Machine learning-based inverse problem solving for identifying heat input in tungsten inert gas (tig) welding - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Machine learning-based inverse problem solving for identifying heat input in tungsten inert gas (tig) welding

Issam Bendaoud
  • Fonction : Auteur
  • PersonId : 1306512
Sébastien Rouquette
Fabien Soulié

Résumé

Thermal cycles occurring during arc welding affect the mechanical properties of the welded parts. Fast heating and cooling cause high thermal gradients which induce plastic flow and, then, residual stresses. Metallurgical changes can also take place according to the material composition. Thermal cycles are a consequence of arc welding heat input. In order predict the thermal field, it is necessary to estimate accurately the thermal loading (heat source). In this work, a methodology is proposed for a fast estimation of heat source parameters based from non-intrusive data (weld pool contour). A surrogate model is established to link the weld pool contour to the heat source parameters. Thus the computational time required for the parameter estimation was significantly reduced in the optimization loop. This methodology is applied to the gas tungsten arc welding process on a thin stainless steel plate with a fully penetrated weld pool. The weld pool was observed on the back side with a camera in order to avoid electrical arc disruption.
Fichier principal
Vignette du fichier
Conf_Boutaleb_al_ECCOMAS_2024.pdf (1.6 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04803320 , version 1 (25-11-2024)

Identifiants

  • HAL Id : hal-04803320 , version 1

Citer

Zaid Boutaleb, Issam Bendaoud, Sébastien Rouquette, Fabien Soulié. Machine learning-based inverse problem solving for identifying heat input in tungsten inert gas (tig) welding. ECCOMAS 2024, Jun 2024, Lisbonne, Portugal. ⟨hal-04803320⟩
0 Consultations
0 Téléchargements

Partager

More