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Training machine learning models to identify human behavior is a difficult yet essential task to develop autonomous and adaptive 
systems such as smart homes. These models require large and diversified amounts of labeled data to be trained effectively. Due to the 
high variety of home environments and occupant behaviors, collecting datasets that are representative of all possible homes is a major 
challenge. In addition, privacy and cost are major hurdles to collect real home data. To avoid these difficulties, one solution consists 
of training these models using purely synthetic data, which can be generated through the simulation of home and their occupants. 
Two challenges arise from this approach: designing a methodology with a simulation able to generate credible simulated data and 
evaluating this credibility. In this paper, we explain the methodology used to generate diversified synthetic data of daily activities, 
through the combination of an agent model to simulate an occupant, and a simulated 3D house enriched with sensors and effectors to 
produce such data. We demonstrate the credibility of the generated synthetic data by comparing their efficacy for training human 
context understanding models against the efficacy generated by real data. To achieve this, we replicate a real dataset collection setting 
with our smart home simulator. The occupant is replaced by an autonomous agent following the same experimental protocol used for 
the real dataset collection. This agent is a BDI-based model enhanced with a scheduler designed to offer a balance between control and 
autonomy. This balance is useful in synthetic data generation since strong constraints can be imposed on the agent to simulate desired 
situations while allowing autonomous behaviors outside these constraints to generate diversified data. In our case, the constraints are 
those imposed during the real dataset collection that we want to replicate. The simulated sensors and effectors were configured to 
react to the agent’s behaviors similarly to the real ones. We experimentally show that data generated from this simulation is valuable 
for two human context understanding tasks: current human activity recognition and future human activity prediction. In particular, 
we show that models trained solely with simulated data can give reasonable predictions about real situations occurring in the original 
dataset. We also report experimental results regarding statistical analysis and C2ST to assess the credibility of generated data. We 
discuss the generality of our approach for evaluating the credibility of simulated data from their use as training data.

CCS Concepts: • Computing methodologies → Simulation evaluation.

Additional Key Words and Phrases: Synthetic data, autonomous agent, activities of daily living, human activity recognition
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1 INTRODUCTION

Providing autonomous systems able to assist people in their daily lives, such as smart homes, requires a fine understand-
ing of occupant behaviors to provide appropriate services, in particular for sensitive applications such as medical care
at home. Most of these systems rely on machine learning models that require a large amount of labeled data. However,
capturing representative data in such environments is a major difficulty: there are too many possible home settings
(home layout, devices, etc.) and occupant behaviors (preferences, hobbies, etc.) to collect general datasets. In addition,
their collection can involve privacy issues and is extremely costly in terms of time, money, and human resources.

A promising avenue to deal with this problem consists in training these models with only synthetic data which can
be generated from the simulation of home environments in which virtual occupants perform daily activities [2, 8, 30].
The major challenge of this approach is to ensure that such synthetic data are sufficiently credible and diversified for
real situations. In this paper, our definition of credibility is taken from the work of Avradinis et al. [5]: the behavior of
an intelligent agent is credible when it exhibits coherence in their reaction and consistency when placed in similar
situations. Credibility is distinguished from realism, which seeks to reproduce as exactly as possible the physical world.
However, simulating an ultra-realistic behavior is complex, and in our use case, reaching such standards is unnecessary
since the granularity of data produced by sensors is not high. We rather seek to produce a sufficiently credible behavior
so that sensors react correctly and the produced data can be used to train models to recognize real situations.

To generate valuable synthetic data for smart home context understanding, two significant challenges must be
addressed. First, we need to design a simulation able to generate diversified and credible synthetic data of
daily living. The combination of a virtual occupant able to make decisions autonomously, with a simulated smart
home able to capture data through virtual sensors and effectors are essential to reach this goal. This implies designing
an environment able to accurately simulate interactions between a virtual human, simulated sensors, and appliances
[2]. In this kind of environment, the behavior of sensors must be credible: the way they capture data should be similar
to the way real sensors capture data [18]. Regarding the virtual occupant, autonomy is required to choose and perform
its activities in a comparable way to what a human could do [5]. These autonomous aspects are essential to produce
diversified and credible behaviors. Conversely, the virtual human must be controllable to perform desired situations
to ensure proper coverage of expected situations. To correctly extend or replicate real activity datasets such as the
one used in this paper [12], the virtual occupant must respect a calendar of activities to perform at a specific time.
These controllability aspects led us to favor agent-based approaches rather than data-based approaches such
as Generative Adversarial Networks (GAN)[1, 19], since these aspects impact the generated data and GAN-style
approaches are not optimal to manage them, contrary to agents.

The second significant challenge is the evaluation of the actual credibility of synthetic data. One approach
consists in directly comparing real data with simulated data [23, 25, 36, 37]. Addressing the first challenge detailed
above is an a priori way to generate credible synthetic data, as the simulation model is designed with credibility in mind,
as in [2, 23]. Addressing the second challenge is an a posteriori way to check that generated data is credible, through
the use of specific metrics, as in [25, 36].

Few works in the literature focus on addressing both challenges at the same time. For the first challenge, few
approaches develop agent models offering simultaneous autonomy and control [23, 30], which is essential to obtain
diversified behaviors while imposing specific situations on the agent. In addition, few approaches propose both a
sophisticated agent model and an environment with credible virtual sensors. Consequently, they produce data with little
diversity compared to real situations. Some approaches choose to generate data without 3D environments [25, 36]. This
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Fig. 1. Global view of the 3D simulator and the agent performing activities.

is insufficient in our case since we use sensors and effectors whose realistic behaviors are inherently 3-dimensional (such
as presence sensors). 3D environments also provide finer granularity in the performed actions of virtual occupants and
can thus offer more realistic data. We thus choose to use 3D environments, even though they are harder to implement.

Approaches addressing the second challenge often rely on statistical comparisons between synthetic and real data.
However, few works study the behavior of context understanding systems when trained on such synthetic data, which
is the actual end-use case for these data. They also rarely use multiple different metrics in experimental studies.

In this paper, we propose a new approach to generate and evaluate credible synthetic data of human
activities in smart homes. Our approach tackles both previously mentioned challenges. For the first challenge,
we propose to generate synthetic data through the interaction of a virtual agent in a 3D smart home, with
special care given to the credibility of interaction and the behavior of the agent, sensors, and effectors. We use
a BDI-based agent model enriched with a scheduler that was presented in our previous work [21] since it can consider
both the constraints of the simulation protocol and those coming from the agent’s internal model of human needs. This
agent model can thus be adjusted between autonomy and controllability. To improve the diversity of generated data,
our model can also trigger interruptions during scheduled activities and choose equivalent activities randomly. Based
on Unity1, we developed diverse 3D homes containing sensors and effectors able to produce synthetic data when the
agent interacts with them. The home replicated in this work is shown in Figure 1.

For the second challenge, we propose to evaluate the credibility of generated data by replicating the data
collection protocol of a real dataset in our simulation environment. We use the Orange4Home dataset [12] as
a reference dataset for our replication strategy. To create Orange4Home, a real occupant performed daily activities
for 4 weeks in a real instrumented smart home. The real apartment and sensors used for collecting this dataset were
replicated accurately in our virtual environment. Our agent model was configured to replicate the data collection
protocol set in Orange4Home, in particular about imposed activity schedules.

