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LARGE DEVIATIONS OF THE EMPIRICAL MEASURES OF A
STRONG-FELLER MARKOV PROCESS INSIDE A SUBSET AND

QUASI-ERGODIC DISTRIBUTION

ARNAUD GUILLIN†, BORIS NECTOUX†, AND LIMING WU†

Abstract. In this work, we establish, for a strong Feller process, the large deviation
principle for the occupation measure conditioned not to exit a given subregion. The
rate function vanishes only at a unique measure, which is the so-called quasi-ergodic
distribution of the process in this subregion. In addition, we show that the rate function
is the Dirichlet form in the particular case when the process is reversible. We apply
our results to several stochastic processes such as the solutions of elliptic stochastic
differential equations driven by a rotationally invariant α-stable process, the kinetic
Langevin process, and the overdamped Langevin process driven by a Brownian motion.
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1. Introduction

1.1. Setting and purpose of this work. Let (Xt)t≥0 be a càdlàg Markov process val-
ued in a Polish space S , defined on the filtered probability space (Ω,F , (Ft)t≥0, (Px)x∈E),
where Px means that Px(X0 = x) = 1 for each x ∈ S . Given a nonempty open subset
D of S , consider the first exiting time of the process from D :

σD := inf{t ≥ 0, Xt ∈ D c}. (1.1)

A natural question in population processes [20, 52, 12] and in metastability in molecular
dynamics [49, 28, 29, 47], is to investigate the long time behavior of the law of the process
(Xt)t≥0 conditioned to stay inside D , i.e. to study the quantity

lim
t→+∞

Pν [Xt ∈ · |t < σD ],

where ν is a given initial distribution on D and Pν(·) =
∫

S
Px(·)ν(dx) (under Pν , the

distribution of X0 is ν). Intuitively the limit distribution µD should satisfy

µD(·) = PµD
[Xt ∈ · |t < σD ], ∀t > 0.

This is exactly the definition of the quasi-stationary distribution (q.s.d. in short) of the
process in D , see e.g. [20]. Considering the killed semigroup

PD
t (x,A) := Px[Xt ∈ A, t < σD ], ∀A ∈ B(S ), (1.2)

where B(S ) is the Borel σ-field of S , then µD is a q.s.d. if and only if

µDP
D
t = λ(t)µD , λ(t) = PµD

(t < σD),
1
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i.e. µD is a positive left eigen-measure of the killed Dirichlet semigroup PD
t . In our

previous work [35], we gave a quite general framework for the existence, uniqueness of
µD , as well as for the exponential convergence of Pν [Xt ∈ · |t < σD ] to µD as t → +∞.
From a statistical point of view, it is also very natural to consider the limit behavior of the
conditional distribution Pν [Lt ∈ · |t < σD ] of the empirical distributions (or occupation
measures)

Lt =
1

t

∫ t

0

δXsdx (1.3)

as t→ +∞, where δx is the Dirac measure at the point x. Quite curiously, the empirical
distribution Lt, knowing that {t < σD}, will not converge to the q.s.d. µD (unlike in
the case where D = S if (Xt, t ≥ 0) is ergodic), but to the so-called quasi-ergodic
distribution (q.e.d. in short) πD which is defined by

πD = ϕµD

where ϕ is the right positive eigenfunction satisfying PD
t ϕ = λ(t)ϕ and µD(ϕ) =∫

S
ϕdµD = 1.

The purpose of this work is to establish the large deviation principle (L.D.P. in short)
of Pν [Lt ∈ · |t < σD ] with some rate function ID which vanishes only at a unique measure
which is the q.e.d. πD . This gives quite precise information about how it approaches to
the q.e.d. πD (for instance exponentially fast in probability, see Corollary 1).

We should emphasize that the true history is much more delicate than what said
roughly above. Indeed (λ(t), µD , ϕ) is in general not unique: even for the one-dimenional
Ornstein-Uhlenbeck process with S = R, D = (0,+∞), the uniqueness of the q.s.d.
fails, see [50]. Our work consists to find a rich family of initial distribution ν (covering at
least all Dirac measures δx, x ∈ D) so that the intuitive picture above holds. As the rate
function ID of the L.D.P. of Lt is usually interpreted as some (minus)-entropy functional,
the q.e.d. πD where ID vanishes can be understood as the quasi-equilibrium of maximal
entropy.

1.2. Organization of this work. This work is organized as follows. In Section 2.1,
we introduce the conditions we will impose on the process (Xt, t ≥ 0) which are mainly
those of [35] adapted to the killed Feynman-Kac semigroups we consider. We then give
in Section 2.2 the main result of this work which is Theorem 2 about the large deviations
of Pν [Lt ∈ · |t < σD ] on P(D) equipped with the τ -topology (stronger than the usual
weak convergence topology), see also Theorem 1 about the spectral gap of the killed
Feynman-Kac semigroup. We also provide the identification of the rate function in the
reversible case, see Corollary 2. Section 3 is devoted to the proof of Theorem 1, and
we prove Theorem 2 in Section 4. In Section 5 we prove the identification of the rate
function in the reversible case and finally provides examples in Section 6.

2. Main results

2.1. Framework: notations and assumptions. Let (Xt, t ≥ 0) be a time homoge-
neous Markov process valued in a metric complete separable (say Polish) space S , with
càdlàg paths and satisfying the strong Markov property, defined on the filtered proba-
bility space (Ω,F , (Ft)t≥0, (Px)x∈S) where Px[X0 = x] = 1 for all x ∈ S (and where the
filtration satisfies the usual condition). Let B(S ) be the Borel σ-algebra of S , bB(S )
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the Banach space of all bounded and Borel measurable functions f : S → R equipped
with the sup-norm

‖f‖ = sup
x∈S
|f(x)|.

We also denote by Cb(S ) the space of bounded continuous real-valued functions over
S . Given an initial distribution ν on S , we write Pν(·) =

∫
S
Px(·)ν(dx). For A ⊂ S ,

we denote by 1A the indicator function of A. The transition probability semigroup of
(Xt, t ≥ 0) is denoted by (Pt, t ≥ 0). We say that Pt is strong Feller if Ptf is continuous
on S for any f ∈ bB(S ). We denote by P(S ) the space of probability measures on S .
For any measure ν, transition kernel P (x, dy), and function f on (S ,B(S )), we write

ν(f) = 〈ν, f〉 =

∫
S

fdν, Pf(x) =

∫
S

f(y)P (x, dy), and (νP )(f) = ν(Pf).

We recall that the space D([0, T ],S ) of S -valued càdlàg paths defined on [0, T ], equipped
with the Skorokhod topology, is a Polish space, see e.g. [4].

For a continuous time Markov process, often what is given is its generator L, not its
transition semigroup (Pt, t ≥ 0), which is unknown in general. We say that a continuous
function f belongs to the extended domain De(L) of L, if there is some measurable

function g on S such that
∫ t

0
|g|(Xs)ds < +∞, Px-a.e. for all x ∈ S and

Mt(f) := f(Xt)− f(X0)−
∫ t

0

g(Xs)ds (2.1)

is a Px-local martingale for all x ∈ S . Such a function g, denoted by Lf , is not unique
in general. But it is unique up to the equivalence of quasi-everywhere (q.e.) that we
recall: two functions g1, g2 are said to be equal q.e., if g1 = g2 almost everywhere in the
(resolvent) measure R1(x, ·) =

∫ +∞
0

e−tPt(x, ·)dt for every x ∈ S .

We will work in the following framework, which is slightly different from our previ-
ous work [35]. More precisely, we consider the following assumptions on the non-killed
process:

(C1) For each t > 0, Pt is strong Feller.
(C2) For every T > 0, x 7→ Px(X[0,T ] ∈ ·) is continuous from S to the space

P(D([0, T ],S )) equipped with the weak convergence topology.

(C3) There exist a continuous function W : S → [1,+∞[, belonging to the extended
domain De(L), two sequences of positive constants (rn) and (bn) where rn → +∞,
and an increasing sequence of compact subsets (Kn) of S and some constant
p > 1, such that

−LWp(x) ≥ rnW
p(x)− bn1Kn(x), q.e.

Let us now introduce the setting for the killed process. Let D be an non empty and
open subset of S and σD be the first exiting time of D defined in (1.1). The transition
semigroup of the killed process (Xt, 0 ≤ t < σD) is given by (1.2), or equivalently for
t ≥ 0 and x ∈ D ,

PD
t f(x) = Ex[1t<σD

f(Xt)], (2.2)

for f ∈ bB(D). This semigroup is often called the Dirichlet semigroup.
We now turn to the conditions on the Dirichlet semigroup (PD

t , t ≥ 0).
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(C4) For a measure-separable1 class C of bounded and continuous functions on D ,
PD
t f is continuous on D for any f ∈ C.

