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Abstract — Frequency Modulated Continuous Wave (FMCW)
automotive radar using stretch-processing usually relies on a
fast-chirp signal model which assumes range and Doppler
decoupling between fast and slow-time dimensions. To achieve
high range and speed resolutions, a large bandwidth and a
long coherent processing interval are used. However, if multiple
range resolution cells are crossed during the integration duration,
fast-chirp signal model assumption becomes inaccurate, resulting
in misfocusing in both fast and slow-time dimensions. This
misfocusing leads to the misestimation of target parameters and a
loss of coherent integration. In this paper, Range Cell Migration
(RCM) processing loss is studied and illustrated using a FMCW
signal model. Furthermore, a windowing in both dimensions is
proposed to mitigate this loss.

Keywords — Range cell migration, FMCW radar, processing
loss, windowing

I. INTRODUCTION

Automotive radar has become a commodity sensor,
widely used to develop Advanced Driving Assistance Systems
(ADAS) functions such as adaptative cruise control, lane
change assist or autonomous driving [1]. FMCW modulation
scheme is a classic waveform for range and speed estimations
in automotive radar. Stretch processing (or dechirping)
technique [2] is used instead of matched filtering for pulse
compression. The emitted linearly frequency modulated (LFM)
waveform sweeps a wide bandwidth to reach a fine range
resolution with pulse compression. Stretch processing permits
tractable sampling frequency for automotive radar while
preserving the matched filter range resolution (meter to
centimeter), at the expense of a limited range span. A
coherent FMCW pulse-train produces a Coherent Processing
Interval (CPI), allowing speed to be retrieved by Doppler
processing. Fast-chirp (or rapid chirp) scheme allows to derive
a simplified but effective signal model where range and
Doppler information are decoupled in two frequencies lying
in two separate dimensions (see Fig. 1) [3].

Wide chirp bandwidth provides finer range resolution,
though causes range walk during long CPI for high-speed
targets. This range cell migration (RCM) spreads the pulse
compressed signal energy across multiple range bins, therefore
leading to a loss of coherent processing gain [4], [5].
Signal-processing based corrections have been studied in the
literature, for example, [4] and [6] independently proposed a
chirp z-transform. Slow-time modulation schemes have been
proposed to compensate pulse-to-pulse RCM without signal

Fig. 1. FMCW pulse-train sampling and its fast and slow-time formatting

processing efforts [7]. Without compensation method, the
coherent processing loss due to RCM in an FMCW automotive
context has not been detailed. It has only been approximated as
the number of crossed range cells [5], [8]. Automotive radars
are designed to meet stringent requirements, and RCM-induced
loss may be an issue to achieve a given link budget. The goal
of this paper is to quantify this loss and shows its dependency
with the selected fast and slow-time windowing.

Apart from a conclusion and perspectives presented in part
V, the rest of the paper is organized into three sections. The
section II is dedicated to FMCW stretch-processing signal
model. Section III focuses on the RCM effect and the coherent
integration loss. Section IV presents the measured processing
loss after fast and slow-time windowing, using an asymptotic
expression and simulations.

II. FAST-CHIRP FMCW SIGNAL MODEL

A pulse train of Nc LFM waveforms is emitted with a
Pulse Repetition Time (PRT) of TPRT. Individual chirps are
emitted with an effective bandwidth Be during chirp duration
Tacq, with a start frequency fl, as illustrated in Fig. 1. In
stretch processing pulse compression [2], the received signal
is demodulated by mixing it with the transmitted signal and
the mixed signal is low pass filtered to keep only Intermediate
Frequency (IF) component. Assuming IQ demodulation, the
analogic IF signal of the signal reflected by a single scatterer
target is:

sa(t) =

Nc−1∑
m=0

A exp (iφm(t))wTacq(t−mTPRT) (1)

where φm(t) = 2π (ατ(t)tm + flτ(t)), t ∈ [0, NcTPRT] is the
absolute time, referenced since the beginning of the first pulse
acquisition, and tm = t−mTPRT is the time referenced since
the beginning of the m-th pulse. A is the received amplitude
of the signal, accounting for losses during propagation and
reception. α = Be

Tacq
is the chirp rate, wTacq is the windowing
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function of duration Tacq, assumed to be rectangular at this
point. τ(t) is the round-trip delay with respect to time. Let
R0 be the range of the point target at t = 0 and Vr its
radial speed, assumed constant during the CPI. Substituting
τ(t) = 2(R0+Vrt)

c in φm(t) and keeping only the significant
phase terms in an automotive radar context, the phase of the
IF signal becomes:

φm(t) = 2π

(
fIF,mtm +

fintra(tm)

2
tm + ϕR0

)
(2)

where fIF,m = fIF + finter[m], fIF = frange − fdoppler,
fintra(tm) = 4αVr

c tm, and finter[m] = 2αVr
c mTPRT. The beat

frequency fIF,m contains both range and speed information in
the frequency components frange =

2αR0

c and fdoppler = − 2flVr
c .

