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Abstract

Introduction: This study aims to use diffusion tensor imaging (DTI) in conjunction with brain graph techni-
ques to define brain structural connectivity and investigate its association with personal income (PI) in indi-
viduals of various ages and intelligence quotients (1Q).

Methods: MRI examinations were performed on 55 male subjects (mean age: 40.1+9.4 years). Graph data
and metrics were generated, and DTI images were analyzed using tract-based spatial statistics (TBSS). All
subjects underwent the Wechsler Adult Intelligence Scale for a reliable estimation of the full-scale 1Q (FSIQ),
which includes verbal comprehension index, perceptual reasoning index, working memory index, and process-
ing speed index. The performance score was defined as the monthly PI normalized by the age of the subject.
Results: The analysis of global graph metrics showed that modularity correlated positively with performance
score (p = 0.003) and negatively with FSIQ (p = 0.04) and processing speed index (p = 0.005). No significant
correlations were found between IQ indices and performance scores. Regional analysis of graph metrics
showed modularity differences between right and left networks in sub-cortical (p = 0.001) and frontal (p =
0.044) networks. TBSS analysis showed greater axial and mean diffusivities in the high-performance group in
correlation with their modular brain organization.

Conclusion: This study showed that PI performance is strongly correlated with a modular organization of
brain structural connectivity, which implies short and rapid networks, providing automatic and unconscious
brain processing. Additionally, the lack of correlation between performance and 1Q suggests a reduced role of
academic reasoning skills in performance to the advantage of high uncertainty decision-making networks.

Keywords: brain structural connectivity; diffusion tensor imaging; graph metrics; intelligence; intelligent quo-
tient; modularity; personnel income performance

Impact Statement

The research presented on the correlation between brain network modularity and personal income (PI) per-
formance provides crucial insights into the neurological underpinnings of human achievements. By revealing
a significant link between PI performance and modular brain connectivity, we challenge conventional beliefs
by emphasizing the importance of intuitive and automatic decision-making networks over traditional aca-
demic reasoning abilities. These findings have the potential to reshape our perceptions of achievement and
intelligence, as they highlight the significance of rapid, unconscious processing in real-world success. This
study opens new avenues for investigating the brain’s impact on performance, offering novel perspectives in
neuroscience and psychology.
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Introduction

Performance is defined as a social agreement around an
accomplishment that is beneficial to the community
(Nusbaum, 2021). High levels of performance can be
achieved in a variety of fields, including academic achieve-
ments, social recognition (sports, arts, etc.), and/or personal
income (PI). Academic achievements are usually associated
with intelligence quotient (IQ) (Brown et al., 2021, Deary
et al., 2007, Schneider et al., 2014), which is somewhat
expected given that the latter was initially designed to mea-
sure children’s academic performance (Binet and Simon,
1934, Binet and Simon, 1961). Interestingly, working mem-
ory 1Q was identified as the most significant predictor of aca-
demic performance (Alloway and Alloway, 2010, Schneider
and Niklas, 2017). A correlation has also been found between
IQ and socioeconomic performance in adults (Carl, 2016),
but this correlation no more important than the correlation
with self-discipline (Duckworth and Seligman, 2005) or the
socioeconomic status of parents (Strenze, 2007). Commonly
associated to family socioeconomic status (SES) (Brooks-
Gunn and Duncan, 1997, Noble et al., 2006), academic
achievement is in turn impacted by parental educational
attainment, occupation, and PI (McLoyd, 1998, Schneider
et al., 2014). Indeed, SES impact on cognitive development
during childhood is critical across numerous domains, includ-
ing language, self-regulation, memory, and socioemotional
processing (Finn et al., 2017, Noble et al., 2006, Sheridan
et al., 2012, Stevens et al., 2009, Tomalski et al., 2013).