(C5) There exists t0 > 0 such that for all t ≥ t0, for all x ∈ D and nonempty open
subsets O of D , PD

t (x,O) > 0. Moreover, there exists x0 ∈ D such that Px0 [σD <
+∞] > 0.

Notice that (C1), (C3) are slightly stronger than [35, (C1), (C3)].

Running Example. A prototypical example of reversible dynamics satisfying (C1) →
(C5) is the solution to the so-called overdamped Langevin process

dyt = c(yt)dt+ dBt, (2.3)

where (Bt, t ≥ 0) is a standard Brownian motion over Rd. It can indeed be checked that
that when c : Rd → Rd is locally Lipschitz such that

lim
|x|→+∞

c(x) · x
|x|

= −∞, (2.4)

the conditions (C1) → (C5) are satisfied for the strong solution (yt, t ≥ 0) of (2.3)
on any subdomain D (i.e. non empty, open and connected) of Rd with the Lyapunov
function

W(x) = ea|x|(1−χ(x)),

where a > 0 and χ ∈ C∞c (Rd) equals 1 in a neighborhood of 0 in Rd. Such a claim
can be proved using e.g. the techniques developed in [34]. We refer to Section 6 for
more complicated examples arising from statistical physics of processes satisfying (C1)
→ (C5).

2.2. Main results. In this section, we state the main result of this work, which is
Theorem 2 below. Before, we need a result on the spectral gap of the killed (outside D)
Feynman-Kac semigroup of (Xt, t ≥ 0), which has its own interest. This is the purpose
of Theorem 1 stated in Section 2.2.1. In a nutshell, we need this control on Feynman-Kac
semigroup as our approach for large deviations is based on Gärtner-Ellis theorem. It thus
relies on a control of a log-Laplace transform which can be recasted in a Feynman-Kac
framework.

2.2.1. Spectral gap of Feynman-Kac semigroup on weighted function spaces. In this sec-
tion we study the existence of the spectral gap of the killed Feynman-Kac semigroup of
(Xt, t ≥ 0) on a weighted space of measures. In order to introduce our main object of
interest, we need to introduce the potential V for which we will suppose throughout the
paper without further mention

(HV) V ∈ bB(D), i.e. V is a bounded and measurable function.

The killed (outside D) Feynman-Kac semigroup is given by

PD ,V
t f(x) = Ex

[
f(Xt) e

∫ t
0 V (Xs)dx1t<σD

]
, f ∈ bB(D), t ≥ 0, x ∈ S. (2.5)

Note that the generator of this killed semigroup is (formally) the Schrödinger operator

LD ,V = LD + V where LD is the generator of (PD
t , t ≥ 0). Note also that PD

t = PD ,0
t .

We refer to the classical textbook [24] for the theory of Feynman-Kac semigroups (see
also [54, 26]).

1Here measure-separability means: if µ(f) = ν(f) for all f ∈ C, the two positive measures µ, ν on D
are the same.
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Under the condition (C3), we will consider PD ,V
t as bounded operators on the weighted

Banach space bWB(D), where bWB(D) is defined by:

bWB(D) :=
{
f : D → R measurable s.t. ‖f‖W := sup

x∈D

|f(x)|
W(x)

< +∞
}
. (2.6)

Indeed, by [35, Proposition 5.1] and (C3), we have using also the fact that W ≥ 1:

LW = L(Wp)1/p 6
1

p
(Wp)

1
p
−1LWp 6

1

p
W1−p(−rnWp − bn1Kn)

6 −r∗nW + b∗n1Kn

where r∗n = rn/p and b∗n = bn/p. Consequently, e−b
∗
ntW(Xt) is a supermartingale. Hence,

one has that:
PD
t W 6 eb

∗
ntW,

and then that:
PD ,V
t W(x) 6 e‖V ‖tPD

t W(x) 6 e(b∗n+‖V ‖)tW(x).

In conclusion, we have that

‖PD ,V
t ‖W := sup{‖PD ,V

t f‖W, ‖f‖W 6 1} 6 e(b∗n+‖V ‖)t.

Large deviations of Pν [Lt ∈ ·|t < σD ] are closely related to the spectral properties of the

killed Feynman-Kac semigroup (PD ,V
t , t ≥ 0), see indeed [27] and [59]. For this reason,

we will need following result about the spectral gap of the Feynman-Kac semigroup
PD ,V
t on bWB(D), which generalizes [35, Theorem 2.2] from the case V ≡ 0 to general

real-valued bounded V .

Theorem 1. Assume (C1)→ (C5) and (HV). For any given bounded potential V ∈
bB(D), consider the log spectral radius of PD ,V

1 on bWB(D):

ΛD(V ) = lim
t→+∞

1

t
log ‖PD ,V

t ‖W. (2.7)

Then:

1. For any t > 0, there is only one probability measure µD ,V such that µPD ,V
t =

c(t)µD ,V for some constant c(t) and µD ,V (W) < +∞. Moreover, ∀t > 0, c(t) =
eΛD(V )t, ΛD(V ) < supD V , and µD ,V is independent of t > 0 and charges all
non-empty open subsets O of D .

2. There is a unique continuous function ϕD ,V bounded by cW (for some constant
c > 0) such that µD ,V (ϕD ,V ) = 1 and

PD ,V
t ϕD ,V = eΛD(V )tϕD ,V on D , ∀t ≥ 0. (2.8)

Moreover, ϕD ,V > 0 everywhere on D .
3. There exist δ > 0 and C ≥ 1 such that for all f ∈ bWB(D) and t > 0:∣∣e−ΛD(V )tPD ,V

t f − µD ,V (f) · ϕD ,V

∣∣ ≤ Ce−δt‖f‖W ·W on D . (2.9)

Note also that Item 3 in Theorem 1 implies that the Feynman-Kac operator PD ,V
t

(t > 0) on bWB(D) has a spectral gap near its spectral radius eΛD(V )t and its spectral
projection is the mapping f 7→ ϕD ,V µD ,V (f), which is one-dimensional. Such a result
is of independent interest. Note that µD ,0 is the (unique) q.s.d. of the Markov process
(Xt, t ≥ 0) in

PW(D) := {ν ∈ P(D), ν(W) < +∞}.
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Remark. The notion of q.s.d. can also be extended to killed renormalized Feynman–Kac
semigroup, see e.g. [33, Definition 1]. Item 1 in Theorem 1 implies that µD ,V is the unique
q.s.d. of the killed (in D) renormalized Feynman–Kac semigroup associated with (2.5)
in PW(D).

We will prove Theorem 1 in Section 3 using [35, Theorem 3.5 and Theorem 4.1]. To

prove the spectral gap of PD ,V
t (t > 0) on bWB(D) we will use the non-compact parameter

βw which was introduced in [61].

2.2.2. Related literature on long time behavior of Feynman-Kac semigroups. Non-killed
Feynman-Kac semigroups have been widely studied in the literature and we refer for
instance to [23, 7, 43, 18, 57, 39, 37, 16, 17, 2] for the study of these semigroups in Lp

spaces, see also [63, 58, 19, 5]. We also mention [32] for a very recent investigation of
the long time behavior of non-killed Feynman-Kac semigroups and its numerical approx-
imations, see also [21]. Impossible not to refer to [8, 9] for pioneering works in the case
V = 0 using ultracontractivity, which is linked in the reversible case to an adapted ver-
sion of assumption (C3). We also refer to [13, 14, 25] and references therein for general
conditions for ergodicity of non conservative Markov semigroups, see also the classical
textbook [53]. We finally refer to the recent work [33] where we study the basic properties
and the long time behavior of killed Feynman-Kac semigroups of several models, arising
from statistical physics, with very general singular Schrödinger potentials. As already
mentioned above, the main goal of this work is to derive a L.D.P. for Pν [Lt ∈ · |t < σD ],
this is the purpose of the next section.

2.2.3. Large deviations. The space P(S ) of probability measures on S equipped with
the weak convergence topology is a Polish space, whose Borel σ-field is denoted by
B(P(S )). We say that a subset B of P(S ) is measurable if B ∈ B(P(S )). The weak
convergence topology is written

βn
w−→ β.

Notice that for any bounded measurable V : S → R, the functional β ∈ P(S )→ β(V )
is B(P(S ))-measurable, by the regularity of probability measures on the Polish space
S . The empirical distribution Lt given by (1.3) is a random variable valued in P(S ).
A probability measure β ∈ P(D) is identified with the probability measure on S with
β(D c) = 0 (i.e. P(D) ≡ {β ∈ P(S ); β(D c) = 0} = {β ∈ P(S ); β(D) = 1}),
and a function on D is identified with the function 1Df on S . We consider also on
P(S ) the τ -topology σ(P(S ), bB(S )), i.e. the weakest topology such that β 7→ β(f) is
continuous for each f ∈ bB(S ), which is stronger than the weak convergence topology.
The τ -convergence is written

βn
τ−→ β.

