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Abstract
ASVspoof 5 is the fifth edition in a series of challenges

which promote the study of speech spoofing and deepfake at-
tacks, and the design of detection solutions. Compared to pre-
vious challenges, the ASVspoof 5 database is built from crowd-
sourced data collected from a vastly greater number of speakers
in diverse acoustic conditions. Attacks, also crowdsourced, are
generated and tested using surrogate detection models, while
adversarial attacks are incorporated for the first time. New met-
rics support the evaluation of spoofing-robust automatic speaker
verification (SASV) as well as stand-alone detection solutions,
i.e., countermeasures without ASV. We describe the two chal-
lenge tracks, the new database, the evaluation metrics, base-
lines, and the evaluation platform, and present a summary of
the results. Attacks significantly compromise the baseline sys-
tems, while submissions bring substantial improvements.

1. Introduction
The ASVspoof initiative was conceived to foster progress in the
development of detection solutions, also referred to as counter-
measures (CMs) and presentation attack detection (PAD) solu-
tions, to discriminate between bona fide and spoofed or deep-
fake speech utterances. ASVspoof 5 is the fifth edition in a
series of previously-biennial challenges [1–4] and has evolved
in terms of evaluation tracks, the database and spoofing attacks,
and evaluation metrics.

While the 2021 challenge edition involved distinct logical
access (LA), physical access (PA), and speech deepfake (DF)
sub-tasks [5], ASVspoof 5 takes the form of a single, com-
bined LA and DF task, but encompasses two tracks: (i) stand-
alone spoofing and speech deepfake detection (CM, no ASV)
and (ii) spoofing-robust automatic speaker verification (SASV).
Track 1 is similar to the DF track of the previous 2021 chal-
lenge. It reflects a scenario in which an attacker has access to
the voice data of a targeted victim, e.g. data posted to social
media. The attacker is assumed to use public data and speech
deepfake technology to generate spoofed speech resembling the
voice of the victim and then, e.g., to re-post generated record-
ings to social media to defame the victim. Speech data, both
bona fide and spoofed, may be compressed using conventional
codecs (e.g., mp3) or contemporary neural codecs.

Track 2 shares the same goal as the LA sub-task of pre-
vious ASVspoof editions and the SASV 2022 Challenge [6].
Track 2 assumes a telephony scenario where synthetic and con-
verted speech are injected into a communication system (e.g., a
telephone line) without any acoustic propagation. Participants
can elect to develop single classifiers or separate, fused ASV

and CM sub-systems. They can use either a pre-trained ASV
sub-system provided by the organisers or can optimise their own
bespoke system.

Participants are furthermore provided with an entirely
new ASVspoof 5 database. Source data and attacks, both
crowdsourced, encompass greater acoustic variation than ear-
lier ASVspoof databases. The objective is to evaluate the
threat of spoofing and deepfake attacks forged using non-studio-
quality data and optimised to compromise not just ASV sub-
systems but also CM sub-systems. Source data, collected
from a vastly greater number of speakers than for earlier
ASVspoof databases, is extracted from the Multilingual Lib-
rispeech (MLS) English partition [7]. In addition to the use
of new spoofing attacks implemented using the latest text-to-
speech (TTS) synthesis and voice conversion (VC) algorithms,
adversarial attacks are introduced for the first time and com-
bined with spoofing attacks.

Also new is an open condition for both Tracks 1 and 2. In
contrast to the traditional closed condition, for which partici-
pants are restricted to use the specified data protocol, for the
open condition participants have the opportunity to use exter-
nal data and pre-trained speech foundation models, subject to
there being no overlap between training data (i.e. that used for
training foundation models) and challenge evaluation data.

A new suite of evaluation metrics is also introduced. In-
spired by the NIST SREs [8], we adopt the minimum detec-
tion cost function (minDCF) as the primary metric for Track 1.
The log-likelihood-ratio cost function (Cllr) and actual DCF are
also used to gauge not only discrimination but also calibration
performance. The recently proposed architecture-agnostic DCF
(a-DCF) [9] is used as the primary metric for Track 2, with the
tandem detection cost function (t-DCF) [10] and tandem equal
error rate (t-EER) [11] being complementary.