Changes in the cerebral cortical gray matter (GM) are
thought to be hallmarks of experience-based neural plastic-
ity, and various studies have begun to investigate the links
between SES and structural brain development (Hanson
et al., 2011, Lawson et al., 2013, Noble et al., 2012, Noble
et al., 2013). Particularly, morphological brain analyses have
revealed an association between parental income and brain
structure development (Noble et al., 2015, Raizada et al.,
2008). Adolescents and young adults with high-income
parents did, in fact, have a larger cortical brain surface
(Mackey et al., 2015, Tooley et al., 2020). Furthermore, chil-
dren from low-income families showed an increase in brain
connectivity in the default mode network when parental
income increased (Weissman et al., 2018). Moreover, Noble
et al. (2015) showed that low-income students had a lower
total GM volume than high-income students and that greater
cortical thickness of temporal and occipital lobes is associ-
ated with better academic performance. Finn et al. also
showed that the functional neural architecture of an adoles-
cent’s working memory varies with family income and is
related to academic achievements in mathematics (Finn
etal., 2017).

The brain has been modeled as a series of complex, modu-
lar, and dynamic networks operating between specialized
regions at both the macroscopic (large inter-regional connec-
tions) and microscopic (synaptic connectivity) levels
(Dehaene and Naccache, 2001, Standage et al., 2020). These
inter-regional networks are described in graph theory as a
collection of nodes and edges (Rubinov and Sporns, 2010,
Sporns and Zwi, 2004, Stam and van Straaten, 2012) that
provide local and global information about the functional
and structural brain connectivity by means of resting-state

functional MRI and diffusion tensor imaging (DTI), respec-
tively. Indeed, these advanced MRI techniques are essential,
not only for identifying pathological alterations in brain dis-
eases but also for the investigation of the brain connectome
organization (He et al., 2009, Li et al., 2013). In such graphs,
nodes represent cortical areas, derived from GM parcellation
using brain atlases, whereas edges illustrate a temporal cor-
relation or a structural connection between two GM regions.
These links in brain structural connectivity are obtained by
the extraction of white matter (WM) fibers using DTT trac-
tography, which provides a correlation matrix for each brain
subject. Several global graph metrics including density,
assortativity, transitivity, efficiency, betweenness centrality,
and modularity can be obtained for the whole brain topology
characterization (Bullmore and Sporns, 2009, Kocevar et al.,
2016).

Particularly, modularity is the extent to which a network
is organized in clusters of nodes that are internally densely
connected and externally relatively isolated (Bertolero et al.,
2015, Sporns and Betzel, 2016). It is one of the most essen-
tial properties of complex systems since it offers resilience
and flexibility while also promoting functional specialization
(Newman, 2006, Sporns and Betzel, 2016). Network modu-
larity boosts the effectiveness of learning or training in both
children and adults, allowing for improved performance
(Baniqued et al., 2019, Chen and Deem, 2015). However,
Yue et al. (2017) suggested that high modularity networks
boost performance on simple (low attention) activities and
vice versa for complex tasks. Furthermore, children’s cere-
bral modularity rises with their parents’ SES (Tooley et al.,
2020), whereas increased network modularity has been
found among top achievers in sports (Diaz-Brage et al.,
2018, Poggio and Bizzi, 2004, Wang et al., 2016), as well as
in arts (Lin et al., 2013) or academic performance (Chaddock-
Heyman et al., 2020, Chen and Deem, 2015). Nonetheless, no
study to our knowledge has yet established a link between a
modular brain network topology and PI performance.

In this study, DTT was used in conjunction with brain
graph techniques to define cerebral structural organization in
male individuals of various ages and IQs, as well as to assess
its association with PI performance score.