The main result of this work is the following.

Theorem 2. Assume (C1)→ (C5), and let ν ∈ PW(D). Then:

A. Conditioned to be inside the set D , Pν [LT ∈ ·|T < σD ], as T goes to infinity,
satisfies the L.D.P. on P(D) w.r.t. the τ -convergence topology, with speed T and
with the rate function

ID(β) = sup
V ∈bB(D)

{
β(V )− (ΛD(V )− ΛD(0))

}
, β ∈ P(D). (2.10)
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More precisely:
a. The rate function ID is good or inf-compact, i.e. the level set {ID 6 L} of

ID is compact in (P(D), τ) for any constant L ∈ R+;
b. For any open measurable subset G of (P(S ), τ),

lim inf
T→∞

1

T
logPν

[
LT ∈ G|T < σD

]
≥ − inf

β∈G
ID(β); (2.11)

c. For any closed measurable subset F of (P(D),
τ−→) ,

lim sup
T→∞

1

T
logPν

[
LT ∈ F|T < σD

]
6 − inf

β∈F
ID(β); (2.12)

B. Furthermore

ID(β) = 0⇐⇒ β = ϕDµD (2.13)

where µD = µD ,0, ϕD = ϕD ,0 is the right positive eigenfunction of the killed
Dirichlet semigroup PD

t so that µD(ϕD) = 1. We call πD := ϕDµD the q.e.d. of
the process in D .

Recall that in the second item in Theorem 2, µD is the q.s.d. of the Markov process
in D . We give in Section 6 several examples of processes arising from statistical physics
satisfying (C1)→ (C5). We then have the following corollary of Theorem 2.

Corollary 1. Assume (C1)→ (C5), and let ν ∈ PW(D). For any measurable τ -
neighborhood N of the q.e.d. πD := ϕDµD , there are constants C, δ > 0 such that

Pν [LT /∈ N|T < σD ] 6 Ce−δT , ∀T > 0. (2.14)

In other words, it is a conditional law of large numbers: conditioned not to leave D
before time T (i.e. knowing the event {T < σD}), the empirical distribution LT converges
to πD (in the τ -topology) exponentially fast in probability as T → +∞.

2.2.4. Donsker-Varadhan entropy functional. We conjecture that the rate function ID(β)
in the L.D.P. above should be

ID(β) = J(β)− inf
β∈P(S ): β(D)=1

J(β) (2.15)

for all β ∈ P(D), where J(β) is the Donsker-Varadhan entropy functional given by

J(β) = inf
Q
HF[0,1]

(Q|Pβ), ∀β ∈ P(S ). (2.16)

Here the infimum is taken over all probability distributions Q on the path space D(R+,S )
so that Xt(ω) = ω(t), ω = (t 7→ ω(t)) ∈ D(R+,S ) is a stationary stochastic processes
with the marginal distribution Q0(·) = Q(X0 ∈ ·) = β (given); and F[0,1] = σ(ω(t); t ∈
[0, 1]); and for the sub σ-field G, P|G is the restriction on G of probability measure P, and

HG(Q|P) :=

{∫
log dQ|G

dP|G
dQ, if Q|G � P|G

+∞, otherwise

is the usual relative entropy of Q|G w.r.t. P|G. In other words HF[0,1]
(Q|Pβ) is the

relative entropy per unit time of the stationary process law Q w.r.t. our Markov process
law Pβ with the same initial distribution β, and it is the rate function for the level-3 (or
path level) large deviations of the Markov process. See [27] or [60] for other variational
expressions of J(β).
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In the general setting of Theorem 2, we can only prove one half of (2.15): ID(β) ≥
J(β) + ΛD(0), see (4.6). However we can prove it in the reversible case, see indeed the
next section.

2.2.5. The reversible case. In this section we assume in addition that:

(C6) The semigroup (Pt, t ≥ 0) is symmetric on L2(S , π) where π is the unique
invariant probability measure of our Markov process (Xt, t ≥ 0), namely for
all t ≥ 0:

〈Ptf, g〉π = 〈f, Ptg〉π :=

∫
S

fPtgdπ, ∀f, g ∈ L2(S , π),

i.e. (Xt, t ≥ 0) is reversible under Pπ.

Corollary 2. Assume (C1) to (C6). Assume also that (Pt, t ≥ 0) is topologically irre-
ducible2 on S . Then, the rate function ID given by (2.10) has the following expression:
for any β ∈ P(D),

ID(β) + λD =

{
E(
√
h,
√
h), if β = hπ � π

+∞, otherwise,
(2.17)

where

E(f, f) =

{
〈
√
−Lf,

√
−Lf〉π, if f belongs to DL2(S ,π)(

√
−L),

+∞, otherwise,

is the Dirichlet form (where DL2(S ,π)(
√
−L) is the domain of

√
−L in L2(S , π)) and

λD := −ΛD(0) = inf
{
E(f, f);

∫
S

f 2dπ = 1, f1Dc = 0, π-a.e.
}

is the Dirichlet eigenvalue.

Note indeed the right hand side of (2.17) is the closed expression of the Donsker-
Varadhan entropy J(β) in the reversible case, and λD = inf{β∈P(S ),β(D)=1} J(β).

The large deviation principle for killed Feynman-Kac semigroups of symmetric Markov
processes is an open topic3. It has also been considered recently in [42], with additive
functional taking into account the jumps of the process, see also [6, 64, 38, 41, 15]
and references therein. We also mention [10] for Feynman-Kac representation formulas
and L.D.P. of solutions to deterministic models of phenotypic adaptation in the small
mutations and large time regime.

Running example. Assumptions (C1) to (C6) are satisfied for the process solution
to (2.3) when (2.4) holds and c = −∇U , for some U : Rd → R+. In this case, the
invariant probability measure π is the so-called Gibbs measure e−2U(x)dx/Z, where Z =∫
Rd e

−2U(y)dy.

2I.e. for some t0 > 0 and all t ≥ t0, Pt(x,O) > 0 for all x ∈ S and all non-empty subsets O of S .
3It could definitely have attracted Patrick Cattiaux, but he was distracted too often by part of the

authors to have time to do so.
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3. Proof of Theorem 1

Proof of Theorem 1. We mention that the proof Theorem 1 is slightly different from the
one we performed in [33] as here V is not assumed to be continuous. Assume (C1)→
(C5) and (HV). The proof of Theorem 1 is divided into several steps.

Step 1. In this step we prove that the essential spectral radius of PD ,V
t on bWB(D)

is 0. To this end, we use, as in [35, Theorem 3.5 and Theorem 4.1], the non-compact
parameters βw and βτ (introduced in [61]) of a positive bounded kernel Q(x, dy) over S

βw(Q) := inf
K⊂⊂S

sup
x∈S

Q(x,Kc) and βτ (Q) := sup
(An)

lim
n→∞

sup
x∈S

Q(x,An) (3.1)

where K ⊂⊂ S means that K is a compact subset of S and where the supremum above
is is taken over all sequences (An) ⊂ B(S ) decreasing to ∅.

For any t > 0 fixed, set

Q0(x, dy) :=
W(y)

W(x)
PD
t (x, dy) and Q(x, dy) =

W(y)

W(x)
PD ,V
t (x, dy).

By [35, proof of Theorem 3.5],

βτ (1KQ0) = 0, ∀K ⊂⊂ S .

Since Q 6 et supx |V |(x)Q0, we have also

βτ (1KQ) = 0, ∀K ⊂⊂ S .

Hence by [61, Theorem 3.5], the essential spectral radius ress(Q|bB) of Q on bB (see [61]
for definition), is given by

ress(Q|bB) = inf
n≥1

[βw(Qn)]1/n. (3.2)

By [35, Theorem 3.5], βw(Q0) = 0 and therefore

βw(Q) 6 et supx V (x)βw(Q0) = 0.

That implies, by (3.2),

ress(P
D ,V
t |bWB) = ress(Q|bB) 6 βw(Q) = 0,

which is the desired result.

Step 2. In this step we prove that PD ,V
t is strongly Feller. To this end, we show that for

any f ∈ bB(D), PD ,V
t f is continuous on D . For any ε ∈ (0, t) and for any f ∈ bB(D),

consider for x ∈ D ,

Qεf(x) := Ex
[
1t<σD

f(Xt)e
∫ t
ε V (Xs)ds

]
= PD

ε (PD ,V
t−ε f)(x).