To evaluate our synthetic data, we combine several metrics to ensure the reliability of our results. We first compare
the frequencies of sensors between real and synthetic data. The results of Classifier Two-Sample Test (C2ST) [31] are
also reported to determine if synthetic data can be distinguished from real ones. We then compare the behavior of
1Unity: https://unity.com
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human context understanding models when trained either on synthetic or real data. Current activity recognition and
future activity prediction tasks are used for this experimental evaluation. We show that both machine learning models
behave similarly (in terms of performance and impact of hyperparameters) when dealing with either synthetic or real
data. Finally, we show that we can use only synthetic data to train such models to recognize or predict real situations
with reasonable accuracy, compared to those trained with real data.

In Section 2, we discuss existing approaches as well as their limitations in our context. In Section 3, we present our
3D virtual environment, the behavior of virtual sensors, and the way an agent can interact with them. In Section 4, we
present our agent model and its adaptability between autonomous and controllable behavior. In Section 5 we describe
our replication strategy for credibility evaluation. In Section 6 we report our experimental results on synthetic data
credibility evaluation, based on our replication strategy. Finally, in Section 7, we discuss the benefits and drawbacks of
our replication strategy to evaluate the credibility of synthetic data, as well as its generalization to other tasks and
contexts since our evaluation is purely experimental in this work.

2 RELATEDWORK

In the introduction, two main challenges were put forward: developing simulation environments able to generate
credible data, and proposing strategies to evaluate the actual credibility of such data. We assess state-of-the-art works
on both of these challenges in this section.

2.1 Environments of simulation with an autonomous agent to generate credible human data

2.1.1 Simulation environment. In the literature, several works including agent models show more or less sophisticated
smart environments. Some of them simulate large outdoor environments such as cities [7, 23, 24] whereas others
simulate indoor spaces such as houses [2, 14, 30, 36]. We analyze these works to know whether these simulations are
sufficiently developed to produce data as rich as real ones.

This requirement excludes approaches using abstract environments to generate activity schedules where only lists of
objects and possible activities are given [4, 25, 33]. Even though they provide global information about used objects and
agent’s routines, we ignore how the activity unfolded, when objects are used, and how the agent interacts with them.
In addition, correctly simulating a smart home with this kind of environment is hard since some sensor behaviors,
such as presence sensors, have their performance directly impacted by their location, as in the case of sensors used
in the Orange4Home dataset [12] that we want to replicate. In the same way, we also exclude approaches using 2D
environments [26, 36]. Even though these environments provide additional information about the movements of agents
and the location of specific devices, this is still not enough for some databases such as Orange4Home using, for example,
presence sensors whose height can impact performances. Moreover, all sensors using precise gestures, such as Kinect,
or video recording, such as a camera used to create datasets based on visualization [35], cannot be simulated either.

This is why 3D smart home environments are optimal for our use case. Some existing approaches use these
environments such as the work of Lee et al. [30], OPENSHS [2] or BIM Sim 3D [46] where a tool is proposed in each of
them to construct our proper 3D smart home. OPENSHS is a 3D smart home simulation open-source platform built with
the explicit purpose of generating datasets of daily activities. Here, real people are used to performing activities with the
use of Virtual Reality. Both other approaches propose a 3D smart home where an agent performs daily activities. The
kind of data produced by these simulations is sufficiently complete for the most of real databases and for our use case.
However, although these environments are interesting in our case, we will see they do not cover all the requirements to
successfully address both challenges, such as the credibility of their agent behavior or the data validation.
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2.1.2 Simulating autonomous agents to perform daily activities. Human behavior simulation models are essential to 
generate credible daily activity data. To generate them and meet our challenges, we require agent models able to both 
offer autonomy to obtain credible behaviors and control to respect the user’s expectations. With this, the agent can 
respect schedules of activity, as in the Orange4Home dataset of Cumin et al. [12], while obtaining sufficient diversity 
and credibility through autonomy since the agent could satisfy its proper objectives [5]. In our previous work [21], we 
showed that existing agent models are usually either fully autonomous or fully controlled. For example, Finite State 
Machines [29], Petri-Nets [34] or Behavior Tree [8] are fully controlled approaches. We believe such approaches are not 
sufficient to offer credible and diverse data, compared to real human behavior. We are thus mostly interested in those 
offering at least partial autonomy.

Most autonomous approaches in the literature propose fully autonomous agents, for which it is difficult to impose 
some activities to generate specific data. This is the case for reactive-based models, where the agent reacts to changes 
in the simulation. Even though they are well suited to dynamic environments and multi-agent situations, we cannot 
easily impose strong constraints on the agent’s behavior. Among reactive-based approaches, we find the works of 
Avradinis et al. [5], De Sevin and Thalmann [14], and Lee et al. [30] the agent selects its activities according to its 
physiological needs and performs them in a 3D smart home. Kamara-Esteban et al. [25] also propose the MASSHA 
model where an agent uses a ToDo List to store activities to perform in a 2D Smart Home. Although MASSHA can 
manage time constraints, there is no guarantee that the start time and duration of activities are respected since they are 
selected just before being done. Finally, we can find architectures such as Belief-Desire-Intention (BDI) [41]. In BDI, a 
perception system interpreting the state of the world is modeled through Beliefs, the choice of possible goals is modeled 
through Desires, and the choice of predefined sequences of actions to satisfy them is done by Intentions. A lot of BDI 
implementations exist, giving an interesting adaptability for our use case. However, current implementations are not 
sufficient since they cannot manage strong constraints.

Other approaches proposing fully autonomous agents include reinforcement learning-based models such as the work 
of Jang et al. [23] where a double deep Q-network (DQN) is proposed for the selection of goals to be then executed 
by a Hierarchical Task Network (HTN) in a 3D virtual city. We also have cognitive-based models, such as Act-R and 
Soar [28] where rules and previous experiences are used to manage the agent behavior. Once again, imposing punctual 
strong constraints on agent behavior is difficult since the agent reacts to the situation according to past experiences.

Fully autonomous agents can also be obtained through planning-based approaches. Unlike previous approaches, it is 
easier to impose strong constraints, especially on resource use. This is the case for HTN [17], STRIPS [16], graph-based 
approaches [24], first principle planning [45], or meta-heuristics such as Genetics algorithms [10]. Unfortunately, most 
of them cannot accurately manage time constraints. In the approach proposed by Renoux et al. [36], where an agent 
is simulated in a smart house, constraint-based planning is used to schedule daily activities. The time is thus well 
managed. However, for all of these approaches, agents often have difficulties reacting to unexpected events that disrupt 
the plan during a simulation.