Material and Methods
Subjects

Participants were recruited by advertisement in public
institutions and associations. Inclusion criteria included a
right-handed male, aged between 20 and 60 years, and with-
out any neurological or psychiatric diseases or disorders, nor
any MRI contraindications. The recruited subjects provided
information about their body weight index, years of educa-
tion, and monthly income (Table 1). The performance score
was derived by dividing each individual salary by the subject
age, enabling equitable comparisons across subjects. The
resultant personal scores were then normalized by adjusting
a percentage based on the highest attainable score within the
cohort. This approach facilitated a standardized framework,
ensuring that each participant’s performance was evaluated
relative to the maximum achievable level and leading to a
mean (£ SD) index of 41.5 &+ 24.6. This study was approved
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TABLE 1. SUBIECTS’ DEMOGRAPHICS AND INTELLIGENCE QUOTIENTS IN ALL SUBJECTS AND IN Two GROUPS
OF PERFORMANCE SCORE (Low AND HIGH)
All LOW HIGH

(n=155) (n=25) (n=30)
AGE (YEARS) 40.1+£94 374199 423185
BODY-WEIGHT INDEX 243 +3.1 23.8+3.1 248+ 3.1
EDUCATION (YEARS) 16.1 £2.5 16.0+2.1 16.2+2.8
MONTHLY INCOME (€) 5100 + 3513 2360 + 1240 7383 £ 3137
PERFORMANCE SCORE 41.5124.6 21.0+£9.0 58.6+19.8
FSIQ 119.7 £10.2 118.4+10.5 120.7 £ 10.0
VCI 1253+ 13.1 1234+ 13.1 127.0+13.0
RPI 113.5+10.1 112.6 £ 8.3 1143+ 11.6
WMI 112.4 £ 10.8 1103+ 11.3 114.1£10.3
PSI 106.5+ 11.1 107.8 £ 11.1 1054+ 11.2

Values are presented as mean * standard deviation. FSIQ, Full-scale intelligence quotient; VCI, Verbal comprehension index; PRI,

Perceptual reasoning index; WMI, Working memory index; PSI, Processing speed index.

by the local ethics committee (CPP Sud-Est III), and written
informed consent was obtained from all participants.

Intelligence scores

All subjects underwent the Wechsler Adult “Intelligence”
Scale to obtain a reliable estimation of the full-scale 1Q
(FSIQ) and its four subscales: the verbal comprehension
index (VCI), the perceptual reasoning index (PRI), the work-
ing memory index (WMI), and the processing speed index
(PST) (Bowden et al., 2010, Ryan and Glass, 2010, Wechsler,
2010) (Table 1). These 1Q sub-scores were obtained from
ten sub-tests including verbal (similitude, vocabulary, and
information), reasoning (cubes, matrices, and puzzles),
memory (arithmetic and memory of numbers), and speed
processing (symbols and codes) tests (Bowden et al., 2010,
Ryan and Glass, 2010).

MRI acquisition and processing

MRI examinations were performed on a 3T Siemens
Prisma MRI system (Erlangen, Germany) at the MRI depart-
ment of the CERMEP-Imagerie du Vivant. The MRI proto-
col was composed of conventional and advanced sequences.
The conventional protocol (acquisition time [AT] = 11 min)
consisted of a sagittal 3D T1-weighted (T1w) magnetization-
prepared rapid gradient-echo (MPRAGE) sequence (repeti-
tion time [TR] = 1900 ms, echo time [TE] = 2.21 ms, voxel
size =1 X 1 X 1 mm, field of view [FOV] =256 X 176 x 256
mm), and a sagittal 3D fluid-attenuated inversion recovery
(FLAIR) sequence (TR = 5000 ms, TE = 400 ms, voxel size =
1 x 1 x 1 mm, FOV =256 x 176 X 256 mm). An advanced
diffusion weighted imaging sequence (AT = 20 min) with a
multiband factor of 3, a multi-shell of two b-values (b = 1000
and 3000 s/mm?), and 128 gradient directions was acquired
using a 2D multi-slice spin-echo echo-planar imaging (EPI)
sequence (TR = 5048 ms, TE = 90 ms, voxel size = 1.5 X 1.5 X
1.5 mm, FOV = 160 X 136 mm). In this study, only the b1000
shell was analyzed.