By [35, Lemma 5.2], PD
ε is strong Feller, and thus, the function Qεf = PD

ε (PD ,V
t−ε f) is

continuous. Since on the other hand, it holds:

sup
x∈D
|PD ,V
t f(x)−Qεf(x)|

= sup
x∈D

∣∣∣Ex[1t<σD
f(Xt)e

∫ t
ε V (Xs)ds

(
e
∫ ε
0 V (Xs)ds − 1

)]∣∣∣
6
(
eε‖V ‖ − 1

)
‖f‖et‖V ‖

which goes to zero as ε→ 0+. Hence, we conclude that the function PD ,V
t f is continuous

on D .
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Step 3. We now conclude the proof of Theorem 1. By the generalized Perron-Frobenius
type theorem [35, Theorem 4.1], there is a unique couple (µ, ϕ) where µ ∈ PW(D) is a
probability measure on D , charging all non-empty open subsets of D , and ϕ ∈ bWB(D)
is a continuous and everywhere positive function on D with µ(ϕ) = 1 such that

µPD ,V
1 = eΛµ, PD ,V

1 ϕ = eΛϕ,

where Λ is the spectral radius of PD ,V
1 and

‖e−ΛnPD ,V
n f − ϕµ(f)‖W 6 Ce−δn‖f‖W, ∀f ∈ bWB(D), n ∈ N. (3.3)

From this exponential convergence and using the semigroup property, it is quite easy to
extend it to whole semigroup (PD ,V

t , t ≥ 0) (for the details, see [35, proof of Theorem
5.3]), to finally deduce that all the assertions of Theorem 1 hold (with Λ = ΛD(V ))
except the inequality ΛD(V ) < supD V which remains to be proved.

Note that ΛD(V ) ≤ supD V follows from the equality

Eµ
[
e
∫ t
0 V (Xs)dx1t<σD

]
= µPD ,V

t (1) = eΛD(V )tµ(1), ∀t ≥ 0.

In addition, the fact that ΛD(V ) < supD V follows from the last condition in (C5).
Indeed, if in contrary ΛD(V ) = supD V , then for all t ≥ 0,

Eµ[e
∫ t
0 V (Xs)dx1t<σD

] = et supD V .

Since µ charges all non empty open subset of D and because the function x 7→ eΛD(V )t1−
PD ,V
t (1) is non negative and continuous, we get that for all x ∈ D and t ≥ 0,

et supD V = Ex[e
∫ t
0 V (Xs)dx1t<σD

] ≤ et supD V Px[t < σD ],

so that Px[t < σD ] = 1, i.e. Px[σD = +∞] = 1, a contradiction with the last condition
in (C5). Hence, it holds ΛD(V ) < supD V . �

4. Proof of Theorem 2

4.1. A generalized Gärtner-Ellis theorem. Our main tool in the proof of Theorem
2 is the following well known generalized Gärtner-Ellis theorem ([27, 59]) that we recall.

Theorem 3. Let (PT )T>0 be a sequence of probability distribution on P(S ), such that:

(1) For any potential V ∈ bB(D),

Λ(V ) = lim
T→+∞

1

T
log

∫
P(D)

eTβ(V )PT (dβ). (4.1)

(2) The mapping V 7→ Λ(V ) is Gateaux differentiable on bB(D), i.e. the mapping
t 7→ Λ(V + tV1) is differentiable at t = 0 for any potential V, V1 ∈ bB(D).

(3) PT is exponentially ∗-tight, namely, ∀L > 0, ∃K compact in (P(D), τ) such that
for any measurable neighborhood N of K,

lim sup
T→+∞

1

T
logPT [LT /∈ N ] 6 −L.

Then, PT satisfies the L.D.P. on (P(D), τ) with speed T and the rate function

I(β) = sup {β(V )−Λ(V ), V ∈ Cb(D)} , β ∈ P(D),

which is the Legendre transform Λ∗ of the Cramer functional Λ.
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Remark 1. In the theorem above, without the exponential ∗-tightness condition (3),
the local L.D.P. below holds: for any β ∈ P(D),

(1) for any measurable neighborhood N of β (in P(D)),

lim inf
T→+∞

1

T
logPT (N ) ≥ −I(β); (4.2)

(2) for any a < I(β), there is a measurable neighborhood N of β,

lim
T→+∞

1

T
logPT (N ) 6 −a. (4.3)

The exponential ∗-tightness is well-adapted to the non-metrisable topology (such as the
τ -topology), and it is equivalent to the usual exponential tightness for large deviations
of a sequence of probability distributions on Polish spaces (see [59]).

Proof of Theorem 2. Assume (C1)→ (C5). The proof is divided into several steps and
consists in using Theorem 3 above.

Step 1. In this step we prove the equality (4.4). Let

PT (·) = Pν
[
LT ∈ ·|T < σD

]
.

Let ΛD(V ) be the minus Dirichlet eigenvalue given by (2.7), µD ,V the left eigen-probability

distribution, ϕD ,V the right eigenfunction, of PD ,V
t over bWB(D) which are given in The-

orem 1. We have by Theorem 1,∫
P(S )

eTβ(V )PT (dβ) =
Eν
[
e
∫ T
0 V (Xt)dt1T<σD

]
Pν [T < σD ]

= e(ΛD(V )−ΛD(0))T e
−ΛD(V )Tν(PD ,V

T 1)

ν(e−ΛD(0)TPD
T 1)

= e(ΛD(V )−ΛD(0))T ν(ϕD ,V )µD ,V (1) +O(e−δT )

ν(ϕD ,0)µD(1) +O(e−δT )

Thus, one has that Λ(V ) is given by:

Λ(V ) = lim
T→+∞

1

T
log

∫
P(S )

eTβ(V )PT (dβ) = ΛD(V )− ΛD(0). (4.4)

Step 2 (Gateaux-differentiability). By Theorem 1, we recall that the operator PD ,V
1

has a spectral gap near its spectral radius eΛ(V ) on bWB(D) and its eigen-projection is
one-dimensional. Given two potentials V, V1 ∈ bB(D), since for any f ∈ bWB(D), the
mapping

λ ∈ C 7→ PD ,V+λV1
1 f

valued in the Banach space bWB(D), is analytic on a neighborhood of 0 in C, we deduce
by the perturbation theory of operators [40, Chapter 7, Theorems 1.7 and 1.8]), that the
mapping

λ 7→ eΛD(V+λV1) (the spectral radius of PD ,V+λV1
1 )

is also analytic on a neighborhood of 0 in C. By (4.4), this shows item (2) in Theorem 3,
namely that V ∈ bB(D) 7→ Λ(V ) is Gateaux differentiable.

Let us recall that those first two steps yield the local L.D.P. for Pν [LT ∈ ·|T < σD ]
with the rate function ID , see indeed Remark 1.
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Step 3 (exponential *tightness). We now prove item (3) in Theorem 3. Let us
first recall that it follows from [60], that under the assumptions (C1), (C2), (C3),
Pν [LT ∈ ·] satisfies, on (P(S ), τ), the good upper bound of large deviations with
Donsker-Varadhan’s rate function J(β) given by (2.16). Thus for any measurable τ -
closed subset F of P(D),

F = F ∩ {β ∈ P(S ); β(D) = 1} is closed in (P(S ), τ),

and
{LT ∈ F, T < σD} ⊂

{
LT ∈ F ∩ {β ∈ P(S ); β(D) = 1}

}
,

and thus we get the following upperbound:

lim sup
T→+∞

1

T
logPν

[
LT ∈ F, T < σD

]
6 − inf

β∈F
J(β).

Since by Theorem 1 (with V = 0), we have

lim
T→+∞

1

T
logPν [T < σD ] = ΛD(0),

we thus finally deduce that

lim sup
T→+∞

1

T
logPν

[
LT ∈ F|T < σD

]
6 − inf

β∈F
J(β)− ΛD(0). (4.5)

This upper bound, together with the local L.D.P. remarked above, yields the following
inequality:

ID(β) ≥ J(β) + ΛD(0) = J(β)− λD , ∀β ∈ P(D). (4.6)

Note that this is half of the equality (2.15).
Now for any L > 0, consider the set K defined by

K :=
{
β ∈ P(S ); β(D) = 1, J(β) 6 L− ΛD(0)

}
⊂ P(D).

It is a compact subset of (P(D), τ). We then obtain using the upper bound of large
deviations above that for any measurable τ -open neighborhood N of K,

lim sup
T→+∞

1

T
logPν [LT /∈ N|T < σD ] 6 − inf

β/∈N
J(β)− ΛD(0) 6 −L.

This is the desired expotential ∗-tightness.