The instantaneous frequency fintra creates intra-pulse RCM,
while the frequency finter creates inter-pulse RCM (see section
III-A). The phase term ϕR0

= 2π 2flR0

c is constant and can
be discarded from the equations hereafter. In this section, we
assume that intra and inter-pulse RCM are neglectable, so the
Eq. (2) is:

φm(t) = 2πfIFtm (3)

The Nc chirps of the pulse-train are captured, each with
a sampling period Ts = 1

fs
so Ns samples are acquired.

The sampled pulse sequence can be rearranged in a
two-dimensional data array, so the sampled time t = nTs +
mTPRT is separated in the so-called fast-time tft = nTs and
slow-time tst = mTPRT (see Fig. 1):

s[n,m] = A exp (i2π (fIFnTs − fdopplermTPRT)) (4)

In fast-chirp FMCW [3], we assume that the chirp rate
α is designed to sweep a wide bandwidth fast enough so
the Doppler frequency term fdoppler = −2flVr

c shifts the
beat frequency less than the frequency resolution. Then, the
frequency is assumed to be composed only by the range-related
frequency frange in such a way that fIF ≈ frange. To estimate
frange and fdoppler, a 2D Discrete Fourier Transform (DFT) is
applied along n and m indexed dimensions of the sampled
signal given by Eq. (4):

S[N,M ] =

Ns−1∑
n=0

Nc−1∑
n=0

s[n,m] exp

(
−i2π

(
nN

Ns
+

mM

Nc

))
= ADNs

(
N −Nr

Ns

)
DNc

(
M −Md

Nc

)
(5)

where DN (x) = exp (−iπ(N − 1)x) sin (πNx)
sin (πx) is the Dirichlet

kernel [2], Nr = frangeTacq and Md = −fdopplerTint, with
Tint = NcTPRT is the CPI of the chirp sequence. A peak is
centered at the reduced frequency bins Nr and Md in discrete
2D spectrum, which position can be estimated by a peak
search algorithm. The frequency resolution is defined as the
null-to-null spacing in DN . From Eq. (5), we can see that the
frequency resolution is 1

Tacq
in fast-time dimension and 1

Tint
in

the slow-time dimension. Then, range estimate has a resolution
of ∆R = c

2Be
and the speed estimate has a resolution of

∆Vr =
c

2flTPRT
.

Table 1. FMCW modulation parameters used in this study

Parameter Notation Value
Effective bandwidth Be 375MHz

Sampling frequency / period fs / Ts 5MHz / 0.2 µs
Start frequency fl 77GHz

Pulse Repetition Time TPRT 100 µs
Number of samples per pulse Ns 256

Number of pulses Nc 256

III. RANGE CELL MIGRATION SIGNAL MODEL

A. Intra and inter-pulse range cell migrations

In this section, the FMCW signal model used for the RCM
derivation is introduced.

Fast-chirp assumption made in the previous section
to perform range-Doppler processing assumed that range
and Doppler frequencies were uncoupled, so the estimated
frequency in the fast-time dimension depended only on the
range parameter. However, the beat frequency fIF = frange −
fdoppler measured during pulse processing is composed of
both frange and fdoppler [2]. An unambiguous speed measure
should be considered during range estimation to avoid a bias
proportional to speed. The spectrum shape is not affected by
this bias, which only shifts the power spectrum peak along
fast-time frequency dimension. Due to the target movement,
the instantaneous beat frequency in Eq. (2) varies during
the acquisition. The movement during one pulse acquisition,
through the fast-time dependent instantaneous frequency
fintra, is named intra-pulse RCM, whereas the pulse-to-pulse
movement through the slow-time dependent instantaneous
frequency finter is named inter-pulse RCM [7].

First, intra-pulse RCM can be neglected in an automotive
radar context. Indeed, using automotive radar parameters given
in Table 1, the range resolution is ∆R = 40 cm and the
intra-pulse range migration is VrTacq ≈ 4mm at Vr =
300 km·h−1.