Structural data were preprocessed following the pipeline
of the Human Connectome Project (HCP) (Ugurbil et al.,
2013), in order to benefit from its last improvements that
include correction of spatial distortions, data alignment, and
registration into standard space (Van Essen and Ugurbil,

2012). Anatomical images were analyzed using two steps of
the structural HCP preprocessing: (1) PreFreeSurfer, and (2)
FreeSurfer. During the first step, a bias field and distortion
corrections were applied to both Tlw and FLAIR images.
Through linear and nonlinear registrations, the anatomical
images have been co-registered together and then registered
to the Montreal Neurological Institute (MNI) space using the
linear FMRIB’s Linear Image Registration Tool (FLIRT)
and Nonlinear Registration Tool (FNIRT) of the Functional
Magnetic Resonance Imaging of the Brain (FMRIB) Soft-
ware Library (FSL) (Jenkinson et al., 2012). Non-brain vox-
els were then removed using FSL-BET. The diffusion tensor
has also been processed to obtain the fractional anisotropy
(FA) maps using the FMRIB’s Diffusion Toolbox (FDT)
module of FSL. T1w images were then co-registered on the
diffusion images using the affine nonrigid transformation of
NiftyReg Tool (http://cmictig.cs.ucl.ac.uk/wiki/index.php/
NiftyReg). The FreeSurfer step included first a segmentation
of WM, cortical and subcortical GM, and cerebrospinal fluid
(CSF) using T1w images. Second, a parcellation of cortical
and subcortical GM in 84 regions using the Desikan atlas
was computed (Desikan et al., 2006).

DTl and structural graph analysis

The pipeline for graph generation was based on the whole
brain tractography performed for each subject using MRtrix
(Tournier et al., 2012). The main diffusion directions were
estimated in each voxel using diffusion orientation distribu-
tion function (dODF) with a maximum spherical harmonics
order (h = 4) to match with the acquisition protocol. Ana-
tomically constrained probabilistic streamline tractography
was then performed to generate 1,000,000 streamlines based
on the four-tissue-class classification (WM, cortical GM,
sub-cortical GM, and CSF) of the IIT atlas and dODF.
Finally, adjacency matrices were generated for each subject
by summing the number of streamlines connecting each pair
of nodes. To remove the weakest connections generated by
tractography, a proportional threshold (t = 0.35) was applied
to obtain binary agency matrices. This threshold, corre-
sponding to the minimum mean variability, was previously
optimized by measuring the inter-subject variability of the
global metrics for different thresholds varying between 0
and 1 in subjects with standard IQ (Kocevar et al., 2016).
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Graph metrics were estimated using the MATLAB tool-
box “Brain Connectivity Toolbox (BCT)” (Rubinov and
Sporns, 2010), by dividing the connectivity matrices into
three different sub-graphs: left and right hemispheres and the
inter-hemisphere connections. The connectivity matrices
were also divided into sub-networks of lobes (frontal, parie-
tal, and temporal) and sub-cortical nuclei.

The topological properties of brain networks were analyzed
using five global graph metrics and one nodal property (Rubi-
nov and Sporns, 2010). First, graph density is measured as the
ratio between the number of effective connections in the graph
and the number of possible connections. Second, betweenness
centrality, defined as the ratio of the number of the shortest
paths comprising the node to the total number of shortest
paths in the graph, measures the hub property of the node.
Third, the integration property of the graph was evaluated
using global efficiency, which is the mean of the inverse of
the distance matrix of the graph. Finally, the segregation prop-
erty of the graph was analyzed using the following three met-
rics: transitivity, which is the ratio between the number of
triangles and the number of triplets in the graph; assortativity,
which is the Pearson coefficient between the degrees of two
nodes at the extremities of an edge; and modularity, which is
the difference between the number of intra-module connec-
tions and the number of inter-module connections. All met-
rics, except graph density, were computed based on the
binarized connectivity matrices using BCT on Matlab (Rubi-
nov and Sporns, 2010).

