Aldo Solari§

November 25, 2024

Abstract

In a split conformal framework with K classes, a calibration sample of n labeled examples
is observed for inference on the label of a new unlabeled example. In this work, we explore the
case where a ‘batch’ ofm independent such unlabeled examples is given, and a batch prediction
set with 1 − α coverage should be provided for this batch. Hence, the batch prediction set
takes the form of a collection of label vectors of size m, while the calibration sample only
contains univariate labels. Using the Bonferroni correction consists in concatenating the
individual prediction sets at level 1 − α/m (Vovk, 2013). We propose a uniformly more
powerful solution, based on specific combinations of conformal p-values that exploit the Simes
inequality (Simes, 1986). Intuitively, the pooled evidence of fairly ‘easy’ examples of the batch
can help provide narrower batch prediction sets. We also introduced adaptive versions of the
novel procedure that are particularly effective when the batch prediction set is expected to
be large. The theoretical guarantees are provided when all examples are independent and
identically distributed (iid), as well as more generally when iid is assumed only conditionally
within each class. In particular, our results are also valid under a label distribution shift since
the distribution of the labels need not be the same in the calibration sample and in the new
‘batch’. The usefulness of the method is illustrated on synthetic and real data examples.

Keywords: conformal inference, multiple testing, label distribution shift, Simes inequality.

1 Introduction

Conformal prediction is a popular tool for providing prediction sets with valid coverage (Vovk
et al., 2005). The strength of the approach is that the guarantee holds for any underlying data-
distribution, and can be combined with any machine learning algorithm. In this paper, we follow
the split/inductive conformal prediction in a classification setting for which a machine has been
pre-trained on an independent training sample (Papadopoulos et al., 2002; Vovk et al., 2005; Lei
et al., 2014) and an independent calibration sample with individual labeled examples is available.
We would like to use the calibration sample efficiently, to derive the prediction set for the label
vector of a batch of new examples, without making any distributional assumption.

Formally, let Xi ∈ X (the space X is without restrictions) be the covariate and Yi ∈ [K]1 be
the class label for example i. We observe a calibration sample {(Xi, Yi), i ∈ [n]}, and only the
covariates from the batch {(Xn+i, Yn+i), i ∈ [m]}. We assume that a machine has been pre-trained
(with an independent training sample) and is able to produce non-conformity scores Sk(x) for any
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label k ∈ [K] and any individual covariate x ∈ X . The considered task is to produce a collection
Cmα of vectors of [K]m such that one of the two following guarantees holds:

P((Yn+i)i∈[m] ∈ Cmα ) ≥ 1− α ; (1)

P((Yn+i)i∈[m] ∈ Cmα | (Yj)j∈[n+m]) ≥ 1− α . (2)

The unconditional guarantee in (1) is considered for the iid model, for which the probability is taken
with respect to (wrt) the sample {(Xi, Yi), i ∈ [n+m]} which is assumed to have iid components.
By contrast, the stronger conditional guarantee in (2) is considered for the conditional model where
the label vector (Yi)i∈[n+m] is fixed and the probability is taken wrt the conditional distribution
of (Xi)i∈[n+m] given (Yi)i∈[n+m]. This means that (Xi)i∈[n+m] given (Yi)i∈[n+m] has independent
components, and the i-th component has marginal distribution Xi given Yi for i ∈ [n+m].

While unconditional guarantees of the type (1) are the most used targets for inference in the
conformal literature (Angelopoulos and Bates, 2021), we emphasize that (2) is a much stronger
guarantee (Vovk et al., 2005; Sadinle et al., 2019; Romano et al., 2020), often referred to as
Mondrian conformal prediction: in our framework, since the true label is fixed, the batch prediction
set can be seen as a batch confidence set, that is, it is valid for all possible values of the true labels,
and covers the case of a label distribution shift between the calibration sample and the batch.

The typical inference on a ‘batch’ only reports a prediction set for each example (Lee et al.,
2024). By providing powerful methods that guarantee (1),(2), the inference is far more flexible.
First, we can extract a prediction set for each example with a 1 − α coverage guarantee: for
instance, (2) entails

P(∀i ∈ [m], Yn+i ∈ Cmi,α | (Yj)j∈[n+m]) ≥ 1− α,

where Cmi,α is the the i-th coordinate of all the vectors in Cmα , that is, Cmi,α = {yn+i ∈ [K] :

∃(yn+j)j∈[m]\{i} ∈ [K]m−1 : (yn+j)j∈[m] ∈ Cmα }. In addition to this, we can also extract from the
resulting batch prediction set tight bounds on the number of examples from each class. For any
possible batch vector y = (yn+i)i∈[m], let

mk(y) :=

m∑
i=1

1{yn+i = k}, k ∈ [K], (3)

be the number of examples from class k in the batch y. The guarantees (1),(2) ensure that with
(conditional) probability at least 1 − α, all unknown numbers mk((Yn+i)i∈[m]) are included in a
range

[ℓ(k)α , u(k)
α ] := [minNk(Cmα ),maxNk(Cmα )], (4)

where Nk(Cmα ) := {mk(y) : y ∈ Cmα }, for all k ∈ [K].
We mention two applications of our work, where the covariate corresponds to an image and

we should produce a prediction set for the label vector of a batch of such images:

(i) Reading zip code (Vovk, 2013): given a machine trained to classify hand-written digits, we
observe a written zip code, that is a batch of m = 5 images, and we should produce a list of
plausible zip codes (a subset of [K]m) for this batch; building Cmα ensuring (1) or (2) provides
a solution, see also Figure 1 below.

(ii) Survey animal populations: given a machine trained to classify animal images, we observe a
set of m animal images and we should provide a prediction sets for the counts of each animal;

building [ℓ
(k)
α , u

(k)
α ] as in (4) provides a solution, see the supplementary file for illustrations.

In a very recent paper, Lee et al. (2024) suggest constructing prediction sets for functions of
the batch points (e.g., for the mean or median outcome of the batch), assuming exchangeability
of the calibration and test data, for both regression and classification. Their motivation is thus
the same as ours, of providing distribution-free joint inference on multiple test points. But they
did not develop methodology targeting the inferential guarantees (1),(2).
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The guarantee (1) has been considered in Vovk (2013). To achieve the 1 − α guarantee, the
problem of a batch prediction set is seen as the problem of testing at level α each of the y ∈ [K]m

possible sets of labels for (yn+i)i∈[m]. Vovk (2013) suggested in the full/transductive conformal
setting using Bonferroni for each partitioning hypothesis. The advantage is that only m × K
conformal p-values, K for each example, need to be computed. So there is no need to go over all
Km possible vectors of labels since m×K computations are enough. However, the computational
simplicity comes at a severe cost: the batch prediction set using Bonferroni may be unnecessarily
large, and thus less informative, than using more computationally intensive methods.

Our key contributions are as follows:

• We cast the problem of finding the batch prediction set as the problem of finding all the
vectors that are not rejected when testing each of the y ∈ [K]m possible sets of labels for
(yn+i)i∈[m]. By using the well-known Simes test, we show that there is a uniformly better
(i.e., narrower) batch prediction set than Bonferroni’s, that we refer to as the Simes batch
prediction set.

• We introduce a novel adaptive Simes batch prediction set as follows. For each candidate
vector of batch labels y ∈ [K]m, an estimate m̂0(y) of the number of true labels in y is used
instead of m in the threshold of the Simes test, when testing that the true vector of labels
is y.

• We extend the method that uses (adaptive) Simes to accommodate any p-value combining
function, not necessarily of the Simes’s type. In particular, this allows to consider a valid
version of the well-known Fisher combination.

• We provide a computational shortcut algorithm to compute the bounds (4) that maintains
the 1−α coverage guarantee. For recovering the bounds (4), the shortcut is exact for K = 2
and approximate for K > 2.

• We demonstrate the usefulness of our recommendations on Image data problems/ USPS
digits problems and show that each of the novel methods increases accuracy, by producing
narrower batch prediction sets in specific regimes.

The new introduced methods are all valid both in the iid and conditional model, and the theoretical
proofs are deferred to the supplementary file. The latter also contains additional illustrations,
numerical experiments and mathematical materials.

To illustrate our method, Table 1 provides an example of batch prediction set for the particular
zip code displayed in Figure 1. For each combining function, Bonferroni or Simes, the proposed
batch prediction set can be expressed as the batch label vector with p-values larger than α (see
(6), (8) below). At 5%, we see that the Bonferroni batch prediction set is of size 8, whereas
the Simes batch prediction set is of size 6 and is able to exclude the batches (0, 6, 5, 5, 4) and
(0, 6, 6, 5, 4) from the prediction set. This is because all digits of the batch are acceptable according
to Bonferroni’s method, but are not acceptable together according to Simes’ method. To show that
this phenomenon is not due to the particular data generation, a violin plot for 500 replications is
provided in Figure 2. Below the violin plot, the scatter plot of the number of rejections by each
method clearly shows that the batch prediction set using Simes can be much narrower than using
Bonferroni (and is never larger than using Bonferroni).

Finally, let us describe some related works. Our methodology is tightly related to the multiple
testing literature, in particular Benjamini and Yekutieli (2001); Benjamini et al. (2006); Bogomolov
(2023); Heller and Solari (2023), where Simes and adaptive Simes variants are shown to be useful
for inference on a family of null hypotheses. Existing work for the task of building prediction sets
concentrated thus far primarily on providing a false coverage rate (FCR) guarantee (Bates et al.,
2023; Gazin et al., 2024a,b; Jin and Ren, 2024). To derive our theoretical results, we rely on the
literature on conformal novelty detection (Bates et al., 2023; Marandon et al., 2024) under the
‘full null’ configuration, that is, when the test sample is not contaminated by novelties. While we
show that these works yield de facto the unconditional guarantee (1), we extend the theory to also
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Figure 1: Illustration of task (i) : how to provide a prediction set for this observed batch, that is,
a zip code composed of m = 5 digit images, for K = 10 possible digits? This illustration come
from the USPS dataset (provided by the US Postal Service for the paper LeCun et al. (1989))
previously studied by Vovk (2013).

