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ABSTRACT

Physical neural networks (PNNs) are a class of neural-like networks that leverage the properties of physical systems to
perform computation. While PNNs are so far a niche research area with small-scale laboratory demonstrations, they
are arguably one of the most underappreciated important opportunities in modern artificial intelligence (AI). Could we
train AI models 1000x larger than current ones? Could we do this and also have them perform inference locally and
privately on edge devices, such as smartphones or sensors?
Research over the past few years has shown that the answer to all these questions is likely “textityes, with enough
research”: PNNs could one day radically change what is possible and practical for AI systems. To do this will
however require rethinking both how AI models work, and how they are trained – primarily by considering the
problems through the constraints of the underlying hardware physics. To train PNNs at large scale, many methods
including backpropagation-based and backpropagation-free approaches are now being explored. These methods
have various trade-offs, and so far no method has been shown to scale to the same scale and performance as the
backpropagation algorithm widely used in deep learning today. However, this is rapidly changing, and a diverse
ecosystem of training techniques provides clues for how PNNs may one day be utilized to create both more efficient
realizations of current-scale AI models, and to enable unprecedented-scale models.

Introduction
In recent years, artificial intelligence (AI) has profoundly influenced our daily lives through tools such
as personal assistant chatbots, and has been utilized in various scientific fields such as healthcare,
weather prediction, and material design to tackle some of the world’s most challenging questions. Recent
advancements in AI systems have been powered by the digital, silicon-based computing power of Graphics
Processing Units (GPUs) as well as the unprecedented abundance of data. AI systems continue to
evolve at an accelerated pace. With a clear trend toward increasingly larger models, the reliance on
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Figure 1. a Physical Neural Networks (PNNs), processing input data x⃗ using trainable parameters
θ⃗. PNNs can be constructed to realize computations isomorphic to those commonly found in artificial
neural networks, such as matrix-vector multiplications, or can sacrifice isomorphism for potential
speed/energy advantages, where the physical system is left to perform the computation it most naturally
performs. b Timeline of training methods for PNNs. The corresponding references of selected key
milestones and publications from left to right:3–38.

traditional digital GPUs is becoming untenable. The primary concerns are the high energy consumption
(number of operations per second per Watt), low throughput (number of samples processed per second),
and high latency caused by the separation of the memory and processing unit during the training and
inference phases of AI systems. Given the widening gap between, on the one hand, the rapid increase in
floating-point computation required for AI training and the slower improvements in computing hardware
traditionally predicted by Moore’s Law, and on the other hand the low data transfer rates between the
memory modules and the computational cores, there has been renewed interest in alternative computing
platforms, such as optical, photonics, and analog electronics. We collectively refer to these unconventional
computing platforms as analog physical neural networks (PNNs). Previous reviews have concentrated on
the domain-specific technological advancement, applications and inference capabilities of PNNs majorly in
optics1 and electronics2, among other media. In this article, we aim to explore the development of these
PNNs from a training perspective, as broadly as possible, from the ground up and agnostic to the domain.
We review methods that employ backpropagation—the learning mechanism most commonly used for
digital-electronic neural networks. Additionally, we investigate approaches that minimise digital-electronic
computation and leverage the inherent dynamics of the system to learn parameters of the analog system.
Finally, we examine local training algorithms that minimize some local objectives which might be easier to
implement without digital-electronic processing. Finally, we discuss the application of analog computers
in handling larger models and the strategies for efficient training.

Historical Overview of Analog Computing and PNNs
Artificial neural networks (ANNs) were originally used to model biological neural networks starting in
the 1930s39. The field gained momentum with the invention of the perceptron by Warren McCulloch
and Walter Pitts in 194339, followed by Frank Rosenblatt’s hardware implementation in 195740. These
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developments marked a shift towards using ANNs in machine learning, gradually deviating from their
biological origins.

A natural evolution from the perceptron is the adaptive linear neuron classifier, or ADALINE. A
key difference from the perceptron is that the linear activation function is used to train the weights,
while the step function is only used during the inference phase41. Hebbian Learning Rule, also known
as the Hebb Rule, was proposed by Donald O. Hebb42. Hebb’s rule can be described as a method of
determining how to adjust the weights of a model. According to this principle, the weight between two
neurons increases if the two neurons activate simultaneously and decreases if they activate separately.
Spike Timing-Dependent Plasticity (STDP)13,14 is a temporally asymmetric form of the Hebb Rule that
is triggered by tight temporal correlations between the pre- and postsynaptic neurons’ spikes. This type of
local and event-based learning requires no extra energy for non-local transmission, as is needed during the
training of ANNs. Based on this principle, spiking neural networks (SNNs), which have been proposed and
implemented on neuromorphic platforms, may be more energy-efficient than ANNs12,15,17,18. Another
milestone was the associative model proposed by Hopfield5. Hopfield’s approach illustrates the method of
collecting and retrieving memories based on the system’s attributed energy. The memories correspond
to the minima of the energy attributed to the system. In the early 1980s, two other promising learning
procedures for deep neural networks were proposed. One was Boltzmann Machines7 which performed
unsupervised contrastive learning. Another was backpropagation43 which is now a widely used learning
algorithm for training deep neural networks.