Statistical analysis

Correlation analysis. Partial correlations between per-
formance scores and global graph metrics were calculated
using a linear regression model in the total subjects’ sample
using each IQ as a covariate. The general expression of this
model is as follows: Performance score ~ Graph metric + 1Q.

The statistical significance of all predictors was tested for
each fit by applying analysis-of-variance with a 5% significance
level. All statistical analyses were performed using Statal4
(Team RC, 2013) statistical software. Robust standard errors
were used in case of heteroscedasticity, which was detected
using the Huber—White robust sandwich estimator (White,
1980). Notwithstanding, the general conclusions remain coher-
ent with and without heteroskedasticity corrections.

Group analysis. A 35% threshold for personal scores
was chosen to compare two groups of low and high achievers
within the study cohort. The selection of this threshold for
personal scores was intricately tied to the observed salary dis-
parities between individuals identified as low and high
achievers. Notably, low achievers exhibited an average salary
of approximately €2500, whereas high achievers commanded
an average salary nearing €7000. By equating the lower salary
to approximately 35% of the higher salary rate, we ensured a
strategic calibration of the personal score threshold to tangible
economic disparities prevalent within the subject population.
The differences among the two groups of subjects, defined by
their performance score, were tested using logistic regression
model by comparing performance scores and graph metrics
with IQ as a covariate. The significance of all predictors for
each fit was tested by applying analysis-of-variance with a
level of significance of 5%.

Tract-based spatial statistics analysis. FSL was used to
analyze DTI data (Smith et al., 2004). An Eddy current cor-
rection using FDT, followed by a non-brain voxels extrac-
tion using FSL-BET with a factor of 0.35, was first applied.
Maps of FA, mean, axial, and radial diffusivities (MD, AD,
and RD, respectively) were then generated and visually
inspected for the presence of significant residual motion or
other artifacts. The resulting FA maps of all subjects were
then aligned to the common MNI152 space by means of a
nonlinear registration. The latter were used to generate a
mean FA image and a mean WM tracts skeleton on which
all aligned subjects FA data were then projected. The result-
ing data were next fed into a voxel-wise analysis by tract-
based spatial statistics (TBSS), performed to identify FA dif-
ferences between the two groups of subjects with low and
high-performance score. TBSS was also applied to AD, RD,
and MD maps on which the nonlinear warps and skeleton
projection were applied. The resulting warped maps were
then merged and projected onto the original mean FA skele-
ton, then fed into the voxel-wise analysis. A nonparametric
permutation test approach with a standard generalized linear
model design matrix was performed using the Randomize
module of FSL along with the threshold-free cluster
enhancement option. The IQ and its sub-scores as well as the
connectivity metrics were also fed into the voxel-wise analy-
sis as covariates. The resulting statistical parameter maps
were corrected for multiple comparisons by the family-wise
error rate (FWE-corrected p < 0.05). The anatomical loca-
tions of significant clusters were identified based on the
Johns Hopkins University (JHU) White-Matter Tractography
Atlas.

Results

The subjects ages were normally distributed (age = 40.1
9.4 years), whereas FSIQ was higher than the standard aver-
age of 100 (FSIQ = 119.7 £ 10.2). A significant correlation
was also observed between age and FSIQ (p = 0.03), mainly
driven by VCI (p = 0.01) and to a lesser extent by PRI (p =
0.06). No significant correlations between age and WMI or
PSI were noted. As the PI is strongly dependent on age (p =
0.000), the normalized performance score (Pl/age) was gen-
erated to classify the 55 healthy subjects into two perform-
ance groups (low and high) using a threshold of 35%.