0 8 6 0 4 Bonferroni Simes

0 6 5 5 4 0.065 0.038
0 6 6 5 4 0.065 0.038
0 6 5 0 4 0.065 0.065
0 6 6 0 4 0.065 0.065
0 8 5 5 4 0.077 0.077
0 8 6 5 4 0.077 0.077
0 8 5 0 4 0.277 0.277
0 8 6 0 4 0.605 0.345

Table 1: Batch prediction sets at level 0.05 for Bonferroni’s and Simes’ methods computed on
the particular batch of Figure 1. The two last columns are the p-values of each method for the
selected batches, see (7) and (9). The batch prediction set corresponds to batch p-values displayed
in bold.

cover the more challenging conditional guarantee (2). We emphasize that our work consider the
setting where we observe a calibration sample of examples (not batches), as in Lee et al. (2024). If
a calibration sample of batches is at hand, the usual conformal inference pipeline can (and should)
be used by defining batch scores that take into account the interaction between batch elements
(Messoudi et al., 2020, 2021; Johnstone and Cox, 2021; Johnstone and Ndiaye, 2022). In our work,
the batch examples are assumed independent and the calibration sample only contains scores for
individual examples, so our setting is markedly different.

2 Methods

From now on, we make the classical assumption that the scores SYi
(Xi), i ∈ [n+m], have no ties

almost surely.

2.1 Conformal p-values

For k ∈ [K], we consider the conformal p-value (Vovk et al., 2005) for testing the null “Yn+i = k”

versus “Yn+i ̸= k” in the test sample. Formally, the p-value family (p
(k)
i , k ∈ [K], i ∈ [m]) is given

as follows:

p
(k)
i =

1

|D(k)
cal |+ 1

(
1 +

∑
j∈D(k)

cal

1{SYj
(Xj) ≥ Sk(Xn+i)}

)
, (5)

with D(k)
cal being either [n], of size n, in the iid setting or {j ∈ [n] : Yj = k}, of size nk, in the

conditional setting. The p-values in (5) are referred to as full-calibrated p-values in the iid setting
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Figure 2: Violin plots (top row) and scatter plots (middle/bottom rows) for the size of the batch
prediction sets of Bonferroni’s and Simes’ methods (m = 3, K = 10, 500 replications) for two
values of α.
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and class-calibrated p-values in the conditional setting.

Since scores {SYj
(Xj), j ∈ D(Yn+i)

cal } ∪ {SYn+i
(Xn+i)} are exchangeable both in the iid and

class-conditional setting, the following, well known property, holds.

Proposition 2.1. The conformal p-values are marginally super-uniform, that is, for all i ∈ [m],

for all u ∈ [0, 1], P(p(Yn+i)
i ≤ u) ≤ u for full-calibrated p-values and P(p(Yn+i)

i ≤ u|(Yj)j∈[n+m]) ≤ u
for class-calibrated p-values.

Proposition 2.1 ensures that each individual label set Ci,α := {yn+i ∈ [K] : p
(yn+i)
i > α} is a

prediction set for Yn+i of (conditional) coverage at least 1− α.

2.2 Bonferroni batch prediction set

The Bonferroni batch prediction set is given as follows:

Cmα,Bonf := {y = (yn+i)i∈[m] ∈ [K]m :

FBonf((p
(yn+i)
i )i∈[m]) > α}, (6)

where the p-value for the batch y and for the Bonferroni method is given by

FBonf((p
(yn+i)
i )i∈[m]) := m min

i∈[m]
{p(yn+i)

i }. (7)

Hence, this prediction set is rectangular:

Cmα,Bonf = ×m
i=1{k ∈ [K] : p

(k)
i > α/m},

and is simply the product of standard individual conformal prediction sets, taken at level 1−α/m.
By Proposition 2.1 and a simple union bound, it is clear that (2) and (1) hold by using the class-
calibrated and full-calibrated p-values, respectively.

2.3 Simes batch prediction set

Let us denote by p(ℓ)((yn+i)i∈[m]) the ℓ-th largest element among the vector (p
(yn+i)
i , i ∈ [m]). The

Simes batch prediction set is given as follows:

Cmα,Simes := {y = (yn+i)i∈[m] ∈ [K]m :

FSimes((p
(yn+i)
i )i∈[m]) > α}, (8)

where the p-value for the batch y and for the Simes method is given by

FSimes((p
(yn+i)
i )i∈[m]) := min

ℓ∈[m]
{mp(ℓ)(y)/ℓ}. (9)

Hence, the latter always improves the Bonferroni batch prediction set, that is, Cmα,Simes ⊂ Cmα,Bonf

pointwise. Note that the Simes batch prediction set is not a hyper-rectangle, and cannot be
obtained from the individual prediction sets of each element of the batch. In addition, the next
result shows that it provides the correct (conditional) coverage.

Theorem 2.2. The prediction set Cmα,Simes satisfies (1) and (2) by using the full-calibrated and
class-calibrated p-value, respectively.

To prove Theorem 2.2, we check that the Simes inequality (Simes, 1986) holds for the class/full-
calibrated p-values, which is proved in Section C.1 by showing the conformal p-value family is
positively dependent in a specific sense.

The conformal p-values are discrete, and therefore the guarantee (1) or (2) is typically a strict
inequality. To resolve the conservativeness of the coverage that follows from the discreteness of the
conformal p-values, a standard solution is to use randomized conformal p-values (Vovk, 2013). This
solution is (arguably) unattractive since decisions are randomized. Interestingly, exact coverage is
possible without need for randomization for specific values of α detailed in the following theorem.
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Theorem 2.3. The coverage for Cmα,Simes is exactly 1− α in the two following cases:

• in the iid model, for full-calibrated p-values, if α(n+ 1)/m is an integer;

• in the conditional model, for class-calibrated p-values if α(nk + 1)/m is an integer for all
k ∈ [K].

The proof is given in Section C.2.

2.4 Adaptive version

For all possible label vector y = (yn+i)i∈[m] ∈ [K]m, let

m0(y) :=
∑
i∈[m]

1{yn+i = Yn+i}, (10)

the number of coordinates of y that are different from the true label vector Y = (Yn+i)i∈[m].
Since m0(Y ) = m, the Simes batch prediction set Cmα,Simes has exactly the same coverage when
replacing m by m0(y) in the threshold. Meanwhile, using m0(y) may narrow the batch prediction
set, because m0(y) < m for any vector y ̸= Y . Unfortunately, m0(y) is unknown so that this
improved prediction region is only an ‘oracle’ one that cannot be used. Our approach consist first
in estimating m0(y) by

m̂0(y) := (1− λ)−1
(
1 +

m∑
i=1

1{p(yn+i)
i ≥ λ}

)
, (11)

which is an analogue of the so-called Storey estimator in the multiple testing literature (Storey,
2002). Here, λ ∈ (0, 1) is a parameter that is free but should be such that (n + 1)λ is an integer
in the iid setting, or such that (nk + 1)λ is an integer for all k ∈ [K] in the conditional setting.
If these conditions are too strict, we can accommodate any value of λ ∈ (0, 1) by adjusting the
formula (11) to account for discreteness: the modification is minor, see Section A.

The adaptive Simes batch prediction set is

Cmα,A-Simes := {y = (yn+i)i∈[m] ∈ [K]m :

FA-Simes((p
(yn+i)
i )i∈[m]) > α}, (12)

where the p-value for batch y and for the adaptive Simes method is given by

FA-Simes((p
(yn+i)
i )i∈[m]) := min

ℓ∈[m]
{m̂0p(ℓ)(y)/ℓ}, (13)

and m̂0(y) is an estimator of m0(y) (10), typically as in (11).

Theorem 2.4. The coverage for Cmα,A-Simes with the Storey estimator (11) is at least 1− α both in
the iid model (using full-calibrated p-values) and in the conditional model (using class-calibrated
p-values).

The proof is given in Section C.3. Note that the adaptive Simes method with estimator (11)
(referred to as Storey Simes in what follows) does not provide a uniform improvement over Simes
(or Bonferroni), because m̂0(y) > m is possible for some batches y. However, m̂0(y) is typically
(much) smaller than m for batches y which are far from the true batch. Hence, the adaptive
version leads to a substantial improvement in a situation where the batch prediction set is large
(‘weak’ signal), see examples in Section 4.

In the supplement, we provide another type of estimator, corresponding to the so-called the
‘quantile’ estimator (Benjamini et al., 2006; Marandon et al., 2024) and for which a choice of
parameter is the ‘median’ estimator (and the corresponding method is referred to as median
Simes).
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3 Extensions and shortcut

3.1 Empirical batch prediction set

In this section, we present a general method for guaranteeing (1) and (2) using any combining func-

tion for the conformal p-values that test that the batch labels are y ∈ [K]m. Let F ((p
(yn+i)
i )i∈[m])

be any p-value vector combining function and consider a batch prediction set of the form

Cmt,F := {(yn+i)i∈[m] ∈ [K]m : F ((p
(yn+i)
i )i∈[m]) ≥ t}, (14)

where t is some threshold, possibly depending on the p-value vector. From Theorems 2.2 and 2.4,
a valid choice is t = α and F = FA-Simes as in (13) with either m̂0(y) = m or m̂0(y) as in (11).
Here, we detail how to find a valid empirical choice of t for any F .

For this, at each b of B iterations, generate n +m uniform random variables. Designate ran-
domly n of these as calibration scores (Sj,b)j∈[n] and the remaining m as test scores (Si+n,b)i∈[m].

Then compute the appropriate conformal p-value vector (p̂
(yn+i)
i,b , i ∈ [m]) according to

p̂
(k)
i,b =

1

|D(k)
cal |+ 1

(
1 +

∑
j∈D(k)

cal

1{Sj,b ≥ Sn+i,b}
)
, k ∈ [K].

Next, combine (p̂
(yn+i)
i,b , i ∈ [m]) into the test statistic ξb = F ((p̂

(yn+i)
i,b , i ∈ [m])). Now consider the

empirical threshold t = ξ(⌊(B+1)α)⌋) where −∞ =: ξ(0) < ξ(1) ≤ · · · ≤ ξ(B) are the ordered test
statistics.

Theorem 3.1. Consider the batch prediction set Cmt,F (14) with any combining function F ((p
(yn+i)
i )i∈[m])

and the empirical threshold t = ξ(⌊(B+1)α)⌋) defined above. Then its coverage is at least 1−α both
in the iid model (using full-calibrated p-values) and in the conditional model (using class-calibrated
p-values).