Finally, some approaches combine reactivity with planning. This is the case for Reactive-Planners [6, 42], for SMACH 
[3], for case-based planning [44] or for combinations between BDI models and a planner such as HTN [15] or First 
Principle Planning (FPP) [43, 45]. These approaches could offer flexibility between control and autonomy, but as 
discussed in [21], they rarely focus on this ratio and rarely propose sufficient validations (except for SMACH). Although 
rare, some approaches offer this flexibility, such as BIM SIM 3D proposed by Zhao et al. [46] where an agent in a 3D 
smart home can manage time constraints and needs. However, BIM SIM 3D does not give sufficient control since the 
agent’s decisions are based on probabilities.
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2.2 Methods to validate the credibility of generated data

In this section, we present works that aim at validating the credibility of simulated human data. We find two main
paradigms for asserting this credibility. Some contributions generate credible data with a priori arguments: the models
used to generate data were constructed based on real data, which should lead to credible data by design. Other
contributions assess credibility with a posteriori arguments: generative models are still based on real data, but credibility
is evaluated through specific metrics comparing these data with real ones.

Among methods using a priori arguments, Jang et al. [23] proposed a deep Q-network trained on large datasets of
social data, which is an a priori way to ensure credibility. However, only global surveys coming from a population
containing the start times and duration of activities have been used to construct and verify credibility. This is not
enough to know whether each agent can behave in credible ways in the choice of their activities, in the diversity of their
choices, and in the execution of these activities. Similar studies on travel scheduling were proposed by Roorda et al. for
the TASHA system [38]. In addition, both papers do not include the simulation of sensors to retrieve data. OpenSHS [2]
also uses a priori arguments to construct and validate the credibility of generated data. Since action sequences were set
directly by real humans, we could expect that the generated data would be more credible. However, people might not
interact in a 3D environment like they would in a real setting. Moreover, requiring real recording sessions is costly and
limits the possibilities of control and variability that we hope to obtain with agent models.

In the work of Renoux et al. [36], a 2D simulation is proposed where an agent can perform daily activities. The
generated data is validated by a posteriori approach since real experimenters are involved to guess if the presented
activity calendars are made of real or simulated activities. However, this type of assessment may involve bias or
uncertainty due to the subjectivity of experimenters. In addition, people may have difficulty imagining what a real
schedule would look like. This is why, even though collecting the subjective opinions of users is relevant, an additional
objective method is necessary to validate the credibility of data. In the MASSHA model proposed by Kamara-Esteban
et al. [25], where an agent model is proposed to perform activities in a smart home, an a posteriori approach is also
proposed. Durations and frequencies of simulated activities and the behavior of virtual sensors are compared to real
ones. Although the method is interesting and the reported results are statistically close to real ones, the credibility of
generated data is difficult to evaluate since the environment is abstract, agent behaviors are conditioned to the definition
of a TODO list and the behavior of sensors does not take into account their location and does not depend on direct
interaction with the agent (their activation is a purely probabilistic process).

In the SMACH model proposed by Reynaud et al. [37, 40], the generated activity routines data produced in an
abstract house are analyzed by a priori approaches (surveys and statistics methods to design the model) and a posteriori

ones (microscale level assessment with 8 real occupants and macroscale level assessment with population surveys).
The authors also suggest other ways to evaluate a posteriori the credibility of generated data by the use of clustering
simulated samples: when clusters are found with both real and simulated samples, then real and simulated ones are
hard to separate, and thus simulated data is considered credible. Even though these proposed validations can address
our second challenge, SMACH is difficult to use in a database such as Orange4Home, since activities cannot be strictly
imposed. In addition, no 3D environment is proposed in this work, limiting the correct simulation of some sensors.

SocialInteractionGAN [1] is a machine learning-oriented approach for generating simulated human activity data.
In this work, Airale et al. use a Generative Adversarial Net (GAN) neural network for the generation of multi-person
interaction sequences. The motivation is that an adversarial strategy can act as a way to enforce the credibility of
generated data. Indeed, the discriminator part of the model is trained to distinguish between generated and real data,
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forcing the generator to improve the realism of its generated data. To evaluate the quality of generated sequences, 
they propose metrics based on the Inception score and the Fréchet Inception Distance, which are commonly used to 
assess the synthetic image quality coming from GANs [22, 39]. Statistical comparisons based on such metrics provide 
interesting insight but do not guarantee that data is credible for the task it will be used for. For example, a simulated 
sample might be very similar to a real sample according to these metrics but lacks subtle information essential for 
distinguishing human activities since their environment is abstract.

2.3 Discussions

Many existing approaches can address some parts of our two challenges but not simultaneously. Firstly, some of them 
have limitations related to their simulation environment, restricting their use for the generation of daily activity data. 
Moreover, approaches not using 3D environments are not able to credibly simulate some sensors and activities. Secondly, 
Some approaches have limitations related to the agent’s behavior. Many of them present interesting strategies for the 
control or the autonomy of their agent, but few of them allow a balance between these aspects. We yet believe this lack 
of flexibility involves significant drawbacks for the simulation: control is important to simulate situations for which we 
seek to generate datasets, whereas autonomy is important to have varied and long-term simulations without human 
intervention. In addition, the search for greater diversity in behavior, by allowing for example interruptions or multiple 
choices for the same situation, is not emphasized by existing works. Yet this point is essential to obtain credibility. 
Finally, some approaches have limitations related to validating their simulated data. We have found two main ways 
to assess the credibility of their data in the literature. a priori approaches rely on the use of real data when building 
generative models to ensure a degree of credibility. a posteriori approaches propose experimental protocols to compare 
the credibility of simulated data with real ones through the use of specific metrics. Often, these metrics directly compare 
simulated samples with real samples using statistical arguments. However, statistical credibility does not guarantee that 
simulated data is useful for the application it was generated for. For example, in the case of human activity recognition, 
simulated samples might be statistically close to real samples but not when samples are taken individually.

Since the existing approaches cannot address both challenges at the same time, we propose a new approach to 
generate and validate credible data of daily activities, performed by an autonomous agent in a 3D smart 
home. To address the first challenge, we use a 3D environment enriched with sensors to generate data about daily 
activities. We also use the agent model developed in our previous work [21], which allows flexibility between control 
and autonomy, while being able to deal with interruptions and time constraints. Activities generated by our agent are 
executed and sensed in a 3D virtual environment presented in Section 3. To address the second challenge, we propose 
a new a posteriori approach for evaluating the credibility of the resulting simulated data in Section 5, which is then 
experimented on the Orange4Home real dataset [12] in Section 6. Our assessment approach is based on the replication 
of Orange4Home by reproducing its environment and its experimental protocol. We propose to compare Orange4Home 
with our synthetic data on two tasks of human context understanding: activity recognition and activity prediction.

3 3D VIRTUAL ENVIRONMENT

In Section 2, we discussed the benefits of using 3D environments for the generation of credible synthetic data in smart 
environments. With such approaches, the behavior of sensors can be faithfully replicated with respect to real ones: for 
example, motion sensors are triggered by the nearby motion of people, which can be replicated by the movement of 
virtual agents. In this section, we present our approach to creating 3D environments, our methodology to simulate 
virtual sensors with realistic behaviors, and the possible interactions between the agent and its environment.
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Fig. 2. Virtual homes within our 3D environment. The bottom images show the floors of the Orange4Home apartment.