Despite the rapid advancement of artificial neural networks (ANNs) in digital processors, there has
now been a renewed interest in implementing these networks in analog systems (see Figure 1). This
idea was initially pursued in optical systems, such as holographic gratings44, and in electronic systems
with bipolar transistors10 as well as memristive-crossbar neural networks45. Reservoir computing (RC)
and Extreme Learning Machines (ELM) are two other historically important computational frameworks
widely implemented in various fields46. These frameworks treat PNNs as a non-trainable black-box that
non-linearly transforms input data. The PNN may have rich recurrent dynamics and thus can have
"memory" for time-dependent tasks (RC) or it may simply be a pure feed-forward system suitable for
static input data (ELM). RC was first introduced under the names "echo-state network"47 and "liquid
state machine"48. In RC, input data is transformed through a high-dimensional network of interconnected
nonlinear nodes—the reservoir. Usually, the RC output consists of a linear combination of node responses,
and importantly, only the weights of this final output layer are trained, making it resource-efficient and
reducing complexity by maintaining input and internal coupling weights constant. More importantly,
because only a simple output layer is trained, RC and ELMs can be thought of as the simplest trainable
framework for PNNs. Indeed, the reservoir can be any non-linear, sufficiently high-dimensional physical
system. Neurons are embedded in the physical system’s degrees of freedom, giving RC unprecedented
flexibility regarding physical implementation. Internal coupling is usually realized through the physical
system’s inherent interactions, and input weights correspond to coupling the system to an external
signal that drives the system’s various dimensions. Implementing the output layer is crucial and can
be realized either in hardware i.e. online with physical devices or in software i.e. offline via digital
weights that combine previously measured neuron states. RC and ELMs have been implemented on
a wide variety of physical substrates ranging from electronics49 and spintronics50, optics for using a
time-multiplexed approach51, frequency52,53 and spatial54,55 multiplexing, to exciton-polariton conden-
sates56 and mechanical substrates57. Recently, there have also been efforts for quantum RC proposals and
implementations to leverage the exponential scaling of the Hilbert space as a high-dimensional mapping
for information processing58–65. Most physical implementations of RC leverage software weights for their
high flexibility. Indeed, they provide single-shot learning via a simple matrix inversion, the ability to
leverage existing sensory data, particularly in the field of robotics and edge computing57,66 and easier
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integration with follow-up models that would leverage RC as an efficient physical pre-processor67. In
contrast, the implementation of hardware weights to fully exploit capabilities of the physical system
such as inference speed and latency54, hardware weights also offer potentially substantial energy savings
and scaling as an in-memory alternative to their software counterpart and require hardware-compatible
training strategies68,69. Moreover, depending on the physical substrate, additional challenges may arise,
particularly when it comes to memory-dependent tasks. These tasks imply that input information should
drive the physical system at a rate in accordance with its own intrinsic timescales, which can be challenging
for ultra-fast systems and entails fast modulation bandwidths.

Box1: PNNs
Physical Neural Networks (PNNs) are defined as physical systems involving weights (θ) that can be adjusted in order to learn and
perform a desired computing task. PNNs resemble neural networks, however at least part of the system is analog rather than digital,
meaning that part or all the input/output data is encoded continuously in a physical parameter, and the weights can also be physical,
with the ultimate goal of surpassing digital hardware in performance or efficiency. PNNs are divided into two categories, depending
on whether or not they mimic digital neural networks: isomorphic PNNs and broken-isomorphism PNNs, respectively. Isomorphic
PNNs perform mathematical transformations by designing hardware for strict, operation-by-operation mathematical isomorphism,
such as memristor crossbars for performing matrix-vector multiplications (see Fig. 1a). In contrast, broken-isomorphism PNNs break
mathematical isomorphism to directly train the hardware’s physical transformations30. One complication with broken-isomorphism
PNNs is that it is often unknown what features are required for universal computation or universal function approximation. The
notion of trainable broken-isomorphism PNNs emerged, in part, from untrained physical systems being used for machine learning:
physical reservoir computing46. There were also several theoretical proposals70–72 of broken-isomorphism PNNs prior to the general
framework and experimental demonstrations presented in Ref.30. Broken-isomorphism PNNs could potentially perform certain
computations much more efficiently than digital methods, leading to a path for more scalable, energy-efficient, and faster machine
learning. Minimizing the power consumption of a PNN will generally result in a reduction of the signal-to-noise ratio in the PNN,
even more strongly motivating the need to deal with noise. One strategy is to treat the stochasticity of the physical system as a
resource that can be harnessed in machine-learning applications that are fundamentally probabilistic, such as generative models73, 74

or Bayesian models75. Alternatively, one can train the PNN to perform deterministic inference tasks in a way that is resilient to
noise76, even in the limit where the signal-to-noise ratio is low (∼ 1) and quantum noise dominates77.

Training Techniques of PNNs

In-Silico Training
In-silico methods for training PNNs involve digitally emulating and optimizing the physical degrees
of freedom (θ) of the hardware, followed by deploying this optimized physical architecture25,70,78–86

during the inference phase, as summarized in box2. These methods employ physics-based forward models
and/or digital neural networks to create digital twins of PNNs within a computer environment, which are
optimized for a specific task. After this optimization process, the resulting PNN hardware is deployed for
the analog processing of new data.

In-silico training methods enable rapid exploration, validation and testing of various PNN architectures,
helping to improve the accuracy and functionality of PNNs before they are physically constructed. This
approach is notably faster and cost-effective, eliminating the need to set up and optimize expensive and
time-consuming physical systems for each iteration of the design; this also allows scalability, where the
PNN architecture can be adjusted and expanded as needed. When the hardware to be deployed does not
have significant nonlinearities or device defects, which would require more complex and specific information
to be included during training, an approximate digital model with Gaussian noise injected during the
forward pass can be sufficient in many cases to obtain accurate inference results on hardware83,85.
In-silico training also ensures scientific reproducibility and transparency, which is an important advantage
compared to some of the delicate and expensive in-situ learning systems that are harder to replicate.
Lastly, in-silico methods enable the exploration of theoretical/Gedanken models and PNN structures that
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are beyond the capabilities of current technological constraints (e.g., fabrication resolution/precision,
material properties, optical nonlinearities, losses, etc.) and help us analyze the effects of various factors
in a controlled environment.

However, in-silico training comes with its own set of limitations, as emphasized in Box 2. One of the
challenges is related to the digital forward model of the physical architecture. The physical/hardware
complexity of the PNN architecture might pose a challenge in identifying appropriate analytical and/or
numerical models to digitally represent it accurately, which can limit the effectiveness of in-silico learning.
Digital forward models might fail to encompass all physical phenomena in the actual PNN hardware, such
as detection noise, misalignments, fabrication and material imperfections30,34, among other experimental
factors; this forms a challenge for the accurate deployment of these trained PNNs at large scale, covering
many devices. The computational demands of these forward model simulations form another potential
hurdle. The process of discretizing the continuous physical world requires finer grids for improved accuracy,
which can lead to exponential increases in computational requirements with the scaling of the physical
size of the PNN and its input/output channels87,88. Another limitation is that this method can only be
as fast and efficient as digital computers. It will typically be much less efficient than training conventional
digital neural networks since modeling PNN hardware will come with computational overhead.