We present an overview of the database, the two challenge
tracks, common systems and baselines, and the evaluation met-
rics. Spoofing and deepfake attacks and their performance in
fooling an ASV system are also described. Finally, we report
a summary of system performance for the baselines and those
submitted by 54 challenge participants.

2. Database
The new ASVspoof 5 database has evolved in two aspects:
source data and attack algorithms. To evaluate the performance
of CM and SASV systems in detecting spoofing attacks forged
using non-studio-quality data, the new database is constructed
using data sourced from the MLS English dataset [7]. The
latter incorporates data from more than 4k speakers, recorded
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Table 1: Summary of ASVspoof 5 database key statistics. The
number of target speakers is listed in braces. Target speakers
relate to Track 2 (T2) only and are not defined for Track 1 (T1).
Figures do not include enrollment utterances.

#. speaker #. utterances #. spf.

Female Male Bona fide Spoofed attack

Trn. 196 204 18,797 163,560 8
Dev. 392 (196) 393 (202) 31,334 109,616 8

Eva. T1 370 367 138,688 542,086 16
Eva. T2 370 (194) 367 (173) 100,708 395,924 16

with diverse devices. This is in contrast to the source database
(VCTK [12]) of previous challenges, which contains data col-
lected from 100 speakers in a hemi-anechoic chamber.

The second major evolution is the use of stronger spoof-
ing attacks. In addition to using the latest TTS and VC algo-
rithms, spoofing attacks are tuned to fool not only ASV, but
also CM surrogate sub-systems. This is a key difference to pre-
vious ASVspoof databases which were constructed by verify-
ing that spoofing attack data were successful in manipulating an
ASV sub-system only. Adversarial attacks, applied to augment
the threat of spoofing attacks, were created using Malafide [13]
and Malacopula [14] filtering. The former aims to compromise
the performance of CMs, while the latter escalates the threat of
spoofed data to ASV. Last, codecs, including neural-network-
based variants, are applied to both bona fide and spoofed data.

The database was constructed in three steps with the help of
two groups of data contributors. First, the MLS English dataset
was divided into three disjoint partitions: A, B, and C. Data
contributors in the first group used partition A to build TTS
systems. We used the resulting data to train surrogate ASV
and CM systems (described in Section 4). Data contributors
of the second group then used partition B to build new TTS
and VC systems. The latter are tuned with the use of surrogate
CM and ASV systems to produce cloned voices which success-
fully fool both sub-systems. Finally, tuned TTS and VC systems
were used to clone the voices of target speakers in partition C.
A subset of TTS and VC systems were further combined with
Malafide and Malacopula filtering. Note that, to avoid potential
data leakage, spoofing attacks and surrogate systems were built
with privileged protocols which were not shared with challenge
participants.

Bona fide data in the training set is sourced from speakers in
partition A, whereas spoofed data is generated using TTS sys-
tems built by the first group of data contributors. Bona fide data
in the development and evaluation sets are sourced from parti-
tion C, whereas spoofed data is created by the second group of
data contributors. The speakers in the ASVspoof 5 challenge
training, development, and evaluation sets are disjoint. A sum-
mary of key statistics is shown in Table 1.1

The spoofing attacks in training, development, and evalu-
ation sets are also disjoint. A brief summary of each attack
is shown in Table 2. In addition to legacy TTS and VC algo-
rithms (e.g., MaryTTS [16]), ASVspoof 5 spoofing attacks were
generated using the latest DNN-based methods (e.g., ZMM-
TTS [17]). Two pre-trained systems, namely YourTTS [18] and

1The MLS English dataset is derived from the same source as Lib-
rispeech [15]. Because challenge participants in the open condition
were permitted to use models pre-trained using Librispeech, we re-
moved all data collected from speakers appearing in the evaluation set
when they also appear in Librispeech.

Table 2: Summary of spoofing attacks. A01-A08, A09-A16,
and A17-A32 are in training, development, and evaluation sets,
respectively. AT denotes adversarial attack using Malafide,
Malacopula, or both.