The proof is provided in Section C.4. In short, the empirical batch prediction set hence trades
computational cost for accuracy and generality.

In the conditional model, the threshold ξ(⌊(B+1)α)⌋) depends on (mk(y))k∈[K], so (n+m)×B

uniforms should be generated for every configuration of (mk)k∈[K] such that
∑K

k=1 mk = m (where
mk ∈ [0,m]). Hence, the computational cost is more severe than for the iid model. However, these
computations can be done once for all, before observing the data for the batch.

We underline that the method presented here is very flexible: combined with adaptive Simes
combination FSimes, any estimator m̂0 can be used, see detailed suggestions in Section A. Since
there is not one uniformly best estimator, and which estimator to use depends on the unknown
properties of the data at hand, it is possible to take as m̂0(y) the smallest of several estimators of
m̂0(y). More generally, any p-value combination can be used, for instance the Fisher combination

FFisher((p
(yn+i)
i )i∈[m]) = T

(
− 2

∑
i∈[m]

log(p
(yn+i)
i )

)
, (15)

where T is the survival function of a χ2(2m) distribution. The corresponding method is referred to
as Fisher batch prediction set in what follows. We refer to Heller and Solari (2023), and references
within, for more examples of such combining functions.

3.2 Shortcut for computing bounds

Computing naively the bounds [ℓ
(k)
α , u

(k)
α ] in (4) incurs exponential complexity and thus is difficult

when both K and m increase. The pseudoalgorithm for a computational shortcut, which reduces
the time complexity for calculating the bounds from O(Km) to O(K ×m2), is given in Section E.
This shortcut is exact when K = 2 and the scores produced by the machine learning model are
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probabilities, i.e. they satisfy the relationship Sk(xn+i) = 1−S3−k(xn+i) for k ∈ {1, 2} and i ∈ [m].
However, when K > 2 or when arbitrary scores are used, the shortcut may become conservative,
resulting in wider bounds but never narrower ones. This ensures that the coverage guarantee of
at least 1 − α probability is maintained. In Appendix B.1 we examine the performance of the
shortcut in our numerical experiments. Interestingly, the bounds using the shortcut are almost
identical to the bounds derived from the batch prediction set for Simes (see Section B.1 in the
supplementary file).

From the bounds produced by the shortcut, it is straightforward to produce a conservative
batch prediction set. The size of the set is the sum of all valid assignments of (m1, . . . ,mK)

occurrences, where ℓ
(k)
α ≤ mk ≤ u

(k)
α for each k ∈ {1, . . . ,K}, and m1 + · · · + mK = m, with

each valid assignment counted by the multinomial coefficient
(

m
m1,m2,...,mK

)
, see Section E in the

supplementary file for more details.
Finally, we note that since for any y ∈ [K]m, the rejection by Bonferroni necessarily entails

rejection using Simes, then we can first apply the Bonferroni procedure, and then apply the
suggested shortcut for Simes on the (K − R1) × · · · × (K − Rm) remaining partitions, where Ri

are the number of conformal p values at most α/m for the i-th example of the batch.

4 Experiments

In this section, we study the performances of different methods: Bonferroni (6), Simes (8), Storey
Simes (adaptive Simes (12) with the Storey estimator (16) where λ = 1/2), median Simes (adaptive
Simes (12) with the ’median’ estimator, see (18) in the supplementary file), and Fisher (empirical
method with Fisher combining function (15)). We use the conditional setting, with class calibrated
conformal p-values (5). The score function Sk(x) is given by an estimator of the probability that
k is not the label of observation x.

4.1 Gaussian multivariate setting

We illustrate the substantial advantage of the new methods over Bonferroni for inferring on batch
prediction sets in settings with different signal to noise ratio (SNR).

We consider K = 3 categories, where the distribution of the covariate in each category is
bivariate normal. The centers of the three categories are (0,0), (SNR,0), and (SNR,SNR). So the
classification problem is more difficult as the SNR decreases. One example of this data generation
is given in Figure 4 in the supplementary file (with the corresponding Table 3).

In Table 2 we show the results for a range of SNR values, in the setting with n = 1200, m = 6,
and the calibration set and test sets have a fixed and equal number of examples from each of the
three categories. As expected, using Simes is uniformly better than using Bonferroni. Adaptive
Simes is far superior to both when the SNR is at most 2.5. Among the two adaptive Simes variants,
we see that narrower batch prediction sets are obtained using Storey’s estimator for low SNR and
using the median estimator otherwise. For strong signal, using Simes produces slightly narrower
batch prediction sets than using adaptive Simes. Fisher provides the narrowest batch prediction
sets when the SNR is low. However, when the SNR is strong its performance is much worse even
than Bonferroni. Thus, using Fisher is only recommended in situations where the batch prediction
set is expected to be large.

In Appendix B.1, Table 4, we show the non-coverage probability for each method, as well as
the results using the true (unknown in practice) m0. As expected, using the true m0(y) leads to
the narrowest batch prediction sets. For low SNR, the oracle statistic with the true m0(y) is far
lower than all the practical test statistics. This suggests that optimizing the choice of estimate of
m0(y) may improve the inference. As mentioned at the end of Section 3.1, one direction may be
to use for m̂0(y) the minimum of several good candidates. More generally, we could also use as
combining function the minimum batch p-value from different combining functions. We leave for
future work the investigation of the benefits from such a compound procedure.
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Storey- Median-
SNR Bonf Simes Simes Simes Fisher
1.00 418.3 392.1 332.5 353.2 278.2
1.50 214.7 185.7 142.1 152.5 107.9
2.00 76.45 60.27 46.80 47.21 37.02
2.50 22.27 17.26 14.66 14.08 14.61
3.00 6.82 5.57 5.28 5.03 7.63
3.50 2.55 2.29 2.32 2.26 5.20
4.00 1.41 1.35 1.38 1.38 4.40
4.50 1.07 1.06 1.09 1.09 3.98

Table 2: The average batch prediction set size at each SNR for the batch conformal prediction
inference at level α = 0.1, for the following p-value combining functions: Bonferroni, Simes,
adaptive Simes using Storey’s estimator and the median estimator and Fisher (see details in the
text). The non-coverage probability for all methods is ≤ 0.1. In bold, the combining method that
produces the narrowest batch prediction set. Based on 10000 simulations.

In Appendix B.1, Table 5, we show the bounds for each SNR. The bounds using Simes are
slightly tighter than using Bonferroni. Interestingly, there seems to be no clear benefit for the
bounds in using adaptive Simes or Fisher.

4.2 Real data sets

We use two datasets commonly used in the machine learning community, the USPS dataset (LeCun
et al., 1989) with classes theK = 10 digits and the CIFAR-10 dataset (Krizhevsky, 2009) restricted
toK = 3 classes :“birds”, “cats” and “dogs”. For the USPS dataset, the total size of the calibration
set is 700 and the batch has size m = 3. The score functions are derived by using a support-vector
classifier with the linear kernel (trained with 2431 examples). For the CIFAR-10 dataset, the total
size of the calibration set is 2000 and the batch has size m = 5. We use a convolutional neural
network with 8 layers, trained with 5666 examples with 10 epochs and the ‘Adam’ optimizer.

By using 500 replications, we display violin plots of the size of the batch prediction sets for
the different methods in Figure 3 (for each violin, the white dot inside the inter-quartile box is
the median).

For the USPS data set, the results strongly depend on the level α considered. For α = 0.01, the
batch prediction sets are all large and Fisher method is the best. For α = 0.05 and α = 0.1, the
best batch prediction sets are obtained with the median Simes and the Simes method, respectively.
On the CIFAR data set, the sizes of the prediction sets are all large (meaning that the prediction
task is more difficult on this data set) and the Fisher combination is better than the other methods,
followed by Storey Simes method. These findings corroborate those of the previous section. Other
qualitatively similar results are obtained in the supplementary file.

5 Discussion

For a batch of test points we provide, with a (1 − α) coverage guarantee, a batch prediction
set or bounds for the different classes. We demonstrated that we can get much narrower batch
prediction sets than using Bonferroni. For the bounds, the advantage over Bonferroni is modest,
but nevertheless with Simes the improvement over Bonferroni is uniform.

Our examples concentrated on a fairly small batch size m and class size K. For m or K
large we suggested, instead of testing all y ∈ [K]m to produce the bounds, to use a shortcut with
computational complexity O(K ×m2). It is exact for K = 2, and appears tight for K > 2 in our
numerical experiments. Specifically for Simes type combination tests, computationally efficient
algorithm have been developed in the multiple testing literature (Goeman et al., 2019; Andreella
et al., 2023). For large m and K it may be worthwhile to consider adapting their algorithms to

10
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Figure 3: Violin plots for the batch prediction set for α = 1%, 5% and 10% (in rows) and data
sets USPS and CIFAR (in columns), see details in the text.

our set-up for greater computational efficiency. A great challenge is to provide, for m or K large,
efficient algorithms that directly target approximating the batch prediction set (rather than via
the bounds). Relatedly, an open question is how to concisely summarize the batch prediction set
when it is large.

In this work, we suggest testing that the batch label vector is y ∈ [K]m using conformal p-value
combination tests. More generally, it is possible to combine score functions Sk(xn+i), i ∈ [m], k ∈
[K], to obtain an overall batch score function G((xn+i)i∈[m], (yn+i)i∈[m]), but then obtaining
the appropriate threshold for inclusion in the batch prediction set may be more challenging. In
addition, in that case, a permutation-based null distribution may depend on the score values in
the batch of test points, and thus may not be distribution free. This is in contrast with the
distribution free test statistics we suggest in this paper. We leave for future work the investigation
of test statistics based on batch score functions.
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The appendix contains additional details for the adaptive Simes procedure, additional experi-
ments, the proofs of the results of the main paper (with auxiliary results) and more materials for
the computational shortcut.

A Estimators for m0(y)

This section complements Section 2.4. We first provide the general formula (10) for the Storey-type
estimator m̂0(y) that can accommodate any choice of λ ∈ (0, 1).