Physics-aware BP Training
Transitioning from gradient-free in-situ optimization to the favorable scaling of hybrid in-situ–in-silico
backpropagation algorithms89–91 has been a critical step for the emerging field of PNN training. Physics-
aware Training30 (PAT) crystallizes the notion that this can be reliably done for any physical system
with an approximate predictive model. In this algorithm, the physical system performs the forward pass,
and the backward pass is performed by differentiating the digital model. Its key feature, a mismatched
forward and backward pass, which is shared with many training algorithms89–94, requires only that the
digital model produce an estimated gradient that is approximately aligned with the true gradient92. This
condition, which is much less stringent than requiring a perfect digital model, allows PAT in many cases
to be a drop-in replacement for in-silico training, with many of the benefits of in-situ training algorithms.
Demonstrating its versatility, PAT has successfully trained PNNs across various domains including optical,
mechanical, and electronic systems30.

Physics-aware training is a hybrid of in-situ and in-silico methods, inheriting strengths and weaknesses
from both. Owing to its in-situ component, PAT mitigates the effect of experimental noise and mismatches
between the experiment and the digital model. Meanwhile, its in-silico nature enables accurate training
with time scaling similar to backpropagation. However, training may be slow if the physical system’s
parameters can only be updated slowly. Although constructing a digital model for PAT is less demanding
than for pure in-silico methods, it still poses challenges for complex, large-scale PNNs. Given the difficul-
ties in constructing accurate physics-based models (see In-Silico Training Section), the emerging field of
physics-informed machine learning, which integrates data-driven methods with physical principles, offers
a promising solution95,96. In this vein, an optical wave simulation model with data-driven fine-tuning
was used to perform PAT on a complex PNN with 10,000 parameters in Ref.31.
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Box2: Inference and Training Processes in PNNs
PNNs embody the cutting-edge convergence of physical hardware, material science and artificial intelligence, operating in a two-step
process: training and inference. In the training phase, a PNN learns from data related to a specific inference task, adjusting its
physical degrees of freedom (θ) based on the corresponding feedback to minimize the difference between its outputs and ground
truth. Central to the training of PNNs is the use of error backpropagation, a method used to calculate the gradients of a desired
loss function with respect to network weights. This process can be encapsulated by modeling the PNN as a parameterized function
fphysical that relates the input (x) and the physical parameters (θ) of the system with the output (y). Given that, for many physical
models, there currently exist no straightforward method to extract the weight gradients, a digital twin (fdigital) is often used to
approximate fphysical. Stochastic gradient descent, commonly used in deep learning, can be applied to optimize PNNs through the
following steps:
- Forward Model Execution: y = f∗(x;θ)
- Loss Computation: L = l(y,ytarget)
- Error Backpropagation and Parameter Update: gθ = ∂L

∂θ
= ∂L

∂y
∂y
∂θ

;θ → θ – µgθ

where f∗ denotes either fdigital or fphysical, corresponding to in-silico or in-situ training methods, respectively. l is the loss
function, µ is the learning rate and ytarget is the target output (i.e., the ground truth). For forward model execution (f∗), both
fdigital and fphysical can be used25, 30, 70, 97; however, for error backpropagation, fdigital is more commonly employed due to the
inherent challenges of applying traditional backpropagation to fphysical

98, 99. Despite being challenging, recent advancements have
introduced in-situ learning methods that utilize error backpropagation-free training24, 34, 35 or backpropagation adaptations using
the physical forward model of the PNN33, 100, 101. Once the training is complete, unlike conventional neural networks that only
operate digitally, an optimized PNN physically performs its inference on new data through fphysical operating in the analog domain.
The implementation of PNNs introduces some unique challenges and trade-offs across the training and deployment (blind inference)
phases. A key obstacle is the reliance on a digital twin—the mathematical representation of the PNN— which may not fully capture
the complexities of the actual physical model, potentially overlooking various factors like fabrication imperfections, misalignments,
and detection noise, among others. This might impact the inference accuracy of an in-silico trained PNN when it transitions
from fdigital to fphysical in the deployment phase30, 102. In-situ training of a PNN through fphysical can circumvent some of these
limitations. In either case, a PNN’s forward operation necessitates robust stability; for example, temporal variations in fphysical

due to mechanical/physical drifts or temperature fluctuations etc., would hurt both the training and inference phases regardless of
which forward model (f∗) is used. Arguably, this requirement for stability is one of the most significant challenges of PNN-based
information processing and inference for real-world deployment, and it requires the marriage of advanced micro-/nano-fabrication
methods along with material engineering and packaging for building resilience against external conditions.

Feedback Alignment
The end-to-end BP faces notable challenges for in-hardware implementations due to gradient communica-
tion in the backward pass across all layers32,34,103. BP uses the transpose of the weight matrix at each
layer to back-propagate the error from the output to the input layer, which requires extensive knowledge
of the parameters of the NN, and requires that the same weights used in the forward pass are transposed
and used in the backward pass, giving rise to "the weight transport problem". In contrast, both Feedback
Alignment (FA) and Direct Feedback Alignment (DFA) were introduced as methods that allow training
a NN without transferring weights from the forward pass to the backward pass for increased efficiency,
usually at the cost of performance. Nevertheless, both methods still require the derivative of activation
functions and the states of activation at each layer. FA was first introduced in104 and presents itself as a
simple alternative for training NNs as it uses fixed, random feedback weights at each layer to propagate
error signals from the output to earlier layers. This can significantly reduce the computational cost of the
backward pass. In21, an improved FA algorithm called direct feedback alignment (DFA) was introduced
to address the main shortcomings of FA. DFA improves on FA by using fixed random feedback weight
matrices to broadcast error signals directly to all layers simultaneously, thereby enabling the successful
training of deeper networks. FA methods use fixed random projections to train NNs they are directly
more suited to hardware implementations than traditional BP as fixed random projections are easier
to implement in physical hardware22. Yet, despite its low complexity and apparent compatibility with
physical implementation at first glance, physical realizations of DFA are scarce, as it still requires partial
knowledge of the NN parameters and, in particular, the activation function of the NN. In105, under
the name augmented DFA, DFA was extended to no longer require precise knowledge of the network’s
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activation function and instead replaces it with an arbitrary function that still presents a correlation
with said activation function. Augmented DFA was also used to train a neural network architecture
utilizing a physical nonlinearity using a Mach-Zehnder modulator. Wang et al.106 also proposed an
asymmetrical estimator based on alignments for in-situ training of photonic neural networks. Additionally,
in the context of hardware acceleration for training NNs, a physically implemented DFA algorithm was
implemented using high-dimensional random mappings in the optical domain to train digital NNs, using
both fully connected and graph convolutional networks in22, paving the way for the future use of DFA
in training PNN. Despite these advantages, the DFA suffers from accuracy degradation problem. This
becomes more serious when the DFA is applied to convolutional and recurrent neural networks107–109.
Also, this method is only compatible with certain PNNs, where it is possible to separate the nonlinear
part and linear layer105.