ID Type Algorithm ID Type Algorithm

A01 TTS GlowTTS [20] A17 TTS ZMM-TTS [17]
A02 TTS variant of A01 A18 AT A17+Malafide
A03 TTS variant of A01 A19 TTS MaryTTS [16]
A04 TTS GradTTS [21] A20 AT A12+Malafide
A05 TTS variant of A04 A21 TTS A09+BigVGAN [22]
A06 TTS variant of A04 A22 TTS variant of A09 [23]
A07 TTS FastPitch [24] A23 AT A09+Malafide
A08 TTS VITS [25] A24 VC In-house ASR-based
A09 TTS ToucanTTS [26] A25 VC DiffVC [27]
A10 TTS A09+HifiGANv2 [28] A26 VC A16+original genuine noise
A11 TTS Tacotron2 [29] A27 AT A26+Malacopula
A12 TTS In-house unit-select A28 TTS Pre-trained YourTTS [18]
A13 VC StarGANv2-VC [30] A29 TTS Pre-trained XTTS [19]
A14 TTS YourTTS [18] A30 AT A18+Malafide+Malacopula
A15 VC VAE-GAN [31] A31 AT A22+Malacopula
A16 VC In-house ASR-based A32 AT A25+Malacopula

Table 3: Summary of codec and compression conditions in eval-
uation sets of Track 1 (☆) and Track 2 (★).

Codec Bandwidth Bitrate range Usage

C00 - 16 kHz - ☆★
C01 opus 16 kHz 6.0 - 30.0 ☆★
C02 amr 16 kHz 6.6 - 23.05 ☆★
C03 speex 16 kHz 5.75 - 34.20 ☆★
C04 Encodec [32] 16 kHz 1.5 - 24.0 ☆
C05 mp3 16 kHz 45 - 256 ☆
C06 m4a 16 kHz 16 - 128 ☆
C07 mp3+Encodec 16 kHz varied ☆
C08 opus 8 kHz 4.0 - 20.0 ☆★
C09 amr 8 kHz 4.75 - 12.20 ☆★
C10 speex 8 kHz 3.95 - 24.60 ☆★
C11 varied 8 kHz varied ☆★

XTTS [19], were also used for the cloning of target speaker
voices in a zero-shot manner.

To evaluate the performance of CM and SASV systems
when both bona fide and spoofed data are (lossy) encoded or
compressed, evaluation data was treated with the set of codecs
listed in Table 3. For condition C00, there is no encoding or
compression. For all other conditions, bona fide and spoofed
utterances were treated with one of the codecs C01-C11. C01-
C07 operate with a 16 kHz sampling rate, while C08-C11 oper-
ate in an 8 kHz narrow band setting. To create narrow band data,
bona fide and spoofed data were down-sampled to 8 kHz, pro-
cessed with the codec, and then up-sampled to 16 kHz. All data
are saved in FLAC format with a sampling rate of 16 kHz. For
all utterances in the evaluation data, leading and trailing non-
speech segments in the evaluation set utterances were removed.

Participants in the closed condition of both tracks were re-
quired to build their systems using data in the training and de-
velopment sets only. For both tracks, participants in the open
condition were permitted to use external training data, but only
under the condition that there is no overlap with the challenge
database. The use of pre-trained speech foundation models built
using a selection of publicly available databases [33, §4.2] was
allowed. The evaluation sets for both tracks comprise the same
set of utterances, except that for the four codec conditions high-
lighted in Table 3 which were excluded in Track 2.
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3. Performance measures
This section provides a brief summary of the performance mea-
sures used in the two challenge tracks.

3.1. Track 1: from EER to DCF

Systems submitted to Track 1 were requried to assign a real-
valued bona fide-spoof detection score to each utterance. Dif-
ferent to past ASVspoof editions for which the EER was used as
the primary metric, ASVspoof 5 adopts the normalized detec-
tion cost function (DCF) [8] for Track 1. While further details
are available in [33, Appendix], the DCF has the simple form

DCF(τcm) = β ⋅ P
cm
miss(τcm) + P

cm
fa (τcm), (1)

where P
cm
miss(τcm) is the miss rate (false rejection rate for bona

fide utterances) and P
cm
fa (τcm) is the false alarm rate (false ac-

ceptance rate for spoofed utterances). Both are functions of a
detection threshold, τcm, and the constant β in (1) is defined as

β =
Cmiss

Cfa
⋅
1 − πspf

πspf
, (2)

where Cmiss and Cfa are, respectively, the costs of misses and
false alarms, and where πspf is the asserted prior probability of
spoofing attacks.2 For the scenario envisioned in Track 1 we
assume that, compared to spoofed utterances, bona fide speech
utterances are, in general, far more likely in practice (low πspf).
But, when encountered but not detected, the relative cost is high.
We set Cmiss = 1, Cfa = 10, πspf = 0.05, which gives β ≈ 1.90.