Step 4. To finish the proof, it remains to show (2.13). Notice that I(β) = 0 if and only
if β ∈ ∂ΛD(0) (the sub-differential of ΛD at V = 0). Since ΛD is Gateaux-differentiable,
the level set {I = 0} is a singleton. Thus it remains to prove that πD = ϕDµD ∈ ∂ΛD(0)
or equivalently that

ΛD(V ) ≥ πD(V ), ∀V ∈ bB(D). (4.7)

To this end, we have at first by Jensen’s inequality:

logEν
[
e
∫ T
0 V (Xt)dt|T < σD

]
≥ Eν

[ ∫ T

0

V (Xt)dt|T < σD

]
=

Eν
[ ∫ T

0
1t<σD

V (Xt)1T<σD
dt
]

Pν [T < σD ]

=

∫
D

∫ T
0
PD
t V P

D
T−t1dtdν∫

D
PD
T 1dν

.
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In addition, by Theorem 1, we have

e−ΛD(V )T

∫
D

PD
T 1dν = ν(ϕD)µD(1) +O(e−δT )

∫
D

Wdν = ν(ϕD) +O(e−δT ),

and (recall that the potential V is bounded)

e−ΛD(V )T

∫
D

∫ T

0

PD
t (V PD

T−t1)dtdν

=

∫ T

0

∫
D

e−ΛD(V )tPD
t

(
V ϕD +O(e−δ(T−t))|V | ·W

)
dνdt

=

∫ T

0

∫
D

[
ϕDµD(V ϕD) +O(e−δT )W

]
dνdt

= TπD(V ) · ν(ϕD) +O(1).

Thus we obtain

ΛD(V ) ≥ lim sup
T→+∞

1

T
logEν

[
e
∫ T
0 V (Xt)dt

∣∣T < σD

]
≥ lim

T→+∞

1

T

e−ΛD(V )T
∫

D

∫ T
0
PD
t V P

D
T−t1dtdν

e−ΛD(V )T
∫

D
PD
T 1dν

= lim
T→+∞

1

T

TπD(V ) · ν(ϕD) +O(1)

ν(ϕD) +O(e−δT )

= πD(V ).

This is the desired result (4.7). The proof of Theorem 2 is thus complete. �

Remark 2. A quite natural approach for the large deviations of Pν [LT ∈ ·|T < σD ] is
to use Varadhan-Ellis principle by approximation (this was suggested by J.D. Deuschel).
Let us consider for n ≥ 1, the potential functions Vn defined by:

Vn(x) = −n1Dc(x).

The killed semigroup PD
t f(x) can be approximated by the (non-killed) Feynman-Kac

semigroup

P Vn
t f(x) = Ex

[
exp

(∫ t

0

Vn(Xs)ds

)
f(Xt)

]
.

Under (C1) to (C3) together with the topological irreducibility of the process on the
whole space S , for each n ≥ 1 fixed, as Vn is bounded, by the L.D.P. in [60] and
Varadhan-Ellis principle, the family

Qn(LT ∈ ·) :=
Eν
[
1[LT∈·] exp

(∫ t
0
Vn(Xs)ds

) ]
Eν
[

exp
(∫ t

0
Vn(Xs)ds

) ]
satisfies the L.D.P. on (P(S ), τ) with the rate function

In(β) = J(β)− Λ(Vn), ∀β ∈ P(S ).

On the one hand, if we now let n→ +∞, Qn(LT ∈ ·) converges to the target distribution:
Pν [LT ∈ ·|T < σD ] and this is satisfying. However, on the other hand, it remains now
to exchange the limit order. For the upper bound of L.D.P., it is enough to prove
that Λ(Vn) → Λ(0) (which is already quite difficult). But the main difficulty with this
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approach follows from the lower bound of L.D.P.. Without further assumptions on the
subset D , such as the connectedness in the case when the paths of (Xt, t ≥ 0) are a.s.
continuous, it is easy to see that the L.D.P. in Theorem 2 with a convex rate function
fails.

5. Proof of Corollary 2

Proof of Corollary 2. Assume (C1)→ (C6). The proof of Corollary 2 is divided into
several steps.

Step 1 (Preparation). In the framework of (C1)→ (C3), under the extra condition
that Pt is topologically irreducible on S , our Markov process (Xt, t ≥ 0) admits a
unique invariant probability measure π, which charges all non-empty subsets of S , and
Pt(x, dy) = pt(x, y)π(dy) is absolutely continuous w.r.t. π for all t ≥ 2t0, see indeed [60].
Thus, we have

J(β) < +∞ =⇒ β � π, (5.1)

a fact which was noted in [60]. Let us now consider the quadratic form E defined by

E(f, f) = 〈
√
−Lf,

√
−Lf〉L2(S,π),

with domain D(E) = DL2(S,π)(
√
−L). The quadratic form E is the so-called Dirichlet

form of the (non-killed) reversible Markov semigroup (Pt, t ≥ 0) over S . It is well
known ([27]) that for β = hπ ∈ P(S ),

J(β) =

{
E(
√
h,
√
h), if

√
h ∈ D(E);

+∞, otherwise.
(5.2)

Step 2 (Rayleigh’s principle). Given a potential function V ∈ bB(D), the semigroup

PD ,V
t is symmetric on L2(D ,1Dπ). Its log spectral radius on L2(D ,1Dπ), defined by

ΛD ,2(V ) := lim
T→+∞

1

T
log ‖PD ,V

t ‖L2(D ,1Dπ),

is always not greater than its log spectral radius on in the Banach space bWB(D),
i.e. than ΛD(V ) (by the spectral decomposition). On the other hand, take an initial
distribution ν = hπ so that h1Dc = 0, π-a.e., h ∈ L2(S , π) and ν(W) < +∞. Then,
we have by Theorem 1:

ΛD ,2(V ) ≥ lim
T→+∞

1

T
log ν(PD ,V

t 1) = ΛD(V ).

Therefore, it holds for all V ∈ bB(D):

ΛD(V ) = ΛD ,2(V ). (5.3)

The quadratic Dirichlet form associated with PD ,V
t on L2(D ,1Dπ) is defined by (see

indeed [51]), for all f ∈ D(ED ,V ) = {g ∈ D(E); 1Dcg = 0, π-a.e.},

ED ,V (f, f) = E(f, f)−
∫

D

V f 2dπ.
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By Rayleigh’s principle, one has:

ΛD ,2(V )

= sup{−ED ,V (f, f); f ∈ D(ED ,V ), π(f 2) = 1}

= sup

{∫
S

V f 2dπ − E(f, f); f ∈ D(E), π(f 2) = 1 and f ≥ 0,1Dcf = 0, π-a.e.

}
where we have used the fact that ED ,V (|f |, |f |) 6 ED ,V (f, f). Thus by (5.3) and (5.1),
we deduce that

ΛD(V ) = ΛD ,2(V ) = sup

{∫
S

V dβ − J(β); β ∈ P(D)

}
.

As Λ(V ) = ΛD(V )− ΛD(0) (see (4.4)) and since by definition ΛD(0) = −λD , we get by
Legendre-Fenchel’s theorem,

ID(β) = Λ∗(β) = (ΛD)∗(β) + ΛD(0) = J(β)− λD , ∀β ∈ P(D).

This is the desired result. The proof of Corollary 2 is thus complete. �

6. Examples

In this section we give some examples, arising from statistical physics, of processes
satisfying (C1) → (C5).

6.1. Kinetic Langevin process driven by a Brownian motion. Let U : Rd →
[1,+∞] be measurable function and consider the phase space

S = {U < +∞}× Rd.

Let us consider the so-called kinetic Langevin process (Xt = (xt, vt), t ≥ 0) which is the
solution to the stochastic differential equation in S :

dxt = vtdt, dvt = −∇U(xt)dt− γvtdt+ dBt, (6.1)

where γ > 0 is the friction parameter and (Bt, t ≥ 0) is d-dimensional standard Brownian
motion. The validity of the conditions (C1) → (C5) have been shown in:

a. In [35] when the potential U is only C1 over Rd, namely when ∇U is continuous
over Rd (in this case S = Rd × Rd), and when D = O × Rd where O is a C2

subdomain of Rd.
b. In [36] when the potential U models the singular interactions between the par-

ticules and when D = O × Rd where O is a subdomain of {U < +∞} with
C2 boundary inside {U < +∞}. More precisely, in this case, d = kN (with
k,N ≥ 1), N is the number of Rk-particles, and U has the form

U(x1, . . . , xN) =
N∑
i=1

Vc(x
i) +

∑
1≤i<j≤N

VI(x
i − xj), xi ∈ Rk,

where VI : Rk → R ∪ {+∞} is e.g. the Coulomb potential, the Riesz potential,
or the Lennard-Jones potential.

More recently, the authors proved in [34] that in both cases a and b above, the conditions
(C4) and (C5) actually hold with any such subdomain D of the phase space S (i.e.
without any assumption on the regularity of O). We refer to [48, 3, 11] for related results
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6.2. SDE driven by a rotationally invariant stable processes. In this section,
we prove Theorem 4 below for the process solution to the elliptic stochastic differential
equation (6.4) driven by a rotationally invariant stable processes. This theorem aims
at showing that such processes satisfy under mild assumptions the conditions (C1) →
(C5).