First, in the iid model, the modification corresponds to a simple rounding:

m̂0(y) := (1− λ)−1
(
1 +

∑
i∈[m]

1{p(yn+i)
i ≥ ⌊(n+ 1)λ⌋/(n+ 1)}

)
.

Clearly, the formula reduces to (11) when (n+ 1)λ is an integer.
In the condition model, the modification corresponds to a rounding on each class:

m̂0(y) := κ(y)

1 +
∑

k∈[K]

∑
i:yn+i=k

1{p(k)i ≥ λk}

 , (16)

with λk = ⌊λ(nk+1)⌋
nk+1 for k ∈ [K]. Above, the parameter κ(y) is given by

κ(y) =
(
1− min

k∈[K]
λk

) 1
m−1 ×

∏
k∈[K]

( 1

1− λk

)mk(y)

m−1

, (17)

where we recall that mk(y) is given by (3). When (nk + 1)λ is an integer for each k ∈ [K], then
λk = λ, κ(y) = (1− λ)−1, and the formula reduces to (11).

Second, the ‘quantile’ estimator (Benjamini et al., 2006) is given by

m̂0(y) =
m− ℓ+ 1

1− p(ℓ)(y)
, (18)

for some ℓ ∈ [m], typically ℓ = ⌈m/2⌉ for the ‘median’ estimator. The adaptive Simes batch pre-
diction set using the quantile estimator satisfies the correct coverage in the iid model by Marandon
et al. (2024). Proving such a coverage result in the class-conditional model is an open problem,
although our numerical experiments seem to indicate that the control is maintained in that case
(for the median estimator).2

B Additional numerical experiments

B.1 Gaussian multivariate setting

We provide more results for the data generation described in Section 4.1. Figure 4 shows the
data available in one data generation. Table 3 shows the batch prediction set for this batch using
Bonferroni at α = 0.1, as well as the Bonferroni and Simes p-values for each y in the batch. Had
the analyst used Simes instead of Bonferroni at α = 0.1, the batch prediction set size would have
been 25% smaller.

Table 4 adds the oracle adaptive Simes procedure, that uses m̂0(y) = m0(y) as estimator
(perfect estimation), to the comparison in Table 2. It also provides the estimated non-coverage
for each method. Using oracle adaptive Simes is by far the best, but this is not a practical method
since m0(y) is unknown.

2Recall that a valid coverage for the quantile Simes procedure can be ensured by using the empirical method of
Section 3.1 (not used in our numerical experiments).
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Figure 4: Illustration of one data generation with SNR = 2.5. The batch of six test samples are
in black. There are 400 calibration examples from each class (class one in green, class two in red,
and class three in blue). At α = 0.1, the size of the prediction set using Bonferroni and Simes is
32 and 24, respectively.

Table 5 provides the average sum of lower and upper bounds for the three classes by the
different methods. The goal in the comparisons in this table are two fold. First, to assess how
conservative the shortcut suggested in section E for computational efficiency is. Using Simes
(columns 3 and 4), it appears that the shortcut produces almost the same exact bounds for low
SNR, and the inflation (i.e., smaller lower bounds and higher upper bounds with the shortcut) for
high SNR is tiny. Using adaptive Simes (columns 6 and 7), it appears that there is a light inflation
for all SNRs, and it is larger than using Simes. The second goal is to compare the efficiency of
each combining method. As expected, the bounds using Simes are tighter than using Bonferroni,
but the advantage is small. A more pronounced difference is with respect to oracle Simes, but it
is not a practical method since m0(y) is unknown in practice. The bounds using Fisher is worse
than other methods for SNR ≥ 2.5, and better for the upper bound if SNR ≤ 2.

B.2 USPS and CIFAR data sets

To obtain a visualization different from the one of Section 4.2, Figure 5 displays the averaged size
of batch prediction sets in function of α in the same setting as Figure 3. The conclusions are
analogue.

B.3 Survey animal populations for CIFAR data set

In this section, we illustrate the task (ii) for the batch displayed in Figure 6. The lower and upper
bounds for the number of each animal in this batch are given in Table 6. As in the previous section,
while the improvement of the new methods are significant for the size of the batch prediction sets,
it is more modest for the bounds.
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Y1 = 1 Y2 = 1 Y3 = 2 Y4 = 2 Y5 = 3 Y6 = 3 Bonf Simes
1 1 1 2 3 2 3 0.12 0.07
2 2 1 2 3 2 3 0.12 0.07
3 1 2 2 3 2 3 0.12 0.07
4 2 2 2 3 2 3 0.12 0.07
5 1 1 3 3 2 3 0.12 0.07
6 2 1 3 3 2 3 0.12 0.07
7 1 2 3 3 2 3 0.12 0.07
8 2 2 3 3 2 3 0.12 0.07
9 1 1 2 2 2 3 0.12 0.12

10 2 1 2 2 2 3 0.12 0.12
11 1 2 2 2 2 3 0.12 0.12
12 2 2 2 2 2 3 0.12 0.12
13 1 1 3 2 2 3 0.12 0.12
14 2 1 3 2 2 3 0.12 0.12
15 1 2 3 2 2 3 0.12 0.12
16 2 2 3 2 2 3 0.12 0.12
17 2 2 3 3 3 3 0.15 0.12
18 1 2 3 3 3 3 0.15 0.12
19 1 1 2 3 3 3 0.15 0.15
20 2 1 2 3 3 3 0.15 0.15
21 1 2 2 3 3 3 0.15 0.15
22 2 2 2 3 3 3 0.15 0.15
23 1 1 3 3 3 3 0.15 0.15
24 2 1 3 3 3 3 0.15 0.15
25 2 2 3 2 3 3 0.33 0.16
26 1 2 3 2 3 3 0.33 0.19
27 2 2 2 2 3 3 0.33 0.24
28 2 1 3 2 3 3 0.37 0.24
29 1 2 2 2 3 3 0.33 0.33
30 1 1 3 2 3 3 0.37 0.37
31 2 1 2 2 3 3 0.48 0.48
32 1 1 2 2 3 3 1 0.65

Table 3: The batch prediction set using Bonferroni at α = 0.1, as well as the Bonferroni and
Simes p-values for each y.

C Proofs

In this section, we prove Theorems 2.2, 2.3 and 2.4. Each time, the result follows from previous
literature for the iid model (and full-calibrated p-values):

• Theorem 2.2 for the iid model is a consequence of Benjamini and Yekutieli (2001) and of the
fact that the full-calibrated p-values are PRDS (Bates et al., 2023) (see definition below);

• Theorem 2.3 for the iid model is a consequence of Corollary 3.5 in Marandon et al. (2024);

• Theorem 2.4 for the iid model is a consequence of Corollary 3.7 in Marandon et al. (2024).

Below, we extend these arguments to the case of class-calibrated p-values. The main technical tool
for the proof is Lemma D.2 (for comparison, we also recall Lemma D.1 that was obtained for the
iid case). On an intuitive point of view, the main idea of this extension is that, conditionally on

(Yj)j∈[n+m], each class-conditional conformal p-value p
(Yn+i)
i depends on the p-values of the same

class (p
(Yn+j)
j )j∈[m]\{i}:Yn+j=Yn+i

exactly in the same way as for the iid case, and are independent

of the p-values of the other classes (p
(Yn+j)
j )j∈[m]\{i}:Yn+j ̸=Yn+i

.
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Expected size of batch prediction set Probability of non-coverage
Storey Median Oracle Storey Median Oracle

SNR Bonf Simes Simes Simes Simes Fisher Bonf Simes Simes Simes Simes Fisher
1.00 418.30 392.09 332.53 353.23 162.77 278.23 0.08 0.09 0.09 0.09 0.09 0.09
1.50 214.74 185.66 142.08 152.50 69.95 107.91 0.09 0.09 0.09 0.09 0.09 0.10
2.00 76.45 60.27 46.80 47.21 24.88 37.02 0.09 0.09 0.10 0.10 0.09 0.09
2.50 22.27 17.26 14.66 14.08 8.88 14.61 0.08 0.09 0.10 0.09 0.09 0.09
3.00 6.82 5.57 5.28 5.03 3.64 7.63 0.09 0.09 0.10 0.09 0.09 0.10
3.50 2.55 2.29 2.32 2.26 1.83 5.20 0.09 0.09 0.10 0.09 0.09 0.09
4.00 1.41 1.35 1.38 1.38 1.21 4.40 0.09 0.09 0.10 0.09 0.09 0.09
4.50 1.07 1.06 1.09 1.09 1.03 3.98 0.09 0.09 0.10 0.10 0.09 0.10

Table 4: The average batch prediction set size at each SNR (columns 2–7) and probability of
non-coverage (columns 8–13) for the batch conformal prediction inference at level α = 0.1, for the
following p-value combining functions: Bonferroni, Simes, adaptive Simes using Storey’s estimator
and the median estimator (see detailed data generation in text), oracle Simes, and Fisher. In bold,
the (practical) combining method that produces the narrowest prediction region (oracle adaptive
Simes is in italic). Based on 10000 simulations.

Shortcut Oracle Storey Shortcut Storey
SNR Bonf Simes Simes Simes Simes Simes Fisher
1 0.1735 0.1799 0.1799 0.3056 0.1601 0.1598 0.0959
1.5 0.5731 0.5923 0.5923 0.8769 0.5998 0.5973 0.4691
2 1.3846 1.4423 1.4423 1.8984 1.4692 1.4665 1.3304
2.5 2.6567 2.7494 2.7494 3.2361 2.7424 2.7375 2.4744
3 3.9335 4.0222 4.0222 4.4062 3.9831 3.9718 3.4714
3.5 5.0332 5.0740 5.0740 5.2971 5.0384 5.0297 4.2149
4 5.6546 5.6741 5.6725 5.7897 5.6505 5.6431 4.6495
4.5 5.9349 5.9403 5.9320 5.9729 5.9112 5.9031 4.9124
1 16.4065 16.2350 16.2350 14.6186 15.9986 16.0034 15.5516
1.5 14.6781 14.3764 14.3764 12.8131 14.1638 14.2222 13.6339
2 12.3595 11.9946 11.9946 10.8056 11.9328 12.0616 11.6715
2.5 10.0392 9.7815 9.7815 9.0074 9.8433 9.9388 10.0506
3 8.2403 8.0921 8.0921 7.6426 8.1661 8.2092 8.8527
3.5 6.9937 6.9344 6.9348 6.7016 6.9844 6.9952 8.0839
4 6.3479 6.3242 6.3280 6.2107 6.3514 6.3611 7.6670
4.5 6.0651 6.0595 6.0693 6.0271 6.0884 6.0979 7.4120

Table 5: Lower bound ℓ
(k)
α (rows 1–8) and upper bound u

(k)
α (rows 9–16) ofmk(Y ) (3) (class k = 1)

at each SNR for different batch conformal prediction inferences at level α = 0.1. Estimation with
an average over 10000 replications. The bound the most informative has highest lower bounds /
lowest upper bounds (in bold). Oracle Simes is in italic.