The normalized DCF in (1) is used to compute both min-
imum and actual DCFs. The former is the primary metric for
Track 1, defined as minDCF = minτcm DCF(τcm). The lat-
ter, actDCF = DCF(τBayes), is the DCF evaluated at a fixed
threshold τBayes = − log(β) under the assumption that detec-
tion scores can be interpreted as log-likelihood ratios (LLRs).
Whereas the minDCF measures performance using an ‘oracle’
threshold (set based on ground-truth), the actDCF measures the
realised cost obtained by setting the threshold to τBayes [8]. Note
that this is meaningful only when scores can be interpreted as
calibrated LLRs [34,35]. Similar to past challenge editions, the
submission of LLR scores was not required—rather, it was en-
couraged for the first time.3

Another complementary metric, the cost of log-likelihood
ratios (Cllr) [34], was used to assess the quality of detection
scores when interpreted as LLRs

Cllr =
1

2 log 2
( 1

∣B∣ ∑
si∈B

log (1+e−si)+ 1

∣S ∣ ∑
sj∈S

log (1+esj )),

(3)
where B = {si} and S = {sj} denote, respectively, the sets
of bona fide and spoofed trial scores. The lower Cllr, the better
calibrated (and more discriminative) the scores. In addition to
minDCF, actDCF, and Cllr, the EER is also reported.

3.2. Track 2: from SASV-EER to a-DCF

For Track 2, participants could submit either single real-valued
SASV scores or a triplet of scores which, in addition to SASV

2Since we have only two classes, it follows that 1 − πspf is the as-
serted prior of the bona fide class.

3Raw detection scores can be post-processed into LLRs using im-
plementations such as [35] in order to reduce actDCF. Note, however,
that any order-preserving score calibration does not affect the primary
minDCF metric.

scores, contains spoofing (CM sub-system) and speaker (ASV
sub-system) detection scores. While the former can be pro-
duced by any model architecture which outputs a single detec-
tion score, the latter assumes a specific tandem (cascade) archi-
tecture [10] consisting of two clearly-identified CM and ASV
sub-systems. In this case, SASV scores are generated by com-
bining sub-systems outputs (e.g., embeddings or scores) using
an arbitrary combination strategy designed by the participants.

For both types of submission, SASV scores are used to
compute the primary challenge metric. Track 2 takes a step
forward from EER-based metrics used in the first SASV chal-
lenge [6] to DCF-based metrics. Building upon the two-class
DCF (1), a normalized architecture-agnostic detection cost
function (a-DCF) [9] was recently proposed and is defined as

a-DCF(τsasv) =αP sasv
miss(τsasv) + (1 − γ)P sasv

fa,non(τsasv)
+ γP

sasv
fa,spf(τsasv),

(4)

where P
sasv
miss(τsasv) is the ASV miss (target speaker false rejec-

tion) rate and where P
sasv
fa,non(τsasv) and P

sasv
fa,spf(τsasv) are the false

alarm (false acceptance) rates for non-targets and spoofing at-
tacks, respectively. All three error rates are functions of an
SASV threshold τsasv. The constants α and γ are given by

α =
Cmissπtar

Cfa,nonπnon + Cfa,spfπspf
,

γ =
Cfa,spfπspf

Cfa,nonπnon + Cfa,spfπspf
,

(5)

where Cmiss, Cfa,non, and Cfa,spoof are the costs of a miss, the
false acceptance of a non-target speaker, and the false accep-
tance of a spoofing attack, and where πtar, πnon, and πspoof are the
asserted priors of targets, non-targets (zero-effort impostors),
and spoofing attacks. The assumptions are similar to those for
Track 1. We set πtar = 0.9405, πnon = 0.0095, πspf = 0.05,
Cmiss = 1 and Cfa,non = Cfa,spf = 10. This gives α ≈ 1.58
and γ ≈ 0.84. The primary metric for Track 2 is the minimum
a-DCF, min a-DCF = minτsasv a-DCF(τsasv).