Physical Local Learning
Another solution to the stagnant gradient problem of end-to-end BP is local learning by eliminating
gradient communication entirely. Each layer (or block) independently calculates and applies parameter
updates using its own training signal. This setup ensures that no block remains idle, waiting for gradients
from others, making it an optimal setting for distributed model optimization. Local objectives were
initially used in early unsupervised methods for pre-training deep neural networks, such as the wake-sleep
algorithm110, Restricted Boltzmann Machine (RBM)111, and autoencoders (AE)112. The idea behind
local training is twofold: one, to minimize a local loss that compresses the information; and two, to extract
sufficient information from the input for the next layer/block. These compression and preparation for
the next layer could be explained from an information bottleneck perspective113. More recently, several
variations on the local learning paradigm have been introduced, focusing on parallel training. Löwe et
al.114 use a contrastive predictive loss to perform excellently in an unsupervised setting. Nøkland and
Eidnes115 and Ren et al. and Siddiqui et al.116,117 consider supervised and self-supervised local learning,
respectively; and succeed in matching the accuracy of global learning on classification tasks with up to
100 classes. Some proposals introduced a coupling between subsequent blocks, allowing the gradient
signal to flow between pairs of adjacent blocks118. This strategy preserves many of the compute efficiency
advantages of local optimization while recovering much of the task performance achieved by global
optimization119. Local parallelism allows for fully asynchronous layer-wise parallelism with a minimal
memory footprint. For instance, in reference114, the architecture is divided into three independently
trainable blocks, resulting in a 2.8 times reduction in GPU memory usage. Generally, the GPU memory
will decrease approximately by a factor of k, where k represents the number of blocks.

Expanding from digital electronic computing, Oguz et al.35 utilized the recently proposed contrastive
loss-based local learning scheme, forward-forward algorithm (FFA)32, to train optical neural networks.
This study demonstrates experimentally that multimodal nonlinear optics can significantly improve
the performance of multilayer NN architectures without creating additional computational overhead or
extensive characterization experiments. Furthermore, Momeni et al.34 proposed physical local learning
(PhyLL). Unlike FFA, PhyLL leverages cosine similarity between two forward passes – one for positive
data and one for negative data – eliminating the need for layernorm operation, which can be challenging
to implement physically. This approach was evaluated experimentally across three PNNs (Acoustics,
Microwave, and Optics), allowing for supervised and unsupervised training without detailed knowledge
of the nonlinear physical layer’s properties. Another promising avenue is to adapt methods from self-
supervised learning113,120, which may also be well-suited to training PNNs in a way that avoids gradient
communication between layers103. A challenge for training arbitrary physical systems with PhyLL is that
it uses knowledge of the behavior of each individual layer so that an estimation of the gradient for each
layer can be computed and used when updating parameters121. More recently, Zhao et al.122 used a
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Monte-Carlo gradient-estimation algorithm to compute the required gradient for in-situ updating the
parameters of PNNs.

While local learning has great potential to scale up in terms of hardware, it remains far from
clear whether these methods can, at any scale above small laboratory demonstrations, reproduce the
performance of backpropagation. While exactly matching backpropagation is not necessary (especially
given the potential for radically improved efficiency), going forward, such guaranteed high-dimensional
scaling is an essential requirement for physical local learning techniques.

Zeroth-Order Gradient and Gradient-free Training
To eliminate the need for detailed knowledge of the physical system whatsoever, model-free, "black-box,"
or gradient-free training algorithms have been proposed. However, fully-fledged implementations of them
in hardware remain scarce. These methods are typically slow because the number of gradient updates
scales linearly with the number of learnable parameters in the network, posing a significant challenge
for scaling up. These algorithms can be split into two broad categories. On the one hand, perturbative
methods estimate the gradient by sampling a target function to optimise (i.e. loss function) at different
coordinates (i.e. weights), and after estimating a gradient, weights are optimised via traditional gradient
descent. The finite difference method is the simplest way to estimate a gradient by sequentially perturbing
each weight and computing its corresponding gradient. More advanced zeroth-order methods have been
developed, such as the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm123, which
perturbs all weights simultaneously. Variants of this algorithm have been used in electronics124 and
optics125,126. Although simple, these algorithms have achieved good performance in the context of
on-chip in-situ training127,128. On the other hand, the second class of gradient-free methods consists
of population-based sampling. These include popular classes of algorithms such as genetic algorithms
(GA), surrogate optimization (SO), evolutionary strategies (ES), swarm optimization and reinforcement
learning (RL) algorithms. These are not directly concerned with achieving an approximation of the
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gradient but rather iteratively generating better candidate solutions to an optimization problem either
according to heuristic criteria in the case of GA, ES, and swarm-type algorithms or according to an
iteratively improved candidate generation policy in the case of RL. Evolutionary strategies such as the
CMA-ES129, metamodel-based optimization68, as well as RL have been used to train optical neural
networks in52,54,130,131.

Gradient-Descent Training via Physical Dynamics
Gradient descent optimization is the workhorse of state-of-the-art machine learning systems. We present
four physical training methods that achieve gradient descent without needing a digital twin. Such methods
can potentially lead to energy gains of 4 orders of magnitude compared to GPU-based neural network
training132.