Bonferroni Simes Storey Median Fisher

Bird 0 ; 9 0 ; 8 0 ; 7 0 ; 7 0 ; 7
Cat 0 ; 9 0 ; 9 0 ; 9 0 ; 8 0 ; 8
Dog 1 ; 10 1 ; 10 1 ; 10 1 ; 10 1 ; 10
Size 19683 14580 9540 7035 8349

Table 6: Bounds for the particular batch of Figure 6 from the CIFAR data set.
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Figure 5: Averaged size of the batch prediction sets in function of α for different procedures.
Same setting as for Figure 3.
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Figure 6: One batch of the CIFAR dataset (Krizhevsky, 2009).

Below, we write pi instead of p
(Yn+i)
i for simplicity. Also, ni stands for nYn+i

with a slight
abuse of notation.

C.1 Proof of Theorem 2.2

It is sufficient to establish the following Simes inequality for class-calibrated p-values:

P(∃ℓ ∈ [m], p(ℓ) ≤ αℓ/m | (Yj)j∈[n+m]) ≤ α . (19)

Since the families of class-calibrated p-values are marginally super-uniform (conditionally on
(Yn+i)i∈[m]), see Proposition 2.1, and by classical FDR controlling theory (Benjamini and Yeku-
tieli, 2001), it is enough to prove that the following PRDS property holds: for any nondecreasing3

set D ⊂ [0, 1]m, the function

u 7→ P((pi)i∈[m] ∈ D | pi = u, (Yj)j∈[n+m]),

is nondecreasing for all i ∈ [m].

3A set D ⊂ [0, 1]m is nondecreasing if for x = (xj)1≤j≤m ∈ D and y = (yj)1≤j≤m ∈ Rm, (∀j ∈ [m], xj ≤ yj)
implies y ∈ D.
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Proposition C.1. The family of class-calibrated p-values is PRDS on [m].

Proof. By Lemma D.2, by writing (pi)i∈[m] = (pi, (pj)j∈[m]\{i}:Yn+j=Yn+i
, (pj)j∈[m]:Yn+j ̸=Yn+i

)
(with some abuse of notation in the ordering of the vector), we have

P((pi)i∈[m] ∈ D | pi = u,Wi, (pj)j∈[m]:Yn+j ̸=Yn+i
, (Yj)j∈[n+m])

= P((pi, (pj)j∈[m]\{i}:Yn+j=Yn+i
, (pj)j∈[m]:Yn+j ̸=Yn+i

) ∈ D | pi = u,Wi, (pj)j∈[m]:Yn+j ̸=Yn+i
, (Yj)j∈[n+m])

= P((pi,Ψi(pi,Wi), (pj)j∈[m]:Yn+j ̸=Yn+i
) ∈ D | pi = u,Wi, (pj)j∈[m]:Yn+j ̸=Yn+i

, (Yj)j∈[n+m])

= 1{(u,Ψi(u,Wi), (pj)j∈[m]:Yn+j ̸=Yn+i
) ∈ D},

because pi, Wi and (pj)j∈[m]:Yn+j ̸=Yn+i
are independent conditionally on (Yj)j∈[n+m]. Since D is

a nondecreasing set and Ψi(u,Wi) is nondecreasing in u, we have that 1{(u,Ψi(u,Wi)) ∈ D} is
nondecreasing in u, which proves the result by an integration.

C.2 Proof of Theorem 2.3

Let us denote for any y = (yn+i)i∈[m] ∈ [K]m,

ℓ̂(p(y)) = max{ℓ ∈ [m] : p(ℓ)(y) ≤ αℓ/m}, (20)

(with the convention ℓ̂(p(y)) = 0 if the set is empty) the number of rejections of the BH procedure

(Benjamini and Hochberg, 1995) associated to the p-value family p(y) = (p
(yn+i)
i )i∈[m]. Observe

that, y /∈ Cmα,Simes if and only if ℓ̂(p(y)) ≥ 1, which is true if and only if
∑

i∈[m] 1{p
(yn+i)
i ≤ (α/m)(1 ∨ ℓ̂(p(y)))} =

1 ∨ ℓ̂(p(y)).
Now, denoting p = (pi)i∈[m] the family of class-calibrated p-values, we have

P((Yn+i)i∈[m] /∈ Cmα,Simes | (Yj)j∈[n+m]) =
∑
i∈[m]

E
[1{pi ≤ (α/m)(1 ∨ ℓ̂(p))}

1 ∨ ℓ̂(p)

∣∣∣ (Yj)j∈[n+m]

]
. (21)

Consider p′ = (p′i)i∈[m] the vector defined in Lemma D.2 (v) with in addition p′j = pj for j ∈ [m] :
Yn+j ̸= Yn+i. Combining Lemma D.2 (v) with Lemma D.3, we obtain

{pi ≤ αℓ̂(p)/m} = {pi ≤ αℓ̂(p′)/m} ⊂ {ℓ̂(p) = ℓ̂(p′)}.

Hence, by letting Li = 1 ∨ ℓ̂(p′) ∈ [m], which is Wi-measurable, we have that (21) can be written
as

P((Yn+i)i∈[m] /∈ Cmα,Simes | (Yj)j∈[n+m]) =
∑
i∈[m]

E
[1{pi ≤ (α/m)Li}

Li

∣∣∣ (Yj)j∈[n+m]

]
=
∑
i∈[m]

E
[P(pi ≤ (α/m)Li |Wi)

Li

∣∣∣ (Yj)j∈[n+m]

]
.

Now, by Lemma D.2 (ii), we have P(pi ≤ (α/m)Li |Wi) = ⌊(ni+1)(α/m)Li⌋
ni+1 = (α/m)Li if (ni +

1)(α/m) is an integer for all i ∈ [m]. This finishes the proof.

C.3 Proof of Theorem 2.4

For short, we sometimes write in this proof λi, mi and ni instead of λYn+i , mYn+i and nYn+i respec-
tively, for all i ∈ [m]. Also, we write κ instead of κ((Yn+i)i∈[m]) andmk instead ofmk((Yn+i)i∈[m]).

Let G(p) = m̂0((Yn+i)i∈[m]) = κ(1 +
∑m

i=1 1{pi ≥ λi}) the estimator of m0 at the true point
(Yn+i)i∈[m] given in (16). Similarly to (21), we have

P((Yn+i)i∈[m] /∈ Cmα,A-Simes | (Yj)j∈[n+m]) =
∑
i∈[m]

E
[1{pi ≤ (α/G(p))(1 ∨ ℓ̂(p))}

1 ∨ ℓ̂(p)

∣∣∣ (Yj)j∈[n+m]

]
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for ℓ̂(p) = max{ℓ ∈ [m] : p(ℓ) ≤ αℓ/G(p)} (with the convention ℓ̂(p) = 0 if the set is empty). Now
we use Lemma D.2 and the notation therein, and we observe that (pj)j∈[m]\{i} is a function of

(pi,Wi) which is nondecreasing in pi. Hence, 1/G(p) and 1 ∨ ℓ̂(p) are functions of (pi,Wi) which
are nonincreasing in pi. Now let

c∗(Wi) = maxN (Wi)

N (Wi) = {a/(ni + 1) : a ∈ [ni + 1], a/(ni + 1) ≤ (α/G(a/(ni + 1), (pj)j∈[m]\{i}))1 ∨ ℓ̂(a/(ni + 1), (pj)j∈[m]\{i})},

with the convention c∗(Wi) = (ni+1)−1 ifN (Wi) is empty. Since 1∨ℓ̂(p) ≥ 1∨ℓ̂(c∗(Wi), (pj)j∈[m]\{i}),
we have

P((Yn+i)i∈[m] /∈ Cmα,A-Simes | (Yj)j∈[n+m]) ≤
∑
i∈[m]

E
[P(pi ≤ c∗(Wi), pi ∈ N (Wi) |Wi)

1 ∨ ℓ̂(c∗(Wi), (pj)j∈[m]\{i})

∣∣∣ (Yj)j∈[n+m]

]
≤
∑
i∈[m]

E
[ c∗(Wi)

1 ∨ ℓ̂(c∗(Wi), (pj)j∈[m]\{i})

∣∣∣ (Yj)j∈[n+m]

]
≤
∑
i∈[m]

E
[ 1

G(1/(ni + 1), (pj)j∈[m]\{i})

∣∣∣ (Yj)j∈[n+m]

]
,

where the first inequality comes from the definition of N (Wi) and c∗(Wi) and from the fact that

ℓ̂(c∗(Wi), (pj)j∈[m]\{i}) is Wi-measurable; the second inequality comes from Lemma D.2 (ii); and
the third one comes from the fact that c∗(Wi) is in N (Wi) and 1/G(p) is nonincreasing in pi.
Given the notation of Lemma D.2 (v), this leads to

P((Yn+i)i∈[m] /∈ Cmα,A-Simes | (Yj)j∈[n+m]) ≤
∑
i∈[m]

E
[ 1

G(p′)

]
, (22)

where p′ = (p′j)j∈[m] is such that p′i = (ni+1)−1, (p′j)j∈[m]:Yn+j=Yn+i
∼ Di and for each k ̸= Yn+i,

(p′j)j∈[m]:Yn+j=k ∼ Dk where the distribution of Di and Dk are defined in Lemma D.2. Also note
that (p′j)j∈[m]:Yn+j=Yn+i

and all (p′j)j∈[m]:Yn+j=k, k ̸= Yn+i, are independent vectors, so that the
distribution of p′ is well specified. Now observe that

E
[ 1

G(p′)

]
= E

[ 1/κ

1 +
∑m

j=1 1{p′j ≥ λj}
]

= E
[ 1/κ

1 +
∑

k ̸=Yn+i

∑
j:Yn+j=k 1{p′j ≥ λj}+

∑
j∈[m]\{i}:Yn+j=Yn+i

1{p′j ≥ λj}
]

= E
[ 1/κ

1 +
∑

k ̸=Yn+i
B(mk, νk) + B(mi − 1, ν′i)

]
,

by using Lemma D.2 (iii), (iv), where B(a, b) denotes (independent) binomial variables of param-

eters a and b, and where νk = U
(k)
(⌊(nk+1)λ⌋−1) (with the convention νk = 1 if ⌊(nk + 1)λ⌋ ≤ 1) and

ν′i = U(⌊(ni+1)λ⌋) (with the convention ν′i = 1 if ⌊(ni + 1)λ⌋ = 0). The latter comes from the fact
that for j ∈ [m] such that Yn+j = k ̸= Yn+i,

P(p′j ≥ λj | (U (k)
(1) , . . . , U

(k)
(nk)

)) = P
( ∑

s∈Ai

1{s ≥ Sn+j} > ⌊λ(nk + 1)⌋ − 1
∣∣∣ (U (k)

(1) , . . . , U
(k)
(nk)

)
)

= 1− (1− U
(k)
(⌊(nk+1)λ⌋−1)) = U

(k)
(⌊(nk+1)λ⌋−1).