For submissions which provide clearly-identified ASV and
CM sub-systems, the ASV-constrained minimum tandem detec-
tion cost function (t-DCF) [10] and the tandem equal error
rate (t-EER) [11] are also reported. Whereas the former has
served as the primary metric since ASVspoof 2019, the latter
provides a complementary parameter-free measure of class dis-
crimination. The t-DCF metric is computed using the same
costs and priors as above and using ASV scores produced by
a common ASV system (see Section 4) in place of scores pro-
vided the participant. This allows computation of the minimum
‘ASV-constrained’ t-DCF in the same way as for the previous
ASVspoof challenges and enables the comparison of different
CM sub-systems when they are combined with a common ASV
sub-system.

For computation of the t-EER metric, both the CM and
ASV sub-system scores are used to obtain a single concurrent t-
EER value, denoted by t-EER×. It has a simple interpretation as
the error rate at a unique pair of ASV and CM thresholds, τ× ∶=
(τ×

asv, τ
×
cm), at which the miss rate and the two types of false

alarm rates (one for spoofing attacks, the other for non-targets)
are equal: t-EER× = P

tdm
miss(τ×) = P

tdm
fa,non(τ×) = P

tdm
fa,spoof(τ×).

The superscript ‘tdm’ is used to emphasize the assumed tandem
architecture. The t-EER can be seen as a generalisation of the
conventional two-class, single system EER which provides an
application-agnostic discrimination measure.
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Figure 1: ASV EERs for the common ASV system and evalua-
tion data. Results are pooled over the set of codec conditions.

4. Common ASV, baseline and surrogate
systems

4.1. Common ASV system

The common ASV system uses an ECAPA-TDNN speaker en-
coder [36] and cosine similarity scoring. The ECAPA-TDNN
model is trained using the training partitions of the VoxCeleb 1
and 2 databases [37]. Cosine scores are subsequently nor-
malised using s-norm. Figure 1 illustrates ASV EERs for the
evaluation data. When discriminating between bona fide target
and non-target data ( leftmost bar), the EER is 5% . However,
the EERs are much higher when bona fide non-target data is
replaced with spoofing attacks. Note that, although A25 is the
least effective attack, it proves more threatening when enhanced
in the form of an adversarial attack A32.

4.2. Baseline systems

For Track 1 there are two CM baseline systems: RawNet2 [38]
(B01) and AASIST [39] (B02). Both systems are end-to-
end,operating directly on raw waveforms of 4 seconds duration
(64,000 samples). RawNet2 is composed of a fixed bank of 20
sinc filters and six residual blocks followed by gated recurrent
units, which convert frame-level representations to utterance-
level representations. Output scores are generated using fully-
connected layers. AASIST uses a RawNet2-based encoder [38]
to extract spectro-temporal features from the input waveform.
A spectro-temporal heterogeneous graph attention layers and
max graph operations are then used to integrate temporal and
spectral representations. CM output scores are generated using
a readout operation and a linear output layer. Both baselines
were trained with a weighted cross-entropy loss for binary clas-
sification.

There are two baselines for Track 2: a fusion-based sys-
tem [6] (B03) and a single integrated system [40] (B04). B03,
adopted from the SASV 2022 challenge baseline, is a fusion of
the common ASV system and the Track 1 AASIST baseline,
using an LLR-based fusion tool [41]. B04, which is based on
MFA-Conformer [42], extracts a single embedding from the in-
put waveform and produces a single SASV score. It is trained
in three stages: speaker classification-based pre-training, copy
synthesis training [43] with adapted SASV loss functions, and
in-domain fine-tuning. VoxCeleb and copy synthesis data are
used in the first and second stages, respectively. In-domain fine-
tuning is conducted using ASVspoof 5 training data.