The first approach aims at mapping traditional neural networks and BP onto analog hardware. The
central insight is that the matrix-vector multiplications required in the forward pass (inference) and
backward pass (training) can be implemented using linear reciprocal physical systems133, e.g. as a wave
propagation through a linear medium in photonics systems133, or using memristor crossbar arrays in
electrical circuits80. In photonic systems, gradients can be efficiently calculated in situ by backpropagating
the adjoint electromagnetic field and by interfering its (forward-propagating) time-reversed copy with the
original forward field33,101. This implementation requires bidirectional propagation of complex amplitude
waves (complex field generation modules are required100,134) and the (ideally lossless) measurement of
the wave intensity in the network (to this aim in photonics almost transparent detectors could be used135).
This approach requires the network to be lossless, or at least with uniform loss across the network to
preserve unitarity. Most often, these photonics and electrical implementations of BP are mixed-signal,
executing the nonlinear activation function and its derivative in the digital domain33,101. In order to avoid
analog-digital and digital-analog converters, and thus further improve energy efficiency, other methods
have been proposed to extend physical backpropagation to lossy networks100 and to nonlinear activation
layers136,137. However, non-idealities of physical non-linearities will cause deviations between calculated
and true gradients.

The second approach is based on nonlinear computation via linear wave scattering38,138,139 (also used
in34). Here, input data are encoded in tuneable, physical parameters, such as the frequencies of optical
resonators, while other parameters are optimized during training; and the scattering response serves as
output of the neuromorphic system. As a significant advantage, all the gradients can be obtained through
a minimal number of single-shot scattering experiments38 without the need for complete knowledge or
control of the system.

Equilibrium Propagation (EP) is the third approach23. EP applies in energy-based systems, i.e.
systems in which physics tends to minimize an “energy” or Lyapunov function. The input is supplied as a
boundary condition while physics drives the system to an energy minimum (equilibrium) to produce the
response (output). In EP’s original formulation, the weights are updated by a local contrastive rule based
on comparing two equilibrium states corresponding to two different boundary conditions. As a major
advantage over other contrastive learning algorithms28,140,141, EP calculates the weight gradients of
arbitrary cost functions23,142,143. Examples of energy-based systems trainable by EP include continuous
Hopfield networks23, nonlinear resistor networks144, Ising machines145 and coupled phase oscillators146.
Experimental realizations of the contrastive rule pose a challenge since it requires comparing network
states under two different sets of boundary conditions. An EP-like contrastive scheme has been successfully
implemented in memristor crossbar arrays132, and a binary version of EP implemented on D-Wave solved
MNIST with software-equivalent accuracy145. Both implementations resorted to external memory to
store the states between the two phases. Another contrastive scheme called Coupled Learning (CL)28 has
been experimentally demonstrated in elastic networks147.
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To realize energy gains, however, EP must be implemented in the lab without digital processing
or external memory. Potentially scalable laboratory prototypes have been developed of such electrical
linear29 as well as nonlinear148 resistor networks; these implement CL by coupling two copies of the
network29,148. Further energy gains can be realized by including the energy as an additional term in the
cost function149. Other proposed solutions to implementing the contrastive rule resort to encoding the
two states in different physical domains150, using integral feedback151, working in the complex domain142

or using dynamics of spiking networks152. Another conceptual advance is a non-contrastive version
of EP where the weights are physically updated through physical equilibration153. The potential of
EP has further been highlighted in simulations by training energy-based convolutional networks on a
down-sampled version of the ImageNet dataset142.

Hamiltonian Echo Backpropagation (HEB) is the fourth approach37. On top of extracting the weight
gradients, HEB directly produces the correct weight updates using physical dynamics, without any
feedback. HEB applies in time-reversal invariant Hamiltonian systems where dissipation is (ideally)
absent. Another crucial ingredient is a "time-reversal operation", e.g. phase conjugation in nonlinear
optics experiments. During training, in the forward pass, a signal wave and a trainable-parameter wave
travel jointly through a nonlinear medium where they interact. An error signal is superimposed on the
signal wave, and a time-reversal operation sends both waves back through the medium. At the end of this
backward pass, the trainable wave has been automatically updated in the direction of the cost-function
gradient.

Continual Learning
Neural networks are usually trained “off-line” on a fixed dataset, and then deployed for inference, without
further training. Continual learning aims to enable neural networks to learn from non-stationary streams
of data incrementally. It is not a trivial problem: when trained on a new dataset, neural networks tend to
lose their previously acquired capabilities by overwriting weights involved in representing the old learning.
This problem is known as “catastrophic forgetting”154. To address this, research efforts have focused on
freezing parts of the network weights while simultaneously growing other parts of the network to extend
the learning ability. For example, in class-incremental learning (CIL), the network must incrementally
learn to distinguish novel classes without forgetting the previously observed classes154. Very recently,
few-shot CIL algorithms have been proposed, in which the continual learning of novel classes is done with
only a few (e.g. 5) data samples, which is even more challenging155,156.

PNNs are excellent choices for implementing few-shot CIL algorithms due to their capacity for continual
expansion, allowing them to accommodate new classes effectively. For example, PNNs implemented with
arrays of memristive devices can be incrementally expanded by programming previously unused devices by
applying suitable electrical pulses, which will retain information about the novel classes in a non-volatile
way. Such an implementation was realized based on an enhanced memory-augmented neural network
comprising a dynamically growing explicit memory implemented with a phase-change memory (PCM)
array157. The novel classes were learned and stored incrementally in the explicit memory by exploiting
the in-situ progressive crystallization of PCM devices, and an in-memory similarity search was performed
during inference in the PCM array to classify unseen examples157.

Another opportunity to implement continual learning in PNNs is offered by Ising or XY machines,
which are specialized hardware engineered to solve optimization problems. They exploit their inherent
ability to discover low-energy states in a spin system naturally158. The architecture of such machines, often
realized through optical, light-matter, or quantum systems, inherently supports parallel computations,
making them suitable for continual dynamic learning. To enable continual learning, the XY or Ising
machine’s architecture can be modified to dynamically adjust the interactions between spins159,160. Such
adaptability can be facilitated by developing algorithms that incrementally update the Hamiltonian—the
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system’s underlying energy function—reflecting the continual integration of new information and the
retention of existing patterns while avoiding catastrophic forgetting.