6.2.1. Definition of the process and assumptions. Let (Ω,F , (Ft)t≥0,P) be a filtered prob-
ability space (where the filtration satisfies the usual condition). Let us consider a (Lévy)
rotationally invariant α-stable process (Lαt , t ≥ 0) on Rd (0 < α < 2, d ≥ 1), see e.g. [1,
Example 3.3.8 and Section 4.3.4]. We denote by Fα its Lévy measure and we recall that
it is pure jump process where:

Fα(dz) =
Cα
|z|d+α

dz, Cα > 0. (6.2)

Recall also that for all t ≥ 0, Lαt admits moments of order q ∈ [0, α). Let β > 1 and
U : Rd → [1,+∞) be a C2 function such that for some R∗ > 1 and c∗ > 0,

∇U(x) · x ≥ c∗|x|2β for all |x| > R∗. (6.3)

Remark that in the case U(x) = |x|k (for large |x|), condition (6.3) is verified if k > 2
with β = k/2. Let (Xt(x), t ≥ 0) be the solution (see Corollary (3)) of the Lévy driven
elliptic stochastic differential equation

dXt = −∇U(Xt)dt+ dLαt , X0 = x ∈ Rd. (6.4)

For a non empty subset D of Rd, we recall that σD = inf{t ≥ 0, Xt /∈ D}. In the rest
of this section, we check that the process (Xt, t ≥ 0) satisfies (C1) → (C5). In what
follows, B(x, r) is the open ball of Rd centered at x of radius r > 0. Let us mention that
one can easily adapt our analysis to non gradient vector field in (6.4).

6.2.2. On Assumptions (C1) and (C3). The infinitesimal generator of (6.4) is given
by, for ψ ∈ C2

c (Rd) (see e.g. [1, Section 6.7]),

L Xψ(x) = −∇U(x) · ∇ψ(x) +

∫
Rd

[
ψ(x+ z)− ψ(x)−∇ψ(x) · z1{|z|≤1}

]
Fα(dz).

In the following θ > 0 is small enough such that

2βθ < α ∧ 1. (6.5)

Consider a smooth function V : Rd → [1,+∞) such that for |x| > 1, V(x) = 2 + |x|βθ.
Then, for p > 1, define the function W by

W = V1/p. (6.6)

Proposition 1. Assume (6.3). Then, for any p > 1, (C3) is satisfied with W defined
by (6.6).

Proof. Recall that β > 1. Let x ∈ Rd. If |x| > max(R∗, 1), we have V(x) = 2 +
|x|βθ and in this case one has ∇V(x) = βθ x |x|βθ−2. Therefore, using (6.3), one has
−∇U(x) · ∇V(x) ≤ −c∗βθ|x|βθ+2β−2 and thus, since 2β > 2, one has when |x| → +∞,
−∇U(x) · ∇V(x)/V(x)→ −∞. Let us now consider for x ∈ Rd,

A1(x) :=

∫
|z|≤1

[
V(x+ z)−V(x)−∇V(x) · z

]
Fα(dz).
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Since Hess V is bounded over Rd , it holds for all x, z ∈ Rd: |V(x+z)−V(x)−∇V(x)·z| ≤
C|z|2, for some C > 0. Hence, one has for all x ∈ Rd, |A1(x)| ≤ C

∫
|z|≤1
|z|2Fα(dz).

Thus, A1(x) is well defined and A1(x)/V(x) → 0 as |x| → +∞. Let us now consider
the quantity

A2(x) :=

∫
|z|>1

[
V(x+ z)−V(x)

]
Fα(dz)

=

∫
|z|>1

[
V(x+ z)−V(x)

]
1|x+z|≥1 and |x|≥1Fα(dz)

+

∫
|z|>1

[
V(x+ z)−V(x)

]
1|x+z|<1 or |x|<1Fα(dz) =: A a

2 (x) + A b
2 (x).

Let |z| ≥ 1 and x ∈ Rd. Assume that x ∈ Rd is such that |x + z| ≥ 1 and |x| ≥ 1 so
that V(x + z) = 2 + |x + z|βθ and V(x) = 2 + |x|βθ. Since βθ < 1, using the inequality
(a + b)βθ ≤ aβθ + bβθ for a, b ≥ 0, we have thanks to (6.2) and (6.5) that in this case:
A a

2 (x) ≤
∫
|z|>1

[(|x|+ |z|)βθ − |x|βθ]Fα(dz) ≤
∫
|z|>1
|z|βθFα(dz) < +∞. Assume now that

x ∈ Rd is such that |x+ z| < 1 so that V(x+ z) ≤ c2 := sup|y|≤1 V. We then have since
V ≥ 0:

A b
2 (x) ≤

∫
|z|>1

[c2 −V(x)]Fα(dz) ≤ c2

∫
|z|>1

Fα(dz) < +∞,

Assume now that x ∈ Rd is such that |x| < 1. Since for some L > 0, V(y) ≤ L(2+ |y|βθ),
we then have using again that V ≥ 0:

A b
2 (x) ≤ L

∫
|z|>1

[2 + (|x|+ |z|)βθ]Fα(dz) ≤ 2L

∫
|z|>1

Fα(dz) + L

∫
|z|>1

(1 + |z|βθ)Fα(dz).

Consequently A b
2 (x) < +∞. In all cases, we have that A2(x)/V(x) → 0 as |x| → +∞

(note also that |A2| ≤ C(V + 1) for some C > 0). In conclusion, we have proved
that for some m > 0, |L XV(x)| ≤ m(|x|βθ+2β−2 + 1) and L XV(x)/V(x) → −∞ as
|x| → +∞. As V ∈ De(L

X), where De(L
X) is the extended domain of the process (6.4),

and LXV = L XV (see indeed the end of the proof of Corollary 3 below), we have thus
proved that (C3) holds. �

Corollary 3. Assume (6.3). Then, for all x ∈ Rd, there exists a unique pathwise solution
(Xt(x), t ≥ 0) to (6.4) which moreover defines a strong Markov process. Moreover, a.s.
(Xt(x), t ≥ 0) ∈ D(R+,Rd).

Proof. The proof leading Equation (6.7) below is rather standard. We do it for sake of
completeness. The computations carried out in the proof of Proposition 1 shows that
for any t ≥ 0,

∫ t
0
|L XV(xs)|ds is a.s. finite for any càdlàg process (xs, s ≥ 0) (as such

a process is a.s. bounded over [0, t]). Note also that since the number of jumps is at

most countable, it holds a.s.
∫ t

0
L XV(xs−)ds =

∫ t
0
L XV(xs)ds. Let c1 > 0 such that

L XV ≤ c1V over Rd. Set for R ≥ 0, σR := inf{t ≥ 0,V(Xt) ≥ R}. Note that
VR := inf{t ≥ 0, Xt /∈ VR} where VR = {x ∈ Rd,V(x) < R} is an open bounded
(say by cR > 0) subset of Rd. Consider the unique strong solution of (6.4) up to time
σR and set σ∞ := limR→+∞ σR = supR>0 σR which is its lifetime. Let us prove that
Px[σ∞ = +∞] = 1 for all x ∈ Rd. For x ∈ VR, using Itô formula [1, Theorem 4.4.7] on
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the interval [0, t ∧ σR(x)], one has:

MV
t∧σR(x) := V(Xt∧σR(x))−V(x)−

∫ t∧σR

0

L XV(Xs−(x))ds

=

∫ t∧σR

0

∫
Rd

[V(Xs−(x) + z)−V(Xs−(x))]Ñα(ds, dz)

=

∫ t

0

∫
Rd

1s<σR [V(Xs−(x) + z)−V(Xs−(x))]Ñα(ds, dz),

where Ñα is the compensated Poisson random measure of (Lαt , t ≥ 0). Since V(y) ≤
L(2 + |y|βθ) and 2βθ < 1 (see (6.5)), we have for all Y ∈ Rd,∫

|z|>1

1V(Y )≤R |V(Y + z)−V(Y )|2 Fα(dz)

≤ 2

∫
|z|>1

1V(Y )≤RV2(Y + z)Fα(dz) + 2R2

∫
|z|>1

Fα(dz)

≤ 2L2

∫
|z|>1

[4 + 2c2βθ
R + 2|z|2βθ]Fα(dz) + 2R2

∫
|z|>1

Fα(dz).

Moreover, since |∇V| is bounded over Rd, there exists C > 0 such that for all Y ∈ Rd,∫
|z|≤1

1V(Y )≤R|V(Y + z)−V(Y )|2Fα(dz) ≤ C

∫
|z|≤1

|z|2Fα(dz) < +∞.