Source codes for all baselines are accessible from the
ASVspoof 5 Github repository.4

4github.com/asvspoof-challenge/asvspoof5
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Figure 2: A stacked bar chart showing the number of CodaLab
submissions to Tracks 1 and 2 for the 26-day progress and 3-
day evaluation phases.

4.3. Surrogate systems

The surrogate ASV system is based on ECAPA-TDNN and a
probabilistic linear discriminant analysis scoring backend [44].
Surrogate CM systems include AASIST, RawNet2, and LCNNs
with LFCC features, all of which are trained using bona fide
data in MLS partition A and spoofing attacks created by the first
group of data contributors (see Section 2), i.e. without attacks
contained in either the development or evaluation sets.

5. Evaluation platform
ASVspoof 5 used the CodaLab website through which partic-
ipants could submit detection scores and receive results. The
challenge was run in two phases (with an additional post-
evaluation phase not addressed in this paper). During the first
26-day progress phase, participants could make up to four sub-
missions per day. Results derived from an evaluation subset
(the progress subset) were made available to participants who
could then opt to submit their results to an anonymised leader-
board. The evaluation phase ran for only a few days, during
which participants could make only a single submission. Eval-
uation submissions were evaluated using the whole evaluation
set.

Figure 2 illustrates the number of submissions during the
progress and evaluation phases. For Track 1, there were a com-
parable number of submissions to closed and open conditions.
In contrast, for Track 2, the number of submissions to the open
condition outstripped those to the closed condition, possibly an
indication of the need for additional data to support the training
of SASV systems.

6. Challenge results
6.1. Track 1

Results for Track 1 are listed in Table 4. The baseline systems
achieve minDCFs no lower than 0.7 and EERs no lower than
29%. Even if RawNet2 and AASIST both achieve promising
results in the case of previous ASVspoof challenge databases,
results for the ASVspoof 5 database are far worse, and are likely
caused by the use of non-studio-quality source data as well as

4



Table 4: Track 1 evaluation results. Ensemble systems and single systems are marked by • and ◦, respectively. Open-condition
submissions using and not using pre-trained self-supervised models are marked by ▲ and △, respectively. The absence of a Team ID
indicates submissions for which a system description was not received. Submissions made after the initial deadline are underscored.

Closed condition

# ID minDCF actDCF Cllr EER # ID minDCF actDCF Cllr EER

• 1 T32 0.2436 0.9956 0.9458 8.61 18 - 0.5990 0.9666 6.6313 24.12
• 2 T47 0.2660 0.3380 0.6091 9.18 19 - 0.6086 0.6091 0.8265 28.65
• 3 T24 0.2975 0.2976 0.4182 10.43 • 20 T07 0.6285 1.0000 1.0752 25.47
• 4 T45 0.3948 1.0000 0.8515 14.33 • 21 T27 0.6339 1.0937 1.0808 26.17
• 5 T13 0.4025 0.4218 0.5238 14.75 22 - 0.6463 0.8388 2.3251 26.45

6 - 0.4079 0.4299 0.5512 14.16 • 23 T41 0.6543 0.7641 0.9184 26.28
7 - 0.4390 0.6332 0.8531 17.09 ◦ 24 T06 0.6598 1.0000 1.1159 28.41

• 8 T46 0.4783 1.0000 1.0509 20.45 25 - 0.6617 0.9894 0.9562 27.31
• 9 T23 0.5312 1.0000 1.1171 20.13 ◦ 26 T14 0.6618 0.9307 2.4858 25.32
10 - 0.5340 1.0000 1.0228 19.10 27 - 0.6989 0.7006 1.6935 31.15
11 - 0.5357 0.9533 3.3069 22.67 ◦ 28 B02 0.7106 0.9298 4.0014 29.12

• 12 T35 0.5505 1.0000 1.1435 23.42 ◦ 29 T44 0.7997 1.0000 1.2774 35.15
13 - 0.5809 0.8537 4.0994 23.34 30 - 0.8165 1.0000 1.1236 44.94

◦ 14 T48 0.5813 0.9354 3.1923 23.63 ◦ 31 B01 0.8266 0.9922 4.0935 36.04
◦ 15 T19 0.5891 0.6883 1.3277 24.59 • 32 T54 0.8624 1.0000 1.1221 39.68
16 - 0.5895 1.0000 0.9351 23.93 ◦ 33 T53 0.9744 1.0539 2.4977 44.94
17 - 0.5899 0.7470 1.3798 22.58