Similarly, for j ̸= i such that Yn+j = Yn+i, P(p′j ≥ λj | (U(1), . . . , U(ni+1))) = U(⌊(ni+1)λ⌋).
Now, by Lemma D.4, we have νk ∼ β(nk + 2 − ⌊(nk + 1)λ⌋, ⌊(nk + 1)λ⌋ − 1) and ν′i ∼

β(ni + 2− ⌊(ni + 1)λ⌋, ⌊(ni + 1)λ⌋). Let ν be the random variable

ν = (ν′i)
mi/m

∏
k ̸=Yn+i

(νk)
mk/m.
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By the stochastic domination argument of Lemma D.5, we have

E
[ 1

1 +
∑

k ̸=Yn+i
B(mk, νk) + B(mi − 1, ν′i)

∣∣∣ (νk)k ̸=Yn+i
, ν′i

]
≤ E

[ 1

1 +
∑

k ̸=Yn+i
B(m− 1, ν)

∣∣∣ (νk)k ̸=Yn+i , ν
′
i

]
≤ 1/(mν),

where we used Lemma D.6 in the last inequality. As a result,∑
i∈[m]

E
[ 1

G(p′)

]
≤ κ−1m−1

∑
i∈[m]

E
(
(ν′i)

−(mi−1)/(m−1)
∏

k ̸=Yn+i

(νk)
−mk/(m−1)

)
= κ−1m−1

∑
i∈[m]

E
(
(ν′i)

−(mi−1)/(m−1)
) ∏
k ̸=Yn+i

E
(
(νk)

−mk/(m−1)
)
,

by using the independence between the variables ν′i, νk, k ̸= Yn+i. By Jensen’s inequality, the last
display is at most

κ−1(E((ν′i)−1))(mi−1)/(m−1)
∏

k ̸=Yn+i

(E((νk)−1)))mk/(m−1)

= κ−1
( ni + 1

ni + 1− ⌊(ni + 1)λ⌋
)(mi−1)/(m−1) ∏

k ̸=Yn+i

( nk

nk + 1− ⌊(nk + 1)λ⌋
)mk/(m−1)

≤ κ−1
( 1

1− λi

)(mi−1)/(m−1) ∏
k ̸=Yn+i

( 1

1− λk

)mk/(m−1)

≤ 1,

because E(ν−1
k ) = nk

nk+1−⌊(nk+1)λ⌋ ≤ nk+1
nk+1−⌊(nk+1)λ⌋ and E((ν′i)−1) = ni+1

ni+1−⌊(ni+1)λ⌋ by Lemma D.4

and by the definition (17) of κ. Combining the latter with (22) gives the result.

C.4 Proof of Theorem 3.1

First, by letting ξ(B+1) :=∞, we have ξ(⌊(B+1)α)⌋) = (−ξ)(⌈(B+1)(1−α)⌉) and thus

P((Yn+i)i∈[m] /∈ Cmt,F ) = P(F ((p
(Yn+i)
i )i∈[m]) < ξ(⌊(B+1)α)⌋))

= P(−F ((p
(Yn+i)
i )i∈[m]) > (−ξ)(⌈(B+1)(1−α)⌉))

,

where the probability is taken conditionally on (Yn+i)i∈[m] in the conditional model. Now, since

the scores SYi
(Xi), i ∈ [n+m], have no ties and p-values (p

(Yn+i)
i )i∈[m] involve only ranks between

those scores, the distribution of (p
(Yn+i)
i )i∈[m] is same as if the scores were iid uniform on [0, 1]. As

a result, letting ξ = F ((p
(Yn+i)
i )i∈[m]), the variables ξ, ξ1, . . . , ξB are iid and thus exchangeable.

By Romano and Wolf (2005), this entails that

P
(
(B + 1)−1

(
1 +

B∑
b=1

1{−ξb ≥ −ξ}
)
≤ α

)
≤ α.

Since (B + 1)−1
(
1 +

∑B
b=1 1{−ξb ≥ −ξ}

)
≤ α if and only if −ξ > (−ξ)(⌈(B+1)(1−α)⌉), this gives

the result.

D Technical results

The next result is a variation of results in appendices of Marandon et al. (2024); Gazin et al.
(2024b).
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Lemma D.1 (For full-calibrated p-values). Let us consider the scores Sj = SYj
(Xj), j ∈ [n+m],

and assume them to be exchangeable and have no ties almost surely. Consider the full-calibrated

p-values (5) pi := p
(Yn+i)
i , i ∈ [m], and let for any fixed i ∈ [m],

Wi := (Ai, (Sn+j)j∈[m]\{i});

Ai := {Sj , j ∈ [n]} ∪ {Sn+i} = {ai,(1), . . . , ai,(n+1)};

Ψi(u,Wi) :=

(
1

n+ 1

(
1{ai,(⌈u(n+1)⌉) < Sn+j}+

∑
s∈Ai

1{s ≥ Sn+j}
))

j∈[m]\{i}

,

with ai,(1) > · · · > ai,(n+1). Then we have

(i) p−i := (pj)j∈[m]\{i} is equal to Ψi(pi,Wi) and u ∈ [0, 1] 7→ Ψi(u,Wi) ∈ Rm−1 is a nonde-
creasing function (in a coordinate-wise sense for the image space);

(ii) (n+ 1)pi is uniformly distributed on [n+ 1] and independent of Wi;

(iii) the distribution of p−i conditionally on pi = (n+ 1)−1 is the same as if all the scores were
all iid U(0, 1). In particular, this distribution is equal to a distribution Di which is defined
as follows: p′

−i := (p′j)j∈[m]\{i} ∼ Di if, conditionally on the ordered statistics U(1) >
· · · > U(n+1) of an iid sample of uniform random variables (U1, . . . , Un+1), the variables
(p′j)j∈[m]\{i} are iid with common cdf F (x) = (1 − U(⌊(n+1)x⌋+1))1{(n+ 1)−1 ≤ x < 1} +
1{x ≥ 1}.

(iv) Let (p′j)j∈[m] such that p′i = (n + 1)−1 and p′j = (n + 1)−1
∑

s∈Ai
1{s ≥ Sn+j} for j ̸= i.

Then, (p′j)j∈[m] is Wi-measurable and almost surely, for all j ∈ [m], p′j ≤ pj when pj ≤ pi
and p′j = pj when pj > pi.

The next lemma adapts Lemma D.1 to the class conditional model (with class-calibrated p-
values).

Lemma D.2 (For class-calibrated p-values). Let us consider the scores Sj = SYj
(Xj), j ∈ [n+m],

and assume that for all k ∈ [K], the scores Sj , j ∈ [n +m] : Yj = k, are exchangeable and have

no ties almost surely. Consider the class-calibrated p-values (5) pi := p
(Yn+i)
i , i ∈ [m], and let for

any fixed i ∈ [m], ni = |D(Yn+i)
cal | and

Wi := (Ai, (Sn+j)j∈[m]\{i}, (Sj)j∈[n]:Yj ̸=Yn+i
);

Ai := {Sj , j ∈ D(Yn+i)
cal } ∪ {Sn+i} = {ai,(1), . . . , ai,(ni+1)};

Ψi(u,Wi) :=

(
1

ni + 1

(
1{ai,(⌈u(ni+1)⌉) < Sn+j}+

∑
s∈Ai

1{s ≥ Sn+j}
))

j∈[m]\{i}:Yn+j=Yn+i

,

with ai,(1) > · · · > ai,(ni+1). Then we have

(i) (pj)j∈[m]\{i}:Yn+j=Yn+i
is equal to Ψi(pi,Wi) and u ∈ [0, 1] 7→ Ψi(u,Wi) is a nondecreasing

function (in a coordinate-wise sense for the image space);

(ii) Conditionally on (Yj)j∈[n+m], the variable (ni +1)pi is uniformly distributed on [ni +1] and
independent of Wi and (pj)j∈[m]:Yn+j ̸=Yn+i

;

(iii) the distribution of (pj)j∈[m]\{i}:Yn+j=Yn+i
conditionally on pi = (ni + 1)−1 and (Yj)j∈[n+m]

is the same as if all the scores were all iid U(0, 1). In particular, this distribution is
equal to a distribution Di((Yj)j∈[n+m]) which is defined as follows: (p′j)j∈[m]\{i}:Yn+j=Yn+i

∼
Di((Yj)j∈[n+m]) if, conditionally on the ordered statistics U(1) > · · · > U(ni+1) of an iid
sample of uniform random variables (U1, . . . , Uni+1) (independent of everything else), the
variables (p′j)j∈[m]\{i}:Yn+j=Yn+i

are iid with common cdf

F (x) = (1− U(⌊(ni+1)x⌋+1))1{(ni + 1)−1 ≤ x < 1}+ 1{x ≥ 1}.
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(iv) For k ̸= Yn+i, conditionally on (Yj)j∈[n+m], the distribution of (pj)j∈[m]:Yn+j=k is the same
as if all the scores were all iid U(0, 1). In particular, this distribution is equal to a distri-
bution Dk((Yj)j∈[n+m]) which is defined as follows: (p′j)j∈[m]:Yn+j=k ∼ Dk((Yj)j∈[n+m]) if,

conditionally on the ordered statistics U
(k)
(1) > · · · > U

(k)
(nk)

of an iid sample of uniform random

variables (U
(k)
1 , . . . , U

(k)
nk ) (independent of everything else), the variables (p′j)j∈[m]:Yn+j=k are

iid with common cdf

F (k)(x) = (1− U
(k)
(⌊(nk+1)x⌋))1{(nk + 1)−1 ≤ x < 1}+ 1{x ≥ 1}.