3.1 3D environment design and automatic navigation

Our 3D Virtual Environment (VE), based on Unity, can be used both for the creation of smart environments based on
real buildings, or to create completely fictitious environments. We present in Figure 2 three different virtual homes
created within our 3D environment: the top 2 homes are fictitious, and the bottom home is a 2-story real apartment
used to collect the Orange4Home dataset [12]. Based on their architecture plans, a Virtual reality (VR) tool given by
Lacoche et al.[27] is used to easily place interactive objects such as furniture but also virtual sensors and effectors.

All virtual objects, whether they are sensors, rooms, or tangible objects such as doors or plates, have been defined
and classified using a semantic model described in section 3.3. This semantics allows the agent to interact correctly
with the VE since all the physical constraints can be described for each object represented by a 3D model. Movements
of the agent in the VE are based on a navigation grid, called NavMesh2, which is part of Unity. Using a collision engine,
NavMesh can automatically compute a grid of places where an agent of a given height and width can fit in the VE. This
grid forms the basis of a graph used by the agent to choose what path to select to go from point A to point B.

3.2 Virtual sensors and effectors

Simulating credible data requires that virtual sensors and effectors have credible behaviors. Real sensor data include
artifacts, rather than being the result of perfect sensing capabilities. For example, real presence sensors often do not
detect seemingly motionless people, whereas a perfect simulated presence sensor would always detect movement
regardless of amplitude. Replicating credible behavior thus requires the replication of artifacts and quirks that occur
with real sensors. In this section, we present the general principles for simulating sensors and effectors in our VE.

There are in general two ways to replicate credible sensor behavior from real sensor behavior. First, manufacturer
data can be used to know how each sensor or effector generally behaves. For example, we can obtain information on

2Unity NavMesh: https://docs.unity3d.com/ScriptReference/AI.NavMesh.html
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Fig. 3. Real data retrieved from the real water sensor placed on the real kitchen tap. On the left, a box plot of the real water flow
values; on the middle, the number of real flow occurrences according to their value; on the right, an illustration of the simulated
water sensor placed on the virtual kitchen tap.

the field of view of a presence sensor, the threshold at which a pressure sensor is triggered, or the frequency of data
collection. With this data, we can replicate the general behavior of sensors. However, such documentation is not always
available for specific device models or versions, or we sometimes do not know which device model or version we want
to specifically replicate. We generally cannot replicate artifacts in data from these specifications.

To overcome this issue, the second way to replicate credible behavior is to observe the behavior of real sensors in
collected datasets. We can then extract behaviors from statistical analysis, which can include artifacts of sensors. This
approach requires that there is enough representative data for the sensor we seek to replicate. Ideally, both approaches
should be combined to replicate sensor and effector behavior with maximum credibility, but this is not always feasible.

Most of the simulated sensors in our VE rely on the analysis of both manufacturer and statistical data:

• Sensors notifying when their state changes. For example, door opening sensors (opened/closed), lights (on/off),
shutters (opened/closed), various appliances sending a notification when turned on or off, and switches sending
a notification when pressed (on) then a notification when released (off).

• Sensors notifying when their state changes, and then a notification of their state with a regular frequency. For
example, smart TV sends a notification when turned on or off, and a notification of its state (on/off) every minute
as well.

Some sensor behaviors in our VE are based only on statistical analysis, performed on the Orange4Home dataset [12]:

• Water flow sensors, notifying when their state changes as well as the flow of consumed water at a specific
frequency while active. Water flow sensors are used for taps (for both hot and cold water independently) and
toilet flushes. Virtual sensors measure water flow based on a Gaussian distribution, parameterized based on the
analysis of real water flow sensor behavior, which is illustrated in Figure 3.

• Presence sensors notifying when the agent is detected in its field of view. This latter is simulated by Unity
Colliders3, detecting when the agent enters its detection area. We observed in real data that these sensors have a
10-second window of blindness where no new notification is sent after detecting a presence. In addition, the

3Unity Collider : https://docs.unity3d.com/ScriptReference/Collider.html
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person is often undetected after a certain duration of immobility and then detected again. To replicate this
behavior, the simulated sensor does not detect the agent if it does not move during a given period of time. After
this period, if the agent moves, the sensor detects it again. Otherwise, the sensors detect the immobile agent
after a random duration (corresponding to the detection of small movements that occur in real situations).

3.3 Interactions between the environment and the agent

In addition to the geometry of the environment, we labeled all objects and rooms used during activities. We use #FIVE,
an object-relation-based model by Bouville et al. [9], and its implementation in the XR toolkit Xareus4. This semantic
model allows for the classification of all objects of interest, according to the actions and behaviors they can have. With
this model, we can group objects by interaction similarity describing how the objects and the agent can interact. We
can also construct a hierarchy between them to produce more specific interactions. For example, we can group sofas
and chairs of the VE in the same category, since they share the same interaction: the agent can sit on them. To make
two objects interact with each other (for example an agent with a chair, a glass with a water tap, etc.), we can assign
a relation between them, which can include a 3D animation representing this relation. For example, for the relation
Washing a plate, an animation is assigned such that the agent makes circular motions with its hand on the plate.

4 AGENT MODEL TO SIMULATE DAILY ACTIVITIES

We previously detailed our 3D environment, our methodology to simulate virtual sensors with realistic behaviors, and
the semantics used to define interactions between the agent and its environment. In this section, We now present the
agent model that we developed. Since the details of its functioning are already explained in our previous works [20, 21],
we focus on its global structure, its concrete implementation into the virtual smart home, and the reasons explaining
why this model allows us to meet our challenges. In our previous works, we also brought a first functional validation to
know if the outputs of the model are coherent with the inputs. These results are summarized in subsection 4.2.

4.1 Global Structure of the agent model

The global structure of our agent model is a combination of BDI architectures [41] and reactive schedulers models [42].
We choose BDI for its intuitive and flexible approach to the human decision model through the Beliefs, Desires, and
Intentions models. It was also chosen for its compatibility with our requirements: BDI can theoretically allow us to
combine modules managing autonomy (such as needs in desires) and modules dedicated to the control of behaviors (such
as the insertion of schedulers in intentions), even though schedulers are rarely integrated into BDI implementations.

BDI implementations focus more on the reaction to current situations than on the anticipation of future constraints.
They are thus adapted to manage autonomy but not really for anticipation processes. However, for our use case, where
strong constraints coming from the user must be considered to follow the experimental protocol of real databases,
control over the behavior is also required. This is why a scheduler is added to our model to obtain this balance. For this,
we were inspired by the concept of the reactive scheduler [42] to manage both reactivity and anticipation of strong
constraints. In addition, to allow the user to easily impose specific activities, our model can take as input a calendar
listing all of these activities. The agent model described in Figure 4 is structured as follows:

Agent Parameters. : This process gathers all initial parameters and user constraints that must be considered during
the simulation. The user can give an input activity calendar to provide activities that must be performed at a specific

4Xareus Software: https://team.inria.fr/hybrid/xareus/
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Fig. 4. Our agent model proposed in [21].

period. This calendar gathers all the mandatory activities given by the user. These activities are mainly
used in the Decision-Making Model to be integrated into the plan with the correct times and durations.
For instance, a Mandatory Activity can be a Medical Appointment on Thursday, March 3 from 3 p.m. to 4 p.m. The
user is also able to configure activity, need, and task features such as duration or occurrence. By modifying the needs
parameters, specific agent profiles can be created (the agent eating more often, going to bed later, etc.), thus increasing
the diversity of behaviors. All these constraints are used for the control of the agent’s behavior.