Global graph analysis

The association between brain graph metrics and perform-
ance score, IQ indices, and age subjects was assessed.
Among the six graph-metrics, only modularity showed a
positive correlation with the performance score (p = 0.003,
Fig. 1A) and a negative correlation with the FSIQ (p = 0.04,
Fig. 1B) and the PSI (p = 0.005, Fig. 1C). No significant cor-
relations were reported between the graph metrics and age
nor between the IQ indices and the performance score.
Nevertheless, when controlling the correlation between the
modularity and the performance score by the 1Q indices, a
significant correlation was found for the FSIQ (p = 0.03), the
VCI (p = 0.05), and the WMI (p = 0.03) but not for the PRI
(p = 0.58) nor the PSI (p = 0.23). These results suggest that
the relation between performance and IQ is driven by the
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FIG. 1. Correlations between the modularity graph metric and (A) the performance score (p = 0.003), (B) the Full
Scale of Intelligence Quotient (FSIQ) (p = 0.04), and (C) the Processing Speed Index (PSI) (p = 0.005).

modular topology of the brain in opposite directions, as
shown in Figure 1.

Graph analysis by performance group

When comparing the low- and high-performance groups,
global graph metrics analysis demonstrated a significant dif-
ference in modularity (p = 0.007) and a trend in assortativity
(p = 0.06) in favor of the high-performance group (Table 2).
Neither significant differences in IQ nor age were found
when comparing the two performance groups.

Regional graph analysis

When examining global brain modularity between the two
hemispheres, no significant differences were found. How-
ever, when assessing regional lobular graph analysis, signifi-
cant differences (p < 0.001) were reported in modularity
(frontal = 0.254 £ 0.027; parietal = 0.139 £ 0.037; temporal =
0.097 £ 0.032; and sub-cortical = 0.064 + 0.025). Additionally,
significant hemispheric differences were observed in modular-
ity between the right (0.072 £ 0.003) and left (0.057 £ 0.003)
sub-cortical networks (p = 0.001) and between the right
(0.259 + 0.004) and left (0.248 £ 0.004) frontal networks (p =
0.044). Also, when the two groups of performance were
compared by region, a significant (p = 0.02) increase in modu-
larity was observed only in the right parietal network of high
(0.150 £ 0.03) compared to low (0.128 £ 0.039) achievers.

Tract-based spatial statistics

When comparing DTI maps (FA, MD, AD, and RD) of
subjects from the two performance groups, only modularity
was associated with significant changes of diffusion metrics,
specifically AD and MD. The regions that were significantly

changed are listed in Table 3 and illustrated in Figures 2A
and 2B.

Discussion

The present study investigated the association between PI
performance and brain structural connectivity using DTI-
based graph techniques and revealed a robust association
between the performance score and the brain networks mod-
ularity. Moreover, TBSS analysis showed that greater axial
and mean diffusivity values are significantly correlated to
the increased modularity of numerous white matter fiber
bundles in high achievers (Table 3). These findings point to
a highly localized and specialized brain processing in high
achievers (Dehaene and Naccache, 2001, Standage et al.,
2020). Higher modularity suggests greater fragmentation of
brain structure into smaller specialized units working locally
to process “complex” tasks automatically. Thus, PI perform-
ance appears to be related with a modular brain organization
to evaluate complex situations in a rapid and efficient way.
Moreover, graph analysis revealed an increased modularity
in the frontal and parietal cortex and subcortical nuclei of the
right hemisphere. This finding is in agreement with the
report from Erdeniz and Done (Erdeniz and Done, 2019)
showing that goal-based decision-making is driven by a
functional coupling between the striatum and the fronto-
parietal system. Furthermore, this increased modularity in
the right hemisphere, which is thought to be better linked to
external reality, trying to resolve discrepancies uncon-
sciously (Goel et al., 2013, Marinsek et al., 2014), as well as
overseeing emotional prosody processing (Heyrani et al.,
2021), self and other awareness (LaVarco et al., 2022), and
risk-taking (Yaple et al., 2017). The greater overall

TABLE 2. GLOBAL GRAPH METRICS MEASURED IN ALL SUBJECTS AND IN Two GROUPS OF
PERFORMANCE SCORE (Low AND HIGH)