Further work is nonetheless required to implement an entire CIL architecture in PNN hardware to
demonstrate fully end-to-end continual learning more efficiently than in a traditional digital architecture.

Towards Implementation of Analog Efficient Large Models
In the next two sections, we first explore large AI models and briefly review strategies to improve their
efficiency from a digital standpoint, both in terms of hardware and software innovations. Following that,
we consider the potential of "analog" large models, i.e., large AI models implemented by analog PNN
hardware. While PNNs are currently far from competitive with digital approaches (which are themselves
progressing rapidly), PNNs possess unique physical properties that may make them an important route
for scaling AI models beyond the practical limits of conventional digital implementations.

Efficient Training and Fine-tuning of Large models
In recent years, we have witnessed remarkable improvements in the capabilities of neural networks,
especially those designed in rich data setting including language understanding such as GPT-2 (1.2B)163,
GPT-3 (175B)164, LLaMA (65B)165, PaLM (540B)166, GPT-4167, Gemini168, vision-language under-
standing such as CLIP169 and LLaVA170, scientific reasoning including MatterGen171 and AlphaFold172,
and climate prediction173. Demonstration of emerging abilities in these large models, mainly based on
the attention architecture in Fig. 3 a, is driven by "scaling laws"—a trend indicating that a model’s
ability to generalize improves in a predictable, log-linear manner as a function of number of parameters,
data examples, or the amount of compute used to model and train large models163. Training frontier
LLMs with hundreds of billions of parameters is a prohibitively expensive task that requires weeks (or
even months) of optimization on thousands of accelerators (e.g. Nvidia GPUs) and trillions of tokens of
data. The inference cost of LLMs is also high due to their large memory footprint, which requires model
partitioning across many accelerators (causing I/O overhead), as well as the large number of floating
point operations across the model.

To address these challenges, the machine learning research community has been actively exploring
strategies to enhance model efficiency without unduly compromising model accuracy. These methods
include architectural changes such as moving away from attention-based architectures, quantization of
model parameters, fine-tuning methods to avoid costly retraining, and efficient implementation on digital
hardware.

One such effort has been on designing sublinear attention mechanisms. Sub-quadratic attention models
replace full attention by taking advantage of attention properties such as low-rankness174 and sparsity175.
In these models, the softmax operation is replaced by linear176, low-degree polynomials177 or random
feature maps178. An orthogonal approach is replacing the attention with recurrent models179. Another
effective approach for performance efficiency is quantization, in which the model weights are transformed
to a lower precision (e.g. from 16 bits to 4 bits)180,181. Quantization is commonly performed as a post-
training step, however, recent methods on quantization-aware training of LLMs show that models with as
low as 1.58-bit (ternary parameters) can match the performance of full-precision transformers, saving the
energy consumption by tenfold182,183. In addition to (pre-)training, fine-tuning is an important phase in
LLM optimization process. During fine-tuning, a pre-trained model is adapted to a specific task, using a
relatively small dataset (often in the order of thousands of examples or less). Fine-tuning models are
commonly done through supervised or reinforcement learning184,185 and would require updating the entire
model parameters. All techniques applied to efficient training are also applicable to fine-tuning. Moreover,
there are techniques specifically developed for fine-tuning, such as LoRA186 and Adapters187,188, in
which updating only a small subset of the parameters (often those that are newly added) is sufficient to
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Figure 3. Analog large models (a) The building block of the mainstream large language models is the
transformer architecture161, whose main building blocks are the attention, multilayer perceptron (MLP)
layers, softmax operation and dynamic matrix-vector multiplication (MatMul). The attention layer
requires a causal pairwise computations between the elements in the sequence, resulting in a quadratic
increase in computational complexity with respect to sequence length, affecting both time and energy
overhead, especially as models process longer context lengths. The MLP layer includes very large weight
matrices that also impose a large computational overhead; (b) MLP is the architecture of vector-matrix
multiplication also known as a fully connected layer. The MLP can be experimentally realized on a
number of technologies such as (c) crossbar arrays36; (d) Mach-Zehnder Interferometer meshes33; (e)
free-space multipliers162; (f) size scaling of two- and three-dimensional analog models with increasing
model parameters computed at wavelength=500 nm with scalings λ2/3; (g) Energy scaling advantage of
analog optical matrix-vector multiplication compared to digital electronics, for Transformer models. Data
were obtained from162.
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adapt the model for downstream tasks. Digital hardware-aware implementations of the exact attention
mechanism have also been shown to be very effective. For example, FlashAttention189 uses tiling and
recomputation to reduce the memory bandwidth overhead, Hydragen190 splits the sequence across the
prompt and suffix and batches attention queries over the shared prompt sequences to increase throughput.
vLLM191 avoids redundant storage of the prefix keys and reduces the cost of redundant reads.

Analog Large Models
AI models are now large, and they are getting larger. As the previous section summarized, many aspects
of these models are likely to change, and digital software and hardware innovations will help reduce their
energy costs in both training and inference. Could PNNs make this scaling easier? Could they allow
scaling beyond what is economically feasible for digital computers?

As a first consideration, large AI models are literally physically large. In optics, for example, parameters
are often encoded in the pixels of spatial light modulators (SLMs). A 1-quadrillion (1015) model would
require a total area of SLMs of roughly 16 m2, comparable to the cross-section of an elephant. Does this
mean that large optical PNNs have no hope? No – in fact for computations of this scale, a large footprint
is inevitable with any hardware. However, it does suggest that PNN researchers (across all hardware) will
need to propose architectures designed not just for laboratory demos, but for extreme scalability. One
initial step are the projections of Anderson et al., which examine the costs of implementing Transformer
models using optical hardware162. This work confirms that, even when splitting a model across many
reasonably-sized optical processing units and accounting for the costs of loading parameters and inputs
from memory, plausible optoelectronic hardware could be roughly 100x more efficient than 2023’s state-of-
the-art digital electronics at implementing current LLMs (about 1015 MACs/inference). More importantly,
this advantage could grow to 104 or even 105 for larger models with 1019 MACs/inference.