Internal State Model. : Similar to desires in BDI models, it models the agent’s motivation to perform an activity.
However, in contrast to desires, other cognitive models could be added such as preferences or emotions. In this paper, it
is mainly used to update the urgency of needs. Needs are inspired by human fundamental needs defined in Maslow’s
theory of needs [32]. They can be physiological, such as hunger, or they can be more sophisticated, such as self-esteem.
This model is used for the autonomy of the agent since it defines goals that must be reached during free time periods.
It is also involved when an interruption must occur. The needs are configured by using a temporal function, as in
the work of De Sevin and Thalmann [14]. Concretely, to calculate the urgency of needs, a priority value is evaluated
according to a threshold, used to know when a need becomes urgent, as well as the need intensity evolving through
time. The user can also indicate whether a need can interrupt activities in case of urgency.

Decision-making Model. : This process controls decision-making, and can be related to intentions in BDI models.
However, in contrast to BDI, our model does not retrieve a predefined plan but instead sets up plans during the
simulation. This plan is built to respect user constraints while producing autonomous choices to satisfy needs during
free-time periods. Our decision-making model contains two main processes shown in Figure 4: the Activity Scheduler

and the Activity Selector. On one hand, the Activity Scheduler builds an activity plan for a given time window. This
scheduler considers both initial constraints and the present and future urgency of needs, computed by the Internal State
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Model. Our Activity Scheduler is designed to reschedule at any time, making it compatible with dynamic environments.
Interruptions are also managed when a need is too urgent and when an activity can be interrupted. During the creation
of the plan, activities satisfying needs are placed after assessing the approximate time when their need becomes
urgent. If the agent still has free time after scheduling activities satisfying its needs, default activities are added to
keep busy. These default activities are chosen randomly with optional weights affected by the agent’s preferences. The
approximation of the needs urgency and the random choice of the default ones introduce diversity in the behaviors
while remaining coherent: the same input constraints do not cause the same sequence of activities in output. On the
other hand, The Activity Selector gradually retrieves the activities of the plan. If no activity can be performed anymore,
a message is sent to the scheduler to rebuild a plan until the next mandatory activity or for a predefined period. The
selected activity is also transmitted to the Task Execution Model and its state is received in return.

Task Execution model. : This process executes the selected activity given by the Decision-Making model in the Virtual
Environment (VE) by executing the related sequence of tasks. A task is made of basic actions and animations that can be
directly executed in the VE. For instance, the Showering includes the task Getting dry. In our use case, the sequence of
tasks is represented by a Petri-Net-based scripting model called #SEVEN [11] implemented in Xareus Software4, where
a token, moving from one place to another place, triggers an interaction defined by the #FIVE [9] semantics model. The
token progression can be managed by checkpoints verifying if conditions are achieved.

External Perception model. : This model is similar to Beliefs in BDI approaches since all relevant data from the VE are
stored in its semantics database managed by the #FIVE model. It is used to filter activities according to their physical
constraints and provide the objects and interactions needed to make the execution possible in the VE.

Since our model can adapt the level of autonomy according to constraints,we can strictly replicate data collection
protocols or give the agent more freedom to obtain variability and novelty in the generated data. In addition,
to improve the diversity of data, the agent can randomly select between equivalent effectors (such as two switches that
turn on lights in the same room) or equivalent activities if these are not imposed (such as choosing between reading
and watching TV for entertainment). This random choice can be weighted by the preferences given to the agent.

4.2 Agent Model Implementation and Validity

In Figure 5, we show the global structure of our implementation used in this paper and our previous work [21]. Firstly,
the user can give initial parameters to configure the agents (needs values, preferences, etc.). Among them, a calendar
can also be given. This calendar enables the insertion of mandatory activities to allow the user to simulate activities at
specific times, or to respect a specific protocol as in our case, where we want to replicate the Orange4Home protocol.
The decision-making process is then initiated and chosen activities are executed with a #SEVEN scenario storing
all interactions needed to perform an activity. This scenario is linked to the 3D character to allow the execution of
requested interactions in the 3D environment. The agent navigates in the environment with the Unity Navmesh 5. Our
animations are based on two main blocks: Inverse kinematics with FinalIK6 and daily activities animations taken from
CMU Graphics Lab Motion Capture Database 7 and Mixamo 8.

5Unity Navmesh: https://docs.unity3d.com/ScriptReference/AI.NavMesh.html
6FinalIK: https://assetstore.unity.com/packages/tools/animation/final-ik-14290
7Mocap: http://mocap.cs.cmu.edu/
8Mixamo: https://www.mixamo.com/
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Fig. 5. Implementation of our agent proposed in [21].

A functional evaluation of our model was made in our previous work to know whether the produced behaviors
are diversified and coherent in comparison to the input parameters. By comparing the input and output of our model,
we showed that the agent performs all the mandatory activities coming from the user’s schedule on time, whether
the schedule is strict or moderate. We then showed that calendar activities can be interrupted if a need allowed to
interrupt is too urgent. During the free time period, we proved that all needs were satisfied within the expected time
frame (average satisfaction in the emergency range of needs). Concerning diversity, we showed that for the same input
constraints, our agent model does not produce the same output activities and the needs are not satisfied at the same
time. a posteriori validation based on statistic methods was thus made in our previous works. However, as we said in
section 2, statistical approaches are not sufficient to prove credibility. This is why we make a second validation in this
paper by evaluating if the produced synthetic data can substitute real ones.

5 APPROACH FOR EVALUATING THE CREDIBILITY OF DATA GENERATED FROM SIMULATIONS

Section 3 and 4 showed how we can respect the first challenge through the creation of a 3D environment enriched with
virtual sensors and the design of an agent model both giving control and autonomy. Now, we present our validation
approach to meet the second challenge. To validate the credibility of our synthetic data despite the absence of clear
specifications to finely assess credibility, we propose to replicate a real data collection experiment in a virtual home,
using our agent model in place of a human subject. Since direct comparison between real and synthetic data might
be too sensitive, due to particular behavior of the human or small replication inaccuracies of the VE, we propose to
evaluate the credibility of simulated data by using them for context-aware machine-learning models. For
fair comparisons between real and simulated data, it is important to replicate as closely as possible the real home, the
real sensors, the real subject, and the real experimental protocol used to collect the real dataset.

In this section, we detail the real Orange4Home dataset [12] that we choose to replicate as well as the details about
the simulation of the home, sensors, and experimental protocol for this specific dataset.

5.1 Real dataset selected for replication

Orange4Home dataset [12] was chosen for our experiments due to multiple reasons:

• Orange4Home is freely open to researchers9, which improves the reproductibility of our experiments.
• Orange4Home comprises 4 weeks of labeled daily living activities at home. We will thus judge the credibility of
varied activities simulated by our approach on relatively long time scales.

9Orange4Home: https://amiqual4home.inria.fr/en/orange4home/
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Fig. 6. Plan of the ground floor (left) and first floor (right) of the home used in Orange4Home and replicated in the virtual environment.