Open condition

# ID minDCF actDCF Cllr EER # ID minDCF actDCF Cllr EER

•▲ 1 T45 0.0750 1.0000 0.7923 2.59 18 - 0.1949 0.2438 0.7028 7.05
•▲ 2 T36 0.0936 1.0000 0.8874 3.41 19 - 0.1966 1.0000 0.9327 6.80
•▲ 3 T27 0.0937 0.1375 0.1927 3.42 •▲ 20 T33 0.2021 0.6028 0.5560 7.01
•▲ 4 T23 0.1124 1.0000 0.9179 4.16 21 - 0.2148 1.0000 0.8124 7.43
•▲ 5 T43 0.1149 0.5729 0.9562 4.04 •▲ 22 T51 0.2236 1.0000 0.8011 7.72
•▲ 6 T13 0.1301 0.1415 0.3791 4.50 •▲ 23 T46 0.2245 1.0000 1.0308 9.36
•▲ 7 T06 0.1348 0.2170 0.3096 5.02 24 - 0.2573 1.0000 0.9955 9.28

8 - 0.1414 0.5288 0.6149 4.89 25 - 0.2642 0.7037 2.1892 10.32
◦▲ 9 T31 0.1499 0.2244 0.5559 5.56 •△ 26 T47 0.2660 0.3321 0.4932 9.18
•▲ 10 T29 0.1549 0.2052 0.7288 5.37 27 - 0.2668 0.2923 0.6194 9.59
•▲ 11 T35 0.1611 1.0000 1.0384 5.93 •▲ 28 T41 0.3010 0.3095 0.4773 10.45

12 - 0.1665 0.1669 0.2351 5.77 29 - 0.4121 0.4266 0.7185 14.25
•▲ 13 T21 0.1728 0.2392 0.9498 6.01 •▲ 30 T02 0.4845 1.0000 0.9332 17.08
◦▲ 14 T17 0.1729 1.0000 2.3217 5.99 ◦△ 31 T15 0.5112 0.6723 0.8858 22.24
◦▲ 15 T19 0.1743 0.3087 0.4757 6.06 32 - 0.6584 0.7451 1.1404 22.90

16 - 0.1840 1.0000 0.8764 6.35 33 - 0.7969 1.0000 0.9920 35.72
17 - 0.1933 1.0000 0.8342 6.67 ◦△ 34 T53 0.9744 1.0539 2.4977 44.94

more advanced spoofing and adversarial attacks.
Encouragingly, most submissions to the closed condition

outperform the baselines in terms of minDCF. The top-5 sub-
missions obtain minDCFs below 0.5 and EERs below 15%, a
relative improvement over the baselines of ∼50%. Similar to
the trend observed in previous challenge editions, submissions
using an ensemble of sub-systems tend to perform better.

Unsurprisingly, minDCF and EER values for the open con-
dition are lower than those for the closed condition. Notably,
most of the top-performing submissions use features extracted
using pre-trained, self-supervised learning (SSL) models, e.g.,
wav2vec 2.0 (base version) [45].

Despite the encouraging results, the top systems for both
conditions obtain actDCF values close or equal to 1.0. This
is because system outputs are ‘normalized’ to between 0 and
1 rather than being calibrated to approximate LLRs. Scores

are above the optimal Bayes decision threshold specified by
the priors and decision costs, which leads to P

cm
miss(τcm) =

0, P
cm
fa (τcm) = 1, and actDCF equal to 1.0. Cllr values are

also high, again a sign of poor calibration. In contrast, some
systems, such as T24 under the closed condition, are better cal-
ibrated.