This highlights perhaps the most important scaling consideration for potential future large-scale PNN
AI systems: If PNN hardware is designed properly, its different underlying physics may allow it to exhibit
different energy scaling behavior than digital electronics. This means that, given sufficiently large model
scale, PNN implementations may offer better efficiency compared to digital systems, even despite the
many overhead costs of analog hardware, such as digital-to-analog conversion costs. In optics for example,
assuming fixed output precision, the optical-energy cost per operation (scalar MAC) when performing a
dot product scales as 1/N, where N is the length of the vector24,192–194. In digital electronics, the cost per
operation is normally fixed (∼ 1). This optical dot product energy scaling advantage (∼ 1/N versus ∼ 1)
may transfer to a similar scaling advantage for AI model inference, since most models consist primarily of
dot products. However, this transfer is not guaranteed: the algorithm and data, design of the electronic
modulation and memory access, and the optical hardware itself can limit the scaling advantage162,195.

Finally, scaling is not only about hardware. While Transformers are a breakthrough, they are also
merely the latest algorithm to rise to prominence because of synergy with scalable hardware196,197. As
we look to ultra-scale PNNs, it may be shortsighted to focus on current algorithms – rather, we need
new synergistic combinations of hardware and software. Given the inertia of infrastructure and the rapid
development of efficient digital large model implementations, commercially viable PNNs will need to
provide energy efficiency thousands if not millions of times greater than digital electronic. To do this
will require designing physical computers that consider the challenge of scale holistically, hardware and
software together, and that make efficiently exploiting physical compute their leading objective196.

All the above considers primarily inference of large models, which is the most urgent and accessible
opportunity for PNNs in the large-model space. Using PNNs to accelerate training of such models is
similarly promising. As this article’s earlier sections suggest, the training phase may allow additional
physical phenomena to be gainfully exploited, e.g., to realize scalable local learning based on analog
physical processes. This means that physics-driven learning of PNN models may exhibit additional scaling
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Figure 4. Emergent technologies. (a) Optical microscopic image of a memristor crossbar array
integrated on the memristor/CMOS chip, from199; (b) crossbar array of magnetic tunnel junctions for
high-density storage and memory retrieval, from200; (c) the schematics of in-sensor computing
architecture, from201; (d) an operational principle of learned-sensing intelligent meta-imagers, from202;
(e) an illustration of soft quantum neurons in the quantum circuit model, from203; (f) the schematics of
spatial photonic Ising machine, from204; (g) diffraction optical NNs consisting of multiple transmissive or
reflective layers, where each point on a given layer acts as a neuron, with a complex-valued transmission
or reflection coefficient, from25; (h) superradiance in confocal cavity QED for high-density storage and
memory retrieval, from205; (i) an image of a PIC with shown signal paths (white) and the local oscillator
paths (blue), from125; (j) the structure of an N-input photonic neuron with weights of input signals
changed using optical PIN attenuators and summed up using photodetectors, from98; (k) acoustic data
transformer where input data are encoded into the intensity of sound waves at different frequencies that
propagate through a random set of membranes, from34,206.

advantages (in energy, size, speed, etc.) that extend even beyond the inference energy scaling advantages
noted above.

Emerging PNN Technologies
In the PNN context, quantum, probabilistic, photonic, light-matter and hybrid computing represent
promising developments158. Quantum computers can exploit features of quantum mechanics such as
superposition in a way that might allow them to address optimization problems critical to NN training198.

However, the practicality of applying these quantum advantages is tempered by the limitations of
current Noisy Intermediate-Scale Quantum systems, which have limited qubits and large computational
error rates207. Specific quantum algorithms and quantum neural network frameworks are being devised
to operate within these constraints, for instance, using ‘soft quantum neurons’203, quantum circuit
Born machines, quantum generative adversarial networks208, and variational quantum algorithms209 can
potentially outperform classical models in generating new samples and learning data distributions.

Probabilistic hardware systems, which rely on stochastic elements, sometimes referred to as probabilistic
bits (p-bits) occupy an intermediate step between quantum and classical deterministic PNNs. They are
naturally suited to training deep generative models, specifically deep Boltzmann Machines (DBMs)210,
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but can also be trained to act as stochastic neural networks for deterministic classification tasks77.
Photonic-based optimisers such as Spatial Photonic Ising Machines (SPIMs) that use spatial light

modulation to emulate Ising problems introduce another opportunity for PNNs204. The properties of
light, such as spatial parallelism achievable in optics and the dissipationless dynamics of light propagation
that enables computation, offer significant advantages over electronic systems211.

Light-matter systems that couple photons to matter particles efficiently212,213 form the basis of
gain-based computing that could lead to new methodologies in PNNs by encoding optimization problems
within driven-dissipative systems’ gain and loss rates 205,214. For instance, polaritonic systems with their
strong noise-controlling nonlinearities were proposed to lead to all-optical platforms for implementing
diffusion models215,216.

A limitation of the stand-alone PNNs is the overhead from encoding inputs into and reading outputs
from the physical domain. Integrating wave-based computing and PNNs at a sensor front-end naturally
avoids such overhead. Intelligent sensors combine sensing and over-the-air computing capabilities to pre-
select task-relevant information during data acquisition, yielding substantial improvements in latency and
other metrics202. Intelligent sensors are to date conceived by training via error backpropagation the entire
sensing pipeline end-to-end concerning a specific task, including both analog data acquisition and digital
post-processing217,218. In other words, training intelligent sensors to date requires a differentiable digital
model; alternative training paradigms remain unexplored. The hallmark feature of an intelligent sensor is
that its data acquisition is task-aware thanks to the end-to-end training202. Endowing the physical layer
with programmability and/or non-linearity enables task-reconfigurable smart sensors and/or increases the
complexity of mathematical operations that can be performed during data acquisition99,219–221. These
paradigms are emerging across scales and wave phenomena, and context-aware next-generation wireless
networks may already leverage dynamic metasurface antennas for integrated sensing, computing and
communications219,222–225. Other applications include privacy-preserving cameras226, non-destructive
testing227 and noise-adaptive smart computational imagers228. A trend toward further integration of
wave-based computing with sensing, communications and data storage is clearly emerging229–231.