Fig. 7. A section of the living room, as seen in the real Orange4Home apartment (left), and in our virtual environment (right).

• Orange4Home was recorded in a two-story home comprising 8 different rooms, instrumented with 236 heteroge-
neous sensors and effectors. Our virtual environment will thus replicate a realistic home setting, and we have a
large selection of sensors and effectors to choose for replication.

• Some of the authors of this paper have previously participated in the recording of Orange4Home. This allows for
more accurate replication of the dataset and thus fairer comparisons between real and simulated data.

5.2 Simulation of the home

The home occupied for the recording of Orange4Home is a two-story apartment, with 8 rooms (not necessarily separated
by doors or walls), connected by a staircase. This home was recreated in our VE, following the plans established for the
real apartment, reported in Figure 6. This replication also includes most of the furniture, objects, and appliances that
the real subject interacted with during Orange4Home’s collection.

In Figure 7, we present a side-by-side view of the living room captured from a similar point of view, in both the real
apartment and our simulated replication. Photorealism is not sought-after since our data are not impacted by this.

5.3 Replication of sensors and effectors

Data is generated from the selection of simulated sensors we have replicated based on the original Orange4Home
experiment, which contains 236 real sensors. We have replicated 63 of these sensors in the VE which seemed to be
the most relevant to recognize activities: lights, door and cupboard openings, presence detection, switches, electricity
instantaneous consumption, hot and cold water instantaneous consumption, shutters, and TV statuses. These virtual
sensors were placed accurately to their corresponding real equivalent. Functional dependencies for certain sensors were
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also properly replicated: links between switches and lights, between water consumption and faucets, door opening 
sensors and doors, and so on. Sensors that were not replicated fall into one of 2 categories:

• Sensors for which we do not have a virtual equivalent yet: temperatures, CO2 levels, weather information, noise
levels, etc. Replicating some of these sensors accurately requires specific simulations of environmental variables,
which we have not investigated in this work.

• Sensors that correspond to settings, are redundant or seldom triggered: heater settings, total accumulated
consumptions, unused switches, unused appliances, etc.

5.4 Replication of activity routines and experimental protocol

To match Orange4Home’s experimental protocol, we generated 4 weeks of simulated data, excluding evenings, nights,
and weekends since they were excluded in the real dataset. The agenda of the real subject followed in Orange4Home
was given as an input calendar in the agent. Cleaning activity was simulated only in the kitchen, living room, bathroom,
and office. In total, 23 different activity classes were simulated (24 including moments without activity, labeled None)9.

Following the experimental protocol set in [13], we use the first two weeks of data for training, the third week as
validation data to optimize training parameters, and the fourth week for testing (which are the results reported in
Section 6), for both real and simulated data.

6 EXPERIMENTS

As presented in Section 5, we want to evaluate the credibility of simulated data through its use for machine learning
models. We have chosen current activity recognition and future activity prediction tasks to illustrate this. The end goal
of evaluating credibility is to show if we can use only simulated data to train models to recognize and predict real
situations.Activity recognition helps assess the credibility of sensor behaviors and interactions between the agent and
the VE. By comparing the gap in performance of recognition between the use of real and synthetic data, we can assess
the possible inaccuracies of virtual sensors and interactions as well as the impact of missing ones. Activity prediction
is helpful to assess the credibility of our agent model. By comparing the gap in performances of prediction between
the use of real and synthetic data, we can assess whether the agent can schedule a credible activity routine. To better
investigate the difference between synthetic and real data but also between the activity detection and prediction results,
we use two additional metrics: A statistical comparison between simulated and real data, and Classifier Two-Sample
Test (C2ST). Statistical comparison compares the frequencies of activation between synthetic and real sensors. C2ST
is a metric where a machine learning model is trained to distinguish real samples from simulated ones [31].

6.1 Statistical evaluation of sensor notification frequencies

In this section, we analyze statistical deviations between virtual and real sensors. We draw inspiration from the metrics
used in [25] to assess the behavior of sensors. The results are presented in Figure 8. The first 4 columns report the
mean, standard deviation, minimum, and maximum gaps of notification frequency of real VS simulated sensors for each
activity. The remaining columns only consider the sensors (real and simulated) that are activated at least once during
each activity. This is interesting since for each activity, a large number of sensors is never activated. In the columns
depicting the number of sensors, we examine the sensors/effectors that behaved differently by looking at the number of
notifications sent in one condition (real/simulated) and not in the other. We observe significant differences between
activity classes: for example, the average notification gap is low for Cleaning but quite high for Computing. Compared
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Fig. 8. Statistics about notification frequencies of real-simulated sensor pairings for each activity.

to shorter activities, longer activities have bigger differences in mean notification frequencies and standard deviations
between real and simulated sensors.

We find significant differences in the number of notifications for some real-simulated sensor pairings. For example,
office presence triggered only 2169 times in simulated data, compared to 24108 times in real data. Conversely, the sink
water consumption during Using the sink was notified 1296 times in the simulation compared to 120 times in real data.
Some sensor pairings have very close notification frequencies, such as kitchen presence during Cleaning (34 simulated,
37 real) or living room lights during Watching TV (36 in both). There are also cases where a sensor is triggered during
simulation but not in real data, and conversely. For example, the virtual agent uses the entrance left switch during
Leaving, but not the real occupant.

These results show that overall, most virtual sensors activate with similar frequencies compared to their real
counterparts. However, certain sensor pairings have bigger deviations, especially for longer activities. The actions of
the virtual agent also create discrepancies, as it sometimes interacts with switches and other instrumented devices that
were not used in real situations for specific activities. This is due to the desire to diversify the synthetic data by letting
the agent interact with objects that would be consistent in performing the activity. Such analysis is useful to improve
the credibility of specific sensors in future works.

6.2 Online activity recognition

To judge the credibility of sensor behaviors and interactions between the agent and the VE, we propose to use our
simulated data for the task of online activity recognition. For this task, we seek to recognize the current activity for
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Table 1. Online activity recognition accuracy using simulated and real data.

Training data Test data Test accuracy

Real Real 88.70%
Simulated Simulated 79.40%

Simulated Real 80.10%
Real Simulated 55.00%

Real + simulated Real 87.20%

every new incoming sensor event, based on the list of the last reported values of each sensor. The main factors in the
quality of simulated data for this task are the interactions with VE and the behavior of virtual sensors. The credibility
of the overall activity routines still has an impact here, but much less than both the actual quality of activity performed
by the agent and the low-level data collected by the simulated sensors. These experiments are thus an indicator of the
ability of interactions and sensors to generate credible activity instances.

To compare the results of activity recognition on simulated and real data, we use a simple Multi-Layer Perceptron
(MLP) model. The goal is not to obtain the best performance but to have close results between the use of real and
simulated data for recognition models. The input to this MLP is a vector of the last reported value of each sensor. For a
fair comparison, we restrict real data to sensors that were replicated in the simulated environment (see Section 5.3).
Both the real and simulated data thus share the same input feature size.

6.2.1 Recognition performances on real and simulated data. We report in table 1 the recognition accuracy of the MLP
on simulated and real data. We see that the model is quite accurate (88.70%) at recognizing current activities from real
situations, with only the selected subset of real sensors also replicated in our VE.