Hence, because 1s<σR ≤ 1V(Xs− )≤R, one deduces that Ex[
∫ t

0

∫
Rd 1s<σR |V(Xs− + z) −

V(Xs−)|2Fα(dz)ds] < +∞. Consequently, for all R > 0, the process (MV
t∧σR(x), t ≥ 0) is

a martingale. Thus,

Ex[V(Xt∧σR)] ≤ V(x) + Ex
[ ∫ t∧σR

0

L XV(Xs−)ds
]

≤ V(x) + c1 Ex
[ ∫ t∧σR

0

V(Xs−)ds
]

= V(x) + c1 Ex
[ ∫ t∧σR

0

V(Xs)ds
]
≤ V(x) + c1 Ex

[ ∫ t

0

V(Xs∧σR)ds
]
.

By Grönwall’s inequality [31, Theorem 5.1 in Appendixes], we have Ex[1σR≤tV(Xt∧σR)] ≤
Ex[V(Xt∧σR)] ≤ V(x)ec1t. Since V(XσR) ≥ R, it then holds

Px[σR ≤ t] ≤ ec1t

R
V(x), ∀t ≥ 0. (6.7)

This proves that σ∞(x) is a.s. infinite. Note also that we have proved that V ∈ De(L
X)

and hence W ∈ De(L
X) (see [35, Proposition 5.1]). The strong Markov property follows

from the (pathwise) uniqueness by standard considerations. �

We also mention [66, Theorem 3.1] for existence and uniqueness of solutions to α-stable
driven stochastic differential equations in a similar setting where the analysis relies there
on the fact that a rotationally invariant α-stable process is (in law) a subordinated
Brownian motion. We also refer to [44] where the exponential ergodicity of a Markov
process defined as the solution to a SDE with jump noise is investigated.

In the following, we denote by (Pt, t ≥ 0) the semigroup of the process (Xt, t ≥ 0),
where we recall that Ptf(x) = Ex[f(Xt)], for all f ∈ bB(Rd).
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Proposition 2. For all t > 0, Pt is strong Feller.

Proof. Let R > 0 and let UR : Rd → R be a C2 function such that UR = U on the closure
of VR and such that all its derivatives of order less than 2 are bounded. Let (XR

s , s ≥ 0)
be the solution of dXR

t = −∇UR(XR
t )dt+ dLαt . For all R > 0, by [65, Theorem 1.1] and

standard approximation theorem [22, Lemma 7.1.5], x ∈ Rd 7→ Ex[f(XR
t )] is continuous

for all t > 0 and f ∈ bB(Rd). Let xn → x ∈ Rd. Consider a compact set K and R0 > 0
such that xn, x ∈ K ⊂ VR0 for all n ≥ 1. Since (Xs, s ≥ 0) and (XR

s , s ≥ 0) coincides
before their first exit time from VR, we have for all f ∈ bB(Rd), t ≥ 0, R ≥ R0, and
n ≥ 1,∣∣Ex[f(Xt)]− Exn [f(Xt)]

∣∣
≤
∣∣E[[f(XR

t (x))− f(XR
t (xn))]1t<σR(x)∧σR(xn)

]∣∣+ 2‖f‖P[σR(x) ∧ σR(xn) ≤ t]

≤
∣∣E[[f(XR

t (x))− f(XR
t (xn))

]∣∣+ 4‖f‖P[σR(x) ∧ σR(xn) ≤ t].

Note that supn≥1 P[σR(x) ∧ σR(xn) ≤ t] ≤ P[σR(x) ≤ t] + supn≥1 P[σR(xn) ≤ t] ≤
2ec1t supK V/R → 0 as R → +∞ by (6.7). Hence |Ex[f(Xt)] − Exn [f(Xt)]| → 0 as
n→ +∞, the desired result. �

Let us mention that the strong Feller property of solutions to Lévy driven stochastic
differential equation has been extensively investigated in the literature, see e.g. [55, 56,
46, 30, 67, 62, 62] and references therein.

6.2.3. On Assumption (C2).

Proposition 3. The process (Xt, t ≥ 0) solution to (6.4) satisfies (C2).

Proof. Let T > 0 be fixed. Recall that for r > 0, VR = {x ∈ Rd,V(x) < R} is an
open bounded subset of Rd and σR = inf{t ≥ 0, Xt /∈ VR}. Let xn → x ∈ Rd. One can
assume that for some R0 > 0, xn, x ∈ VR for all R ≥ R0 and n ≥ 0. In the following we
assume that R ≥ R0. By Gronwall Lemma [31, Theorem 5.1 in Appendixes] we have for
all R ≥ 0, when T < σR(x) ∧ σR(xn), sups∈[0,T ] |Xt(x) −Xt(xn)| ≤ |x − xn|ebRT , where
bR := supy∈HR

|Hess U(y)|. Thus, one has for all ε > 0 and all R > 0 fixed, as n→∞,

Pn(R) = P
[

sup
s∈[0,T ]

|Xt(x)−Xt(xn)| ≥ ε, T < σR(x) ∧ σR(xn)
]
→ 0.

Consequently, it holds for any ε > 0:

P
[

sup
s∈[0,T ]

|Xt(x)−Xt(xn)| ≥ ε
]
≤ Pn(R) + P

[
T ≥ σR(x) ∧ σR(xn)]

≤ Pn(R) + P
[
T ≥ σR(x)] + P

[
T ≥ σR(xn)]

≤ Pn(R) + 2R0
ec1T

R
,

where we have used (6.7) to get the last inequality and the fact that V(xn) < R0 and
V(x) < R0. Let us now consider δ > 0. Pick Rδ ≥ R0 such that 2R0e

c1T/Rδ ≤ δ/2. For
this fix Rδ > 0, Pn(Rδ) → 0 as n → +∞, and thus, there exists Nδ ≥ 1 such that for
all n ≥ Nδ, Pn(Rδ) ≤ δ/2. Therefore, one has that P[sups∈[0,T ] |Xt(x)−Xt(y)| ≥ ε] ≤ δ
for all n ≥ Nδ. We have thus proved that X[0,T ](xn) → X[0,T ](x) in probability as
n→ +∞ for the supremum norm over [0, T ]. Thus X[0,T ](xn)→ X[0,T ](x) in probability
as n → +∞ also for the distance of D([0, T ],Rd), see e.g. [4, Section 12]. Therefore,
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Pxn [X[0,T ] ∈ ·] converges weakly to Px[X[0,T ] ∈ ·] in P(D([0, T ],Rd)), which is precisely
(C2). The proof is thus complete. �

6.2.4. On Assumption (C5). Let D be an open subset of Rd. Recall that (PD
t , t ≥ 0)

denotes the semigroup of the killed process (Xt, t ≥ 0), i.e. PD
t f(x) = Ex[f(Xt)1t<σD

],
for all f ∈ bB(D) (see (2.2)). We have the following result.

Proposition 4. Let D be a subdomain of Rd. Let T > 0 and x, z ∈ D . Then, for all
ε > 0 and T > 0,

PD
T (x,B(z, ε)) = Px[|XT − z| < ε, T < τD ] > 0. (6.8)

In addition, if Rd \ D is nonempty, then for all y ∈ D , Py[σD < +∞] > 0. Thus,
Assumption (C5) is satisfied.

Proof. Fix T > 0 and ε > 0. Let O be a bounded subdomain of D with closure included
in D and such that x, z ∈ O. The proof is divided into three steps.

Step A. Preliminary analysis. Let c : Rd → Rd be a globally Lipschitz vector field
such that c = −∇U on the closure of O. Let (X?

s , s ≥ 0) be the solution of dX?
t =

c(X?
t )dt + dLαt . Since (Xs, s ≥ 0) and (X?

s , s ≥ 0) coincides before their first exit time
from O, Equation (6.8) holds if

Px
[
{|X?

T − z| < ε} ∩ {RanX?
[0,T ] ⊂ O}

]
> 0. (6.9)

Let us prove (6.9). In the rest of the proof, we adopt the notation of [45, Section 2.2].
Note here that r ≡ 0, b = c, σ ≡ 1, and c(x, u) ≡ u. In view of [45, Theorem 2.1] and
(6.9), the goal is to construct φ ∈ Sconst

0,T,x such that

Ranφ ⊂ O, φ0 = x, and |φT − z| < ε/2. (6.10)

If such a curve φ exists, by [45, Theorem 2.1], it holds for all ε0 > 0,

Px[dT (X?, φ) < ε0] > 0, (6.11)

where dT is the Skorokhod metric of D([0, T ],Rd), see [4, Section 12]. It is not difficult
to construct φ ∈ Sconst

0,T,x satisfying (6.10) using the simple procedure described in [45,
Equation (7)].

Step B. Construction of the curve φ. We will construct φ with ft ≡ 0. First note that
for any r′ > 0 and a 6= b ∈ Rd, J(a,B(b, r′)) = F (B(b− a, r′)) ∈ (0,+∞) if r′ < |b− a|.
Therefore a 6= b⇒ b ∈ supp(J(a, ·)) (i.e. the jump from a to b is admissible). Define

b̃(y) = c(y)− a, where a = −
∫
|w|≤1

wLFα(dw),

and wL is the orthogonal projection of z on the vector space L = {` ∈ Rd,
∫
|w|≤1

|w ·
`|Fα(dw) < +∞}.