The programming of all-photonic routers in networks also bears significant similarities to the training
of PNNs, and these fields can benefit from one another. Irrespective of the detailed implementation232–236,
programmable all-photonic routers are (usually linear) input-output systems with a multitude of tunable
degrees of freedom. The latter must be reconfigured during runtime to realize different routing functional-
ities (i.e., implement different input-output relations). A further important constraint is that reflections
back into the input channels should be suppressed to avoid reflected-power echoes in the network233.
Besides various well-established global optimization techniques, ideas for progressively configuring specific
hardware architectures purely based on local feedback loops are emerging236,237, even for only partially
coherent light238.

Integrating these advanced computational paradigms into PNNs requires addressing several challenges,
including adapting learning algorithms to leverage quantum and photonic, wave-based or gain-based
processes, managing noise and error rates in quantum systems, and the scalability of architectures. The
development of hybrid systems, which combine quantum or photonic processing units with classical
computational elements, might offer practical pathways to use the advantages of these technologies
while mitigating their current limitations. Aligning the unique properties of these physical systems with
the goals of PNNs can pave the way for the next generation of intelligent systems characterized by
unprecedented levels of speed, efficiency, and scalability.

Finally, beyond human-made devices, the dynamics of biological systems may offer enticing opportuni-
ties to implement new generations of PNNs, e.g., using octopus-inspired soft robotic arms for reservoir
computing57,239. Biological contexts may require rethinking the training process of PNNs to enable their
compatibility with the vulnerability of underlying biological systems.
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Outlook
PNNs may ultimately be found from the data center to the edge, from powering large generative models,
through to aiding in classification in smart sensors. In all cases, they will need to be trained, but
depending on the application, the constraints on training may be different. For example, large models on
servers might only require updates every few months and be able to use a lot of energy to be trained,
whereas some models at the edge might need to be adaptive on a timescale of hours or even minutes, and
be severely limited in their power budget for retraining. The diversity of PNNs and use cases suggests
that the major open challenge for the field is not to find what the single best training method is, but
rather what the best training method for each situation is, and what the tradeoffs between different
methods are.

An ideal training method would:
1) be model-free, not requiring the training procedure to have access to a mathematical description

of the behavior of the PNN hardware, and would rely on as few assumptions about the behavior and
structure of the PNN hardware as possible, allowing PNN designers to optimize the hardware for speed
and energy benefits in inference;

2) give speed and energy advantages in the training time and energy cost versus training a conventional
artificial neural network to perform the same task with the same accuracy, using the same training data –
to achieve such benefits in training, the method should leverage the benefits of the PNN hardware itself
in training rather than relying heavily on digital-electronic hardware during training, and the training
method should be able to exploit the full expressivity of the PNN hardware;

3) be robust to hardware copy-to-copy variations, drift, and noise – and if not fully robust, then at
least able to cheaply compensate for these imperfections.

None of the known training methods for PNNs simultaneously satisfy all of these properties, or even
perfectly satisfy any one of them. However, the past few years have seen many different training methods
be developed that push the boundaries of tradeoffs within this space of properties, and we anticipate
further advances that will lead to methods that are simultaneously more general, more efficient, and more
robust, enabling practical and widespread use of PNNs.
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Table 1. Table for comparing different algorithms: N is the number of parameters, M is the number of
neurons, and T0 is time to convergence for backpropagation (BP).

Algorithm Comments Memory (Mea-
surements)

Expected wall
clock time to
convergence

Updatable
physical or
digital param-
eters

Digital model
(or simulation)
required

ELMs and RC Solution is found after
one matrix inversion

O(M) Time to perform ma-
trix inversion

Last digital lin-
ear layer

No

Backpropagation-based methods
In-silico BP O(M) O(T0) All digital pa-

rameters + phys-
ical parameters
simulated in dig-
ital model

Yes

Physics-aware BP Reduces constraints on
model faithfulness

O(M) O(T0) All digital pa-
rameters + phys-
ical parameters
simulated in dig-
ital model

Yes

Direct Feedback
Alignment (DFA)
training

O(M) > O(T0) Matrix elements
of a digital or
physical matrix-
vector multiplier

Only for nonlinear
activation function
and its derivative

Physical local
learning

Need the knowledge of
each individual layer for
estimating the gradients

O(M) > O(T0) (depends on
the number of layers)

All controllable
parameters

No

Zeroth-order/gradient-free methods
Finite difference
stochastic approx-
imation

O(N) O(N · T0) All controllable
parameters

No

Simultaneous per-
turbation stochas-
tic approximation

O(N) O(N · T0) All controllable
parameters

No

Gradient-
free training
(GA/etc.)

For Population-
Based Methods
(e.g., Genetic
Algorithms,
Evolution
Strategies):
O(PN), where P
is population
size.

>> O(T0) All controllable
parameters

No

Physical gradient computation/physical backpropagation
Adjoint Method
(AM) based BP

Reduces memory load O(1) O(T0) All controllable
parameters

Only for nonlinear
activation function
and its derivative

Scattering BP Nonlinear computation
in physically linear sys-
tems; requires knowledge
of form of Hamiltonian
terms depending on tun-
able parameters; allows
for batch processing us-
ing frequency multiplex-
ing

O(NoutM) (with
Nout the output
dimension)

O(T0) All controllable
parameters

No
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Table 1. Table for comparing different algorithms (continued).

Algorithm Comments Memory (Mea-
surements)

Expected wall
clock time to
convergence

Updatable
physical or
digital param-
eters

Digital model
required (Digital
model accuracy)

Equilibrium Prop-
agation (EP)

Applies to system con-
verging to the minimum
of an energy function.
Requires knowledge of
energy derivatives wrt
trainable parameters.

Lazy implemen-
tation: O(N),
Advanced imple-
mentation: O(M)

O(1) All controllable
parameters

No

Hamiltonian Echo
Backpropagation
(HEB)

Applies to lossless sys-
tems with time-reversal
operation

O(0) O(1) All controllable
parameters

No
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