We see that the recognition accuracy in simulated situations is also high, although lower than in real situations
(79.40% compared to 88.70%). This shows that virtual activities are globally recognized with simulated training data,
even if some are harder to identify than with real instances. Several reasons can explain these difficulties: virtual sensors
necessary to identify a specific activity might not be as informative as the real ones. Another possibility is that the
agent interacts in simplified movements, triggering less useful sensor events compared to a real occupant.

Comparing performance in different activity classes can help identify which parts of the simulation can be improved.
For example, the Using the sink activity in the bathroom reaches an accuracy of 37.14% on real data, compared to 3.91%
on simulated data. We noticed that most of the misclassifications are with the Showering activity, which occurs in the
same place. Therefore, we can assume that some human actions related to both activities are important to distinguish
them, and were not integrated into our agent. We can also assume that the replicated bathroom and sensors might not
capture all significant information related to these activities.

6.2.2 Using simulated data for real situations. Ideally, simulated data could reduce the need for labeled datasets collected
in real situations, to train machine learning models. In this case, simulated data must be representative of real situations,
so that a model trained on simulated data can provide accurate recognition when processing real situations. To illustrate
this case, we train our activity recognition model with only simulated data by following the same process, and we test it
on only real data (using the last real week). The resulting model, as reported in table 1, reaches a recognition accuracy of
80.10%. These performances, although inferior to the ones obtained when real data are used for training (88.70%), show
that it is possible to reach high recognition accuracy of real situations, from purely simulated training data.
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Most class misclassifications occur when the simulated model already exhibits bad performances on simulated test
data (such as Using the sink). Conversely, classes that are well-classified on simulated test data are also well-classified
on real test data. Some situations are thus not accurately simulated, limiting the recognition of their real counterparts.

For completeness sake, we also tried to recognize simulated data from a model trained on real data. We observe a
large drop in performances compared to a model trained on simulated data as reported in Table 1 (55.00% vs 79.40%).
Classes that were well classified when the model was trained and tested on the same type of data exhibit very low
accuracies in this case. This drop is not observed in all classes: some well-classified classes with the previous model stay
well-classified. The reason would be that real data contain richer information than our simulation. A model trained on
real data might rely on subtle features in sensor events to categorize some classes, which are not present in simulated
data and thus lead to drops in performances. Conversely, the drop was much less significant for real data with a model
trained on simulated data, since our model relies on features captured by both simulated and real sensors.

Although our goal is to completely replace real data collection with synthetic generation (and not to augment real
datasets), we still experimented with combining real and simulated training data to recognize real data. The model is
nearly as accurate as one trained only on real data (87.20% vs 88.70%), which indicates that simulated data introduces
very little information that contradicts real data for the training process. It also indicates that it does not bring new
information to help recognize real activities in this example. Future work is thus needed if we seek to use our simulator
for data augmentation, which is outside the scope of this work.

6.2.3 Comparing performances on real data with all sensors. In previous experiments, we only used the list of sensors
that were replicated in the simulation (see Section 5.3) to ensure fair comparisons with the simulator. However, it can be
valuable to compare these performances obtained on real data using all available sensors in Orange4Home. As expected,
this model reaches a recognition accuracy of 93.20%, which is slightly more accurate than the model trained with
the limited list of sensors (88.70%). The performance gap is not so large, showing that the sensors we have chosen to
replicate in the simulation provide most of the required information to recognize activities accurately. This experiment
also identifies certain sensors that should be simulated. For example, the model trained with all sensors is very accurate
for Napping (99.19%), compared to the one trained with limited sensors (46.13%). This discrepancy helps us identify a

posteriori that the bed pressure sensor, which was not replicated, is needed to correctly classify this activity.

6.3 Classifier Two-Sample Test (C2ST)

C2ST consists in training a model (here, XGBoost) to learn to distinguish real samples from simulated samples [31]. Our
experiment shows that our simulated data is perfectly distinguishable from the real data (C2ST score of 1). Considering
that each sample contains data from 63 different sensors, it is not surprising that some of the simulated sensors have
behaviors that differ consistently enough from their real counterpart, such that the model can learn to use these
differences to distinguish real samples from simulated samples.

In practice, we have shown in Section 6.2 that such simulated data can still be used effectively to train models for
downstream tasks such as activity recognition with high accuracy. These two results combined show that simulated
data does not require to be indistinguishable from real data to still be useful.

6.4 Future activity prediction

To judge the credibility of simulated activity routines, we propose to test the use of simulated data for the task of
future activity prediction. For this, we seek to predict the next activity using previous activities and other contextual
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Table 2. Activity prediction accuracy (non-Markovian depth of 3) on simulated and real data.

Data Accuracy

Real 91.18%

Simulated 89.01%
Simulated, without interruptions 91.86%

information such as place and time. Therefore, the main factor impacting the quality of synthetic data is the agent
model. The credibility of interactions and sensors is less important since we do not use them to predict future activities.
These experiments are thus an indicator of the agent model’s ability to generate credible activity routines.

To compare behaviors of activity prediction on simulated and real data, we use a model proposed in [13], which was
previously evaluated on Orange4Home. This model is a Dynamic Bayesian Network (DBN) in which nodes representing
activity, room, hours of the day, and day of the week, are represented for both current and future situations. This model
predicts the future activity that will occur. Cumin et al. [13] proposed different ways to improve activity prediction. One
proposition is that sequences of human activities do not satisfy the Markov property, that is, the choice of a human to
perform an activity does not only depend on their current activity but can also depend on past activities as well. In this
work, we will focus on testing different non-Markovian depths for prediction, as in [13]. For example, a non-Markovian
depth of 3 indicates that the model uses the current activity as well as the 2 previous activity instances for prediction.

Following the experimental protocol set in [13], we use the first 2 weeks of data for training, week 3 for validation to
optimize parameters, and week 4 for test (which are the results reported here), for both real and simulated data.

6.4.1 Predicting performances on real and simulated data. We report in Table 2 the prediction accuracy of this model
on simulated and real data. We see that real data from Orange4Home is quite predictable (91.18%), since the occupant
followed a strict schedule of activities. Simulation of this schedule using our agent model without possible interruptions
also leads to very predictable activities (91.86%). This first result indicates that the agent model is able to reproduce real
behaviors with similar levels of predictability compared to real data.

We also obtain slightly less predictable activity sequences when our agent model enables interruptions (89.01%). Such
interruptions, allowing the satisfaction of needs when there is not sufficient free time, can thus be used to introduce
variability in generated data, in a controlled manner. In this way, our agent model could be used to generate different
datasets of the same environment using different degrees of activity predictability, which is valuable to design and
improve such predictive models. Prediction accuracies obtained in those first experiments are all significantly higher
than a random predictor (5%, assuming identical predictive randomness across the 20 activities).

6.4.2 Impact of non-Markovian depth. We present in Table 3 the prediction accuracy obtained with varying non-
Markovian depth in the activity prediction model. A depth of 1 implies that only the current activity (with other nodes
of place, the hour of the day, and the day of the week) is used to predict the future activity, whereas a depth of 3 implies
that the current and previous two activities are used to predict the future activity.