On the contrary, inter-pulse RCM effect can’t be
neglected in automotive scenario. Multiple range cells can
be crossed during the full sequence acquisition. This case
can be encountered on highways with two vehicles, both at
130 km·h−1 but with opposite directions: for radar parameters
in Table 1 the travelled distance is VrTint ≈ 1.8m at Vr =
260 km·h−1, while the range resolution is ∆R = 40 cm. From
Eq. (2), the sampled signal model given by Eq. (4) is then
reduced to the presence of inter-pulse RCM only:

sRCM[n,m] =

A exp (i2π ((fIF + finter[m])nTs − fdopplermTPRT))
(6)

B. Number of migrated range bins

With no RCM, the fast-time peak was initially centered
around fIF after fast-time processing in Eq. (5). Assuming
only inter-pulse RCM, as in Eq. (6), the peak is incrementally
shifted by the range variation VrmTPRT at each new pulse m.
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Therefore, the number of migrated range cells during the CPI
is given by Eq. (7).

nRCM =
VrTint

∆R
(7)

By refactoring Eq. (6) with respect to pulse index m and
performing a slow-time DFT only, it can be shown that the
RCM also creates a Doppler cell migration. The number of
migrated Doppler bins in slow-time frequency dimension is
the same as the number of migrated range bins [5], [6], [8].

C. Coherent processing loss

The pulse-compressed and Doppler-processed fast-chirp
signal model leads to focused energy in one range and
speed bin in Eq. (5) when no RCM is involved. Windowing
is a technique used to avoid spectral leakage, i.e. high
sidelobes creating ghost targets. Sampled pulse train results
in a two-dimensional signal (Eq. (6)), so two windows can be
applied independently on the two dimensions:

sw[n,m] = s[n,m]wft[n]wst[m] (8)

The 2D spectrum is obtained by the 2D DFT of the signal given
by Eq. (8), denoted Sw[N,M ]. The maximum peak power in
the spectrum of a windowed pure tone signal is the coherent
integration gain of the window [9]:

W [0]2 =

(
Nk−1∑
k=0

w(k)

)2

(9)

where w is an arbitrary window and W its DFT:

W [K] =

Nk−1∑
k=0

w(k) exp

(
−i2π

kK

Nk

)
(10)

Then, without RCM, the peak power of windowed fast-chirp
signal model in Eq. (8) is |Sw[Nr,Md]|2 = (AWft(0)Wst(0))

2,
e.g., when two rectangular windows are applied on the
signal, the peak power in Eq. (5) is (ANsNc)

2, which is
the optimum coherent power gain that can be achieved [9].
The fast-chirp range-Doppler decoupling assumption led to
an optimal coherent integration in both fast and slow-time
dimensions. The 2D DFT is equivalent to a matched filter
h[n,m] = exp

(
−i2π

(
nNr
Ns

+ mMd
Nc

))
maximizing the output

power at the matching frequency bins (Nr,Md) [4].
When considering the RCM in signal model given by Eq.

(6), the 2D spectrum is smeared through multiple range and
speed resolution cells, so the energy is no more concentrated
and the coherent peak power is decreased. The peak spreading
after 2D DFT is illustrated in Fig. 2. Signal model given by
Eq. (6) has been used to simulate a point target with (Fig.
2a) and without (Fig. 2b) RCM. Modulation parameters from
Table 1 and target parameters R0 = 5m and Vr = 55m·s−1

have been used in the simulation. The initial maximum peak
power position is marked with a white cross in Fig. 2a and
the detected maximum peak power after RCM is marked with
a black cross in Fig. 2b. Besides the biases of the range and
speed estimates, the peak power difference of 11.5 dB exhibits
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Fig. 2. Simulated range Doppler map using parameters in Table 1: (a) without
RCM; (b) with RCM

the energy spreading. The matched filter without RCM h[n,m]
is no more the optimum matched filter in case of RCM. The
matched filter accounting for the pulse-to-pulse range variation
is hRCM[n,m] = h[n,m] exp

(
−i2παnTs

fl

mMd
Nc

)
[4]. Hence,

the output power of the 2D DFT with RCM is necessarily
lower than the spectrum without RCM, leading to a loss of
apparent SNR in the range-Doppler map:

∀N,M, |SRCM[N,M ]|2 ≤ (AWft[0]Wst[0])
2 (11)

IV. RANGE CELL MIGRATION PROCESSING LOSS
MITIGATION USING WINDOWING

A. Simulated processing loss

Finding an insightful expression of range-Doppler
spectrum SRCM to estimate processing loss due to RCM is
complicated, especially with fast and slow-time windowing.
To estimate this processing loss, the signal model in Eq. (6)
is simulated with RCM, then the maximum peak power is
estimated after range-Doppler processing and compared to the
expected peak power for the applied windows. In other words,
this is equivalent to compare the output powers of matched
filters h and hRCM. The detailed procedure is described below:

1) Generate discrete signal sRCM as in Eq. (6) with a
specified number of migrated range bins nRCM (Eq. (7)),
and apply fast and slow-time windows wft and wst as
in Eq. (8) to get windowed signal sw,