Assume x 6= z (the case x = z is treated similarly). Consider two disjoint open
balls B(x, ε′) and B(z, ε′) whose closures are included in O for any ε′ ∈ (0, ε′0) for some
ε′0 ∈ (0, ε/4). Fix such a ε′ > 0.

Initialization. Let φ be the solution of φ̇s = b̃(φs) with φ0 = x. Choose t1 ∈ (0, T ) such
that φt ∈ B(x, ε′/2) for all t ∈ [0, t1) and φt−1 ∈ B(x, ε′/2). Then, pick x1 ∈ B(z, ε′/2)

and set φt1 = x1 6= x (this jump is admissible according to the previous discussion).
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Second step. We let φt evolve again according to the flow u̇s = b̃(us) on [t1, t2) with

initial condition x1. If b̃(x1) = 0, we stop the procedure because φt = x1 for all t ≥ t1.
Otherwise, there exists t2 > t1 such that φt ∈ B(z, ε′/2) for all t ∈ [t1, t2) and x1 6= φt−2 ∈
B(z, ε′/2). If one can choose t2 > T , we stop the construction of φ. Otherwise, we come
back to x1 setting

φt2 := x1

and we then consider this point as the initial value of the Cauchy problem u̇s = b̃(us)
on the time interval [t2, t2 + t2 − t1).

Iteration. Then, one repeats this procedure a finite number of times to construct φ over
[0, t1) ∪ [t1, t2) ∪ [t2, 2t2 − t1) ∪ [2t2 − t1, 3t2 − 2t1) ∪ . . . [nt2 − (n− 1)t1, (n+ 1)t2 − nt1).
By choice of ε′ > 0, the resulting φ has the desired properties, i.e. φ ∈ Sconst

0,T,x satisfies
(6.10).

Step C. End of the proof of (6.9). Assume that ε0 > 0 is small enough (say ε0 ∈ (0, εφ),
εφ ∈ (0, ε)) such that dT (f, φ) < ε0/2 implies that Ran f ⊂ O (note that in particular
|fT − z| ≤ |fT − φT | + |φT − z| ≤ dT (f, φ) + ε/2 < ε). Then, using (6.11) with such a
small ε0 > 0 yields Px[{|X?

T − z| < ε} ∩ {RanX?
[0,T ] ⊂ O}] > 0, which is exactly (6.9).

Therefore, (6.8) is satisfied. The second statement in Proposition 4 is then easy to obtain
with the same analysis. This concludes the proof of Proposition 4. �

6.2.5. On Assumption (C4).

Lemma 1. For all compact subset K of Rd and δ > 0, limt→0+ supx∈K Px[σB(x,δ) ≤ t] = 0.

One way to prove Lemma 1 is to study the trajectories of the process (6.4), as this
done in the proof of [34, Lemma 2.4]. We give here another proof based on the Itô
formula which is inspired from the computations leading to (6.7).

Proof. Let K be a compact subset of Rd. Let Ψ : Rd → [0, 1] be a smooth function
such that Ψ = 0 on B(0, ρ/2) and Ψ = 1 on Bc(0, ρ). Note that Ψ, ∇Ψ and Hess Ψ are
uniformly bounded over Rd. Set Ψx(z) = Ψ(z−x). LetKδ be the (closed) δ-neighborhood
of K. In addition, for any x, z ∈ Rd,

|L XΨx(z)| ≤ |∇U(z) · ∇zΨx(z)|+ 2

∫
|y|>1

Fα(dy) + sup
w∈Rd

|Hessw Ψx(w)|
∫
|y|≤1

|y|2Fα(dy)

≤ |∇U(z) · ∇zΨx(z)|+ C0,

for some C0 > 0 independent of x, z ∈ Rd. Since for x ∈ K, ∇zΨx(z) = 0 for all z /∈ Kδ,
we deduce that supx∈K,z∈Kδ |L

XΨx(z)| < +∞. On the other hand, by Itô formula,

the process (MΨx
t (x), t ≥ 0) is a martingale, where MΨx

t (x) := Ψx(Xt(x)) − Ψx(x) −∫ t
0
L XΨx(Xs−(x))ds. In particular Ψx ∈ De(L

X) and LXΨx = L XΨx. Thus, since in
addition Ψx(x) = 0, we have using the optional stopping theorem,

Ex[Ψx(Xt∧σB(x,δ)
)] ≤ Ex

[ ∫ t∧σB(x,δ)

0

L XΨx(Xs−(x))ds
]

≤ t sup
x∈K,z∈Kδ

|L XΨx(z)|.

Notice that we have used above that when x ∈ K and s < σB(x,δ), Xs−(x) ∈ Kδ and thus
for all x ∈ K and s < σB(x,δ), |L XΨx(Xs−(x))| ≤ supx∈K,z∈Kδ |L

XΨx(z)|. Note that
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|XσB(x,δ)
(x)− x| ≥ δ. Hence, Ψx(XσB(x,δ)

(x)) = 1 and

Px[σB(x,δ) ≤ t] = Ex[1σB(x,δ)≤tΨx(XσB(x,δ)
)] ≤ t sup

x∈K,z∈Kδ
|L XΨx(z)|.

This ends the proof of the lemma. �

Using (C1), Lemma 1, and the same arguments as those used to prove [19, Theo-
rem 2.2], we deduce the following result.

Corollary 4. Let D be any non empty open subset of Rd and t > 0. Then, for any
t > 0, PD

t is strongly Feller. In particular (C4) holds.

In conclusion, we have thus proved that, when β > 1 and (6.3) holds, the process
(Xt, t ≥ 0) solution to (6.4) satisfies (C1) → (C5) with the Lyapunov function defined
in (6.6). Hence, we have the following result.

Theorem 4. Let β > 1 and assume (6.3). Let D be any subdomain of Rd such that
Rd \D is nonempty. Then, the empirical distribution of the process solution to (6.4) (see
Corollary 3) satisfies all the assertions of Theorem 1, Theorem 2 and Corollary 1 with
the Lyapunov function defined in (6.6).

Note. When D is bounded, one can modify U outside D so that it satisfies (6.3) and
then, as W is bounded over D (see (6.6)), all the assertions of Theorem 1, Theorem 2
and Corollary 1 hold on the whole space bB(D) and for all ν ∈ P(D).

Note. Notice that the fact that D is connected is not necessary to get the result of
Proposition 4 (this is the main difference with solutions to SDE driven by a Brownian
motion), and thus Theorem 4 holds when e.g. D is a finite union of disjoint subdomains
of Rd such that Rd \D is nonempty.
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with Lévy noise. Stochastic Processes and their Applications, 122(1):106–133, 2012.
[57] M. Rousset. On the control of an interacting particle estimation of Schrödinger ground states. SIAM

journal on Mathematical Analysis, 38(3):824–844, 2006.
[58] B. Simon. Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, volume 72. Princeton

University Press, 2015.
[59] L. Wu. An introduction to large deviations (in chinese). pages 225–336, 1997. In: Several Topics

in Stochastic Analysis (authors: J.A. Yan, S.Peng, S. Fang and L. Wu), Academic Press of China,
Beijing.



LARGE DEVIATIONS AND QUASI-ERGODIC DISTRIBUTION 25

[60] L. Wu. Large and moderate deviations and exponential convergence for stochastic damping Hamil-
tonian systems. Stochastic Processes and their Applications, 91(2):205–238, 2001.

[61] L. Wu. Essential spectral radius for Markov semigroups. I. Discrete time case. Probability Theory
and Related Fields, 128(2):255–321, 2004.

[62] F. Xi and C. Zhu. Jump type stochastic differential equations with non-Lipschitz coefficients: non-
confluence, Feller and strong Feller properties, and exponential ergodicity. Journal of Differential
Equations, 266(8):4668–4711, 2019.

[63] K. Yosida. Functional analysis, 1980. Spring-Verlag, New York/Berlin, 1971.
[64] J. Zhang, S. Li, and R. Song. Quasi-stationarity and quasi-ergodicity of general Markov processes.

Science China Mathematics, 57:2013–2024, 2014.
[65] X. Zhang. Derivative formulas and gradient estimates for SDEs driven by α-stable processes. Sto-

chastic Processes and their Applications, 123(4):1213–1228, 2013.
[66] X. Zhang. Fundamental Solution of Kinetic Fokker–Planck Operator with Anisotropic Nonlocal

Dissipativity. SIAM Journal on Mathematical Analysis, 46(3):2254–2280, 2014.
[67] X. Zhang. Fundamental solutions of nonlocal Hormander’s operators II. The Annals of Probability,

45(3):1799–1841, 2017.
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