Graph metrics All Low High pP*

DENSITY 0.467 £ 0.025 0.467 £ 0.024 0.466 = 0.026 0.449
BETWEENNESS CENTRALITY 0.019 £ 0.001 0.019 £ 0.001 0.019 £ 0.001 0.223
GLOBAL EFFICIENCY 0.729 £ 0.014 0.729 £ 0.013 0.729 £0.014 0.476
TRANSITIVITY 0.680 £ 0.012 0.681 £0.012 0.679 £ 0.011 0.272
ASSORTATIVITY 0.020 £ 0.024 0.025 £ 0.023 0.015 £ 0.025 0.061
MODULARITY 0.608 £ 0.010 0.604 £+ 0.008 0.611£0.011 0.007

Values are presented as mean * standard deviation.

*p-value when comparing Low versus High performance groups. Values in bold are statistically significant.
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TABLE 3. NUMBER OF SIGNIFICANT VOXELS (Ng;sn) AND PERCENTAGE (%) OF SIGNIFICANT VOXELS PER TOTAL NUMBER
OF VOXELS (N;ora) PER REGION OF INTEREST OF THE JHU WHITE-MATTER TRACTOGRAPHY ATLAS WITH SIGNIFICANT
CHANGES IN AXIAL AND MEAN DIFFUSIVITIES WHEN COMPARING Low vs HIGH PERFORMANCE GROUPS

AD MD
Region of interest L/R Nioral Niign % Niign %
ATR L 1661 362 21.8 308 18.5
R 1535 177 11.5 77 5.0
CST L 1361 717 52.7 571 42.0
R 1416 740 52.3 476 33.6
CG L 455 375 82.4 5 1.1
R 201 130 64.7 15 7.5
Fmaj 983 373 37.9 247 25.1
Fmin 3913 1764 45.1 1112 28.4
IFOF L 1523 742 48.7 636 41.8
R 1878 263 14.0 110 5.9
ILF L 1591 657 41.3 593 37.3
R 961 397 41.3 0 0.0
SLF L 1897 1165 61.4 1129 59.5
R 1541 884 57.4 866 56.2
UF L 241 67 27.8 58 24.1
R 191 11 5.8 — —

L, Left; R, Right; AD, axial diffusivity; MD, mean diffusivity ATR, Anterior thalamic radiation; CST, Corticospinal tract; CG, Cingulum
(cingulate gyrus); Fmaj, Forceps major; Fmin, Forceps minor; IFOF, Inferior fronto-occipital fasciculus; ILF, Inferior longitudinal fascicu-

lus; SLF, Superior longitudinal fasciculus; UF, Uncinate fasciculus.

modularity, and particularly of the frontal and parietal corti-
ces as well as the subcortical regions of the right hemisphere,
suggests that high performance is associated with uncon-
scious, intuitive, and emotional processing based on high
uncertainty decision-making networks. Moreover, the tend-
ency towards higher assortativity among high achievers sug-
gests a greater resilience and robustness of brain networks
(Lim et al., 2019).

Among the white matter fiber bundles identified by TBSS
(Table 3), the modularity was particularly increased in the
cingulate gyrus (CG) and the superior longitudinal fasciculus
(SLF) of high achievers. These connections facilitate the
integration of cognitive processes such as decision-making,
planning, problem-solving, and emotional regulation (Janelle
et al., 2022, Rolls, 2019). On one hand, the SLF provides
connections between the frontal lobe and other cortical
regions, including the parietal and occipital lobes. This
allows for the coordination of language and motor functions,
visuospatial processing, and higher-order cognitive tasks in
prefrontal cortex (Janelle et al., 2022). The CG, on the other
hand, serves as a hub for emotional processing and cognitive
control. Its connections through the anterior CG within the
frontal lobe contribute to the regulation of emotional
responses and the control of cognitive functions related to
attention and conflict resolution (Rolls, 2019).