(v) Let (p′j)j∈[m]:Yn+j=Yn+i
such that p′i = (ni + 1)−1 and p′j = (ni + 1)−1

∑
s∈Ai

1{s ≥ Sn+j}
for j ̸= i. Then, (p′j)j∈[m]:Yn+j=Yn+i

is Wi-measurable and almost surely, for all j ∈ [m],
p′j ≤ pj when pj ≤ pi and p′j = pj when pj > pi.

Proof. Let us prove (i), we have for j ∈ [m]\{i} with Yn+j = Yn+i,

pj =
1

|D(Yn+j)
cal |+ 1

(
1 +

∑
ℓ∈D

(Yn+j)

cal

1{Sℓ ≥ Sn+j}
)

=
1

|D(Yn+i)
cal |+ 1

(
1 +

∑
s∈Ai

1{s ≥ Sn+j} − 1{Sn+i ≥ Sn+j}
)
, (23)

which gives the relation because Sn+i = ai,(pi(ni+1)). Since the monotonicity property is clear,
this gives (i).

Point (ii) comes from the fact that the scores {Sj , j ∈ D(Yn+i)
cal } ∪ {Sn+i} have not ties and are

exchangeable conditionally on all other scores (and of (Yj)j∈[n+m]).
For proving (iii), we first note that the calibrated p-values are ranks of exchangeable scores

with not ties. Hence, the distribution of the p-value vector is free from the distribution scores
and thus is the same as if the scores were generated as iid U(0, 1). Now, by (i), we have for all
j ∈ [m]\{i} with Yn+j = Yn+i,

pj =
1

ni + 1

(
1 +

∑
s∈Ai\{ai,(1)}

1{s ≥ Sn+j}
)
,

which thus are iid conditionally on Ai and (Yj)j∈[n+m]. In addition, the common marginal cdf at
a point x is given by

P
(
1 +

∑
s∈Ai\{ai,(1)}

1{s ≥ Sn+j} ≤ x(ni + 1)
)
= P

( ∑
s∈Ai\{ai,(1)}

1{s ≥ Sn+j} < ⌈x(ni + 1)⌉
)

= P
(
ai,(⌈x(ni+1)⌉+1) < Sn+j

)
,

provided that 1 ≤ x(ni + 1) < ni + 1 and the above probabilities being taken conditionally on Ai

and (Yj)j∈[n+m]. The result follows because we considered uniformly distributed scores.
Point (iv) is similar to point (iii), starting directly from the following relation: for all j ∈ [m]

with Yn+j = k,

pj =
1

nk + 1

(
1 +

∑
s∈{U(k)

(1)
,...,U

(k)

(nk)
}

1{s ≥ Sn+j}
)
,

where U
(k)
1 > · · · > U

(k)
nk are the ordered elements of {Sj , j ∈ D(k)

cal }.
Finally, let us prove point (v): first p′j ≤ pj is obvious from (23). Second, if j ∈ [m]\{i} with

Yn+j = Yn+i is such that pj > pi, this means Sn+j < Sn+i and thus p′j = pj from (23). The result
is proved.
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Lemma D.3 (Lemma D.6 of Marandon et al. (2024)). Write ℓ̂ = ℓ̂(p) for (20) with any p-value
family p = (pi)i∈[m]. Fix any i ∈ {1, . . . ,m} and consider two collections p = (pi)i∈[m] and
p′ = (p′i)i∈[m] which satisfy almost surely that

∀j ∈ [m],

{
p′j ≤ pj if pj ≤ pi;
p′j = pj if pj > pi.

(24)

Then we have almost surely {pi ≤ αℓ̂(p)/m} = {pi ≤ αℓ̂(p′)/m} ⊂ {ℓ̂(p) = ℓ̂(p′)}.

Lemma D.4. For V(1) > · · · > V(ℓ) the order statistics of ℓ iid uniform variables on [0, 1], we
have for all a ∈ [ℓ], V(a) ∼ β(ℓ+ 1− a, a). In addition, if a < ℓ, E(1/V(a)) = ℓ/(ℓ− a).

Lemma D.5 (Klenke and Mattner (2010)). For Z1, . . . , Zm independent Bernoulli variables of
respective parameters νi ∈ [0, 1], i ∈ [m], the Poisson binomial variable

∑
i∈[m] Zi is stochastically

larger than a binomial variable of parameters m and ν =
∏

i∈[m] ν
1/m
i .

Lemma D.6 (Lemma 1 of Benjamini et al. (2006)). If T is a Binomial variable with parameter
m− 1 ≥ 0 and ν ∈ (0, 1], we have

E[1/(T + 1)] = (1− (1− ν)m)/(mν) ≤ 1/(mν).

E Computational shortcut

Computing the batch prediction set for our methods is in general of complexity of order Km times
the cost of computing the combining function (e.g., order m for Fisher, or m logm for Simes or
adaptive Simes)4. The aim of this section is to reduce this complexity when the user only want
to report lower/upper bounds for mk(Y ), k ∈ [K] (3). We also discuss the issue of reconstructing
the batch prediction set from these bounds.

E.1 Shortcut for computing the bounds

Naively computing the bounds [ℓ
(k)
α , u

(k)
α ], k ∈ [K], in (4), which are derived from the Simes

conformal prediction set in (8) or its adaptive version in (12), results in an exponential complexity
of O(Km). This quickly becomes impractical for large batch sizes. To address this issue, we
introduce a novel shortcut that allows for a more efficient computation of these bounds, with a
computational complexity of at most O(K ×m2).

This shortcut applies to both the full-calibrated and class-calibrated conformal p-values. Propo-
sition E.1 shows that it is exact when K = 2 and the scores produced by the machine learning
model are probabilities. However, when K > 2 or when arbitrary scores are used, the shortcut
becomes conservative, potentially yielding wider bounds but never narrower ones. This ensures
that the coverage guarantee of at least 1− α probability is maintained.

Algorithm 1 provides the pseudocode for the shortcut to compute the bounds [ℓ
(k)
α , u

(k)
α ] derived

from the (adaptive) Simes conformal prediction set.

Proposition E.1. For any α ∈ (0, 1), let [ℓ
(k)
α , u

(k)
α ], k ∈ [K] be the bounds defined by (4), derived

from the Simes prediction sets in (8) or its adaptive version in (12). Algorithm 1 returns the

bounds [ℓ̃
(k)
α , ũ

(k)
α ] such that ℓ̃

(k)
α ≤ ℓ

(k)
α and ũ

(k)
α ≥ u

(k)
α for all k ∈ [K], with a computational

complexity of at most O(K × m2). In addition, when K = 2 and the scores produced by the
machine learning model are probabilities, i.e., Sk(xn+i) = 1 − S3−k(xn+i) for k ∈ {1, 2} and

i ∈ [m], it holds that ℓ̃
(k)
α = ℓ

(k)
α and ũ

(k)
α = u

(k)
α for all k ∈ [K].

4In general, the cost of computing the p-value family (p
(k)
i , k ∈ [K], i ∈ [m]) is negligible wrt Km.
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Algorithm 1: Shortcut for computing the bounds [ℓ
(k)
α , u

(k)
α ], k ∈ [K], with (adaptive)

Simes predition set.

Input: Full-calibrated or class-calibrated conformal p-values (p
(k)
i )i∈[m],k∈[K], level

α ∈ (0, 1), an estimator m̂0(p) that is monotone in the p-values p = (pi)i∈[m].
1 for each k ∈ [K] do

2 Sort (p
(k)
i )i∈[m] in decreasing order and store as a1 ≥ . . . ≥ am;

3 Sort (max{p(j)i , j ̸= k})i∈[m] in decreasing order and store as b1 ≥ . . . ≥ bm;
4 for each v ∈ {m, . . . , 0} do
5 (q1, . . . , qm)← (a1, . . . , av, b1, . . . , bm−v);
6 Sort (qi)i∈[m] in increasing order and store as q(1) ≤ . . . ≤ q(m);

7 hv,k ← min
(m̂0(q)

ℓ
q(ℓ), ℓ ∈ [m]

)
8 end

9 ℓ
(k)
α ← min(v ∈ {0, . . . ,m} : hv,k > α);

10 u
(k)
α ← max(v ∈ {0, . . . ,m} : hv,k > α);

11 end

Output: [ℓ
(k)
α , u

(k)
α ], k ∈ [K]

Proof. First, let us establish that the time complexity of the algorithm is O(K×m2). To produce
the sorted concatenation of two sorted vectors a1, . . . , am−i and b1, . . . , bi takes linear time, i.e.
O(m). This merging process, which generates the sorted concatenation, is repeated m + 1 times
for each k. As a result, for each k, this step contributes O(m2), leading to an overall complexity
of O(K ×m2).

We first discuss the case where m̂0 = m, meaning the estimator is the constant m. Let
p = (pi)i∈[m] denotes a vector of p-values, with the sorted values represented as p(1) ≤ . . . ≤ p(m).