6.2. Track 2

Results for Track 2 are listed in Table 5. The design of SASV
solutions is perhaps more technically demanding than that of
stand-alone CMs. This might account for the lower number of
submissions to Track 2. Performance for B03 is not dissimi-
lar to that of the reference system (REF) which is the same as
B03 except for the use of a CM sub-system which produces
random outputs. guessing CM sub-system. This indicates that
the CM sub-system of B03 does not provide information which
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Table 5: Track 2 evaluation results. Submissions with only SASV scores are not evaluated using min t-DCF and t-EER. Submissions
using a system ensemble and a single system are marked by • and ◦, respectively. Open-condition submissions using and not using
pre-trained self-supervised models are marked by ▲ and △, respectively. The absence of a Team ID indicates submissions for which
a system description was not received. Submissions made after the deadline are underscored. REF denotes the organisers’ ASV (§ 4)
without a CM.

Closed condition

# ID
min

a-DCF
min

t-DCF t-EER # ID
min

a-DCF
min

t-DCF t-EER

• 1 T45 0.2814 - - • 9 T23 0.4513 0.8279 49.34
• 2 T24 0.2954 0.6175 9.58 10 - 0.5130 - -
• 3 T47 0.3173 0.5261 7.49 ◦ 11 B04 0.5741 - -

4 - 0.3542 - - 12 - 0.6209 0.9073 25.39
5 - 0.3744 - - ◦ 13 B03 0.6806 0.9295 28.78
6 - 0.3893 0.7783 20.85 ◦ 14 REF 0.6869 - -
7 - 0.3896 - - 15 - 0.8985 - -
8 - 0.3971 0.7007 15.09

Open condition

# ID
min

a-DCF
min

t-DCF t-EER # ID
min

a-DCF
min

t-DCF t-EER

•▲ 1 T45 0.0756 - - 7 - 0.1797 0.5430 8.39
•▲ 2 T39 0.1156 0.4584 4.32 8 - 0.3896 - -
•▲ 3 T36 0.1203 0.4291 4.54 9 - 0.4581 - -
•▲ 4 T06 0.1295 0.4372 5.43 ◦△ 10 REF 0.6869 - -
◦▲ 5 T29 0.1410 0.4690 5.48 11 - 0.9134 - -
•▲ 6 T23 0.1492 0.4075 4.63

is useful to the rejection of spoofing attacks. The single inte-
grated B04 baseline performs better. However, these results do
not show that fusion-based solutions are inferior; all of the top-
performing submissions are based upon the fusion of ASV and
CM sub-systems, including T45.

Most submissions outperform the baselines. For the top-
3 submissions to the closed condition, the improvements are
∼50% relative to the best baseline in terms of min a-DCF. Sim-
ilar to findings for Track 1, submissions to the open condition
achieve better performance and the use of SSL-based features
is common among the top-performing submissions.

7. Conclusions
We present an outline of the ASVspoof 5 challenge which is
designed to support the evaluation of both stand-alone speech
spoofing and deepfake detection and SASV solutions. The fifth
edition was considerably more complex than its predecessors,
and included not only a new task, but also more challenging
crowdsourced data collected under variable conditions, spoof-
ing attacks generated with a variety of contemporary algorithms
tuned to fool surrogate ASV and CM sub-systems, and new ad-
versarial attacks. Despite the use of lower-quality data to create
spoofs and deepfakes, detection performance for the baseline
systems, all top-performing systems reported in recent years, is
relatively poor. Encouragingly, results for most challenge sub-
missions outperform the challenge baselines, sometimes by a
substantial margin. Results also reveal the hitherto ignored is-
sue of score calibration, an essential consideration if detection
solutions are deployed in practical scenarios. With a particu-
larly tight schedule for ASVspoof 5, more detailed analyses will
be presented at the workshop and reported in future work.
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[32] Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and
Yossi Adi, “High fidelity neural audio compression,”
Transactions on Machine Learning Research, 2023, Fea-
tured Certification, Reproducibility Certification.

[33] Hector Delgado, Nicholas Evans, Jee-weon Jung,
Tomi Kinnunen, Ivan Kukanov, Kong-Aik Lee,
Xuechen Liu, Hye-jin Shim, Md Sahidullah, Hem-
lata Tak, Massimiliano Todisco, Xin Wang, and
Junichi Yamagishi, “ASVspoof 5 evaluation plan
(phase 2),” https://www.asvspoof.org/file/
ASVspoof5___Evaluation_Plan_Phase2.pdf,
v0.6, accessed 23-July-2024.
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