The second finding of this work is the lack of significant
correlation between performance, 1Q, and education level in
the two performance groups. This observation of PI perform-
ance not being directly related to IQ, seems surprising, given
that PI performance is generally correlated to the level of
education (Insee, 2018), which in turn is associated with 1Q
(Brown et al., 2021). Such discrepancy with common knowl-
edge may result from a bias in our population selection.
Indeed, our population of high achievers, mainly composed
of self-employed people or entrepreneurs (80%), may

contrast with usual statistics based on employees of large
companies and thereby may constitute a bias in our study.
However, when assessing the correlation between perform-
ance score with graph modularity, the “type of employment”
(self-employed or employed) had no significant effect on the
outcome (p =0.3).

Overall, our findings suggest that PI performance is not
associated with IQ but with a modular brain network organi-
zation that in turn is negatively correlated with 1Q. Indeed,
these results are concordant with our previous studies on
brain organization in high-IQ children, showing that modu-
larity is negatively correlated with 1Q (Kocevar et al., 2019,
Nusbaum et al., 2017). Furthermore, the negative correlation
between modularity and FSIQ is mainly driven by PSI, and
no direct correlation exists between performance and PSI or
between modularity and performance with PSI as cofactor.
These findings imply that the execution speed measured by
the Wechsler Scale is an antagonist to modularity and PI per-
formance. A larger sample size and other types of execution
speed scales might help to elucidate such question. Indeed,
the two PSI subtests of the Adults Wechsler Scale, “Code”
and “Symbols,” consist of reacting to academic stimuli that
make little sense in ordinary life. If high achievers appear in
our study to invest more in experience than in theory, in intu-
ition than in reason, it might explain why they respond loosely
to the Wechsler execution speed test. Instead, their execution
speed may be greater in more ordinary life situations.

Another interesting finding of our study is that IQ
increases with age, mainly driven by VCI. This observation
suggests that individual’s reasoning skills (measured by the
IQ test) tend to grow with age. It confirms that IQ values
may change across time/age, influenced by maturity, work,
fatigue, stress, or motivation (Almlund et al., 2011, Colom
and Romdn, 2018, Elango et al., 2015). Since IQ represents
an instantaneous measure of academic reasoning skills, it is
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FIG. 2. Tract-Based Spatial Statistics analysis showing significant changes in brain white matter (A) axial diffusivity and
(B) mean diffusivity when comparing Low vs High performance groups in association with modularity graph metric.

finally not surprising that there is no evident relationship
with PI performance. Furthermore, given its relative fidelity
over time, it seems presumptuous to systematically associate
1Q with giftedness or intelligence.

Limitations and outlooks

We chose to include exclusively right-handed Caucasian
men to achieve higher homogeneity in the included

population. Obviously, extending this study to females, left-
handers, ambidextrous people, and other ethnic groups
would be interesting and necessitate further studies. Also,
the average 1Q of our participants was 20% above the stand-
ard population, which may constitute a bias of selection.
Such elevated 1Q of the studied population may have
increased the role of IQ in the correlation between modular-
ity and performance, which may not happen in the case of a
standard IQ population. Moreover, while the subjects’
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selection was open to any social class or type of employ-
ment, it should be noticed that 80% of high achievers were
self-employed or entrepreneurs compared with 20% of low
achievers. This disparity may have an impact on the
observed differences in brain modularity, suggesting that a
more balanced study might help elucidate the greater modu-
lar fragmentation in high performance. Finally, we focused
in this study on the personal income criterion, which
appeared to be an objective determinant in adult perform-
ance. Of course, other criteria of performance, such as win-
ning awards or medals, social recognition, for example, in
sports or arts performance could be of great interest and
should be investigated in future.

Conclusion

This study showed that PI performance is strongly corre-
lated with a modular brain connectivity organization, which
implies short and rapid networks, that are automatic and
unconscious, and leading to a direct and intuitive contact
with the environment. In addition, the lack of correlation
between performance and IQ, reduces the role of academic
reasoning skills in performance to the advantage of high
uncertainty decision-making brain processing.
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