Simes’ test is defined as FSimes(p) = min
(m
ℓ
p(ℓ), ℓ ∈ [m]

)
. This test is monotonic, meaning that

if p ≤ q componentwise (i.e. p(i) ≤ q(i) for all i ∈ [m]), then FSimes(p) ≤ FSimes(q).
By definition, v /∈ Nk(Cmα,Simes) if FSimes(p(y)) ≤ α for all y ∈ [K]m such that mk(y) = v, for

any v ∈ {0, . . . ,m}.
Then, for some q = (qi)i∈[m] with q ≥ p(y) for all y ∈ [K]m such that mk(y) = v, FSimes(q) ≤ α

implies v /∈ Nk(Cmα,Simes). However, FSimes(q) > α does not necessarily imply v ∈ Nk(Cmα,Simes).
Given k and v, Algorithm 1 identifies a suitable vector q = qv,k such that q ≥ p(y) for all

y ∈ [K]m where mk(y) = v. Then we let

Ñk = {v ∈ {0, . . . ,m} : FSimes(qv,k) > α},

which ensures Ñk ⊇ Nk(Cmα,Simes) The resulting bounds are given by [ℓ̃
(k)
α , ũ

(k)
α ] = [min Ñk,max Ñk],

which guarantees that ℓ̃
(k)
α ≤ ℓ

(k)
α and ũ

(k)
α ≥ u

(k)
α for every k ∈ [K].

We now need to demonstrate that Algorithm 1 produces a vector q such that q ≥ p(y) for all
y ∈ [K]m such that mk(y) = v.

For any y ∈ [K]m such that mk(y) = v, the vector p(y) consists of v conformal p-values

p
(k)
i1

, . . . , p
(k)
iv

and m− v conformal p-values p
(j1)
iv+1

, . . . , p
(jm−v)
im

, where i1, . . . , im is a permutation of

[m] and j1, . . . , jm−v ∈ [K] \ {k}. If we consider the vector p(ỹ), which is formed by p
(k)
i1

, . . . , p
(k)
iv

and the maximum values max(p
(j)
iv+1

, j ̸= k), . . . ,max(p
(j)
iv+m

, j ̸= k), we can conclude that p(ỹ) ≥
p(y). Since the vector q in Algorithm 1 is constructed using the largest v values from (p

(k)
i )i∈[m]

and the largest m− v values from (max(p
(j)
i , j ̸= k))i∈[m], it follows that q ≥ p(ỹ) ≥ p(y) for all

y ∈ [K]m such that mk(y) = v. This establishes the conservativeness of the shortcut for K ≥ 2
and for any scores produced by the machine learning model.

25



IfK = 2 and the scores produced by the machine learning model are probabilities, then we have
the relationship Sk(xn+i) = 1 − S3−k(xn+i) for k ∈ {1, 2} and i ∈ [m]. Given this relationship,
there exists a permutation i1, . . . , im such that the sequence Sk(xn+ij1

) ≤ . . . ≤ Sk(xn+ijm
) is non-

decreasing, while the sequence S3−k(xn+ij1
) ≥ . . . ≥ S3−k(xn+ijm

) is nonincreasing. Consequently,
the ranks of Sk(xn+j1), . . . , Sk(xn+jm) within the set (Syj

(xj))j∈D(k)
cal

will be nondecreasing, while

the ranks of S3−k(xn+j1), . . . , S3−k(xn+jm) within the set (Syj
(xj))j∈D(3−k)

cal

will be nonincreasing.

Since these ranks are proportional to the conformal p-values, it follows that p
(k)
i1
≤ . . . ≤ p

(k)
im

and

p
(3−k)
i1

≥ . . . ≥ p
(3−k)
im

.
Consider y ∈ [K]m such that mk(y) = v. Let the vector p(y∗) consist of the v largest values

from (p
(k)
i )i∈[m], specifically p

(k)
im−v+1

, . . . , p
(k)
im

. Consequently, the remaining m− v values in p(y∗)

are p
(3−k)
i1

, . . . , p
(3−k)
im−v

, i.e. the largest m−v values from (p
(3−k)
i )i∈[m]. Thus, we have p(y

∗) ≥ p(y)

for all y ∈ [K]m such that mk(y) = v. Furthermore, by construction, q in Algorithm 1 is equal to
p(y∗). Therefore FSimes(q) ≤ α if and only if FSimes(p(y)) ≤ α for all y ∈ [K]m such thatmk(y) = v.
This establishes the exactness of the shortcut when K = 2 and Sk(xn+i) = 1 − S3−k(xn+i) for
k ∈ {1, 2} and i ∈ [m].

The validity of the shortcut for the adaptive version of Simes follows from the required mono-
tonicity of the estimator: if p(y) ≤ q, then m̂0(p(y)) ≤ m̂0(q) holds for any y ∈ [K]m. This,
combined with FA-Simes(p(y)) ≤ α if and only if FSimes(p(y)) ≤ mα/m̂0(p(y)) yields the desired
result.

E.2 Extension to other combining functions

Algorithm 2 presents a more general approach for any p-value vector combining function F (p),
which is symmetric and monotone in the p-values p = (pi)i∈[m]. It requires the empirical threshold
t = ξ(⌊(B+1)α⌋) from Theorem 3.1, which depends on (mk)k∈[K] in the conditional model, i.e.
t = t(α, (mk)k∈[K]). The proof that Algorithm 2 yields conservative yet valid bounds is analogous
to the previous result and is therefore omitted.

Algorithm 2: General shortcut for computing the bounds [ℓ
(k)
α , u

(k)
α ], k ∈ [K].

Input: Full-calibrated or class-calibrated conformal p-values (p
(k)
i )i∈[m],k∈[K], level

α ∈ (0, 1), p-value vector combining function F (p) that is symmetric and
monotone in the p-values p = (pi)i∈[m] and the corresponding critical value
t = t(α, (mk)k∈[K]).

1 for each k ∈ [K] do

2 Sort (p
(k)
i )i∈[m] in decreasing order and store as a1 ≥ . . . ≥ am;

3 Sort (max{p(j)i , j ̸= k})i∈[m] in decreasing order and store as b1 ≥ . . . ≥ bm;
4 for each v ∈ {m, . . . , 0} do
5 (q1, . . . , qm)← (a1, . . . , av, b1, . . . , bm−v);
6 Sort (qi)i∈[m] in increasing order and store as q(1) ≤ . . . ≤ q(m);
7 hv,k ← 1{F (q) ≥ min{t(α,mk = v,mj), j ̸= k}}
8 end

9 ℓ
(k)
α ← min(v ∈ {0, . . . ,m} : hv,k > 0);

10 u
(k)
α ← max(v ∈ {0, . . . ,m} : hv,k > 0};

11 end

Output: [ℓ
(k)
α , u

(k)
α ], k ∈ [K]
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E.3 Batch prediction set reconstruction from the bounds

As announced in Section 3.2, from the bounds [ℓ
(k)
α , u

(k)
α ], k ∈ [K], it is straightforward to produce

a conservative batch prediction set C̃mα such that C̃mα ⊇ Cmα . The cardinality of the conservative

set C̃mα is the sum of all valid assignments of (m1, . . . ,mK) occurrences, where ℓ
(k)
α ≤ mk ≤ u

(k)
α

for each k ∈ {1, . . . ,K}, and m1 + · · · + mK = m, with each valid assignment counted by the
multinomial coefficient

(
m

m1,m2,...,mK

)
:

|C̃mα | =
∑

(m1,...,mK) :
∑K

k=1 mk=m,

ℓ(k)
α ≤mk≤u(k)

α ∀k∈[K]

(
m

m1,m2, . . . ,mK

)
.

For the reading zip code example, from Table 1, we derive the bounds [ℓ
(k)
α , u

(k)
α ] with α = 0.05,

which are as follows:

[1, 2], [0, 0], [0, 0], [0, 0], [1, 1], [0, 2], [0, 2], [0, 0], [0, 1], [0, 0] for k = 1, . . . , 10.

The assignments (m1, . . . ,m10) that satisfy m1 + . . . + m10 = 5 and ℓ
(k)
α ≤ mk ≤ u

(k)
α for each

k ∈ {1, . . . , 10} are ten:

(1, 0, 0, 0, 1, 0, 2, 0, 1, 0), (1, 0, 0, 0, 1, 1, 1, 0, 1, 0), (1, 0, 0, 0, 1, 1, 2, 0, 0, 0),

(1, 0, 0, 0, 1, 2, 0, 0, 1, 0), (1, 0, 0, 0, 1, 2, 1, 0, 0, 0), (2, 0, 0, 0, 1, 0, 1, 0, 1, 0),

(2, 0, 0, 0, 1, 0, 2, 0, 0, 0), (2, 0, 0, 0, 1, 1, 0, 0, 1, 0), (2, 0, 0, 0, 1, 1, 1, 0, 0, 0),

(2, 0, 0, 0, 1, 2, 0, 0, 0, 0).

The corresponding multinomial coefficients are 60, 120, 60, 60, 60, 60, 30, 60, 60 and 30,
respectively. This results in a cardinality of the conservative set |C̃mα,Simes| = 600, compared to
|Cmα,Simes| = 6 given in Table 1. This indicates that reconstructing the prediction set solely from
the bounds is quite imprecise. For instance, the assignment (2, 0, 0, 0, 1, 2, 0, 0, 0, 0) corresponds to(

5
2,0,0,0,1,2,0,0,0,0

)
= 30 vectors of size 5, which include two 0s, one 4, and two 5s.

While C̃mα is not accurate in general, we can combine this information with individual conformal
prediction sets Cmi,α, i ∈ [m] to allows for a more accurate batch prediction set reconstructed from
the bounds. For this, specific shortcuts can be investigated to compute the individual conformal
prediction sets Cmi,α, i ∈ [m]. More specifically, for Simes’ method, we can always use the Bonferroni
individual prediction set to obtain a new batch prediction set from the bounds both with low
complexity that can only improve over Cmα,Bonf. In addition, the following example shows that this
improvement can be strict: we see this as an important ‘proof of concept’.

For the example of one batch of the CIFAR dataset given in Figure 6 with m = 10, K = 3, and
α = 0.1, the Bonferroni individual conformal prediction sets Cmi,α are {3} for i = 8 and {1, 2, 3}
for i = 1, 2, 3, 4, 5, 6, 7, 9, 10. On the other hand, the Simes bounds [ℓ

(k)
α , u

(k)
α ] are [0, 8], [0, 9], and

[1, 10] for k = 1, 2, 3, which improve upon Bonferroni’s [0, 9], [0, 9], and [1, 10]. Consequently, the
vector (1, 1, 1, 1, 1, 1, 1, 3, 1, 1) must be excluded from Cmα,Bonf because it violates the constraint that
the number of 1s must not exceed 8.
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