We see that performances are higher with a depth of 3 or 4 (89.01%), and lower with a depth of 1 or 2 (79.12% or
85.71%). This behavior was also observed on 5 real datasets as reported in [13], where multiple datasets reached their
highest performance with a depth of 3, except for one dataset (the least predictable) reaching a depth of 1.

These experiments show that the sequences of daily activities generated through our agent model exhibit
similar non-Markovian behaviors to those of real datasets reported in previous works [13]. Whatever the data
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Table 3. Prediction accuracy with varying non-Markovian depth on simulated data.

Non-Markovian depth

1 2 3 4 Average

79.12% 85.71% 89.01% 89.01% 85.71%

used (real or synthetic), the past sequence of 3 activities provides the most information on which next activity will
occur for this dataset. Only using 1 past activity is generally not informative enough, whereas using sequences longer
than 5 activities introduces noise and unneeded complexity to our predictive model.

6.4.3 Using simulated data for real situations. Ideally, simulated data could reduce the need for labeled datasets collected
in real situations to train machine learning models. In this case, simulated data must be representative of real situations,
so that a model trained on simulated data can provide accurate predictions when processing real situations.

To illustrate this case, we trained the activity prediction model on only simulated data (following the same protocol
used previously), and tested it on only real data (using the last real week). The resulting model reaches a predictive
accuracy of 82.35% (with a non-Markovian depth of 3). Even though it is lower than a model trained directly on real
data (91.18%), these performances are still very high and vastly superior compared to a random model, indicating that
simulated data can thus be very useful to train these kinds of models.

For completeness sake, we also trained our activity prediction model on real data and tested it on simulated data. The
resulting model reached a predictive accuracy of 82.42% (with a non-Markovian depth of 3). There are still performance
gaps to a model trained on simulated data (89.01%), but performances are again far beyond random prediction,
which reaffirms that simulated data are in some way representative of real data.

7 DISCUSSIONS

7.1 Insights on replicating datasets

We have shown in Section 6 that data generated by our simulation can be effectively used as training data for activity
recognition and prediction tasks applied to real situations in Orange4Home. The results obtained in our experiments
are convincing, showing that using simulated data as training sets to counterbalance the lack of real data is a promising
research avenue. The C2ST results indicate that generated data can be used effectively to train models to recognize real
situations, without requiring this generated data to be indistinguishable from real data. Our experiments also allowed
us to identify the improvements we could make to refine the results.

Among the improvement to make, some specific activity classes are badly classified when using simulated training
data, compared to real data. This indicates that credibility discrepancies exist, depending on which activity class is
simulated. One source of discrepancies we have discussed in Section 5.3 is the behavior of virtual sensors. Our efforts on
replicating realistic behaviors of sensors have helped limit the drop in performances, but not completely remove it. In
the general case, we might not have access to the behavior of all sensors of the environment we are trying to replicate.
Limiting such discrepancies would thus prove difficult. Another source of discrepancies can be the actions of the agent
which can be not enough accurate compared to humans. Observing drops in performances in certain activity classes
can thus help identify which parts of the simulation model are not credible enough and need to be improved. Similarly,
a drop in performances is observed when we restrict real recognition models to only sensors that were replicated.
This experiment allows us to know which sensors are actually essential to correctly detect some activities. In future
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work, this information can be used to enrich our simulation with such missing sensors. Conversely, we could use our 
replication strategy to check the importance of different sensors (measured by the drops in activity recognition and 
prediction performances), for applications aiming at reducing the number of redundant sensors in smart environments.

7.2 Generalization to other contexts

Our credibility validation approach, which uses 4 different metrics (Statistics, C2ST, activity recognition, and activity 
prediction), has only been tested on the Orange4Home dataset. Since this study is purely experimental, the generalization 
of our results to other contexts is thus limited. Consequently, we cannot extrapolate our results to other datasets or 
generalize our observations to any smart environment. It is required to test this simulation and validation approaches 
in various other contexts that offer accurate real data for comparison. This work is an additional validation showing 
that our agent model can generate credible data from a specific dataset. A first statistical validation of the agent model 
can be found in [21]. However, testing it against many more varied datasets is required to ensure that generated data 
will be robust, reliable, diverse, and credible enough to apply to any connected environment.

To generate synthetic data, we use real-world knowledge, such as sensor behaviors or user activity planning. This is 
not always available, especially in commercial solutions for the general public. Moreover, this information introduces 
biases in evaluating credibility. The features used to recognize activities are generated by sensors designed to replicate 
Orange4Home in the first place. Our assessment is thus more about the ability of our simulator to produce data that 
behaves like real data, rather than an objective credibility metric. Designing meaningful yet non-biased credibility 
evaluations for simulated data is difficult to achieve. Further work should focus on evaluating the impact of such biases.

In this work, we use activity models as indirect measures of the credibility of simulated data. Our focus on human 
activity has multiple justifications. First, we wanted to evaluate the credibility of our VE and the captured interactions 
with the agent. Activity recognition is suitable since it encompasses those elements. Second, we wanted to evaluate the 
credibility of routines generated by our agent model. Future activity prediction is suitable since it allows comparisons 
between the predictability of real and simulated routines. In general, credibility evaluation could use a large array 
of different human context analysis tasks. For example, room occupation detection or occupant positioning can be 
used as another way to evaluate the credibility of simulated data. Applicable tasks are limited by data simulated by the 
agent model and VE. For example, if future agent models include the simulation of human emotions, then an emotion 
recognition task could be used for credibility evaluation. By adding virtual cameras in the simulation, we could retrieve 
videos that are useful to train vision-based algorithms [35]. We believe that the use of human context understanding 
models to evaluate simulated data is a promising avenue of research.

8 CONCLUSION

In this paper, we propose a methodology to simulate daily activity data and estimate their credibility. We describe a 
configurable simulation environment to produce credible and diverse data through a 3D smart home enriched with 
sensors where an autonomous agent can perform activities. We also propose a new approach to validate the credibility 
of simulated data: we replicated a real smart home environment, used to collect the Orange4Home dataset, with our 
virtual environment. We implemented virtual versions of sensors, taking into account the actual behaviors of their 
real counterparts. We use an autonomous agent to perform daily activities in this environment, which allows for both 
controllability and autonomy. To generate comparable data to the real dataset, we replicate the experimental protocol 
and constraints of the real collection phase. To evaluate the credibility of simulated data, we compare performances of 
two machine learning models, used to recognize and predict activities, on real and simulated data. We also use two other
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metrics: an analysis of activation frequencies between real and simulated data, and C2ST. Through our experiments on
Orange4Home, we showcase the usability of simulated environments for such tasks and their limitation.

Replicating environments and contexts used in real datasets to evaluate the credibility of simulated data is a promising
avenue of research. In future work, we will test our simulation and agent model in other environments and with other
datasets. We also retroactively improve our simulation aspects (sensors, agent, etc.) with credibility experiments. Our
agent model will be improved to deal with multi-agent situations to generate data of several occupants simultaneously
present in environments. This will also be an opportunity to showcase simulations of dynamic environments.
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