2) Compute Sw, the 2D DFT of sw,
3) Estimate the maximum peak power in 2D spectrum Sw:

PRCM
peak = max

N,M
|Sw[N,M ]|2 (12)

4) Compute processing loss by comparing the estimated
peak power PRCM

peak with expected peak power without
RCM P expected

peak = (AWft[0]Wst[0])
2:

PL =
PRCM

peak

P expected
peak

(13)

In step 2, the spectral precision is increased by zero-padding
with 8 times more samples in both fast and slow-time
dimensions than the number of samples and pulses indicated
in Table 1. The scalloping loss [9] after zero-padding is less
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Fig. 3. RCM processing loss for some fast and slow-time windows

than 6× 10−2 dB for all simulations results presented in Fig.
3 and analysed in section IV-C, so only RCM processing loss
effect is assessed. Three pairs of fast and slow-time windows
are chosen, and simulated processing loss results are shown in
solid lines in Fig. 3.

B. Asymptotic approximation of RCM processing loss

Section IV-A described the RCM processing loss obtained
through simulations. An asymptotic expression for nRCM →
+∞ can be inferred from the roll-off rate of −20 dB/decade
measured from Fig. 3.

RCM loss (dB) ≈ −20 log10 (nRCMCPLftCPLst) (14)

where CPLft and CPLst are respectively the coherent
processing loss (CPL) of fast and slow-time windows wft and
wst. The CPL of a discrete N -lengthed window w is defined as
CPL = W (0)

N [9]. The CPL represents the peak power loss of
an arbitrary window against a rectangular one with the same
length. A high coherent processing loss (CPL → 0) mitigates
the RCM processing loss at high speed, but the equivalent
noise bandwidth as well as the beamwidth of the window are
degraded. The SNR processing gains and frequency resolutions
from the fast and slow-time windows are therefore deteriorated
for severely tapered signal. The asymptotic RCM processing
loss results are shown in dotted lines in Fig. 3.

C. Analysis of RCM processing loss in the automotive context

The results of simulated processing losses with 3 pairs
of fast and slow-time windows are shown in Fig. 3. First,
the RCM processing loss is verified when no apodization is
applied on both dimensions, i.e. using rectangular windows
(black solid line in Fig. 3). From simulated curves, the
RCM processing loss with rectangular windows is −1.2 dB
when nRCM = 1. From Eq. (7) and modulation parameters
in Table 1, one range bin of RCM corresponds to a limit
speed of Vlim = 56.2 km·h−1. The 3 dB loss is attained
at 90 km·h−1. When processing gain is halved (i.e. 3 dB
loss), the maximum detection range is reduced by 15.9%.
Both radial speeds are encountered in practical automotive
radar operation on the road. In the next example, slow-time
only is weighted by using a Hann window (red solid line
in Fig. 3). One full range bin migration induces −0.51 dB
and the 3 dB loss is reached at 149 km·h−1. The use of

only one window mitigates the RCM processing loss in the
usual automotive speed range compared to the non-windowed
case. Windowing both dimensions mitigates efficiently the
phenomenon. Dolph-Chebyshev windowing is a relevant
choice as the dynamic of main lobe to sidelobes is set to a
targeted value while minimizing the main lobe width [9]. Weak
power targets buried in the spectral leakage of more powerful
targets can be detected with Dolph-Chebyshev weighting, at
the expense of a degraded resolution. In the treated example,
a 55 dB and 50 dB sidelobes attenuation are chosen in fast and
slow-time respectively (blue solid line in Fig. 3), leading to a
loss of −0.26 dB at nRCM = 1 and a 3 dB loss at 228 km·h−1.

V. CONCLUSION

High resolution in both range and speed achieved by
automotive radar results in a range cell migration, with
velocities reachable in common traffic scenarios. Fast-chirp
signal model relies on a decoupled range and Doppler
dependency in fast and slow-time dimensions, allowing
separation between range and speed estimation. A more
relevant signal model includes Doppler dependency across the
fast-time dimension and the pulse-to-pulse range variation in
the slow-time dimension. This article shows the processing loss
related to the peak spreading induced by the range migration
during the CPI. Windowing the acquired sampled signal in
both fast and slow-time does not influence the misestimation
of the range and speed. However, the weightings penalize the
most migrated ranges, which limits the smearing. The RCM
processing loss expected for a pair of windows is significantly
mitigated and asymptotically depends on coherent processing
losses. The weighting-dependent RCM processing loss studied
in this paper serves as one parameter in the radar equation,
and should be compared to the others figures of merit of the
windows to achieve a targeted maximum detection range.
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